
Linköping Studies in Science and Technology

Dissertation No. 1160

Channel-Coded Feature Maps for

Computer Vision and Machine Learning

Erik Jonsson

Department of Electrical Engineering
Linköpings universitet, SE-581 83 Linköping, Sweden

Linköping February 2008

Channel-Coded Feature Maps for
Computer Vision and Machine Learning

Erik Jonsson

Department of Electrical Engineering
Linköping University
SE-581 83 Linköping
Sweden

Linköping Studies in Science and Technology
Dissertation No. 1160

Copyright c© 2008 Erik Jonsson

ISBN 978-91-7393-988-1
ISSN 0345-7524

Back cover illustration by Nikolina Orešković

Printed by LiU-Tryck, Linköping 2008

iii

To Helena

for patience, love and understanding

iv

v

Abstract

This thesis is about channel-coded feature maps applied in view-based object
recognition, tracking, and machine learning. A channel-coded feature map is a
soft histogram of joint spatial pixel positions and image feature values. Typi-
cal useful features include local orientation and color. Using these features, each
channel measures the co-occurrence of a certain orientation and color at a certain
position in an image or image patch. Channel-coded feature maps can be seen
as a generalization of the SIFT descriptor with the options of including more fea-
tures and replacing the linear interpolation between bins by a more general basis
function.

The general idea of channel coding originates from a model of how information
might be represented in the human brain. For example, different neurons tend to
be sensitive to different orientations of local structures in the visual input. The
sensitivity profiles tend to be smooth such that one neuron is maximally activated
by a certain orientation, with a gradually decaying activity as the input is rotated.

This thesis extends previous work on using channel-coding ideas within com-
puter vision and machine learning. By differentiating the channel-coded feature
maps with respect to transformations of the underlying image, a method for im-
age registration and tracking is constructed. By using piecewise polynomial basis
functions, the channel coding can be computed more efficiently, and a general
encoding method for N-dimensional feature spaces is presented.

Furthermore, I argue for using channel-coded feature maps in view-based pose
estimation, where a continuous pose parameter is estimated from a query image
given a number of training views with known pose. The optimization of position,
rotation and scale of the object in the image plane is then included in the optimiza-
tion problem, leading to a simultaneous tracking and pose estimation algorithm.
Apart from objects and poses, the thesis examines the use of channel coding in con-
nection with Bayesian networks. The goal here is to avoid the hard discretizations
usually required when Markov random fields are used on intrinsically continuous
signals like depth for stereo vision or color values in image restoration.

Channel coding has previously been used to design machine learning algorithms
that are robust to outliers, ambiguities, and discontinuities in the training data.
This is obtained by finding a linear mapping between channel-coded input and
output values. This thesis extends this method with an incremental version and
identifies and analyzes a key feature of the method – that it is able to handle a
learning situation where the correspondence structure between the input and out-
put space is not completely known. In contrast to a traditional supervised learning
setting, the training examples are groups of unordered input-output points, where
the correspondence structure within each group is unknown. This behavior is stud-
ied theoretically and the effect of outliers and convergence properties are analyzed.

All presented methods have been evaluated experimentally. The work has
been conducted within the cognitive systems research project COSPAL funded
by EC FP6, and much of the contents has been put to use in the final COSPAL
demonstrator system.

vi

Populärvetenskaplig Sammanfattning

Datorseende (computer vision) är en ingenjörsvetenskap som g̊ar ut p̊a att skriva
datorprogram som efterhärmar det mänskliga synsinnet – som kan känna igen
förem̊al, ansikten, orientera sig i ett rum och liknande. Inom maskininlärning
(machine learning) försöker man istället f̊a datorer att härma människans förm̊aga
att lära sig av sina erfarenheter. Dessa tv̊a forskningsomr̊aden har mycket gemen-
samt, och inom datorseende l̊anar man ofta tekniker fr̊an maskininlärning.

Som ett första steg i att f̊a en dator att känna igen en bild krävs att intres-
santa omr̊aden i bilden beskrivs matematiskt. Ofta studerar man särdrag (fea-
tures) s̊a som färg och riktning hos strukturer i bilden, till exempel gränser mellan
olikfärgade omr̊aden. Denna avhandling handlar om en speciell sorts matematisk
beskrivning av s̊adana egenskaper som kallas kanalkodade särdragskartor (channel-
coded feature map). En s̊adan beskrivning best̊ar av ett antal kanaler, där varje
kanal mäter förekomsten av en viss färg och en viss strukturorientering i närheten
av en viss position i bilden. Detta har vissa likheter med hur man tror att infor-
mation representeras i den mänskliga hjärnan.

En stor del av avhandlingen handlar just om att känna igen förem̊al. Den
teknik som används kallas vybaserad igenkänning. Detta innebär att man tränar
systemet genom att visa s̊a kallade träningsbilder p̊a förem̊alet sett fr̊an olika
vinklar. Man l̊ater bli att försöka tillverka n̊agon slags tredimensionell modell av
förem̊alet, utan nöjer sig med att jämföra tv̊adimensionella bilder med varandra.
En fördel med denna approach är att den är relativt enkel, men en nackdel är att
ett stort antal träningsbilder kan behövas.

Efter att ett objekt har detekterats kan det vara bra att finjustera objektets
uppskattade position s̊a noga som möjligt. För detta används i avhandlingen
en matematisk optimeringsprocedur som bygger p̊a derivator. Dessa derivator
beskriver hur snabbt de olika kanalerna ökar och minskar i värde när man flyttar
runt dem i bilden, och i avhandlingen beskrivs hur derivatorna till de kanalkodade
featurekartona plockas fram.

Förutom inom objektigenkänning kan kanalkodning användas i mer allmänna
maskininlärningsproblem. Här utg̊ar man fr̊an exempel av indata och utdata, s̊a
kallade träningsexempel, och systemets uppgift är att generalisera utifr̊an dessa
exempel. I avhandlingen studeras bland annat just fallet med vybaserad objek-
tigenkänning som beskrivits ovan, där indata och utdata är en uppsättning vin-
klar och en kanal-kodad särdragskarta som beskriver förem̊alets utseende. Efter
inlärningsfasen kan systemet generalisera och förutsäga förem̊alets utseende även
för nya indata (vinklar) som systemet aldrig stött p̊a förut. I avhandlingen stud-
eras även en ny typ av inlärningsproblem, korrespondens-fri inlärning. Här finns
det inte längre n̊agon tydlig struktur bland träningsexemplen, s̊a systemet vet inte
riktigt vilken indata som ska höra ihop (korrespondera) med vilken utdata. Det
visar sig att denna typ av problem g̊ar att lösa med hjälp av kanalkodningstekniker.

Alla metoder som presenteras har utvärderats experimentellt. Arbetet har
utförts inom det EU-finansierade forskningsprojektet COSPAL (Cognitive Sys-
tems using Perception-Action Learning), och mycket av inneh̊allet har använts i
COSPALs slutgiltiga teknikdemonstrator.

vii

Acknowledgments

I want to thank...

all members of the Computer Vision Laboratory in Linköping, most notably

· Gösta Granlund, for giving me the opportunity to work here, for lots of
great ideas, and for having patience with me despite occasional differences
of opinion.

· Michael Felsberg, for being a great supervisor in terms of technical expertise,
availability, devotion and friendliness.

· Johan Hedborg, for implementing the multi-dimensional convolutions in the
the piecewise polynomial encoding and helping with the cover photography.

· Fredrik Larsson, Johan Sunneg̊ardh and Per-Erik Forssén, for proof-reading
parts of the manuscript and giving valuable comments.

all members of the COSPAL consortium, most notably

· Jǐŕı Matas and Václav Hlaváč, for letting me stay at the Center for Machine
Perception, Prague Technical University for three weeks.

· Florian Hoppe, Eng-Jon Ong, Alexander Shekovtsov and Johan Wiklund for
good teamwork in putting the COSPAL demonstrator together during some-
times dark hours in Kiel. Always remember.. Fensterklappe bitte schließen
bei Benutzung der Verdunkelung.

all friends and family, most notably

· Helena, for having patience with me living in the wrong city for three and a
half years, and for making me happy.

· My parents, for infinite support in all matters.

Arrest this man, he talks in maths
[Karma Police, Radiohead]

viii

Contents

1 Introduction 1
1.1 Thesis Overview . 2
1.2 Contributions and Previous Publications 3
1.3 The COSPAL Project . 4
1.4 Notation . 4

I Channel Coding 7

2 Channel-Coded Scalars 9
2.1 Background . 9
2.2 Channel Coding Basics . 10
2.3 Channel Coding - Details . 13
2.4 Decoding . 16
2.5 Continuous Reconstruction . 19
2.6 Decoding and Reconstruction Experiments 22
2.7 Discussion . 26

3 Channel-Coded Feature Maps 27
3.1 Channel-Coded Feature Maps . 28
3.2 Derivatives of Channel Coded Feature Maps 30
3.3 Tracking . 34

4 Channel Coding through Piecewise Polynomials 39
4.1 Implementation Using Piecewise Polynomials 39
4.2 Complexity Analysis . 45
4.3 Discussion . 48

5 Distance Measures on Channel Vectors 51
5.1 Distance Measures . 51
5.2 Examples and Experiments . 54
5.3 Discussion . 56

6 Channels and Markov Models 59
6.1 Models and Algorithms . 60

x Contents

6.2 PDF Representations and Maximum Entropy 63
6.3 Message Propagation using Channels 65
6.4 Experiments . 68
6.5 Discussion . 70

II Learning 73

7 Associative Networks 75
7.1 Associative Networks . 75
7.2 Incremental Learning . 76
7.3 Relation to Voting Methods . 82
7.4 Discussion . 84

8 Correspondence-Free Learning 85
8.1 Problem and Solution . 86
8.2 Asymptotical Properties . 88
8.3 Experiments . 91
8.4 Discussion . 95

9 Locally Weighted Regression 97
9.1 Basic Method . 97
9.2 Weighting Strategies . 98
9.3 Analytical Jacobian . 101
9.4 Discussion . 104

III Pose Estimation 107

10 Linear Interpolation on CCFMs 109
10.1 View Interpolation . 110
10.2 Least-Squares Formulations . 111
10.3 Local Weighting and Inverse Modeling 114
10.4 Summary . 116
10.5 Experiments . 116
10.6 Discussion . 119

11 Simultaneous View Interpolation and Tracking 121
11.1 Algorithm . 122
11.2 Experiments . 124
11.3 Discussion . 127

12 A Complete Object Recognition Framework 129
12.1 Object Detection . 129
12.2 Preprocessing . 132
12.3 Parameter Decoupling . 134
12.4 Object-Oriented Design . 137

Contents xi

13 Concluding Remarks 141

Appendices 143
A Derivatives in Linear Algebra . 143
B Splines . 147

xii Contents

Chapter 1

Introduction

No one believes that the brain uses binary code to store information. Yet, binary
code is the unrivaled emperor of data representation in computer science as we
know it. This has produced computers that can multiply millions of large numbers
in a second, but can hardly recognize a face – that can create photorealistic virtual
environments faster and better than any human artist, but can not tell a cat from
a dog.

Perhaps the entire computer architecture is to blame? Perhaps even binary
coding is not the best option when the goal is to create artificial human-like sys-
tems? This motivates exploring different kinds of information representations. The
ultimate long-term goal with this research is to study the possibility of creating
artificial cognitive systems based on a completely new computing platform, where
channel-coding is the primitive representation of information instead of binary
code. The more realistic short-term goal is to find good engineering applications
of channel-coding using the computing platforms of today.

How the human brain works is a mystery, and this thesis makes no attempts
to solve this. I do not make any claims that any algorithm presented in this thesis
accurately mimics the brain. Rather, this thesis is about finding good engineering
use of an idea that originates from biology.

The essence of my PhD project can be summarized in one sentence: Explore
the properties of and find good uses for channel-coding in artificial learning vision
systems. This quest has lead me on a journey in pattern recognition and computer
vision, visiting topics such as Markov random fields, probability density estimation,
robust statistics, image feature extraction, patch tracking, incremental learning,
pose estimation, object recognition and object-oriented programming. At several
occasions, related techniques have been discovered under different names. In some
cases, dead ends have been reached, but in other cases all pieces have fallen into
place. The quest eventually ended up with object recognition being the application
in focus.

2 Introduction

1.1 Thesis Overview

This section gives a short overview of the thesis. I also describe the dependencies
between different chapters as a guide to a reader who does not wish to read the
entire thesis.

2: Channel-Coded Scalars. The first part of this chapter describes the main
principles of channel-coding and is required for all that follows. The part about
continuous reconstruction is a prerequisite of Chapter 6 but not for the rest of the
thesis.

3: Channel-Coded Feature Maps. Describes the concept of channel-coded fea-
ture maps (CCFM), which are very central to the thesis. Derivatives of CCFMs
with respect to image transformations are derived and applied in patch tracking.
These derivatives are used again in Chapter 11.

4: Channel Coding through Piecewise Polynomials. Describes an efficient
method of constructing channel-coded feature maps when the basis functions are
piecewise polynomials. This method is used in all experiments, but the details are
rather involved and are not required for later chapters.

5: Distance Measures on Channel Vectors. Describes some distance mea-
sures between histogram data and compares them experimentally on the COIL
database. The experiments in Chapter 10 relate to these results.

6: Channels and Markov Models. Discusses what happens if the hard dis-
cretizations commonly used in Markov models are replaced with channel vectors.
The resulting algorithm turns out to be impractical due to the computational
complexity. This direction of research is rather different from the rest of the thesis
and can be skipped without loss of continuity.

7: Associative Networks. Gives an overview of previous work on associative
networks (linear mappings between channel-coded domains). Different incremental
updating strategies and the relationship to Hough transform methods is discussed.
This chapter is tightly connected to Chapter 8 and referred to from Chapter 10,
but is not a prerequisite for the pose estimation and tracking in Chapter 10 and 11.

8: Correspondence-Free Learning. Describes a new type of machine learn-
ing problems, where the common assumption of corresponding training data is
relaxed. Tightly connected to Chapter 7, but not a prerequisite for later chapters.

9: Locally Weighted Regression. Reviews the LWR method by Atkeson and
Schaal and extends this method by deriving an exact expression for the Jacobian.
This chapter is rather self-contained and can be read even without the introduc-
tory chapters on channel coding. The LWR method is used in Chapter 10 and
11, but the analytical Jacobian derivation is rather technical and not essential for

1.2 Contributions and Previous Publications 3

understanding the applications.

10: Linear Interpolation on CCFMs. Discusses different view interpolation
strategies for pose estimation. Uses the locally weighted regression method from
Chapter 9. Should be read before Chapter 11.

11: Simultaneous View Interpolation and Tracking. Ties together the
tracking from Chapter 3 with the view interpolation from Chapter 10 and formu-
lates a single problem in which both the pose and image position of an object are
optimized simultaneously.

12: A Complete Object Recognition Framework. Discusses aspects like
object detection, preprocessing and object-oriented system design. These are not
central to the thesis but still required in order to implement a complete object
recognition system.

1.2 Contributions and Previous Publications

This thesis consists to a large extent of material adapted from previous publications
by the author.

The continuous reconstruction in Chapter 2 has been adapted from [56], while
the rest of Chapter 2 is a summary of previous work by others. The algorithm
presented in Chapter 4 has been submitted as a journal article [55], and the Soft
Message Passing algorithm in Chapter 6 is adapted from [58].

A previous version of Chapter 7 is available as a technical report [60]. The
contribution of this chapter is mainly in the application of common least-squares
techniques to the associative network structure.

Chapter 8 is essentially the ICPR contribution [57] but has been extended with
more experiments. The contributions here are both in the problem formulation,
solution and theoretical analysis of the correspondence-free learning method.

The contents of [59] has for the sake of presentation been split into several
parts. The channel-coded feature maps with derivatives in Chapter 3 and the
simultaneous pose estimation and tracking procedure in Chapter 11 both originate
from this paper. Both these chapters have been extended with new experiments.

Except for the contents of these publications, the differentiation of the LWR
model in Chapter 9 is believed to be novel. The discussion about view interpolation
in Chapter 10 uses some relatively common least-squares concepts, but to my
best knowledge, these issues have not been addressed in connection with view
interpolation on channel-coded feature maps elsewhere.

Chapter 12 is not considered as a theoretical contribution, but as a piece of
condensed experience from my work on implementing an object recognition system
for the COSPAL demonstrator.

4 Introduction

1.3 The COSPAL Project

This work has been conducted within the COSPAL project (Cognitive Systems
using Perception-Action Learning), funded by the European Community (Grant
IST-2003-004176) [1]. This project was about artificial cognitive systems using the
following key ideas:

· Combining continuous learning and symbolic AI. For low-level processing,
visual information and actions are best represented in a continuous domain.
For high-level processing, actions and world state is best described in sym-
bolic terms with little or no metric information.

