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Abstract—The increasing popularity of wireless services and
devices necessitates high bandwidth requirements; however, spec-
trum resources are not only limited but also heavily underutilized.
Multiple license channels that support the same levels of quality
of service (QoS) are desirable to resolve the problems posed
by the scarcity and inefficient use of spectrum resources in
multi-channel cognitive radio networks (MCRNs). One reason is
that multimedia services and applications have distinct, stringent
QoS requirements. However, due to a lack of coordination
between primary and secondary users, identifying the QoS levels
supported over available licensed channels has proven to be
problematic and has yet to be attempted. This paper presents
a novel, Bayesian, non-parametric channel clustering scheme,
which identifies the QoS levels supported over available license
channels. The proposed scheme employs the infinite Gaussian
mixture model and collapsed Gibbs sampler to identify the QoS
levels from the feature space of the bitrate, packet delivery ratio,
and packet delay variation of licensed channels. Moreover, the
real measurements of wireless data traces and comparisons with
baseline clustering schemes are used to evaluate the performance
of the proposed scheme.

Index Terms—Multi-channel cognitive radio networks, quality
of service levels, multimedia transmissions, channel clustering.

I. INTRODUCTION

Recent advances in wireless access technology and the
rapid proliferation of media-rich devices and applications have
changed wireless network traffic on a fundamental level. In
a recent study, Cisco predicted that wireless traffic would
grow threefold from 2016 to 2021, with 82% of the increase
being related to video 1. Supporting this increase in multi-
media traffic on a severely limited spectrum will prove to
be fairly challenging as it is critical in ensuring the future
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competitiveness of wireless networks. However, the wireless
spectrum is limited and heavily underutilized. According to
reports by the Federal Communication Commission, between
15% and 85% of the wireless spectrum is currently going to
waste. Hence, the limitations and inefficient use of the wireless
spectrum cause the primary bottlenecks when accommodating
the increasing needs of multimedia traffic. Multi-channel cog-
nitive radio technology has emerged as a promising tool in
addressing the inefficient utilization of the wireless spectrum
and accommodates wireless multimedia applications across the
wide range of licensed channels (LCs) [1].

Multi-channel cognitive radio networks (MCRNs) define
the two types of spectrum users: (1) primary users (PUs)
and (2) secondary users (SUs). PUs are privileged users who
have the right to use LCs at any time without interruption.
SUs are unlicensed users equipped with multiple interfaces,
who are always looking to capitalize on any available LCs
to enhance spectrum utilization. However, due to the lack of
coordination between PUs and SUs, finding multiple LCs that
support identical quality of service (QoS) levels has proven to
be problematic and has yet to be attempted.

Channel conditions in a wireless environment are spatiotem-
poral; that is, an SU experiences different QoS gains over
different wireless channels in terms of bitrate, packet loss rate,
and jitter with respect to time and location. This disparity in
QoS gain is highly significant across a wide range of spectrum
bands, such as from the TV spectrum bands (e.g., 30 MHz
to 300 MHz) to the ISM spectrum bands (e.g., 2.4 MHz
to 2.5 GHz). The situation exacerbates when multiple SUs
experience different QoS gains over the same channel in a
phenomenon known as multi-user diversity. As multimedia
applications require guaranteed QoS, the identification of
multiple LCs supporting the same levels of QoS is crucial for
efficient multimedia transmission. In MCRNs, each SU should
estimate the available LCs and identify the QoS levels they
support. These endeavors can be done by collecting the fea-
tures of LCs and by clustering them to identify their supported
QoS. Hence, a SU can optimize its transmission according
to demands of wireless multimedia applications. Moreover, if
the SU adopts a set of LCs without the prior knowledge of
their supported QoS levels, it will repeatedly hand-off to other
channels for successful transmissions. Consequently, the SU
will also experience poor multimedia transmission quality and
the inefficient utilization of LCs.