· Link perception and action from the lowest level. We do not need a full
symbolic description of the world before actions can be initiated. Rather,
the symbolic processing builds upon low-level primitives involving both per-
ception and action. A typical example of such a low-level perception-action
primitive is visual servoing, where the goal is for example to reach and main-
tain an alignment between the robot and some object.

· Use minimum prior assumptions of the world. As much as possible should
be learned by the system, and as little as possible should be built-in.

Much of the project philosophy originates from [38, 41]. Channel coding techniques
[42] were predicted as an algorithmic cornerstone, and one entire work package was
devoted to exploring different aspects of channel coding. This thesis is not about
the COSPAL project in general and will not address issues like overall system
structure. However, the project goals have more or less determined my direction
of research, and references will be made to the COSPAL philosophy at various
places in the thesis.

1.4 Notation

1.4.1 Basic Notation

s Scalars
u Vectors (always column vectors)
C Matrices
s(x), I(x, y) Scalar-valued functions
p(x), r(t) Vector-valued functions
X Sets and vector spaces
1 Vector of ones, with dimensionality determined by the context
AT Matrix and Vector Transpose
〈
A,B

〉

F
Frobenius matrix product (sum of elementwise product)

‖u‖ Euclidean vector norm
‖M‖F Frobenius matrix norm

1.4 Notation 5

diag(u) Extension of a vector to a diagonal matrix
diag(A) Extraction of the diagonal of a matrix to a vector
θ(x) Heaviside step function (θ(x) = 0 for x < 0 and 1 for x > 0)
δ(x) Dirac distribution (sometimes denoted sloppily as a function)
Π(x) Box function (1 for −0.5 < x ≤ 0.5, zero otherwise)

1.4.2 Elements of Matrices and Vectors

Vectors and matrices are viewed as arrays of real numbers – the abstract notion
of vectors existing on their own independently of any fixed coordinate system is
not used. Elements of a vector or matrix are usually denoted with subscripts:

u = [u1, u2, . . . , uN]T

A subscript on a boldface symbol means the n’th vector or matrix in a collection,
and not the n’th element:

un The n’th vector in a set of vectors
Ak The k’th matrix in a set of matrices

Sometimes, in order to avoid too cluttered sub- and superscripts, the C/Java-
inspired bracket [] is used to denote elements of a matrix or vector:

u[n] The n’th element of u
uk[n] The n’th element of vector uk

Ak[i+ 2j, j] Element at row i+ 2j, column j of matrix Ak

1.4.3 Common Quantities

I have tried to keep the notation consistent such that common quantities are always
referred to using the same symbols. This is a list of all symbols commonly (but
not exclusively) used to denote the same thing throughout the thesis. Use it as a
quick reference.

c Channel vector or N-dimensional channel grid
I Discrete image, with pixels accessed as I[x, y]
h Filter kernel, usually with h[0, 0] in the center
B(x) Basis function for channel encoding
[s, α, x, y]T Similarity frame (scale, rotation, translation)
(θ, φ) Pose angles

Most of the time, I use a lowercase-uppercase combination to denote a 1-based
integer index and its maximal value. For reference, the most common ones are

n,N Channel index, number of channels
t, T Training example index, number of training examples
l, L Class label, number of class labels
i, I point index, sample size (within one channel vector)

6 Introduction

1.4.4 Miscellaneous

In this thesis, I will often use differential notation for derivatives. Appendix A
contains an introduction to differentiating linear algebra expressions with a de-
scription of my notation and some basic relations.

By default, I will skip the bounds on sums and integrals where the range is the
entire definition domain of the involved variables. Since this is the most common
case, it saves a lot of writing and makes the non-default cases stand out more.

Part I

Channel Coding

Chapter 2

Channel-Coded Scalars

...where we get to meet the Channel Vector for the first time, together with one of
its applications. We will start with a piece of cross-platform science in order to
get a deeper understanding of the motivation and purpose of the thesis. Hold on –
we will soon be back in the comfortable world of equations and algorithms.

2.1 Background

Try to temporarily forget all you know about computer science, and in particular
about binary numbers. Instead, we will consider other representations of informa-
tion. In order to really go back to the beginning, we must start with the concept of
representation itself. In principle, some basic image processing could be done us-
ing a set of mirrors, physical color filters, lights and so on. It is possible to change
the intensity of, rotate, stretch, skew, mirror and color adjust an image using a
purely passive, optical device. In this case, we do not need any representation of
the physical phenomenon we are processing other than the actual physical signal
itself.

The abstraction starts once we use something else as a placeholder for the
physical signal. This “something else” may be an electrical current or some com-
bination of chemical and electrical signals depending on if we are looking at a
typical man-made device or a typical biological information processing system
(i.e. a central nervous system of some living being). The simplest abstraction is
to use an analog signal, where one measurable quantity is represented directly by
another measurable quantity. In analog audio equipment, the air pressure level
is directly represented by an electrical voltage or current. The representation be-
haves analogously to the phenomena which we are describing. The reason for
switching to some abstract representation of the physical quantity is usually that
the representation is simpler to manipulate.

Analog representations have shown to be susceptible to noise and are not very
well-suited for advanced processing. This is why today more and more information

10 Channel-Coded Scalars

ac
ti

v
at

io
n

Figure 2.1: Illustration of the sensitivity profile for two neurons measuring local
image orientation.

processing is performed using digital representations, with binary numbers as the
basic cornerstone. However, despite all advances in digital computers, we are far
away from building anything that can compete with the human brain when it
comes to intelligence, learning capabilities, vision and more.

To begin to understand some principles of information representation in the
brain, consider for example the case of local orientation of image structures. It is
known that different neurons are activated for different orientations [35]. However,
the switch between different neurons is not discrete – rather, as the orientation is
slightly changed, the activation of some neurons is reduced and the activation of
other neurons is increased, as illustrated in Fig. 2.1. By capturing the essence of
this behavior and describing it as a general way of representing real numbers, we
end up with the channel representation [42].

In the thesis, these biological aspects will not be stressed much further. Instead,
the focus is shifted towards that of an engineer. This chapter will formalize the
channel coding principle mathematically and study some basic properties of it. The
rest of the thesis will then explore different aspects and applications of channel
coding, with the objective of finding competitive computer vision and learning
algorithms rather than as a way of understanding the human brain. In particular,
I do not make any claims that any part of this thesis explains what is actually
going on in the brain – for my research, I consider biology as a source of inspiration
rather than as a scientific goal on its own.

2.2 Channel Coding Basics

This section gives a brief overview of channel coding in order to reach the first
application as soon as possible. In Sect. 2.3, a more thorough treatment on the
different options and algorithms is given.

2.2 Channel Coding Basics 11

0 2 4 6
0

0.5

1

Figure 2.2: A regular grid of channels, with one basis function highlighted.

2.2.1 Channel Vectors

A channel vector c is constructed from a scalar x by the nonlinear transformation

c = [B(x− x̃1), . . . , B(x− x̃N)]T . (2.1)

Here, B is a symmetric non-negative basis function with compact support. The
values x̃n, n ∈ [1, N] are called channel centers. The simplest case is where the
channel centers are located at the integers, as illustrated in Fig. 2.2. The process
of constructing a channel vector from a scalar is referred to as channel coding or
simply encoding the value x.

Given a channel vector c, it is possible to reconstruct the encoded value x.
This backwards procedure is referred to as decoding. If the channel vector is
affected by noise, the decoding may not be exact, but a desirable property of any
decoding algorithm is that the encoded value should be reconstructed perfectly in
the noise-free case. A detailed decoding algorithm is presented in Sect. 2.4.

2.2.2 Soft Histograms

Assuming that we have I samples xi of some variable, each sample can be encoded
and the channel vectors for different i’s summed or averaged. This produces a soft
histogram - a histogram with partially overlapping and smooth bins:

c[n] =
1

I

∑

i

B(xi − x̃n) . (2.2)

The basis function B can here be thought of as a bin function. In a regular his-
togram, each sample is simply put in the closest bin, and we cannot expect to
locate peaks in such histograms with greater accuracy than the original bin spac-
ing. In a soft histogram constructed according to (2.2), the bins are overlapping,
and samples are weighted relative to their distance to the bin center. This makes it
possible to locate peaks in the histogram with sub-bin accuracy. The construction
and decoding of a soft histogram is illustrated in Fig. 2.3. If all samples are al-
most similar, the soft histogram resembles a single encoded value, and a decoding
procedure as mentioned before will find the peak almost perfectly.

Many methods in computer vision achieve robustness from a voting and cluster-
ing approach. The simplest example is the Hough transform [6, 85], but the same

12 Channel-Coded Scalars

Figure 2.3: Illustration of a number of points encoded into a soft histogram. The
resulting channel vector is then decoded in order to find the cluster center.

principle is found in view matching [66] and object recognition using local fea-
tures [52, 78]. The idea is that a number of local measurements are gathered, and
each measurement makes a vote for what kind of object is present. In the Hough
transform, the local measurements are edge pixels that vote for lines. In object
recognition, the local measurements can for example be patches cut out around
some interest points voting for object identity and position. A large number of
votes is then expected to be found in a cluster close to the correct hypothesis.

The Hough transform uses a 2D histogram to represent the votes and find
peaks. This becomes impractical in higher dimensionalities, since the number
of bins required grows exponentially in the number of dimensions. Using soft
histograms, the number of bins required could be reduced without impairing the
accuracy of the peak detection. The relation between channel coding and voting-
type methods will touched again in Sect. 7.3.

2.2.3 An Initial Example - Channel Smoothing

At this point we can already study the first application, which is edge-preserving
image denoising. The use of channel coding in this application was studied in
[30] and further developed in [25]. In [25], an improved decoding algorithm was
presented and the method was compared to other popular edge-preserving filtering
techniques, including bilateral filtering and mean-shift filtering.

The idea is to encode the intensity of each pixel in a grayscale image. If the
original image was of size X×Y , this produces a three-dimensional data set of size
X × Y ×N , where N is the number of channels used. This can be seen as a stack
of N parallel images – one for each graylevel channel. Each of these N images is
convolved with a smoothing kernel, e.g. a Gaussian. Each voxel in the X ×Y ×N
volume now gives a measure of the number of pixels in a certain neighborhood
having a certain gray level. Equivalently, the channel vector at image position
(x, y) is a soft histogram of the gray levels in a neighborhood around (x, y).

The final step in the algorithm is to decode each of the X×Y channel vectors,
i.e. find a peak of each soft local graylevel histogram. The resulting output image

2.3 Channel Coding - Details 13

Figure 2.4: An image with Gaussian and salt & pepper noise restored using channel
smoothing.

consists of these decoded values. An example of a restored noisy image is given
in Fig. 2.4. As can clearly be seen, the output is a blurred version of the input,
but where the edges have been preserved and outliers (salt & pepper noise) been
removed.

The key to this behavior is that graylevels which are close together will be
averaged while graylevels that are sufficiently different will be kept separate. In
fact, the combination of encoding, averaging and decoding is roughly equivalent
to applying a robust estimator on the original distribution of pixel graylevels in
the neighborhood. This will be explained more thoroughly in Sect. 2.4.

2.3 Channel Coding - Details

At this point, I hope that the reader has a rough idea of what channel coding is
all about. In this section, more detail will be filled in. Various choices of basis
functions and channel layout strategies will be treated, the representation will be
extended to higher dimensionalities, and the relationship between channel vectors
and density functions will be established.

2.3.1 Channel Basis Functions

In the definition (2.1), we are free to use a wide range of basis functions B. The
basis function used in [52, 42, 44] was a truncated cos2 function. Another option,
used for example in [30, 25] is the second-order B-spline (see Appendix B). The
Gaussian kernel is also described in [30] together with a decoding method. In [28],
techniques related to first order splines are also considered. By using the zeroth
order B-spline (or box function) as basis function, the channel vector becomes
effectively a regular histogram. This will be referred to as a hard histogram. This
basis function is important because it ties together hard histograms and channel
vectors.

14 Channel-Coded Scalars

The B-splines will be the primary choice in this thesis because the fact that
they are piecewise polynomials can be exploited in order to construct efficient
algorithms. The first example of this will be the second-order B-spline decoding
in Sect. 2.4.2. Later, the entire chapter 4 builds upon this piecewiseness. Note
however that this choice is mostly motivated by some computational tricks. The
results of any method are not expected to depend much on the exact shape of the
basis functions, and it is definitely not likely that any biological system utilizes
the piecewise polynomial structure in the same way as is done in this thesis. Once
again, keep in mind that this thesis aims at engineering artificial systems rather
than explaining biological systems.

2.3.2 Channel-Coded Vectors

The representation (2.1) can be extended into higher dimensions in a straight-
forward way by letting x and x̃n be vectors, and letting B accept a vector input:

c[n] = B(x− x̃n) . (2.3)

The most common special case is where the channel centers are located on a regular
multi-dimensional grid, and the basis function is separable. Consider a case where
x = [x, y, z] and B(x) = Bx(x)By(y)Bz(z). The channel-coded x can then be
written as

c[nx, ny, nz] = Bx(x− x̃nx
)By(y − ỹny

)Bz(z − z̃nz
) . (2.4)

This can be seen as encoding x, y, z separately using a single-dimensional encoding
and then taking the outer product:

cx = enc(x) (2.5)

cy = enc(y) (2.6)

cz = enc(z) (2.7)

c = cx ⊗ cy ⊗ cz . (2.8)

The final encoding c can be seen as a 3D array indexed by nx, ny, nz or as a vector
indexed by a single index n constructed by combining nx, ny, nz into a linear index.

2.3.3 Channel Centers

A channel center is the position in input space at which a certain channel responds
maximally. Depending on the application, these centers can be selected in different
ways. Different patterns have been considered, e.g. a foveal layout in 2D [42]. In
this thesis, as well as in much previous work, the default choice will be to have
a regular channel spacing. When this is the case, the presentation can often be
simplified by using channels located on the integers. This can be assumed without
loss of generality since it is only a matter of rescaling the input space. There are
different strategies for where to put the channel centers relative to the bounds of
the data that is to be encoded. Two common strategies are described here.

2.3 Channel Coding - Details 15

p
0 bL bH

s

ws

p
0bL

bH

s

ws

Figure 2.5: Illustration of channel layouts. Top: exterior. Bottom: interior.

Assume that the values to encode are in the range [bL, bH]. The position of
the first channel is p0 and the spacing between the channels is s. Each of the
N channels has a support of size 2ws, where w expresses the amount of overlap
between the channels (see Fig. 2.5). If w = 0.5, the support size equals the channel
spacing, meaning that there is no overlap between channels. In Fig. 2.5, w = 1.5.

· Exterior Layout
This layout places the channels equally spaced such that exactly k channels
are active for any input. This is only possible if w is a multiple of 0.5. Assume
that the parameters N, bL, bH, w are given, and we want to find p0, s. The
situation is illustrated in Fig. 2.5. The dashed channels in the figure are
completely outside the interval [bL, bH] and should not be included. From
the figure, we see that the center of these non-included channels are p0 − s
and p0 + sN . These channels end exactly at the region bounds, such that
p0 − s+ ws = bL and p0 + sN − ws = bH. Solving for p0 and s gives

p0 = (bH + bLN − w(bH + bL))/(N + 1− 2w) (2.9)

s = (bH − bL)/(N + 1− 2w) . (2.10)

· Interior Layout
This mode places the channels equally spaced such that no included channel
is active outside the region bound. The first and last channel should be
within the region, and be zero exactly at the bounds such that p0−ws = bL
and p0 + s(N − 1) + ws = bH. Solving for p0 and s gives

p0 = bL + ws (2.11)

s = (bH − bL)/(N − 1 + 2w) . (2.12)

· Modular Layout
The last mode considered is for the case of encoding modular domains like

16 Channel-Coded Scalars

orientation angles or hue (angular color component of the HSV color space).
Consider a modular domain where bL is identified with bH (e.g. bL = 0,
bH = 2π). The channels wrap around the region bounds such that a channel
placed at bL is activated also by values near bH. In order to get N uniformly
located channels in the entire domain, use

p0 = bL (2.13)

s = (bH − bL)/N . (2.14)

2.3.4 Expected Value of Channel Vectors

Assume that a soft histogram has been constructed from a set of points xi accord-
ing to (2.2), repeated here for convenience:

c[n] =
1

I

∑

i

B(xi − x̃n) . (2.15)

If the samples xi are drawn from a probability distribution with probability density
function (PDF) p(x), the expected value of c[n] is

E {c[n]} =

∫

p(x)B(x− x̃n) dx . (2.16)

This means that the channels estimate some linear features of the PDF p. Viewed
in another way, since B is symmetric, (2.16) can be written

E {c[n]} =

∫

p(x)B(x̃n − x) dx = (p ∗B)(x̃n) . (2.17)

This means that the expected value of the channel vector is in fact the PDF
p, convolved with B and sampled at the channel centers. This relationship was
derived in [25] in connection with second order B-spline decoding, which will be
reviewed in Sect. 2.4.2.

Channel vectors are very much related to kernel density estimation (KDE)
[12]. In fact, the channel vector can be seen as a regularly sampled kernel density
estimate. The main difference is that this sampling is relatively coarse in the
channel case. The purpose of KDE is to estimate a continuous density function,
while we most of the time are satisfied with the channel vector. In Sect. 2.5
however, we will see how a continuous density function can be obtained from a
channel vector in a way which is different from a standard kernel density estimate.

2.4 Decoding

There are several decoding methods [25, 30] capable of perfect reconstruction of
a single encoded value x. The quality of a decoding can be measured in terms
of quantization effects, i.e. the dependence of the absolute values of the encoded
samples relative to the channel centers. When only a single point is encoded, it is

2.4 Decoding 17

Figure 2.6: Illustration of how outliers can affect the mean value of a set of points.
Top: Mean value. Bottom: Robust mean value.

always possible to find the exact value of the point, but when a number of points
are encoded, as in Fig. 2.3, the detected mode might be slightly shifted towards
or away from the closest channel center. An efficient method for decoding channel
vectors based on second-order B-splines called virtual shift decoding was introduced
in [25] and is briefly reviewed in this section. Understanding this method requires
some knowledge about robust estimation.

2.4.1 Robust Estimation

A robust mean value is a mean value which is insensitive to outliers. A regular
mean value of a number of points xi can be seen as the point minimizing a quadratic
error function:

µ = arg min
x

1

I

∑

i

(xi − x)2 =
1

I

∑

i

xi . (2.18)

The mean value is the point x where the sum-of-squares error (distance) to all
input points is minimal. A problem with this is that the presence of a few outliers
can change the mean value dramatically, as illustrated in in Fig. 2.6. In order to
be robust against outliers, we can change (2.18) to

µ = arg min
x

1

I

∑

i

ρ(xi − x) . (2.19)

where ρ(x) is a robust error norm, i.e. a function that looks like a quadratic
function close to x = 0, but which saturates for large values of x, as illustrated in
Fig. 2.7. The exact shape of this error norm is usually not very important, as long
as these properties are fulfilled [13]. The function we are minimizing is referred to
as the risk function E :

E(x) =
1

I

∑

i

ρ(xi − x) . (2.20)

For x near the true cluster of Fig. 2.7, all inliers fall within the quadratic part
of the error norm, and the outliers fall within the constant part. The value and
minimum of the error function is now independent of the exact position of the
outliers. Only the position of the inliers and the number of outliers is significant.
The minimization problem (2.19) looks for an x producing a low number of outliers
and a centralized position among the inliers.

18 Channel-Coded Scalars

−5 0 5
0

0.5

1

1.5

Figure 2.7: The error norm implicitly used in second-order B-spline decoding.

The expected value of the risk function can be obtained by considering a ran-
dom variable ξ distributed with density p(ξ) and a fixed x. We then have that

E {E(x)} =

∫

ρ(x− ξ)p(ξ) dξ = (ρ ∗ p)(x) . (2.21)

2.4.2 Virtual Shift B-spline Decoding

We now consider channel decoding as an instance of robust estimation. The con-
cept of spline interpolation and B-splines is reviewed in Appendix B and is a
prerequisite for this section.

Let c be the soft histogram of samples xi, constructed using the second-order
B-spline as basis function B. For simplicity, assume that the channel centers are
located at the positive integers. We want to find a robust mean of the encoded
samples by finding the minimum of the risk function

E(x) =
1

I

∑

i

ρ(xi − x) , (2.22)

where ρ is some robust error norm. It turns out that an error norm ρ with
derivative

ρ′(x) = B(x− 1)−B(x+ 1) , (2.23)

leads to an efficient method. This is the error norm shown in Fig. 2.7. To find
extrema of E(x), we seek zeros of the derivative

E ′(x) =
1

I

∑

i

ρ′(xi − x) =
1

I

∑

i

B(xi − x− 1)−B(xi − x+ 1) . (2.24)

We now construct a new set of coefficients c′n = cn+1 − cn−1 and have that

c′n = cn+1 − cn−1 =

=
1

I

∑

i

B(xi − (n+ 1))− 1

I

∑

i

B(xi − (n− 1)) =

= E ′(n) . (2.25)

This means that the sequence c′n is actually the derivative of the error function
sampled at the integers. To find the zero crossings of E ′, we can construct a contin-
uous function Ẽ ′ from c′n using second-order B-spline interpolation as described in

2.5 Continuous Reconstruction 19

Appendix B. The interpolated Ẽ ′ is then a piecewise second-order polynomial, and
the exact position of its zero crossings can be determined analytically by solving
a second-order polynomial equation.

In practice, a recursive filtering is used to interpolate between the c′-coefficients,
and the analytical solution for the zero crossings is only determined at positions
where the original channel encoding has large values from the beginning, which
leads to a computationally efficient method. I will not go into more detail about
this, but refer to [25].

2.5 Continuous Reconstruction

In previous sections, we have studied the relationship between the channel vector
and density functions, and have seen how peaks of the underlying PDF can be
detected. Here, we will go one step further and attempt to reconstruct the entire
underlying continuous PDF from a channel vector. From these continuous recon-
structions we can extract modes, and in Sect. 2.6 some properties of these modes
are compared to those detected by the previous virtual shift decoding.

Obtaining accurate peaks is not the sole purpose of studying these continu-
ous reconstructions. They can also be used to help us derive the channel vector
equivalent of multiplying two PDFs. This lets us use channel vectors for message
passing in Bayesian networks, which will be treated in Chapter 6.

Reconstructing a continuous distribution from a finite-dimensional channel vec-
tor is clearly an underdetermined problem, and some regularization has to be used.
The natural regularizer for density functions is the entropy, which measures the
information content in a distribution, such that the distribution with maximal
entropy is the one least committed to the data, or containing a minimum amount
of spurious information [9].

The maximum entropy solution turns out to be expensive to compute. In
Sect. 2.5.3, a computationally more efficient but less statistically motivated linear
method for density reconstruction is presented.

2.5.1 Problem Formulation

Using the Maximum Entropy Method (MEM), the problem becomes the following:
Given a channel vector c, find the distribution p that maximizes the (differential)
entropy

H(p) = −
∫ ∞

−∞

p(x) log p(x) dx (2.26)

under the constraints
∫ ∞

−∞

p(x)B(x− x̃n) dx = c[n], 1 ≤ n ≤ N (2.27)

∫ ∞

−∞

p(x) dx = 1 . (2.28)

20 Channel-Coded Scalars

The first set of constraints is motivated by (2.16). Using variational calculus, it
can be shown that the solution is of the form [9, 47]

p(x) = k exp

(
N∑

n=1

λnB(x− x̃n)

)

, (2.29)

where k and the λn’s are determined by the constraints (2.27)-(2.28). This is an
example of a probability density in the exponential family [12]. In the exponential
family framework, the parameters λn are called natural parameters (or exponential
parameters), and the channel vector elements are the mean parameters of the
distribution. The mean parameters are also a sufficient statistic for the exponential
parameters, meaning that they capture all information from a sample set {xi}i
needed for estimating the λn’s.

In general, there are often analytical solutions available for estimating mean
parameters from exponential parameters, but in this case I am not aware of a
closed-form solution. Instead, we have to resort to numerical methods like the
Newton method.

2.5.2 Newton Method

To make the notation more compact, I introduce a combined notation for the
constraints (2.27)-(2.28) by defining feature functions fn and residuals

fn(x) = B(x− x̃n) for 1 ≤ n ≤ N (2.30)

fN+1(x) ≡ 1 (2.31)

d =

[
c
1

]

(2.32)

rn =

∫ ∞

−∞

p(x)fn(x) dx − dn for 1 ≤ n ≤ N + 1 . (2.33)

In this notation, (2.29) becomes

p(x) = exp

(
N+1∑

n=1

λnfn(x)

)

, (2.34)

and the problem to solve is r = 0. Note that the factor k from (2.29) is replaced
by λN+1. Let us now apply a Newton method on this system. Differentiating p(x)
with respect to λn gives

dp(x)

dλn
= fn(x)p(x) . (2.35)

2.5 Continuous Reconstruction 21

In differentiating ri with respect to λj , we can exchange the order of differentiation
and integration to obtain

dri
dλj

=

∫ ∞

−∞

dp(x)

dλj
fi(x) dx =

=

∫ ∞

−∞

fi(x)fj(x)p(x) dx . (2.36)

The Jacobian then becomes

J =

[
dri
dλj

]

ij

=

[∫ ∞

−∞

fi(x)fj(x)p(x) dx

]

ij

. (2.37)

The update in the Newton method is λ ← λ + s, where the increment s in each
step is obtained by solving the equations Js = −r. When evaluating the integrals
in (2.37) and (2.32), I use the exponential form (2.34) for p using the current
estimate of the λn’s.

Since our feature functions fn are localized functions with compact support,
most of the time fi and fj will be non-zero at non-overlapping regions such that
fifj ≡ 0, making J band-shaped and sparse, and hence relatively cheap to invert.
The main workload in this method is in the evaluation of the integrals, both for
J and r. These integrals are non-trivial and must be evaluated numerically. The
entire method usually requires around 10 iterations.

2.5.3 Minimum-Norm Reconstruction

A density function is by definition positive. If this requirement is relaxed, we
can replace the maximum-entropy regularization with a minimum-norm (MN)
regularization, which permits the use of linear methods for the reconstruction.
This is not motivated from a statistical point of view, and may even lead to
a negative density function p(x), but is included for comparison since it is the
simplest way of obtaining continuous reconstructions.

For the derivations, we consider the vector space L2(R) of real square-integrable
functions [19], with scalar product

〈f, g〉 =

∫ ∞

−∞

f(x)g(x) dx (2.38)

and norm ‖f‖2 = 〈f, f〉. The minimum norm reconstruction problem is now posed
as

p∗ = arg min
p
‖p‖ subject to 〈p, fn〉 = dn for 1 ≤ n ≤ N + 1 , (2.39)

where the feature functions f are defined as in the previous section. Reconstructing
p from the dn’s resembles the problem of reconstructing a function from a set of
frame coefficients [69]. The reconstruction p∗ of minimum norm is in the space
Q1 = span{f1, . . . , fN+1}, which can easiest be seen by decomposing p∗ into p∗ =

22 Channel-Coded Scalars

q1 +q2, where q1 ∈ Q1 and q2 ∈ Q⊥
1 . Since q1 ⊥ q2, we have ‖p∗‖2 = ‖q1‖2 +‖q2‖2.

But q2 ⊥ fn for all feature functions fn, so q2 does not affect the constraints and
must be zero in order to minimize ‖p∗‖2. Hence p∗ = q1 ∈ Q1, which implies that
p∗ can be written as

p∗(x) =
∑

n

αnfn(x) . (2.40)

To find the set of αn’s making p∗ fulfill the constraints in (2.39), we write

dn = 〈p∗, fn〉 =

〈
∑

k

αkfk , fn

〉

=
∑

k

αk〈fk, fn〉 , (2.41)

giving the αn’s as a solution of a linear system of equations. In matrix notation,
this system becomes

Φα = d , (2.42)

where α = [α1, . . . , αN+1]
T and Φ is the Gram matrix Φ = [〈fi, fj〉]ij . Note that

since Φ is independent of our feature values d, it can be computed analytically
and inverted once and for all for a specific problem class. The coefficients α can
then be obtained by a single matrix multiplication.

A theoretical justification of using the minimum norm to reconstruct density
functions can be given in the case where p shows just small deviations from a
uniform distribution, such that p(x) is defined on [0,K], and p(x) ≈ K−1. In this
case, we can approximate the entropy by linearizing the logarithm. The first terms
of the Taylor expansion around K−1 gives log p(x) ≈ logK−1+(p(x)−K−1)/K−1,
and

H(p) = −
∫ K

0

p(x) log p(x) dx

≈ −
∫ K

0

p(x)
(
logK−1 +Kp(x)− 1

)
dx =

= −(logK−1 − 1)

∫ K

0

p(x) dx −K
∫ K

0

p(x)2 dx . (2.43)

Since
∫K

0
p(x) dx = 1, maximizing this expression is equivalent to minimizing

∫K

0
p(x)2 dx = ‖p‖2. This shows that the closer p(x) is to being uniform, the

better results should be expected from the minimum-norm approximation.

2.6 Decoding and Reconstruction Experiments

In this section, I experimentally analyze the behavior of the continuous recon-
struction methods and the B-spline decoding from Sect. 2.4.2. For the numerical
evaluation of the integrals in the MEM method, the PDFs were discretized using
400 samples per unit distance. As a channel coefficient c[n] gets closer to zero,

2.6 Decoding and Reconstruction Experiments 23

2 4 6 8 10
−0.1

0

0.1

0.2

0.3

a

2 4 6 8 10
−0.5

0

0.5

1

1.5

2
b

 Original distribution

Maxent reconstruction

Linear reconstruction

2 4 6 8 10
−1

0

1

2

3

c

2 4 6 8 10
−0.2

0

0.2

0.4

0.6

d

Figure 2.8: The MEM and MN reconstruction of (a) Sum of two Gaussians, (b) 4
Diracs of different weights, (c-d) Single Gaussians with different variance.

the corresponding λn from the MEM tends towards −∞, leading to numerical
problems. To stabilize the solution in these cases, a small background DC level
was introduced (ǫ-regularization).

2.6.1 Qualitative Behavior

In Fig. 2.8, the qualitative behavior of the MEM and MN reconstructions is ex-
amined. The feature vector d was calculated for some different distributions with
the channel centers located at the integers. The two Gaussians (c-d) were recon-
structed almost perfectly using MEM, but rather poorly using MN. In (b), the
two leftmost peaks were mixed together, but even the rightmost peaks were close
enough to influence each other, and all methods failed to find the exact peak loca-
tions. For the slowly varying continuous distribution (a), both methods performed
quite well.

2.6.2 Quantitative Behavior

To make a more quantitative comparison, I focused on two key properties; the
discrimination threshold [84] and the quantization effect [24] of channel decoding.
These properties can be measured both on the continuous reconstructions and on
the virtual shift B-spline decoding.

Recall that the virtual shift decoding does not look for a maximum of the
PDF directly, but rather for a minimum of an error function equivalent to the
PDF convolved with some robust error norm. In order to estimate a similar error
function minimum from the continuous reconstructions, our estimated p should

24 Channel-Coded Scalars

Method ∆x0 = 0 ∆x0 = 0.5
MEM p 0.34 0.57

B ∗ p 0.53 0.71
BVS ∗ p 1.00 1.00

MN p 0.57 0.71
B ∗ p 0.64 0.81
BVS ∗ p 0.95 1.00

Virtual Shift 1.00 1.00

Table 2.1: Discrimination thresholds.

likewise be convolved with some kernel prior to the maximum detection.
From (2.23), a robust error norm ρ is implicitly defined up to an additive

constant, which can be selected arbitrarily. Let BVS = (maxx ρ(x)) − ρ(x). This
is the kernel implicitly used in the virtual shift decoding. For all continuous
reconstruction experiments, peaks were detected from the raw reconstruction p as
well as from B ∗ p (with the second-order B-spline kernel B) and from BVS ∗ p.
Note that BVS is wider than B.

To measure the discrimination threshold, two values x0±d were encoded. The
discrimination threshold in this context is defined as the minimum value of d which
gives two distinct peaks in the reconstruction. As the background DC level in-
creases, the distribution becomes closer to uniform, and the performance of the
MEM and MN methods is expected to become increasingly similar. To keep this
DC level low but still avoid numerical problems, we chose a regularization level
corresponding to 1% of the entire probability mass. The discrimination threshold
was calculated for both reconstruction methods and the different choices of con-
volution kernels, and the results are summarized in Table 2.1. These values were
evaluated both for x0 at a channel center (∆x0 = 0) and in the middle between
two centers (∆x0 = 0.5).

With the quantization effect, we mean the fact that two distributions p differing
only in shift relative to the grid of basis functions are reconstructed differently.
To measure this effect, two distinct impulses of equal weight located at x0 ± d
with d below the discrimination threshold were encoded. Ideally, the peak of
the reconstructed distribution would be located at x0, but the detected peak m
actually varies depending on the location relative to the channel grid. In Fig. 2.9,
the difference betweenm and x0 is plotted against the offset z = x0−x̃ (the position
of x0 relative to a channel center x̃). Figure 2.10 shows the quantization effect for
the virtual shift decoding algorithm from Sect. 2.4. Note the different scales of
the plots. Also note that as the error becomes small enough, the discretization of
p(x) becomes apparent.