Given that information on the number of LCs and their
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supported QoS levels is not immediately available, we in-
troduce a novel non-parametric Bayesian channel clustering
scheme, which provides basic techniques for the specification
of prior beliefs, reveals dependencies among the data sets, and
performs efficient inferencing. This scheme is utilized to figure
out the structures present in the provided data set (i.e., number
of clusters or classes) that best describe the observations. The
proposed scheme is called non-parametric because the number
of unique traffic patterns over PU LCs is not provided. In the
proposed scheme, the SU observes and extracts the channel
estimation features (i.e., bitrate, packet delivery ratio (PDR),
and packet delay variation (PDV)) from each available LC.
Multivariate Gaussian distribution was utilized with unidenti-
fied parameters to cluster the single channel feature space.
Similarly, for multi-channel clustering, we use the infinite
Gaussian mixture model (IGMM) and the collapsed Gibbs
sampler (CGS). The CGS classifies the observation points
into different clusters or classes by using the Markov Chain
Monte Carlo (MCMC) technique. The CGS then generates
posterior samples by sweeping through each observation point,
sampling from its conditional distribution while keeping the
other observation points fixed at their current values. Hence,
to address the problem of clustering an infinite number of
LC feature spaces, we develop an unsupervised manner in the
non-parametric Bayesian technique, a process which involves
the CGS generating posterior samples and identifying the total
number of QoS levels or channel clusters and, consequently,
the number of channels supporting the same level of QoS. The
unique characteristics of our proposed channel scheme are as
follows:

• Our scheme is based on heterogeneous or different LC
feature spaces and does not require any exchange of
control messages between a SU and a PU.

• Our scheme is based on the unsupervised clustering
mechanism.

• The proposed scheme is highly flexible and can easily
be extended by incorporating numerous LC features for
increased efficiency and accuracy.

• The scheme does not require any prior knowledge to
identify the distinct channel clusters or their supported
QoS levels.

• The proposed clustering scheme relaxes parameter as-
sumptions, which are similar to the real situation of
distributed cognitive radio networks (CRNs).

• The real data traces of WiMAX, WiBro, and wireless
channels 2 measured at different locations (i.e., subway,
residential, and campus) under different traffic variations
were utilized to evaluate the performance of the pro-
posed scheme. Moreover, we evaluate the accuracy of the
proposed scheme by comparing its performance with K-
means, expectation maximization, and spectral clustering
algorithms.

The main contributions of the study can be summarized as
follows:

• We propose a novel, non-parametric, Bayesian-based
channel clustering and a QoS level identification scheme

2 Accessed on: 15th August 2017 https://crawdad.cs.dartmouth.edu/

that considers channel features (i.e., bitrate, PDR, and
PDV) and identifies the QoS support over each channel.

• The proposed scheme focuses on the heterogeneity of
LCs, which challenges the algorithm design. However,
the accuracy of the channel clustering and the identifi-
cation of the QoS levels of different spectrum channels
range from 98% to 99.5%.

The rest of the paper is organized as follows: Section
II discusses the existing literature; Section III presents the
proposed non-parametric Bayesian channel clustering scheme
for the identification of QoS levels by using the IGMM and
the CGS; Section IV exhibits the performance analysis; and
Section V tackles our conclusions and recommendations.

II. RELATED WORK

The CRN is a candidate blueprint for the enhancement
of current spectrum utilization. Several recent studies have
corroborated that the utilization of cognitive technologies can
enhance performance by meeting the delay sensitive require-
ment for multimedia applications. For instance, in wireless
sensor networks, license-free spectrums have been observed to
frequently suffer from uncontrolled interference. Accordingly,
the concept of a cognitive radio sensor network (CRSN) was
introduced in [2]. This study analyzed the performance of
CRSN for real-time applications with the help of Periodic
Switching and Triggered Switching channel access techniques.
Another study [3] proposed a solution for multi-user downlink
video streaming for infrastructural CRN. This study aimed to
maximize the quality of experience for SUs by considering
channel sensing and assignment policies jointly.