Achieving a quantization error as low as 1% of the channel spacing in the best
case in a very nice result, but keep in mind that this error is only evaluated for
the special case of two Diracs. In general, the results may be dependent on the
exact distribution of the samples. It is not obvious how to measure this effect in
a more general way, without assuming some specific form of the distribution.

2.6 Decoding and Reconstruction Experiments 25

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Offset

m
 −

 x
0

Peaks from p

d = 0

d = 0.2

d = 0.4

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

Offset

m
 −

 x
0

Peaks from p

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

Offset

m
 −

 x
0

Peaks from B * p

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

Offset

m
 −

 x
0

Peaks from B * p

0 0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

Offset

m
 −

 x
0

Peaks from B
VS

 * p

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

Offset

m
 −

 x
0

Peaks from B
VS

 * p

Figure 2.9: The quantization effect for continuous reconstructions. Left: Maxi-
mum entropy. Right: Minimum norm.

26 Channel-Coded Scalars

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

x
0

m
 −

 x
0

Figure 2.10: The quantization effect for the B-spline decoding.

2.7 Discussion

This chapter has given an overview of the channel coding idea and discussed the
possibility of reconstructing continuous density functions from the channel vectors.
The maximum entropy reconstruction is theoretically appealing, since it provides
a natural way of reconstructing density functions from partial information. In
most applications however, the exact shape of the density function is not needed,
since we are merely interested in locating modes of the distribution with high
accuracy. Efficient linear methods for such mode detection can be constructed,
but generally perform worse than the MEM method in terms of quantization error
and discriminating capabilities.

In general, for wider convolution kernels in the mode extraction, we get better
position invariance but worse discriminating capabilities. Thus, there is a trade-off
between these two effects. The possibility of achieving as little quantization error
as ±1% of the channel spacing is promising for using channel-based methods in
high-dimensional spaces. In e.g. Hough-like ellipse detection, the vote histogram
would be 5-dimensional, and keeping a small number of bins in each dimension is
crucial. Unfortunately, it is hard to turn the MEM reconstruction into a practical
and efficient mode seeking algorithm due to the computational complexity and the
necessity to evaluate integrals numerically.

Chapter 3

Channel-Coded Feature

Maps

...where we visit the spatio-featural space for the first time. In this space we meet
our old friend the SIFT descriptor, but also his brothers and cousins that you per-
haps have never seen before. We get the pleasure of computing derivatives of the
whole family, and begin to suspect that dressing up as piecewise polynomials might
be the latest fashion.

Channel-coded feature maps (CCFMs) are a general way of representing image
features like color and gradient orientation. The basic idea is to create a soft his-
togram of spatial positions and feature values, as illustrated in Fig. 3.1. This is
obtained by viewing an image as a number of points in the joint space of spatial po-
sition and feature values, the spatio-featural space, and channel coding these points
into a soft histogram. The most well-known variation of this type of representa-
tions is the SIFT descriptor [66], where position and edge orientation are encoded
into a three-dimensional histogram. SIFT uses linear interpolation to assign each
pixel to several bins, while channel-coded feature maps can be constructed using
any basis function.

If we wish to adjust the position in an image at which the CCFM is computed
e.g. in order to track an object in time, the derivatives of the CCFM with respect
to scale change, rotation and translation are needed. These derivatives are more
well-behaved if the basis functions are smooth.

Apart from the SIFT descriptor, other forms of feature histograms are rather
common in object recognition and tracking. The shape contexts used in [8] are
log-polar histograms of edge point positions. Since they are only used as a cue for
point matching, no attempt of computing their derivatives with respect to image
transformations is made. In [16], objects are tracked using single (global) color
histograms, weighted spatially with a smooth kernel. This can be seen as using a
channel-coded feature map with only a single spatial channel. The gradient-based
optimization is restricted to translations - scale changes are handled by testing a
number of discrete scales exhaustively, and rotation is not handled at all. In [94],

28 Channel-Coded Feature Maps

Figure 3.1: Illustration of a Channel-coded feature map. For each spatial chan-
nel, there is a soft histogram of chromacity and orientation, giving in total a 4D
histogram.

orientation histograms and downsampled color images are constructed efficiently
by box filters using integral images [92]. This is possible since rotation of the
tracked object is not considered. Usually when SIFT features are used in tracking
(e.g. in [82]), the descriptors are computed at fixed positions without attempting
to fine-tune the similarity parameters. The channel-coded feature maps generalize
all these approaches, allow for arbitrary basis functions, and support derivatives
with respect to rotation, translation and scale changes.

In this chapter I describe the main idea of channel-coded feature maps, dif-
ferentiate them with respect to similarity transforms, and show how to apply the
theory in a tracking experiment.

3.1 Channel-Coded Feature Maps

3.1.1 Definition and Notation

A channel-coded feature map can be constructed using an arbitrary number of
features. You can think about color and local orientation for a concrete example.
First, let {xi}i be a set of points in a spatio-featural space F , where each xi

corresponds to one image pixel. The first two elements of each xi are the spatial
pixel positions, denoted as ui = [ui, vi]

T, and the rest are feature values, denoted
as z. Since the feature values are a function of the image coordinate, we can write

xi =

(
ui

z(ui)

)

. (3.1)

Let x̃ = [ũT, z̃T]T ∈ F be a channel center. As in Chapter 2, we can without loss
of generality assume that these centers are unit-spaced, since that is only a matter
of changing the coordinate system. Furthermore, we let u = [0, 0]T be the center
of the encoded image or patch (see Fig. 3.2). The channel-coded feature map is

3.1 Channel-Coded Feature Maps 29

0 1
-2 -1

2 u

v

0

1

2

-1

-2

x

y

α

(x0, y0)

es

Figure 3.2: Left: Intrinsic channel coordinate system. The dots indicate channel
centers. Right: Similarity parameters governing the location of the patch in the
image.

now a multi-dimensional array

c[x̃] =
1

I

∑

i

wiB(xi − x̃) =
1

I

∑

i

wiB(ui − ũ, z(ui)− z̃) . (3.2)

The weights wi can be selected based on the confidence of the feature extraction,
such that e.g. homogeneous regions get a low weight since the orientation estimates
in these regions are unreliable.

When working with derivatives with respect to image transformations, it will
be more convenient to use a continuous formulation. Assume that the image
coordinates ui are taken from a regular grid. As this grid gets finer and finer, the
sums above approach the integrals

c[x̃] =

∫

w(u)B(u− ũ, z(u)− z̃) du =

∫

w(u)B(x− x̃) du . (3.3)

3.1.2 Motivation

Creating a channel-coded feature map from an image is a way of obtaining a
coarse spatial resolution while maintaining much information at each position.
For example, we can represent the presence of multiple orientations in a region
without averaging them together. A 128×128 grayscale image can be converted to
a 12×12 patch with 8 layers, where each layer represents the presence of a certain
orientation. This is advantageous for methods adjusting the spatial location of an
image patch based on a local optimization in the spirit of the KLT tracker (see
Sect. 3.3). The low spatial resolution increases the probability of reaching the
correct optimum of the energy function, while having more information at each
pixel improves the robustness and accuracy.

If non-overlapping box functions are used as basis functions, we get a regular
hard histogram in spatio-featural space. If we use local edge orientation as a single
feature, create a binary weight wi by thresholding the gradient magnitude at 10%

30 Channel-Coded Feature Maps

of the maximal possible value, and use the first order (linear) B-spline as basis
function, we get something similar to the SIFT descriptor [66]. By increasing
the overlap and smoothness of the basis functions, we expect to get a smoother
behavior.

The low spatial resolution and the smoothness of the basis functions make it
more likely that the view representation transforms smoothly between different
views of an object, which also makes it suitable for view interpolation. This idea
will be explored further in Chapter 10.

3.1.3 Choice of Features

Channel-coded feature maps can be constructed from different sets of features.
The primary examples in the thesis will be local orientation and color.

Local orientation can be used in different ways. First note that the local
orientation information is only significant close to edges in an image. In large
homogeneous regions, the orientation is usually very noisy and should perhaps
not be included with equal weight in the channel coding. Consider using only the
gradient direction as a local orientation measure. One option that comes to mind
is to use the gradient magnitude as weights wi in (3.2). This causes pixels with
less distinct structure to contribute less to the encoding. However, often the exact
value of the gradient magnitude is not a significant feature.

If color is used as a feature, any color space can be used. For example, in order
to be invariant to changes in illumination, the hue and saturation channels of the
HSV representation could be used. However, the hue component is very unstable
for dark black and bright white colors. A more detailed discussion about practical
considerations in the choice of features is given in Sect. 12.2.

3.2 Derivatives of Channel Coded Feature Maps

One issue in applications like object pose estimation, tracking and image registra-
tion is the fine-tuning of similarity parameters. The problem is to find a similarity
transform that maps one image (or image patch) to another image in a way that
minimizes some cost function. One way to solve this is to encode the first image
or patch into a target CCFM c0. Let f(s, α, x0, y0) be a function that extracts a
CCFM from the second image (the query image), from a patch located at (x0, y0)
with radius es and rotation α (see Fig. 3.2). We then look for the parameters that
make E = ‖f(s, α, x0, y0) − c0‖2 minimal. In Sect. 3.3, this formulation will be
used for tracking, and in Chapter 11, this will be one component of a view-based
pose estimation method. In order to minimize E with a local optimization, we
need the derivatives of f with respect to the similarity parameters.

3.2.1 Derivation

The starting point for this derivation is the definition in (3.3). We focus on a
certain channel coefficient c = c[x̃] for a given fixed x̃. To make the notation more

3.2 Derivatives of Channel Coded Feature Maps 31

compact, we define

h(x) = B(x− x̃) = B(u− ũ, z(u)− z̃) . (3.4)

Furthermore, we ignore the weight function w(u) for a moment. This produces a
shorter version of (3.3) as

c =

∫

h(u, z(u)) du . (3.5)

Since the expressions get rather lengthy anyway, this will be more convenient to
work with. The weights will be considered again in Sect. 3.2.2. Let us now see
what happens when the channel grid is rotated, scaled and translated according
to

c =

∫

h(u, z(Au + b)) du , (3.6)

where

A = esR = es

(
cosα −sinα
sinα cosα

)

, b =

(
bu
bv

)

. (3.7)

Positive bu, bv, s, α correspond to a positive shift and rotation and an increase of
size of the channel grid in the (u, v) coordinate system (Fig. 3.2). Substituting
u′ = Au + b gives u = A−1(u′ − b) and

c = |A−1|
∫

h(A−1(u′ − b), z(u′)) du′ . (3.8)

We can now rename u′ as u again. Note that |A−1| = e−2s|R−1| = e−2s, where
|R−1| = 1 since R is orthonormal. This gives

c = e−2s

∫

h(A−1(u− b), z(u)) du . (3.9)

We want to differentiate (3.9) with respect to α, s, bu, bv and start with α. We can
replace the order of the integration and differentiation and get

dc

dα
= e−2s

∫
d

dα
[h(. . .)] du = e−2s

∫

h′u(. . .)
dA−1

dα
(u− b) du , (3.10)

where

dA−1

dα
= e−s

[
− sinα cosα
− cosα − sinα

]

(3.11)

h′u = [h′u, h
′
v] . (3.12)

For compactness, the arguments to h and its derivatives have been left out. These
arguments are always as in (3.9). The differentiation with respect to b proceeds
similarly. We get

dc

db
= e−2s

∫
d

db
[h(. . .)] du = −e−2s

∫

h′u(. . .)A−1 du . (3.13)

32 Channel-Coded Feature Maps

In differentiating with respect to s, the product rule gives us

dc

ds
=

d(e−2s)

ds

∫

h(. . .) du + e−2s

∫
d

ds
[h(. . .)] du =

=− 2e−2s

∫

h(. . .) du + e−2s

∫

h′u(. . .)
dA−1

ds
(u− b) du =

=− e−2s

∫

2h(. . .) + h′u(. . .)A−1(u− b) du . (3.14)

If we evaluate these derivatives for s = 0, α = 0,b = 0, we get A−1 = I, and
(3.10), (3.13) and (3.14) become

dc

dbu
= −

∫

h′u(u, z(u)) du (3.15)

dc

dbv
= −

∫

h′v(u, z(u)) du (3.16)

dc

ds
= −

∫

2h(u, z(u)) + uh′u(u, z(u)) + vh′v(u, z(u)) du (3.17)

dc

dα
=

∫

vh′u(u, z(u))− uh′v(u, z(u)) du . (3.18)

3.2.2 Weighted Data

In the previous section, the weights from (3.2) were not considered. By introducing
these weights again, the results are similar. Since the weights are defined for each
pixel in the feature image, they transform with the features such that (3.6) in the
weighted case becomes

c =

∫

h(u, z(Au + b))w(Au + b) du . (3.19)

After the variable substitution, we have

c = |A−1|
∫

h(A−1(u− b), z(u))w(u) du . (3.20)

In this expression, the weighting function is independent of the transformation
parameters α, s,b and is left unaffected by the differentiation. The complete ex-
pressions for the derivatives in the weighted case are just (3.15)-(3.18) completed
with the multiplicative weight w(u) inside the integrals.

3.2.3 Normalization

An option is to normalize the channel vectors using c̃ = c/‖c‖, where ‖ · ‖ is the
L2 norm. In this case, we should change the derivatives from previous section
accordingly. From Appendix A, we have

dc̃ = ‖c‖−1(I− c̃c̃T) dc . (3.21)

3.2 Derivatives of Channel Coded Feature Maps 33

We consider first the derivative with respect to rotation and write

dc̃ = ‖c‖−1(I− c̃c̃T)
dc

dα
dα , (3.22)

giving the explicit derivative as

dc̃

dα
= ‖c‖−1(I− c̃c̃T)

dc

dα
. (3.23)

The derivatives with respect to the other similarity parameters are handled in a
similar way.

Another option is to normalize using the L1 norm. For c̃ = (1Tc)−1c, Appendix
A gives us

dc̃ = (1Tc)−1(I− c̃1T) dc , (3.24)

which also applies to all four similarity derivatives by changing the differentials
to derivatives like above. The pros and cons of different normalizations will be
discussed in later sections.

From an implementation perspective, I found it useful to have one function
that computes non-normalized CCFMs and derivatives. The normalization is done
by a second function which is completely general, accepting simply a vector and
a number of derivatives without knowing anything about how this vector was
computed or which variables the derivatives are with respect to.

3.2.4 Using the Sum Notation

On a digital computer, images are usually represented as a discrete array of num-
bers, and when computing the derivatives, the integrals (3.15)-(3.18) are approxi-
mated by sums. Returning to our original notation where the channel centers are
explicitly written out, the discrete approximations of the derivatives are

dc[x̃]

dbu
= −1

I

∑

i

B′
u(xi − x̃) (3.25)

dc[x̃]

dbv
= −1

I

∑

i

B′
v(xi − x̃) (3.26)

dc[x̃]

ds
= −1

I

∑

i

(
2B(xi − x̃) + uiB

′
u(xi − x̃) + viB

′
v(xi − x̃)

)
(3.27)

dc[x̃]

dα
=

1

I

∑

i

(
viB

′
u(xi − x̃)− uiB

′
v(xi − x̃)

)
(3.28)

This is the form that will be most convenient to work with in the next chapter,
where an efficient method of constructing CCFMs with derivatives is presented,
based on the piecewiseness of B-splines.

34 Channel-Coded Feature Maps

3.3 Tracking

3.3.1 Main Algorithm

To give a first application of channel-coded feature maps, we reconsider the exam-
ple from the introduction of Sect. 3.2 in order to build a patch tracker. From the
first frame of an image sequence, we cut out an image patch of a given radius s
at some given position (x0, y0) and rotation α and create a target CCFM c0 from
this patch. We then want to track this patch through subsequent frames, handling
translation as well as rotation and scale changes.

Let ψ = (s, α, x0, y0) be a similarity frame defining the position, scale and
rotation of a patch in an image, and let f(ψ) be a function creating a CCFM from
the similarity frame ψ in the next image of the sequence. The tracking must find

ψ∗ = arg min ‖f(ψ)− c0‖2 . (3.29)

This is a non-linear least-squares problem which can be solved using e.g. a Gauss-
Newton method. One interpretation of Gauss-Newton is that it in each iteration
replaces f(ψ) with a linearized version f(ψ+s) ≈ f(ψ)+Js, where J is the Jacobian
of f . We can then find the optimal update s by minimizing ‖f(ψ) + Js − c0‖2.
This is a linear least-squares problem with the explicit solution

s = (JTJ)−1JT(f(ψ)− c0) . (3.30)

This requires an initial guess ψ used as the point of linearization. After solving
for s, this estimate is refined using ψ ← ψ + αs, where α is the step length.