The study [4] proposed a distributed QoS-aware medium
access control (MAC) protocol for CRN to support multimedia
applications. In this study, a priority spectrum access scheme is
introduced, which assigns differentiated random channel sens-
ing durations to SUs based on their traffic priority type (i.e.,
an SU with the highest priority obtains substantial chances to
access the LC). Moreover, an analytical model is formulated
to measure the delay performance of the proposed scheme. In
another study [5], authors considered geometric characteristics
(i.e., path loss and random node positions) to analyze the
performance of the MAC protocol for MCRNs. Similarly, a
decentralized MAC protocol for MCRNs is also proposed in
[6]. The proposed scheme is intended for SUs who want to
communicate their control information along with data over
LCs. The proposed scheme improves the network performance
in terms of throughput and communication time by reducing
the number of handshakes over common control channel. The
study [7] proposed a preemptive priority queuing model to
estimate the performance of the spectrum allocation strategy
under multi-channel and imperfect sensing. Moreover, a three-
dimensional discrete Markov chain model is developed for
measuring the stochastic behavior of the SU and PU data pack-
ets. In multi-hop cognitive radio ad hoc networks (CRAHNs),
the optimal utilization of the channel resources has become a
key concern. A joint rate adaptation, channel assignment and
routing (J-RCR) scheme is proposed in [8] to cope with this
scenario. The proposed scheme helps maximize social welfare
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through performing optimization in multi-channel CRAHNs.
Moreover, it dynamically adapts the transmission rates of SUs
based on the network conditions and rate requirements.

In [1], authors claimed that channel assignment schemes
for CRN generally do not consider the temporal usage of
LCs. Therefore, for providing high QoS to the SU, while
protecting PUs, a PU temporal activity-based channel assign-
ment scheme is proposed for MCRNs. The IEEE 802.22 is
the new standard for CRNs, emphasizing the significance of
interference-free and reliable SU communication over LCs.
However, the channel sensing mechanisms provided by this
standard have radically failed to satisfy the rigorous sensing
requirements. A few other shortcomings of the standard are
a lack of flexibility, unbalanced performance, instability, and
performance non-uniformity. Hence, a distributed channel-
sensing scheme known as the multi-channel learning-based
distributed sensing fusion mechanism is proposed for MCRNs
in [9]. The proposed scheme is highly stable and self-trained
and even compensates for false detection.

In our proposed scheme, we used Gibbs sampling, which is
based on the MCMC sampling algorithm. The problem with
the MCMC scheme is that it suffers from slow convergence. In
the literature, [2]–[4] authors performed video transmissions
based on a single channel assignment scheme. However, none
of the above mentioned works consider the actual supported
QoS levels on LCs and PU traffic patterns for channel selection
and transmitting multimedia over MCRN. In the future, it
should consider the multi-media traffic specific heuristics on
channel selection algorithms that can lead to the further
improvement of traffic perception quality for MCRNs. Unlike
most existing work, we proposed a PU channel feature (i.e.,
traffic patterns)-based channel clustering and the identification
of QoS, which helps in identifying multiple LCs supporting
the same QoS level for improved multimedia transmissions
and efficient LCs utilization over MCRNs.

III. CHANNEL CLUSTERING AND QOS LEVELS
IDENTIFICATIONS SCHEME BASED ON BAYESIAN

NON-PARAMETRIC INFERENCE

In this section, we discuss our proposed channel clustering
and QoS level identification scheme. The proposed scheme
is based on the Gaussian mixture model (GMM), the finite
Gaussian mixture model (FGMM), the IGMM, and the CGS.
In a mixture model, observation points are used to generate
the mixture distribution, in which each observation point has
its own mixing weight. In the mixture model, the first step
is to decide which type of statistical distribution is used
for clustering the observation points. In the current study,
we selected the Gaussian distribution, which is most widely
adopted in the literature [10], [11]. The Gaussian distribution
is chosen because of its good theoretical properties (i.e.,
mixtures of Gaussians are dense in the space of densities
on an Euclidean space), closed form of some distances (i.e.,
Hellinger and Kullback-Leibler), and low computational effort
(i.e., conjugacy) [11]. In second step, each mixture distribution
is substituted by Gaussian distribution to obtain the GMM.
The GMM-based clustering technique is highly flexible as it

accommodates clusters of different sizes and the correlation of
structures within them. The GMM-based clustering scheme is
also called a soft clustering scheme (i.e., all observation points
are assigned to different clusters based on certain probability
values), and we can also estimate through mixing the weight
of how much data each observation point represents. Thus, on
the basis of the nature of our clustering problem and data set,
the GMM is a more appropriate choice than other distributions.

In the proposed scheme, a SU can cluster the available LCs
based on their unique feature space. Features are the unique
characteristics of LC usage, such as experiencing PDR, PDV,
and bitrate. Given that these features depend on the time and
geographical location of a PU and a SU, each LC may follow
a unique behavior in terms of PDR, PDV, and bitrate. In the
proposed scheme, the SU observes the LCs to extract their
features, revealing the following definitions of our selected
features:

• Bitrate: Bitrate for different LCs could be different. For
example, a WiFi channel can support 54-600 Mbps under
optimal channel conditions, whereas WiMAX channel
supports 70 Mbps, and long-term evolution (LTE) chan-
nels can support up to 3 Gbps [12]. Moreover, the
bitrate of wireless channels varies on uplink and downlink
channels. Hence, we adopt the Bitrate as one feature point
to identify the QoS support over different LCs.

• Packet Delivery Ratio: The PDR is derived from dividing
the number of packets received successfully over the
number of total packets sent. A great value of PDR
represents a good quality of wireless channels and, con-
sequently, less packet loss.

• Packet Delay Variation: Also referred to as jitter, the PDV
measures the difference of the delay among successive
packets. The PDV may change from channel to channel
due to the PUs running different applications. Moreover,
by inspecting the real data traces of different LCs, we
have discovered that PDV varies drastically during com-
munication. Thus, the PDV is another important param-
eter that severely affects the performance of multimedia
applications.

For the observation of the number of QoS levels identified
from the features mentioned above and the determination of
which observation point belongs to which distinct channel
cluster or QoS level, the posterior distribution (PD) for the
set of observation points was generated. In this study, we use
the terms observation points and data points interchangeably.
The PD of the data points signifies the entire QoS levels or
channel clusters and further classifies which observation point
belongs to which QoS level. Currently, two generic models
exist to generate the PD of observations: (1) the generative
model and (2) the discriminant model:
Generative Model: This model utilizes probabilities to gen-
erate a data set for a specific phenomenon based on the model
and provided (i.e., hidden) parameters.
Discriminant Model: This model is a probabilistic model that
is also called conditional model and only provides model for
data set. The data set is generated on the basis of analyzing
the observation points.
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The generative model was used in the characterization of
data points due to following five reasons: (1) This model is
flexible enough to express dependencies in a complex learning
environment; (2) this model randomly generates hidden param-
eters and a joint distribution of data points; (3) this model uses
data directly; (4) this model generates samples of two or more
variables from their joint distributions, which is impossible
through a discriminant model; and (5) the discriminant model
is inherently supervised in nature and could not be used for
unsupervised learning. The examples of generative models
include the hidden Markov model and the GMM, which was
used in this study due to its flexibility to extend for a case, in
which QoS levels are unidentified. Furthermore, the proposed
scheme is extendable beyond the above mentioned channel
features. The identification of the QoS levels supported by
available LCs is reflected by our mentioned features, which
individually separates available LCs into a high dimensional
space.

A. Finite Gaussian Mixture Model

We had primarily assumed that the number of channel
clusters was given and that each QoS level follows a Gaussian
distribution. Therefore, at the initial step, the model became
the FGMM, which correctly clusters the feature points, uti-
lizing the exact estimation of multi-modal probability density
in cases where hidden variables are inferred as class labels.
Moreover, the FGMM considers that the observations are
produced through a finite number of Gaussians with unknown
parameters. In this study, the number of dimensions is fixed
at three, representing the feature space. In the FGMM, every
observation is assigned to a distinct cluster among total K
clusters based on a unique value or weight that is assigned to
every cluster in the mixture. Each observation point must be
associated with a cluster, revealing which observation point
belongs to which cluster out of the total K clusters. The
FGMM is an effective model when the total numbers of chan-
nel clusters are initially available. Whereas, the total number
of clusters is based on total available distinct LCs. In MCRNs,
channel availability depends on time varying PU activities
and the geographical location of the SUs. Therefore, we did
not know the exact number of clusters in the mixture, and a
highly flexible model that does not require such information in
advance was needed. Moreover, by adopting the FGMM, our
channel clustering problem becomes considerably complex. In
the IGMM, the term weight or probability of belonging is
dependent on the K; as the value of K increases, the weight
is affected.