In order to guarantee convergence, the step length α should be determined
by a line search, such that s merely determines the direction of the update. In
practice, a fixed α < 1 often works well. Choosing a smaller α can improve ro-
bustness but increases the number of iterations required. For a detailed treatment
about convergence requirements and line search methods, see [77]. A less rigorous
introduction to non-linear optimization can be found in [48]. The entire tracking
algorithm is summarized as Alg. 3.1.

Note that the derivatives from previous section are relative to the (u, v) coor-
dinate system. In order to get the derivatives with respect to (x0, y0), note that
a translation of the channel grid by (bu, bv) in the (u, v) system corresponds to a
translation (bx, by) in the (x, y) system, with

bu =k
(

cos(α)bx + sin(α)by
)

(3.31)

bv =k
(
− sin(α)bx + cos(α)by

)
. (3.32)

The constant k represents the scale change between the coordinate systems. If the
(x, y) system is measured in image pixels, k−1 is pixels per channel-spacing unit.
The chain rule now give the transformed derivatives as

dc

dbx
=k

(
dc

dbu
cos(α)− dc

dbv
sin(α)

)

(3.33)

dc

dby
=k

(
dc

dbu
sin(α) +

dc

dbv
cos(α)

)

. (3.34)

3.3 Tracking 35

Algorithm 3.1 Tracking using channel-coded feature maps.

Inputs:
- Target CCFM c0

- Estimated similarity frame ψk−1 from previous image
- New image Ik.

Initialize ψk = ψk−1

repeat
Extract features ck = f(ψk) with derivatives J from image Ik

s = (JTJ)−1JT(ck − c0)
Determine α by a line search in the direction s
ψk = ψk + αs

until α is small enough or max iterations reached

No coordinate system compensation is required for the rotation and scale deriva-
tives.

The Jacobian J is an N × 4 matrix, where N is the number of channels in the
CCFM. This means that (JTJ)−1 is 4 × 4, so the update s is relatively cheap to
compute once the CCFM and its derivatives are computed.

The optimization step in this tracker is similar to that used in the well-known
KLT tracker [68], [83], but using channel-coded feature maps instead of raw images
gives it rather different properties. First of all, we do not need to think about how
to compute the derivatives of the image. Instead, we keep the image unchanged
and use the derivatives of the basis functions. In the next section, the robustness
against occlusion and clutter will be discussed.

3.3.2 Robustness Against Occlusion

Consider the case where the tracked patch is occluded. This can be modeled
by writing the observed CCFM as c̃k = ck + z, where z is a disturbance term.
From (3.30) we see that a requirement for the tracking to be unaffected by this
disturbance is that JTz = 0. This is the case for example if the occluding object
activates channels which are inactive for the tracked object. Note that this is rather
different from the usual KLT tracker, which uses the image intensity directly in
the minimization problem. Also note that this is an argument against normalizing
the CCFMs. If the CCFM is normalized to unit sum, the introduction of new
edges in one part of an image causes the channels in other parts of the image to
decrease in value.

Figure 3.3 shows a conceptual examples of the effect of clutter. If the fea-
ture space consists of orientation and color, only clutter which is similar both in
position, orientation and color will affect the optimization. Image (B) shows a
situation where the disturbance has edges of an unrelated orientation. In (C), the
disturbing edges have a similar orientation but an unrelated color. Finally, in (D)
the disturbing edges are similar in both spatial position, color and orientation.
The tracking is expected to be significantly affected only in (D).

36 Channel-Coded Feature Maps

A B C D

Figure 3.3: Illustration of the effect of clutter. See the text for details.

3.3.3 Experiments

Figure 3.4 shows eight subsequent frames of tracking a robotic gripper using a
channel-coded feature map with 5× 5× 5× 5× 5 channels (spatial position, local
orientation and two color channels). First order B-spline channels were used, and
each channel center is marked in the figure. Note the accuracy of the registration
compared to the spatial spacing of the channels. Also note that the shift between
two consecutive images is sometimes relatively large. In frame 2 and 3, the patch
was occluded with an object of unrelated color, and we can see that the tracking
is not significantly affected. On the other hand, in frame 5-8, the occluding object
has a color similar to the tracked object. The tracking finally breaks down in
frame 8.

3.3 Tracking 37

1 2

3 4

5 6

7 8

Figure 3.4: Example of tracking using CCFMs. See the text for details.

38 Channel-Coded Feature Maps

Chapter 4

Channel Coding through

Piecewise Polynomials

...where we take advantage of the piecewiseness of the B-spline basis functions,
almost get lost in a haze of multidimensional convolutions, but eventually man-
age to find our way. The motivation behind this chapter was to seek an efficient
method for computing channel-coded feature maps, which turned out to be more
tricky than was first anticipated. This chapter exposes the final method with all its
gory details, and is a healthy challenge in multi-dimensional index book-keeping.

Channel-coded feature maps are comparably time consuming to compute, espe-
cially when several features are included. While it is possible to track a single
CCFM in almost real-time even using a straight-forward encoding [59], time be-
comes a limiting factor when several objects are considered simultaneously. This
motivates looking for efficient algorithms. When the basis functions are piecewise
polynomials, so are their derivatives. In this chapter, I explore this property and
present an algorithm for computing CCFMs and their derivatives using piecewise
polynomials. This unfolds as a rather involved exercise in multi-dimensional con-
volutions and index book-keeping, and in order to write everything down in a
convenient way some new notation is introduced. I compare this approach to a
more straight-forward algorithm in terms of computational complexity and identify
situations where the piecewise approach is beneficial.

Recall that the channel-coded feature maps can be seen as a generalization of
the SIFT descriptor. Viewed in that context, the algorithm in this chapter can be
used to efficiently compute SIFT descriptors and their derivatives.

4.1 Implementation Using Piecewise Polynomials

4.1.1 Monopieces and Polypuzzles

In [90], k’th order splines are uniquely characterized by an expansion in shifted
k’th order B-splines. In this chapter, we take a different approach. Note that a

40 Channel Coding through Piecewise Polynomials

polynomial is characterized by a coefficient for each participating monomial, and
a piecewise polynomial is characterized by a set of such coefficients for each piece.
In order to express this compactly, a one-dimensional monopiece P (p)(x) of order
p is introduced as

P (p)(x) =

{
xp if −0.5 < x ≤ 0.5
0 otherwise

. (4.1)

Using these monopieces, any piecewise polynomial function with unit-spaced knots
can be written as

B(x) =
∑

p

∑

s

K[p, s]P (p)(x+ s) . (4.2)

Such a function B(x) will be called a (one-dimensional) polypuzzle. In contrast to
splines as defined in [90], this definition also support non-smooth and even non-
continuous piecewise polynomials. In practice however, only continuous functions
will be considered - otherwise the derivatives are not well-defined. As long as the
knots are unit-spaced, all splines are polypuzzles.

The shifts s can be at the integers or offset by 0.5, which is the case e.g. for odd-
order centralized B-splines. K is a matrix holding coefficients for each polynomial
order and shift. Note that we index this matrix directly with p and s even though
s is not necessarily an integer. Think of K as a mapping P × S → R, where P is
the set of polynomial orders and S is the set of shifts used. These sets are finite,
so K can be represented by a matrix. Some examples will be given later.

The derivative of a continuous polypuzzle is another polypuzzle of lower order,
and it is simple to state the relationship between the coefficient matrices of the two.
Let K′ be the coefficient matrix of B′. From the rules of polynomial differentiation,
it follows that K′[p, s] = (p+ 1)K[p+ 1, s] .

4.1.2 Multidimensional Monopieces

A multi-dimensional monopiece is a separable function consisting of one monopiece
in each dimension:

P (p)(x) =
∏

d

P (p[d])(x[d]) . (4.3)

The vector p defines the polynomial order in each dimension and will be called a
polynomial order map. A multi-dimensional separable polypuzzle is

B(x) =
∏

d

Bd(x[d]) . (4.4)

Combining (4.4) with (4.2) gives the multi-dimensional polypuzzle expressed in
terms of monopieces:

B(x) =
∏

d

∑

p

∑

s

Kd[p, s]P
(p)(x[d] + s) . (4.5)

4.1 Implementation Using Piecewise Polynomials 41

We expand this product and note that each term contains a product of one single-
dimensional monopiece in each dimension according to

B(x) =
∑

s1

· · ·
∑

sD

∑

p1

· · ·
∑

pD

∏

d

Kd[pd, sd]P
(pd)(x[d] + sd) . (4.6)

We can now gather all shift and polynomial order indices into index vectors s
and p. The coefficients in front of the monopieces can be combined into a multi-
dimensional version of K defined as1

K[p, s] =
∏

d

Kd[p[d], s[d]] . (4.7)

Furthermore, the product of the monopieces can be written as a multidimensional
monopiece P (p)(x− s), which lets us write (4.6) more compactly as

B(x) =
∑

p

∑

s

K[p, s]P (p)(x + s) . (4.8)

This equation simply states that the multi-dimensional polypuzzle can be written
as a linear combination of translated multi-dimensional monopieces of different
orders. The coefficients in front of the monopieces are organized in an array K,
giving the coefficient for each translation s and polynomial order map p.

4.1.3 Monopiece Encodings

The proposed way of computing the channel-coded feature maps is to go via a
monopiece encoding, defined as

cmp[p, x̃] =
1

I

∑

i

wiP
(p)(xi − x̃) . (4.9)

This can be seen as a multi-layered CCFM where each p-layer corresponds to one
polynomial order configuration p. Each layer is like a histogram using P (p) as basis
function instead of the box function. The channels with different centers x̃ within
each layer are not overlapping, meaning that each pixel of the input image belongs
to exactly one channel per layer. To compute this encoding, simply loop over the
image, compute the value of each polynomial for each pixel, and accumulate the
result into c.

This is a generalization of the P-channel encoding used in [28, 26], where only
one constant and one linear function in each dimension were used. Here, we will
use all monopieces needed for our target B-spline encoding. Which these are will
be stated in Sect. 4.1.7.

1We reuse the symbol K for the multi-dimensional case. The two meanings will be disam-
biguated by the arguments of K.

42 Channel Coding through Piecewise Polynomials

4.1.4 Converting Monopiece Encodings to CCFMs

Recall the definition of channel-coded feature maps from (3.2), repeated here for
convenience:

c[x̃] =
1

I

∑

i

wiB(xi − x̃) . (4.10)

In order to see how to get from the monopiece encoding in (4.9) to the CCFM in
(4.10), we rewrite (4.10) in terms of monopieces according to (4.8), rearrange the
sums, and plug in the definition of the monopiece encodings from (4.9):

c[x̃] =
1

I

∑

i

wi

∑

p

∑

s

K[p, s]P (p)(xi − x̃ + s) =

=
∑

p

∑

s

K[p, s]
1

I

∑

i

wiP
(p)(xi − x̃ + s) =

=
∑

p

∑

s

K[p, s] cmp[p, x̃− s] . (4.11)

At this point, it is convenient to use the (·)-notation. With cmp[p, ·], I mean
a function x̃ 7→ cmp[p, x̃]. Similarly, K[p, ·], is a function x̃ 7→ K[p, x̃]. Since
these are functions of a vector variable, we can apply a multi-dimensional discrete
convolution operator according to

(
K[p, ·] ∗ cmp[p, ·]

)
(x̃) =

∑

s

K[p, s] cmp[p, x̃− s] . (4.12)

This is recognized as the right-hand side of (4.11), which to summarize gives us

c =
∑

p

K[p, ·] ∗ cmp[p, ·] . (4.13)

In words, in order to convert from a monopiece encoding to a CCFM, we must
perform one multidimensional convolution in each p-layer, and then sum over
all layers. Note from the definition of K in (4.7) that the filter kernel K[p, ·]
is separable. This means that each convolution in (4.13) can be computed as a
sequence of one-dimensional convolutions with kernel Kd[p[d], ·] in dimension d.
The complete algorithm is summarized as Alg. 4.1.

4.1.5 Generalized Notation

In the next section, I describe how the derivatives are computed in the piecewise
polynomial framework. In order to do that, we first need to further extend our
notation. Recall that each multi-dimensional polypuzzle is characterized by its
coefficient array K. In order to be able to express such matrices for different
functions conveniently, we define K{f}[p, x̃] for any polypuzzle f such that

f(x) =
∑

p,s

K{f}[p, s]P (p)(x + s) . (4.14)

4.1 Implementation Using Piecewise Polynomials 43

Algorithm 4.1 Creating CCFMs from monopiece encodings.

Inputs:
- Monopiece encoding cmp

- Kernel definition matrix Kd for each dimension d
Initialization:
- result = Zero N-dimensional array

for each polynom order map p do
thislayer = cmp[p, ·]
for each dimension d do

kernel1d = Kd[p[d], ·]
Reshape kernel1d to be along dimension d
thislayer = thislayer ∗ kernel1d (1D convolution)

end for
result += thislayer

end for

To be strict, there should always be a function within the {}-brackets, but the
notation is simplified slightly by allowing ourselves to write things like K{vB′

u}, to
be interpreted as K{x 7→ vB′

u(x)}, where x = [u, v, z1, z2, . . .]
T as in the previous

chapter. Furthermore, we denote different complete encodings as c{f}, meaning
the encoding obtained when using f as the multi-dimensional basis function. The
relations (3.2) and (4.13) then generalize to

c{f} =
1

I

∑

i

f(xi − ·) =
∑

p

K{f}[p, ·] ∗ cmp[p, ·] . (4.15)

Even though the notation is non-standard and may look confusing, this single
equation compactly summarizes more or less everything said so far in this chapter.
It is important to fully understand this equation before proceeding into the next
section.

4.1.6 Derivatives

From (3.25) and (3.26), it is immediately clear that

dc{B}[x̃]

dbu
= − c{B′

u}[x̃] (4.16)

dc{B}[x̃]

dbv
= − c{B′

v}[x̃] . (4.17)

These can be computed by Alg. 4.1 using K{B′
u} and K{B′

v}. The derivatives
with respect to rotation and scale are more complicated. From (3.27), (3.28), we

44 Channel Coding through Piecewise Polynomials

Algorithm 4.2 Computing CCFMs and derivatives through monopiece.

Compute cmp[p, x̃] for each p.
c{B} = convert(cmp,K{B},K{B},K{B})
c{B′

u} = convert(cmp,K{B′},K{B},K{B})
c{B′

v} = convert(cmp,K{B},K{B′},K{B})
c{uB′

u} = convert(cmp,K{xB′},K{B},K{B})
c{uB′

v} = convert(cmp,K{xB},K{B′},K{B})
c{vB′

u} = convert(cmp,K{B′},K{xB},K{B})
c{vB′

v} = convert(cmp,K{B},K{xB′},K{B})
Compute the desired derivatives using equations (4.16), (4.17), (4.22), (4.23).

see that the four sums

I1 =
1

I

∑

i

uiB
′
u(xi − x̃) I2 =

1

I

∑

i

viB
′
u(xi − x̃)

I3 =
1

I

∑

i

uiB
′
v(xi − x̃) I4 =

1

I

∑

i

viB
′
v(xi − x̃) (4.18)

are needed. If B is here a separable polypuzzle of order n, so is uB′
u and vB′

v,
while vB′

u and uB′
v are of order n + 1. This means that in order to compute

the derivative with respect to image rotation we need more monopieces than are
needed for the original encoding. This is a bit disappointing, but can be handled
without too much extra overhead.

To see how to construct I1, I2, I3, I4 from a monopiece encoding, first rewrite
I1 as

I1 =
1

I

∑

i

(ui − ũ)B′
u(xi − x̃) + ũ

1

I

∑

i

B′
u(xi − x̃) = (4.19)

= c{uB′
u}[x̃] + ũ c{B′

u}[x̃] . (4.20)

By separating uB′
u(x) into

uB′
u(x) = uB′

1(u)
∏

d6=1

Bd(x[d]) , (4.21)

K{uB′
u} can be separated according to (4.7) with K1 = K{xB′} and Kd = K{B}

for d 6= 1, and the encoding c{uB′
u} can be computed by Alg. 4.1.2 The other

2The symbol x is used to indicate that we are talking about a one-dimensional K. To be
strict, we should write K{xB

′} as K{x 7→ xB
′(x)}, not to be confused with K{x 7→ uB

′

u
(x)}.

4.2 Complexity Analysis 45

sums from (4.18) can be handled in a similar way, and altogether we get

dc{B}[x̃]

dα
= c{vB′

u}[x̃] + ṽ c{B′
u}[x̃]−

c{uB′
v}[x̃]− ũ c{B′

v}[x̃] , (4.22)

dc{B}[x̃]

ds
= − c{uB′

u}[x̃]− ũ c{B′
u}[x̃]−

c{vB′
v}[x̃]− ṽ c{B′

v}[x̃]−
2c{B}[x̃] . (4.23)

Each of these c-terms can be computed from the monopiece encoding cmp using
Alg. 4.1 with the corresponding K. To see how to construct things like K{xB′},
we first note that the identity function f(x) = x can be written as a piecewise
polynomial with K{x}[0, s] = s and K{x}[1, s] = 1 for all s. This holds regardless
of whether the shifts s are at the integers or at the 0.5-shifted integers. It is well-
known that the product of two polynomials can be computed by a convolution
of the polynomial coefficients, and for piecewise polynomials this convolution can
be performed separately for each piece. In our notation this can be expressed
compactly as

K{fg}[·, s] = K{f}[·, s] ∗K{g}[·, s] . (4.24)

The complete algorithm for computing a channel-coded feature map together
with its derivatives with respect to similarity transformation of the underlying
image is given in Alg. 4.2. The function convert(cmp,Ku,Kv,Kf) mentioned in
the pseudocode means running Alg. 4.1 for converting cmp using Ku and Kv in
the spatial dimensions and Kf in each feature dimension. For convenience, some
standard coefficient matrices are given in Table 4.1, useful for creating first- and
second-order B-spline CCFMs.

4.1.7 Required Monopieces

For a basis function of order k, all combinations of monopieces from order 0 to k
are needed in each dimension, giving in total (k + 1)D monopieces. Furthermore,
because of the terms from uB′

v and vB′
u, some monopieces of order k + 1 in one

spatial dimension are needed – but only together with monopieces of order k − 1
in the other spatial dimension. This gives in total β = (k + 1)D + 2k(k + 1)(D−2)

monopieces. Some common cases are presented in Table 4.2.

4.2 Complexity Analysis

In this section, the computational complexity of the method is compared to a more
direct method. In this analysis, we consider an image of size M ×M from which
D−2 features are computed, such that the spatio-featural space has D dimensions
like before. This feature map is encoded using N channels in each dimension,
resulting in ND channels in total. Let the basis function contain S pieces, such

46 Channel Coding through Piecewise Polynomials

First order B-spline: Second order B-spline:

K{B}
[
1/2 1/2
−1 1

]

1/8 3/4 1/8
−1/2 0 1/2
1/2 −1 1/2

K{B′}
[
−1 1

]
[
−1/2 0 1/2

1 −2 1

]

K{xB}

1/4 −1/4
0 0
−1 1

1/8 0 −1/8
−3/8 3/4 −3/8

0 0 0
1/2 −1 1/2

K{xB′}
[
−1/2 −1/2
−1 1

]

−1/2 0 −1/2
1/2 0 −1/2
1 −2 1

Table 4.1: Some useful K-matrices. The topmost row in each matrix corresponds
to polynomial order 0.

First-order B-spline, one feature f (12 monomials):
1 u u2 v uv v2 f uf u2f vf uvf v2

Second-order B-spline, one feature f (39 monomials):
1 u u2 u3 v uv u2v u3v
v2 uv2 u2v2 v3 uv3

f uf u2f u3f vf uvf u2vf u3vf
v2f uv2f u2v2f v3f uv3f

f2 uf2 u2f2 u3f2 vf2 uvf2 u2vf2 u3vf2

v2f2 uv2f2 u2v2f2 v3f2 uv3f2

Table 4.2: Some examples of which monomials are required for different CCFMs.

4.2 Complexity Analysis 47

that exactly S channels are active at the same time in each dimension. This gives
in total SD active channels for each input pixel.

· A) Direct Approach The simplest thing to do is to loop through the image
and accumulate the value of each of the SD bins that are active for each pixel
position. We first need to create a zero array of size ND and then compute
the original encoding and the four derivatives separately, giving a total of
ND + 5SDM2 operations.

· B) Piecewise Approach As proposed in this chapter, we start with com-
puting a monopiece encoding from the image data using β monopieces, where
β can be derived according to Sect. 4.1.7. Since each pixel is sent to β bins,
this requires βM2 operations and gives us a monopiece encoding of size βND

(step B1). From this representation, we create the final B-spline encoding
and its derivatives by the technique described in Sect. 4.1.4.

Computing c{B} and each of the other 6 intermediate encodings in Alg. 4.2
requires βD one-dimensional convolutions with a convolution kernel of size
S, each requiring SND operations (step B2). To combine the intermediate
encodings into final derivatives requires only a single extra pass through the
data, using 11ND operations (step B3), where the number 11 refers to the
total number of terms of the right-hand sides of (4.16), (4.17), (4.23), (4.22).
In total, this gives βM2 + (7βDS+ 11)ND operations. The constant 11 can
be neglected in all practical cases.

If the image is large compared to the number of channels, the complexity of
the piecewise approach will be dominated by the first pass through the image,
requiring βM2 operations. In the limit of infinitely large images, the monopieces
method is a factor 5SD/β faster than the direct method. As an example, consider
the case of first-order B-spline basis functions and D = 3. Then 5SD = 40 while
β = 12 according to Table 4.2.

On the other hand, if the image is small, the piecewise approach requires at
least 7βDSND operations, while the direct approach requires only at least ND.
This gives a factor 7βDS in favor of the direct method, which is a clear advantage
for small images and many channels.

Furthermore, increasing the size S of the basis function while keeping every-
thing else constant gives a dramatic advantage to the piecewise method, since the
number of operations grows like SD for the direct approach but at worst only lin-
early in S for the piecewise method (if the complexity is dominated by the second
term).

Some theoretical examples are shown in Fig. 4.1 using B-splines of first and
second order. The exact time consumption and break-even point for a real system
of course depend a lot on the exact implementation and hardware used. In Fig. 4.2,
two competing C++ implementations were compared in a number of situations -
one direct algorithm specialized for D = 3 and one general piecewise algorithm.
The experiments were run on a Pentium M running at 1.8 GHz. The trends are
similar to the theoretical curves but with different constant factors and break-even
points. I conclude that the piecewise approach is comparatively better for large

48 Channel Coding through Piecewise Polynomials

images with few channels, while the direct approach is better for small images
with many channels, with an advantage to the piecewise method for the cases
considered in the later experiments.

4.3 Discussion

In this chapter, I have described one way of implementing channel-coded feature
maps using separable piecewise polynomial basis functions. This approach shows
favorable computational complexity compared to a direct encoding for large images
with few channels. The main advantage comes from the fact that much interme-
diate results can be reused in computing the derivatives. However, the amount
of computation needed still grows rapidly when the basis functions become larger
or the spatio-featural space higher-dimensional, and the performance gain turned
out to be lower than was originally hoped for.

This motivates trying to reduce the number of monopieces used. One motiva-
tion for channel-coded feature maps in the first place was to have a representation
that responds smoothly to geometrical changes of the underlying image, with a
coarse spatial resolution, but much information at each spatial position. Maybe
these goals can be fulfilled with simpler basis functions, composed only of a sub-
set of the monopieces needed for higher-order B-splines. This is related to the
P-channel representation [28], where the number of monopieces used grows lin-
early in the number of feature dimensions. However, that representation is less
smooth and less suited for taking derivatives. Finding a good trade-off between
computational complexity and performance in any given application is subject to
future research.

4.3 Discussion 49

100 200 300 400
0

2

4

Image size

M
 o

p
er

at
io

n
s

B1, 8
3
 channels

100 200 300 400

5

10

15

20

Image size

M
 o

p
er

at
io

n
s

B2, 8
3
 channels

100 200 300 400

2
4
6
8

10
12

Image size

M
 o

p
er

at
io

n
s

B1, 5
4
 channels

4 6 8 10
0

1

2

3

n

M
 o

p
er

at
io

n
s

256
2
 image, B1, n

3
 channels

4 6 8 10
2

4

6

8

10

n

M
 o

p
er

at
io

n
s

256
2
 image, B2, n

3
 channels

4 6 8 10
0

10

20

30

n

M
 o

p
er

at
io

n
s

256
2
 image, B1, n

4
 channels

Figure 4.1: Theoretical time consumption for the two approaches in different sit-
uations measured in million operations. Dashed: direct method. Solid: piecewise
method.

100 200 300 400
0

20

40

60

80

100
1st order, 8

3
 channels

T
im

e
(m

s)

Image Size
100 200 300 400

0

20

40

60

80

100

T
im

e
(m

s)

Image Size

2nd order, 8
3
 channels

4 6 8 10
0

20

40

60

80

100

T
im

e
(m

s)

n

256
2
 image, 1st order, n

3
 channels

4 6 8 10
0

20

40

60

80

100

T
im

e
(m

s)

n

256
2
 image, 2nd order, n

3
 channels

Figure 4.2: Empirical time consumption for two competing implementations.
Dashed: direct method. Solid: piecewise method.

50 Channel Coding through Piecewise Polynomials

Chapter 5

Distance Measures on

Channel Vectors

...where the Channel Vector gets compared to other channel vectors in different
ways, and where the different ways of comparing channel vectors are compared. At
the end of the chapter, we will have constructed our first simple view-based object
recognizer.

In order to use channel-coded feature maps for view-based object recognition and
similar tasks, we need to measure the distance between a query CCFM and a
memorized prototype. One simple choice is to use the Euclidean distance directly
on the channel values, but there are many other distance measures available. In
this chapter, I will review some common distance measures on continuous den-
sity functions and histograms, and discuss which assumptions are violated when
channel-coding is used instead of hard histograms. In Sect. 5.2.2, all presented
distance measures will be evaluated experimentally on a view-based object recog-
nition task.

There are many more ways of comparing histograms than are mentioned here.
Some examples can be found in [80], also including some experimental comparison.

5.1 Distance Measures

5.1.1 Euclidean Distance

The most common way to define a distance measure between two vector spaces is
the Euclidean distance. For continuous functions, the L2 norm can be used:

d(f, g) = ‖f − g‖ =

(∫

|f(x)− g(x)|2 dx

)1/2

. (5.1)

This is well-defined on functions in L2 (square-integrable functions). One problem
of using this measure on PDFs is that point-masses (Diracs) are not allowed. This

52 Distance Measures on Channel Vectors

is not just a mathematical problem but really leads to undesirable behavior in
practice when dealing with highly peaked distributions. Consider two densities

p1(x) =Π(x− 0.5) (5.2)

p2(x) =aΠ
(
a(x− 0.5)

)
(5.3)

where Π is the box function (see Sect. 1.4). As a→∞, p2 approaches a Dirac dis-
tribution. The Euclidean distance between p1 and p2 is

√
a− 1, which approaches

infinity as a→∞. So, even if we stay within L2 and never let p2 become a Dirac,
the distance measure becomes very sensitive for changes in a. Often when dealing
with highly peaked distributions, the actual width of the peak depends only on
the amount of noise – consider for example the distribution of graylevels in a noisy
homogeneous image region.

When measuring the distance between channel vectors, the situation is less
severe. As a → ∞, the channel encoding of p2(x) converges to a finite, well-
defined vector, namely the encoding of a single scalar. This means that there is
no fundamental problem of using this distance measure on channel vectors, but it
should not be viewed as a discrete approximation of some measure on continuous
densities. In Sect. 5.2.1, an example is given that further highlights the problem
with the Euclidean distance.

5.1.2 Chi-Squared Statistic

Another problem with the Euclidean distance is that the statistical properties
of frequency-coded data are not taken into account. For example, consider two
bins i and j in two different histograms a and b. If a[i] = 10,b[i] = 20 and
a[j] = 1000,b[j] = 1010, bin i indicates a more significant difference than bin j
even though the squared distance between the bins is the same.

To make this more precise, the values in a histogram are often assumed to
be independent Poisson-distributed random variables. The mean of a Poisson
variable equals the variance, and if we have two measured histograms h1 and h2

of the same phenomenon, an estimate of the mean and variance is (h1[n]+h2[n])/2.
The Euclidean distance can be improved by weighting each squared bin difference
with the estimated variance, leading to the chi-square statistic

χ2(h1,h2) =
1

2

N∑

n=1

(h1[n]− h2[n])2

h1[n] + h2[n]
. (5.4)

This statistic is commonly used to compare frequency coded data, and is monoton-
ically related to the probability that the two histograms originate from the same
PDF. Some applications in computer vision can be found in [3, 64].

When moving to the case of overlapping channel basis functions, we can no
longer assume that neighboring bins are independent. To compensate for this, we
should instead use the Mahalanobis distance

d(h1,h2) = (h1 − h2)
TC−1(h1 − h2) , (5.5)

5.1 Distance Measures 53

where C is the covariance matrix of the histogram. This distance measure is
more time-consuming to compute than the one in (5.4), and requires knowledge
about the covariance matrix C. How to find this covariance matrix is far from
obvious and requires a careful analysis with a well-defined statistical model over
the stochastic process producing the histogram. This direction is not followed
further.

5.1.3 Bhattacharyya Coefficient

Let p1(x) and p2(x) be two continuous density functions. According to [89], the
Bhattacharyya coefficient is defined as

ρ(p1, p2) =

∫ ∞

−∞

√

p1(x)p2(x) dx (5.6)

and the Bhattacharyya distance asB(p1, p2) = − ln ρ(p1, p2). This is not a distance
measure in a strict sense, since the triangle inequality is not satisfied [89]. In [16]
it is suggested to instead use

d(p1, p2) =
√

1− ρ(p1, p2) , (5.7)

which can be identified as a measure proportional to the Euclidean distance be-
tween the point-wise square-roots of the densities:

‖√p1 −
√
p2‖ =

(∫ ∞

−∞

(√

p1(x)−
√

p2(x)
)2

dx

)1/2

=

(∫ ∞

−∞

p1(x)− 2
√

p1(x)
√

p2(x) + p2(x) dx

)1/2

=

(2− 2ρ(p1, p2))
1/2

=
√

2 d(p1, p2) . (5.8)

This distance will be referred to as the square root distance. One important prop-
erty of square root densities is that they have a unit L2 norm, since the integral of
a PDF is 1. This means that all square root densities are square-integrable, which
overcomes the Dirac problem from the Euclidean distance.

In principle, there is no problem to apply the square-root distance to histogram
representations. The square-root distance on histograms can be seen as a discrete
approximation of the continuous distance measure. Using overlapping channels
does not cause any immediate problems either. Furthermore, from a practical
point of view, a system that works with Euclidean distances can easily be reused
to work on square root distances by simply taking the square root of the inputs
before further processing. In [2], the Bhattacharyya distance is treated in more
detail, including a discussion of how the Bhattacharyya distance can be seen to
approximate the chi-square distance.

54 Distance Measures on Channel Vectors

5.1.4 Kullback-Leibler Divergence

The final distance measure that will be considered is the Kullback-Leibler (KL)
Divergence, also known as directed divergence or relative information, defined as

DKL(p1, p2) =

∫ ∞

−∞

p1(x) ln

(
p1(x)

p2(x)

)

dx (5.9)

for continuous distributions and

DKL(p1, p2) =
∑

x

p1(x) ln

(
p1(x)

p2(x)

)

(5.10)

for discrete distributions. Note that this is not a strict distance measure – it is
not even symmetric.

There is a number of information-theoretic interpretations of the KL-divergence.
The perhaps most well-known one is as a measure of the extra message length re-
quired to transmit a symbol drawn from p1 using a code-book optimized for p2. A
different interpretation related to the log-likelihood ratio is given in [89]. Let w1

be the hypothesis that x is drawn from p1 and w2 the hypothesis that x is drawn
from p2. Let Λ(x) = ln(p1(x)/p2(x)). We then have that

DKL(p1, p2) +DKL(p2, p1) = E {Λ(x)|w1} − E {Λ(x)|w2} . (5.11)

In words, the symmetric divergence equals the difference in means of the log-
likelihood ratio used for testing the hypotheses w1 and w2 against each other, and
is a measures of separation between w1 and w2.

When comparing a noisy, cluttered query view to a training view, the KL-
divergence is not theoretically well-motivated. For example, if some bins are zero in
the training CCFM but non-zero in the query CCFM, the KL-divergence is infinite.
This may very well happen due to occlusion and clutter. I do not recommend using
the KL-divergence, but include it here mainly because it was used in the related
publication [28].