B. Infinite Gaussian Mixture Model

The IGMM is a highly advanced version of the FGMM
that does not require any prior information. In the IGMM,
the total number of clusters can be infinite and the term
weight or probability of belonging is dependent on the K; as
the value of K increases, the weight is affected. The IGMM
is profoundly suitable for adoption in a situation where the
number of clusters is not provided in advance. The IGMM
can incorporate an infinite dimensional model and uses the
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Fig. 1: QoS levels Identification.

stick breaking process (SBP) to model the variable number of
clusters and the concept of countable infinity in the form of
the SBP. The SBP is an elegant and direct way to represent
the Dirichlet process mixture model. In the SBP, a stick of
unit length (i.e., one) is divided into an infinite number of
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sticks modeled as beta distribution. Whereas, the size of each
piece is dependent on the α, which represents the total number
of channel clusters observed from the given data set. In our
channel clustering problem, each cluster specifies a certain
level of QoS in terms of bitrate, PDR, and PDV. However,
the IGMM is a generic model widely used for parameter
estimation; therefore, for clustering accuracy, we used the
MCMC algorithm.

Figure 1 presents the step-by-step procedure used to identify
the total supported QoS levels. In the proposed scheme, the
SU first generates observation points that are being collected
from different LCs before extracting features, such as bitrate,
PDR, and PDV from each LC. Subsequently, the SU models
the data and performs channel clustering using the IGMM
and the CGS, respectively. The SU then observes whether the
observation points of all features belong to a single channel
map into unique clusters before the total number of available
QoS levels is identified by observing the value of K. Each QoS
level is differentiated by observing the mean and covariance;
otherwise, the data collection step is performed again.

C. Collapsed Gibbs Sampler

We used the CGS that generates inferences about the set
of observations based on the joint probability distribution of
a set of random sequences. The CGS is the realization of
the MCMC algorithm, and these random samples are used
to estimate the unknown parameters. The CGS classifies the
clustering results into two categories: (1) when the data points
belong to one of the distinct clusters from the total K available
clusters and (2) the data point belongs to a new cluster.
Moreover, we use it to estimate the PD for the IGMM.

IV. PERFORMANCE ANALYSIS

In this section, we first discuss the experimental setup and
then we present the simulation results.

A. Experimental Setup

To evaluate the performance of the proposed scheme, we
used the MATLAB tool for simulations. We performed sim-
ulations using the measurements of bitrate, PDR, and PDV
from the traces of different wireless channels of WiMAX and
WiBro networks. Traffic on wireless channels was captured on
the bus, subway, and campus using TCPdump. In simulations,
we followed the following channel notations: (1) Channel 1
refers to the WiBro wireless channel measured for the World
of Warcraft (WoW) gamming application; (2) Channel 2 refers
to the WiMAX wireless channel measured for the BitTorrent
application; (3) Channel 3 refers to the WiBro wireless channel
measured for a VoIP application; and (4) Channel 4 refers to
the WiBro wireless channel measured for a UDP application.

TABLE I: Hyper parameters setting

Setting name Λ0 µ0 k0 v0 Γ(a, b)
Setting H1 0.3 0 0.1 4 1.21
Setting H2 0.3 0 0.01 4 3.5
Setting H3 0.3 0 0.001 4 4.79

The hyper-parameters presented in Table I are used to
evaluate the performance of the proposed scheme. In our
proposed scheme, we used the IGMM; therefore, hyper-
parameters should be set to reflect the actual true data set.
The complexity of the CGS increases considerably with the
increase in data points. Therefore, hyper-parameters play an
important role in the fast attainment of the true data set and the
reduction of the complexity of the Gibbs sampler. The IGMM
uses the generative model; hence, we must set the hyper-
parameters H = {µ0, k0,Λ0, v0}, and Γ carefully to obtain the
clustering results with minimum errors. Hence, we initialize
Λ0 = diag(0.3), µ0 = 0, k0 = 0.01, v0 = 4, and Γ = (3, 2).
The vector of a cluster follows a Gaussian distribution with
mean µ0 and covariance Σ0/k0. The µ0 represents the mean of
a cluster and ko is the dispersion measure of a cluster. A high
value of k0 depicts that the clusters are close to one another,
and vice versa. The hyper-parameter v0 represents the degree
of freedom where Λ0 represents the variability around the
mean of the feature space. The covariance matrix of a cluster
is highly dependent on these two parameters. For example, the
feature point bitrate shows a wide range of variability from its
mean value µ0 , which is specific to a particular QoS cluster.
Therefore, Λ0 quantifies this variability, and v0 represents our
confidence about Λ0. We assumed that the mean values of
the features are available for all QoS levels (channel clusters).
After clustering, we compared and then mapped the clusters
to the QoS levels.