5.2 Examples and Experiments

5.2.1 The Problem with Euclidean Distance

I will now study an example that further illustrates the problem with the Eu-
clidean distance that the other distance measures manage to overcome. Consider
a case where a number of one-dimensional densities are encoded using rectangular
histograms. Let θ(x) be the Heaviside step function, x ∈ [0, 1] and

p1(x) = 2 θ(x− 0.5) (5.12)

p2(x) = 2
(
1− θ(x− 0.5)

)
(5.13)

(see Fig. 5.1). Using an even number of bins N , the histograms of these densities
are

h1 = [0, . . . , 0, 2/N, . . . , 2/N] (5.14)

h2 = [2/N, . . . , 2/N, 0, . . . , 0] , (5.15)

5.2 Examples and Experiments 55

0 0.5 1
0

1

2

3

0 0.5 1
0

1

2

3

Figure 5.1: The density functions considered in Sect. 5.2.1 in order to illustrate
the problem with the Euclidean distance.

and the Euclidean distance between them is

d12 = d(h1,h2) =

√

N

(
2

N

)2

=
2√
N

. (5.16)

Now consider a different situation, illustrated in the right part of Fig. 5.1, where

p3(x) = δ(x− x1) (5.17)

p4(x) = δ(x− x2) (5.18)

and x1 6= x2. The histograms of these densities are

h3 = [0, . . . , 0, 1, 0, . . . 0] (5.19)

h4 = [0, . . . , 0, 1, 0, . . . 0] . (5.20)

If the number of bins is large enough, the non-zero bin is at different positions in
both histograms, and the Euclidean distance is

d34 = d(h1,h2) =
√

2 . (5.21)

As N → ∞, d12 → 0 while d34 stays constant. The Euclidean distance fails
to converge to a fixed value when the number of bins increases. Note that this
problem cannot be fixed by some normalization of the distance with respect to the
number of bins, since the two distances d12 and d34 show different behavior.

On the other hand, using the chi-square distance gives d12 = d34 = 1, and
using the square root distance gives d12 = d34 =

√
2, which further illustrates

their advantages over the Euclidean distance. The Kullback-Leibler divergence
is infinite in both cases regardless of the direction, since h1 is zero when h2 is
non-zero and vice versa.

The Euclidean distance is still be useful in practice and will be used in exper-
iments later on in the thesis, but one should be aware of its shortcomings.

5.2.2 COIL Experiment

To evaluate the different distance measures, a view-based object recognition ex-
periment was conducted using the COIL-100 database [76] (see Fig. 5.2). Each
of the 100 objects contains 72 views for different rotations in the database. From

56 Distance Measures on Channel Vectors

Figure 5.2: Some examples of objects in the COIL database.

#Chans Weighting KLD Euclid Sqrt-Euclid chi-square
55 grad 99.1 99.0 99.3 99.4
55 ST-grad 99.2 98.9 99.4 99.4
83 ST-grad 92.4 93.2 93.9 94.1
53 ST-grad 92.9 93.4 93.8 94.0
83 none 89.2 88.8 90.4 90.3
53 none 89.6 89.8 89.7 89.8
83 grad 92.8 92.4 94.2 94.3
53 grad 93.6 94.7 95.1 95.2

Table 5.1: Recognition results on the COIL database.

each object, every 8th view was selected for training and the rest for evaluation,
producing 9 training views spaced 40◦ apart and 63 evaluation views for each ob-
ject. Each of the evaluation views was then classified by a simple nearest neighbor
classifier using the given distance measure. This means that a view is classified
correctly if the closest training view belongs to the same object class as the query
view - the rotation angle is not estimated.

The results for different channel encoding settings are shown in Table 5.1. Each
pixel was either weighted by its gradient magnitude (grad), by the soft-thresholded
gradient magnitude (ST-grad) or unweighted. The CCFMs were normalized to
unit sum for the KL-divergence and were left unnormalized for the other distance
measures. When 3 channel dimensions were used (83 and 53 channels), only spatial
position and orientation was encoded. When 5 channel dimensions were used, also
the hue and saturation part of the HSV color space were included in the encoding.

Unsurprisingly, the results are in general much better when color is included.
However, the focus here is on comparing distance measures, and it is interesting
to see also how the distance measures perform in the more challenging case where
color is disregarded. We note that both the square-root distance and the chi-
square distance constantly beat the Euclidean distance regardless of the encoding
settings. The chi-square distance is often marginally better than the sqrt-distance.

5.3 Discussion

This chapter has reviewed some common distance measures on histogram data
and compared them experimentally on a view-based object recognition scenario.
It was found that the chi-square distance seems to be the best choice for our data,

5.3 Discussion 57

closely followed by the square-root distance.
However, the square root distance has an advantage in that once we have taken

the square root of our CCFM, we can proceed by using the regular Euclidean
distance. This makes it possible to use the distance measure in algorithms based
on non-linear least squares optimization like the tracking from Sect. 3.3 or the
pose estimation procedure to be presented in Chapter 11.

58 Distance Measures on Channel Vectors

Chapter 6

Channels and Markov

Models

...where the Maximum Entropy principle from Chapter 2 turns out to be the key
in connecting the Channel Vector to Bayesian networks. Unfortunately, the prin-
ciples proposed show to be hard to combine into a complete, competitive inference
algorithm. This chapter goes in a direction different from the remainder of the
thesis, but is still considered an essential piece of the global channel picture.

Probabilistic Graphical Models are a powerful modeling tool for many problems
in artificial vision and other areas. Two important special cases of graphical mod-
els are Hidden Markov Models (HMM) and Markov Random Fields (MRF). The
HMM is the underlying model for most tracking algorithms, and the Kalman fil-
ter can be derived from the special case of HMMs where the probabilities are all
Gaussian. Markov Random Fields have been successfully used for image restora-
tion [11], segmentation [62] and interpretation [22].

The Kalman filtering algorithm uses an analytical solution to the estimation
problem, but for more complicated graphical structures or non-Gaussian models
no such simple solutions are available. Most work on general graphical models
is therefore performed in a discrete setting, where each node in the probabilistic
structure can take one out of several discrete labels. However, in many applica-
tion areas including image processing, the underlying signals are continuous in
nature, and the amount of discretization introduced is rather arbitrary. Consider
for example depth information in stereo vision or image intensities. There has
been several attempts at representing real-valued labels and continuous density
functions in belief propagation methods using ideas from particle filtering [50] or
mixtures of Gaussians [86].

This chapter examines what happens if the hard discretizations are replaced
with soft histograms using channel coding techniques. Recall that using soft his-
tograms, peaks of the PDF can be represented with an accuracy higher than the
bin spacing. Since the complexity of discrete message passing is quadratic in the
number of labels (or bins in the histogram), it would be of great advantage if the

60 Channels and Markov Models

state space resolution could be reduced without impairing the accuracy. As an
example, if the resolution can be reduced with a factor 4 in each dimension of a
3D state space, the total number of bins required is reduced by a factor 43 = 64
and the time consumption by a factor 642 = 4096.

First, I present a brief review of graphical models and the belief propagation
algorithm. In later sections, I examine what happens when using channel vectors
to represent messages and discuss how belief propagation using channel vectors
can be implemented. Finally, in Sect. 6.4 the method is evaluated experimentally.

Note that this chapter should not be seen as presenting a complete method,
but rather as exploring the idea of combining channels and Bayesian networks,
identifying possibilities and key problems. There is a vast literature on the subject
of graphical models, dealing with exponential families of distributions in general.
Viewed in this context, the use of channel basis functions is only a special case of
a more general theory. Thus, the contribution of this chapter is rather limited,
and consists mainly in drawing a link between channel vectors and probabilistic
graphical models and analyzing the problems and possibilities of our special basis
functions.

6.1 Models and Algorithms

6.1.1 Graphical Models

A very elegant and general formulation of probabilistic graphical models and al-
gorithms is available in the context of factor graphs [63]. Here, I present a briefer
and less general version of the theory, suitable for the scope of this chapter.

A Probabilistic Graphical Model (PGM) is a graph G where each node is a
random variable that is statistically dependent of other nodes in the graph only
through its neighbors (the Markov property). Usually, the values of some nodes
are known, and the rest are to be found. Let N be the set of node connections,
such that (i, j) ∈ N if there is an edge between node i and j. Let N (i) denote
the set of neighbors to node i. If the maximal clique1 size is 2, the probability of
a certain node labeling x can be factorized to

p(x) =
∏

(i,j)∈N

ψi,j(xi, xj) , (6.1)

where ψi,j is a pairwise compatibility function of neighboring nodes i, j. These
compatibility functions can be defined either from some real probabilistic knowl-
edge of the problem or in a heuristic manner.

One typical model is the Markov Random Field (MRF) illustrated in Fig. 6.1.
This model is useful e.g. for image denoising. Each of the shaded nodes represents
an observed pixel, and each of the white nodes an unknown true pixel. These un-
known nodes are often referred to as hidden nodes. If i, j are two true pixel nodes,
the function ψ(i, j) represents our prior knowledge about graylevels of adjacent
pixels – for example, similar graylevels are more common than discontinuities. On

1A clique is a set of nodes which are all connected directly to each other.

6.1 Models and Algorithms 61

Figure 6.1: Illustration of a Markov Random Field for modeling an image. The
white circles represent true (unknown) pixel values, and the shaded circles are
observed pixel values.

the other hand, if i is a true pixel and j is the related observation, ψ(i, j) repre-
sents the statistical relation between an observed pixel and the true value. This
relationship depends on what type of noise we expect (Gaussian, salt & pepper
etc). In an image denoising application, we would be given the value of all ob-
servation nodes, and the problem is to find the values of the hidden nodes that
maximize some quality measure based on the joint probability p(x). This quality
measure determines which algorithm to choose.

6.1.2 Belief Propagation

Let all observed nodes collectively be called y. One way of finding a good solution
to the labeling problem is to start by deriving the marginal posterior probability
pxi|y(x) of each hidden node xi, i.e. the conditional probability of a certain node
given the values of the known nodes. We treat this function as a function of x
only, since the observed values y are fixed.

In principle, the marginal posteriors can be obtained by inserting the known
node labels into (6.1) and integrating out all other labels xj , j 6= i from p(x). In
practice, there are very many nodes, and this integration must be performed in
some smart way. When G has no cycles, the marginal posteriors can be computed
using the well-known belief propagation algorithm. Here, a message mi→j is a
function of x and represents the belief from node i about the label of a neighboring
node j, with consideration also of all nodes behind node i. Each message is a
function of the set of labels – in our case, a function of a real variable. Messages
are recursively evaluated as

mj→k(xk) =

∫

ψj,k(xj , xk)p̃j(xj) dxj , (6.2)

where p̃j is the aggregated incoming message to node j:

p̃j =
∏

i∈N (j),i 6=k

mi→j (6.3)

This is illustrated in Fig. 6.2. Messages are propagated in all directions in the tree,
starting at the leaves, and the marginal posterior of a given node j is the product

62 Channels and Markov Models

j k j

Figure 6.2: A Bayesian network. Left: One step of the belief propagation algo-
rithm, with incoming and outgoing messages illustrated with a solid arrow. After
the execution of the entire algorithm, messages between all connected nodes have
been evaluated in both directions (dashed arrows). Right: The final marginal
posterior is computed by multiplying all incoming messages (solid) to each node.

of all incoming messages from all directions:

pxj |y =
∏

i∈N (j)

mi→j . (6.4)

The belief propagation algorithm is often used also on graphs with cycles, even
though it is not trivial to give a statistical interpretation of this. In this case, it
is referred to as loopy belief propagation. An analysis of this method is outside
the scope of this thesis, but for the interested reader I recommend the chapter on
variational inference in [12]. Further sources of related methods are [71, 61, 93].
Once the marginals are obtained, we can select the values of our nodes to minimize
some cost function. The minimum mean-square estimate (MMS) is obtained by
minimizing a quadratic loss function

E(x) =

∫

pxj |y(ξ)(x− ξ)2 dξ . (6.5)

This means that we minimize the expected mean square error of our estimate. The
marginal maximum a-posteriori estimate (MMAP) is obtained by simply choosing
the xj which maximizes pxj |y, independently for each node. In principle, once the
marginal posteriors are available, we can select our estimated node values using
any quality measure which treats each node independently.

6.1.3 MAP Estimation

Another commonly used estimate is the maximum a-posteriori estimate (MAP),
not to be confused with MMAP. The MAP estimate is the estimate that maximizes
the joint posterior probability pz|y, where z contains all hidden nodes. Maximizing
this joint probability is not necessarily the same thing as maximizing each marginal
separately. According to [63], this can be computed by a version of the message
passing algorithm where the integration step (6.2) is replaced by a maximum
operation:

mj→k(xk) = max
j
ψj,k(xj , xk)p̃j(xj) . (6.6)

6.2 PDF Representations and Maximum Entropy 63

When all messages have been passed, the incoming messages to each nodes are
integrated using (6.4) as before, but this no longer produces marginal posteriors,
but just some intermediate representation

qj =
∏

i∈N (j)

mi→j . (6.7)

The MAP estimate is then given by maximizing each q separately. Versions of this
algorithm are called the Viterbi algorithm [91], (dynamic programming), and the
max-sum algorithm [63].

6.2 PDF Representations and Maximum Entropy

During the execution of the belief propagation algorithm, messages need to be
multiplied in (6.3) and transformed through ψ in (6.2). In the classical, discrete
case, messages are vectors which can be multiplied elementwise, and (6.2) is re-
placed by a matrix product. In the continuous case, things get more tricky. Since
we cannot represent arbitrary continuous functions, we must restrict ourselves to
some subset of continuous PDFs which is representable by a finite number of pa-
rameters. Recall from Sect. 2.5 that given a number of constraints 〈fn, p〉 = dn,
the maximum entropy choice of p is

p(x) = exp

(
∑

n

λnfn(x)

)

. (6.8)

In this section, I use this result to put the Gaussian, the hard histogram and the
channel vectors in a common framework, aiming at understanding what (6.2) and
(6.3) should become when using channel coding.

6.2.1 Gaussians

Assume that all we know about p(x) is the first two moments c1 =
∫
xp(x) dx

and c2 =
∫
x2p(x) dx . Using the maximum entropy principle, we get p(x) ∝

exp(λ1x + λ2x
2), which is a Gaussian distribution. This famous result gives a

theoretical motivation for approximating a PDF with a Gaussian when only the
mean and variance is known. In this case, it is possible to express the relationship
between c and λ analytically, and it is easy to verify that λ1 = c1/(c2 − c21) and
λ2 = −1/(2(c2 − c21)). Two Gaussians represented with a mean and a variance
can now be multiplied by computing the λ-coefficients, adding them and switching
back to c1 and c2.

6.2.2 Hard Histograms

Assume that we have measured a hard histogram of p(x) such that our c vector
consists of

c[n] =

∫

Π(w−1(x− x̃n))p(x) dx =

∫ x̃n+w/2

x̃n−w/2

p(x) dx , ∀n , (6.9)

64 Channels and Markov Models

where Π is the box function (see Sect. 1.4), x̃n are the bin centers and w is the
bin width. The MEM choice of p(x) is now of the form

p(x) = exp

(
∑

n

λnΠ
(
w−1(x− x̃n)

)

)

, (6.10)

meaning that we have a piecewise constant expression in the exponent. This makes
the entire p(x) piecewise constant. But then

c[n] =

∫ x̃n+w/2

x̃n−w/2

exp(λn) dx , (6.11)

so we must have λn = ln c[n]/w. In this case, p(x) can truly be treated as a
discrete distribution, and two PDFs can be added and multiplied just by adding
and multiplying the histograms.

6.2.3 Soft Histograms

Now consider what happens if we create a histogram where the bins are soft and
overlapping. Let

c[n] =
1

I

I∑

i=1

Bn(xi) ≈
∫

Bn(x)p(x) dx , (6.12)

where Bn(x) = B(x− x̃n) is the channel basis function like in previous chapters. I
use the second-order B-spline kernel (see Sect. 2.3.1 and Appendix B) as the main
example. From a channel vector c, the MEM choice of p(x) is

p(x) ∝ exp

(
∑

n

λnB(x− x̃n)

)

. (6.13)

Unfortunately, there is no simple closed-form solution for finding the vector λ
from a channel vector c. In Sect. 2.5, this transformation was done iteratively
using a Newton method. In contrast to the hard histogram, this interpretation
does not let us perform multiplications directly on the histogram c. In order to
multiply two PDFs represented by channel vectors, we need to compute and sum
the exponential parameters, and then move back to the channel domain.

Reconsider (6.13). Since B(x) is a piecewise quadratic function, so is the entire
exponent of (6.13). This means that p(x) is actually a piecewise Gaussian function.
This is an interesting and perhaps surprising observation. But since we know that
global quadratic measurements result in a Gaussian PDF, and that the B-splines
make local quadratic measurements of the PDF, it is natural that we end up with
a locally Gaussian-looking function. In contrast, the popular Gaussian Mixture
Models (GMMs) are not piecewise Gaussian, since the sum of two Gaussians is
not again a Gaussian.