B. Simulation Results

In this subsection, the simulation results of the proposed
scheme are compared with the following three most common
and widely used clustering schemes: (1) K-means clustering
[13], 2) EM clustering [14], and 3) SC clustering [15]. The
QoS levels of LCs may vary over time and location, and
encountering new QoS level is anticipated. Furthermore, our
proposed clustering scheme is robust in terms of QoS level
identification.

Figure 2(a) clusters the three LC features and identifies
their supported QoS levels without any error. In this figure,
the three distinct QoS levels corresponding to the three LCs
means that each channel is providing a distinct QoS level.
QoS levels 1, 2, and 3 are depicted by channels 2, 1, and 3,
respectively. Similarly, Figure 2(b) presents unforeseen QoS
level identification, in which the features of another channel
(no. 4) are included. The proposed channel clustering and the
QoS level identification scheme show that its supported QoS
level is similar to the already existing QoS level. Therefore,
channels 2 and 4 are clustered together and form QoS level
1, which is a significant feature of the proposed clustering
scheme that helps us identify multiple channels supporting
the same QoS levels for assigning over multiple interfaces
of MCRNs. However, Figures 2(c), 3(d), and 3(e) show
the clustering errors in the EM, K-mean, and SC clustering
algorithms.

Figure 3(a) presents the receiver operating characteristic
curves of all the clustering algorithms and exhibits that the
proposed clustering scheme outperforms the other clustering
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Fig. 3: Channel clustering errors in EM and K-Mean clustering algorithms.

schemes. The receiver operating characteristic helps analyze
the sensitivity and accuracy of a clustering algorithm and
illustrates the performance of a system as it has a varied
discrimination threshold.

We measured the accuracy of the proposed channel cluster-
ing and the QoS identification scheme under the different set-
tings of hyper-parameters (Table 1). Figure 3(b) demonstrates
the clustering accuracy in terms of hit rate. Hyper-parameters
setting H2 is accurate when the number of data points is in
the range of 20-50. However, when the data points exceed
50, hyper-parameter setting H3 becomes accurate. The figure
affirms that the settings of the hyper-parameters significantly
affect the clustering accuracy and that, to achieve clustering
accuracy, the hyper-parameter settings should be dynamic.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this study, we proposed a novel non-parametric Bayesian
based channel clustering scheme to identify the supported
QoS levels over multiple available LCs. The proposed scheme
exploits the PU channel usage features (i.e., bitrate, PDR,
and PDV) and modeled them by using the infinite Gaussian
mixture model and the collapsed Gibbs sampling method.
Thus, with the help of our proposed scheme, SUs can identify
an appropriate cluster or set of LCs that fulfills its stringent
QoS requirements for maintaining a certain QoS threshold,
without any need for communicating with the PU. Through
extensive simulation results, the proposed scheme significantly
outperforms baseline clustering algorithms, such as K-mean,
EM, and SC. Moreover, the unsupervised nature of our pro-
posed channel clustering and QoS identification scheme makes
it highly desirable in practice, as the number of channels and
their features may vary with time and the geographical location
of SUs. The proposed scheme can also be extended to many
other applications, in which the numbers of underlying clusters
are unknown. The possible research directions of our proposed
scheme are as follows:

1) Design the new protocols for multi-channel CRNs for
video transmission and optimization. Moreover, inves-
tigating the clustering-based QoS level identification
scheme by using other distributions (i.e., multinomial,
binomial, and student-t) would also be interesting.

2) As the traffic patterns correspond with different PUs,
SUs may obtain different spectral access and energy har-
vesting opportunities in multi-channel CRNs. Therefore,
designing the novel approaches for multi-channel CRNs
to maximize the CRN capacity based on the estimations
of energy harvested from LCs would be interesting.

3) PU activities (i.e., traffic patterns) based on channel
sensing may help in categorizing the available spec-
trum opportunities in different classes (i.e., long term,
medium term, and short term). Therefore, new mecha-
nisms must be investigated to optimize the multimedia
SU transmissions based on its sensing edifice for the
improved protection of PU transmissions.
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