6.3 Message Propagation using Channels 65

6.3 Message Propagation using Channels

As a step in the belief propagation algorithm, we need to propagate the aggregated
messages at a current node through ψ to obtain the new outgoing message:

m(xout) =

∫

ψ(xin, xout)p̃in(xin) dxin . (6.14)

This is essentially (6.2), but with some indices dropped to simplify the notation.
In general, the resulting m(xout) is not in the exponential family of p̃in(xin). In
order to stay within this family, we choose instead an output message m̃(xout)
within our exponential family, and choose this m̃ such that 〈m,Bi〉 = 〈m̃,Bi〉,∀i,
meaning that m and m̃ have the same soft histogram representation. This choice
of m̃ minimizes the KL-divergence D(m||m̃) subject to m̃ being in the desired
exponential family [71].

Each coefficient cout[n] of the soft histogram cout representing the outgoing
message m̃(xout) is then

cout[n] =〈Bn,m〉 =

∫

Bn(xout)

(∫

ψ(xin, xout)p̃in(xin) dxin

)

dxout =

=

∫ (∫

Bn(xout)ψ(xin, xout) dxout

)

p̃in(xin) dxin . (6.15)

By defining

qn(xin) =

∫

Bn(xout)ψ(xin, xout) dxout , (6.16)

we get the simple relationship

cout[n] = 〈qn, p̃in〉 . (6.17)

We see that it is enough to consider a finite number of functions qn that measure the
contribution to each output channel from the input density. In order to represent
ψ efficiently, we can restrict ourselves to functions qn(xin) that can be expressed
using a finite number of parameters. The goal is to find the equivalent of the
matrix representing ψ(xin, xout) in the discrete case. The following two choices fit
well with the soft histogram representation:

6.3.1 Linear q Representation

By letting

qn(xin) =
∑

ν

an,νBν(xin) , (6.18)

(6.17) becomes

cout[n] =
∑

ν

an,ν〈Bν , p̃in〉 =
∑

ν

an,νcin[ν] , (6.19)

66 Channels and Markov Models

0 0.2 0.4 0.6 0.8 1
0

2

4

 Before

After

Channel Centers

Figure 6.3: An example of a PDF represented as a soft histogram transformed
through a smoothing integration kernel.

and the entire operation can be expressed as a linear operation directly on the
channel vectors according to

cout = Acin . (6.20)

This is analogous to the hard histogram case, and is intuitively appealing since
the operation remains a linear mapping. An optimal A could be found by creating
training samples of input vectors cin and cout and using the least squares techniques
described in Chapter 7.

6.3.2 Exponential q Representation

The second approach is to consider functions qn(xout) that can be expressed in
the same exponential form as p̃in:

qn(xin) = exp

(
∑

ν

an,νBν(xin)

)

. (6.21)

Now, the scalar product (6.17) can be computed by adding the exponential param-
eters of p̃in and qn and integrating the corresponding continuous PDF, e.g. using
some erf lookup-table operation. Each such integral operation gives one element
of the output channel vector, and by repeating the process for each qn, we get
the entire soft histogram of m(xout). The coefficients an,ν can be organized in a
matrix A which summarizes the entire ψ.

In a preprocessing step, the functions qn can be computed from ψ according to
(6.16). The exponential parameters of each qn can then be computed by finding
the soft histogram of each qn and do the “c to λ conversion”.

In Fig. 6.3 an example is shown where a PDF is transformed through a smooth-
ing kernel using this method. Note the accuracy compared to the channel centers.

6.3.3 Closedness of the Integral Operator

For a general linear mapping A operating on a channel vector c, there is no guar-
antee that the output cout = Ac is a valid channel vector (a vector containing the
mean parameters of some PDF). One example of an invalid vector is [0, 0, 1, 0, 0].
Since the channels are overlapping, even the most peaked PDF would produce

6.3 Message Propagation using Channels 67

non-zero entries in several bins. For the exponential representation above, there is
also no theoretical guarantee of closedness, even though this has not been a prob-
lem in practice so far. Finding compact, expressive representations of ψ(xin, xout)
free of this problem is currently an unsolved issue and requires more attention.

6.3.4 The Max Operation for MAP

In this section, I will mention briefly what happens when trying to run the MAP
algorithm instead of finding the posterior marginals. In this case, we must apply
the maximum operation (6.6) instead of the integral operator. By taking the
logarithm of both sides, we get

logmj→k(xk) = max
j

logψj,k(xj , xk) + log p̃j(xj) . (6.22)

Since there is no summation involved in the probability domain, we can work
directly in the logarithic domain without a need to ever consider the channel vector
c. Most implementations of the traditional MAP algorithm for discrete labels use
log-probabilities to replace the multiplications with sums, and we can basically
do the same. The difference is that our λλλ coefficients should be interpreted as
coefficients of a basis function expansion rather than simply discrete samples.

The tricky thing here is how to represent the outgoing log-message. Even if the
involved quantities on the right hand side of (6.22) are made up from separable
B-splines, the max operation is non-linear, and we cannot expect logmj→k to be
a linear combination of B-splines unless some approximation is made.

This line of research has not been continued. I was looking for a compact and
elegant “channelized” version of the MAP algorithm, and since there was no single
obvious way to do it, the subject was dropped in favor of all other more promising
issues that could be examined.

6.3.5 Relation to Variational Inference

Variational inference [12] is a rather general way of performing inference in prob-
abilistic models by approximating the posterior distribution with some simpler
form. A common choice is to assume a certain factorization, a certain exponential
form or both. The factorization is useful for graphs with loops, leading to vari-
ational message passing [93]. A related method is Expectation Propagation (EP)
[71, 72], also covered by [12]. The methods in this chapter could be seen as an
instance of assumed density filtering or moment matching (ADF) [71, 14], which
can be seen as a simple special case of EP.

Variational inference and EP talk about exponential families of probability
densities in general, and by using our particular exponential form with soft bin
functions, we can create channel versions of all related methods. However, the main
problem persists – that there is no easy way to switch between the exponential
and mean parameters. Due to the lack of an efficient method, the subject will not
be explored more deeply in this thesis.

68 Channels and Markov Models

Figure 6.4: Example of a true process together with the observations.

5 15 25 35 45 55
0

5

10

15

20

Number of bins

R
M

S
 e

rr
o

r

Hard bins

Exponential repr.

Linear repr.

Figure 6.5: The RMS error for different number of bins, averaged over 10 runs.

6.4 Experiments

6.4.1 Hidden Markov Model

As a first experiment, a simple Hidden Markov Model was considered. A sequence
of hidden states {xt} following a Brownian motion was constructed, from which a
sequence of observations {yt} was obtained. Formally, we have

xt = xt−1 + vt (6.23)

yt = g(xt) (6.24)

where vt is an independent Gaussian noise term. The observation function g gives
a random-length vector of measurements, where each element yt[i] is distributed
according to

p(yt[i]) = k1 + k2 exp
[
−(yt[i]− xt)

2/σ2
]
, (6.25)

meaning that each measurement is either a normally distributed inlier or an outlier.
The goal is to find the MSE estimate of the hidden state sequence by first finding
the marginal distribution of the hidden state at each time step. The MSE estimate
is then the expectation of each xt from these marginals. The marginals are found
using belief propagation in a forward and a backward step.

To have an “ideal” method to compare with, the state space was quantized
to a fine grid of 200 levels, such that the basic discrete belief propagation algo-
rithm on this fine grid gives the optimal solution. This is referred to as the “high
resolution” method in the experiments. In addition to this, the state space was

6.4 Experiments 69

H
a
rd

 b
in

s
S

o
ft

 b
in

s
H

ig
h
 r

es
o
lu

to
n

Figure 6.6: Illustration of the posterior marginals (left) and resulting MMAP
trajectories (right) for the three methods in a small region of the state space.

40 60 80 100
0

0.2

0.4

x

p
(x

)

t = 103

70 80 90 100 110 120 130
0

0.2

0.4

x

p
(x

)

t = 30

 High resolution

Hard bins

Soft bins

Figure 6.7: Zoomed 1D plot of the marginals at two distinct time steps.

further quantized down to just 10 bins, using both hard and soft histograms. The
true state sequence and observations of a typical run is shown in Fig. 6.4. The
RMS errors for different number of bins for the hard and soft histogram are shown
in Fig. 6.5 using both the linear and exponential representation of ψ. The result
was averaged over 10 runs for each bin configuration. Since the exponential repre-
sentation produced the best results, this method was selected for a more detailed
examination.

Figure 6.6 shows a small part of the posterior densities and the resulting MSE
state sequence estimates of the example in Fig. 6.4. We clearly see the quantization
caused by the hard bins. On the other hand, the soft histogram method is faithful
to the measurements and gives a result more similar to the high-resolution method.

Figure 6.7 shows the posterior at two distinct time steps as 1D plots, to fur-
ther visualize the representative power of soft histograms. In the left plot, the
high-resolution marginal is a peak much narrower than the bin spacing, which is

70 Channels and Markov Models

represented well in the soft histogram. This plot is taken from a time t when the
trajectory passes exactly through a measurement. In the right plot, there is more
uncertainty about the exact position of the trajectory, visible as a small tail at
the right side of the peak of the high-resolution posterior. The soft histogram is
not able to represent this, and gives a more blurred PDF. However, the position
of the maximum is still quite accurate compared to the hard histogram.

6.4.2 Boundary Detection

As a more realistic demonstration, the method was applied to boundary detection
in ultrasonic imagery2. The image is of a blood vessel, and the objective is to
locate the boundary between two different types of tissue. In [65], this problem
was solved using dynamic programming, which can be viewed as a special case
of the Viterbi algorithm for MAP estimation in a hidden Markov model. Each
column of the image is viewed as an observation, and the position of the boundary
is the sought hidden variable.

To test the soft histogram method, I look for the MMAP estimate of the
boundary position. In absence of a true statistical model and in order to keep
things simple, I constructed a heuristic model from the Sobel filter response, such
that the probability of a boundary position yx at column x given the observed
image column obsx is

p(yx|obsx) = k1 exp [−k2Iy(x, yx)] , (6.26)

where Iy is the vertical component of the image gradient. Two adjacent boundary
positions are related by

ψ(yx, yx+1) = k3 exp
[
−k4(yx − yx+1)

2
]
. (6.27)

The constants ki were selected manually for good results.
The space of boundary positions was quantized to 16 levels, and the marginals

were computed using both hard and using soft histograms with the exponential
representation of ψ. Each marginal was then maximized to produce a boundary
position for each image column. The qualitative results are shown in Fig. 6.8 with
the bin centers displayed to the left. The superior resolution produced by the soft
histograms can clearly be seen, even though the result is not perfect.

6.5 Discussion

Using soft histograms instead of hard discretizations is intuitively appealing. The
maximum entropy principle provides a natural framework in which to link the
histograms to continuous density functions. Within this framework, hard dis-
cretizations, Gaussian representations and soft histograms are just three different
instances of the same underlying principle. The equivalents of multiplying two
PDFs and transforming a PDF through an integration kernel have been examined,

2The image was provided by Prof. Tomas Gustavsson, Chalmers University of Technology.

6.5 Discussion 71

Figure 6.8: Detection results in an ultrasonic image using both hard quantization
and soft histograms.

which are the two key operations of belief propagation methods. Furthermore, the
neurological basis of the channel representation makes this combination a plausible
candidate for how information is represented, transported and integrated in the
human visual system.

There is however still some open questions regarding the representation of the
integral operator, as discussed in Sect. 6.3, and the computational complexity of
the conversion between c and λ is prohibitive. In the current implementation,
the conversion is performed using an iterative method, where each step involves
computing integrals over Gaussians. For low state-space dimensionalities, this
can be done using lookup-table techniques, but for higher dimensionalities, there
is currently no satisfying solution. For some applications, like gray-scale image
reconstruction and stereo, one-dimensional state spaces are sufficient.

As often in computer vision, there is a competition between a straight-forward
simple approach and a more sophisticated but slower approach. A comparison
of which method offers the best accuracy using the same amount of computation
should be made before drawing any conclusions on the usefulness of this approach.
This has not been done within my PhD work.

72 Channels and Markov Models

Part II

Learning

Chapter 7

Associative Networks

...where the Channel Vector gets involved in machine learning for the first time,
except from the simple nearest-neighbor approach in Chapter 5. We find that in-
cremental updating is more fun than batch mode processing, and briefly discuss the
relationship to the Hough transform and similar methods.

In [40, 52], a learning method using channel coding was presented. The basic
idea is to encode both the input and the output samples into channel vectors, and
then find a linear mapping using standard least-squares techniques, but with a
non-negativity constraint as a regularizer. This gives the method some interest-
ing properties like being able to represent discontinuities and being robust against
outliers in the training data. In this chapter, the basic learning method is reviewed.

The original method was presented as a batch-mode method, where all train-
ing data were assumed to be available at once. In this chapter, I also present
an incremental version of the method, and compare some versions of the method
experimentally. For a cognitive system operating in a continuous environment, the
number of training samples is expected to be huge, and incremental processing is
believed to be much more efficient than storing all samples for later batch pro-
cessing. Channel coding is suitable for such incremental processing [39]. Finally,
in Sect. 7.3, the relation between associative networks and voting methods like the
Hough transform is discussed briefly.

7.1 Associative Networks

This section reviews the associative networks, as presented in [52]. This is a general
method to associate input and output channel vectors using a linear mapping. Let
a and u be the channel-coded input and output respectively. The objective is to
find a linear mapping C such that u = Ca. The matrix C is referred to as a
linkage matrix. Assume that we are given T training samples at,ut. These can be

76 Associative Networks

organized in matrices A,U:

A =[a1 . . . aT] (7.1)

U =[u1 . . . uT] .

The matrix C is now found by solving the constrained least-squares problem

min
C≥0

∑

t

‖Cat − ut‖2F = min
C≥0
‖CA−U‖2F , (7.2)

where ‖·‖F is the Frobenius matrix norm. The positivity (monopolarity) constraint
introduced on C ensures that the output u will always be positive, and leads to a
sparse matrix C. This sparseness is useful both from a computational perspective
and as a regularization to avoid over-fitting. The minimization problem is solved
using a projected Landweber method, leading to the iterative solution strategy

C← max(0,C− (CA−U)ATD) , (7.3)

where D is a preconditioner and is taken as D = diag−1{AAT1}. This is the
basic method, but alternatives using different normalizations are also presented in
[52].

To use channel-coded inputs is nothing new and can be seen as a special case
of RBF networks with uniformly spaced, fixed kernels. The interesting part be-
gins when also the outputs are channel coded. One key property of this is that
outputs which are sufficiently different will never be mixed together. As an ex-
ample, consider a situation where the inverse kinematics of a robotic arm is to be
learned. The input to the network is the desired 3D position and orientation of
the end-effector (configuration), and the output is the angles of each joint (control
command). Often, a single configuration can be reached by several different con-
trol commands. Taking the mean value of these commands produces something
which is not related to the desired configuration. This kind of non-uniqueness may
occur any time when the inverse of some physical phenomenon is to be learned.
By channel-coding the outputs, we can make sure that different cases are kept
separate.

This is illustrated in Fig. 7.1, where a non-unique function is approximated
with channel-coding in the output space. In the overlapping region, the channel-
coded output consists of two peaks, and the decoding selects one of the peaks.
Most traditional methods would average the two peaks and produce something
which is rather different from the training data.

7.2 Incremental Learning

7.2.1 Basic Method

Taking the transpose in (7.2) reveals the similarity to a traditional least-squares
problem:

min
C≥0
‖ATCT −UT‖2F . (7.4)

7.2 Incremental Learning 77

Input space

O
u

tp
u

t
sp

ac
e

Figure 7.1: Illustration of the behavior of associative networks. The circles rep-
resent training samples, and the piecewise continuous curves are the estimated
output of all possible inputs.

For a moment, I will ignore the positivity constraint on C. These will be reintro-
duced in Sect. 7.2.2.

Each column cn of CT corresponds to one column of UT and a particular out-
put channel. These channels can be processed independently, and the traditional
normal equations can be formulated separately for each cn, but it will be more
convenient to treat all channels at once, giving the normal equations in matrix
form:

AATCT = AUT . (7.5)

Now define

G =AAT =
T∑

t=1

atat
T (7.6)

H =UAT =
T∑

t=1

utat
T . (7.7)

The unconstrained problem is now CG = H. All information from the training
data required for finding C is available in the matrices G and H. The sizes of
G and H only depend on the number of channels on the input and output side.
Thus, these matrices do not grow as the number of samples increases, and are
hence suited to be updated incrementally. The update rule is

G(t) ← γG(t−1) + atat
T (7.8)

H(t) ← γH(t−1) + utat
T . (7.9)

We see that the elements of G and H are accumulators, summing the products of
distinct channels. Here, a forgetting factor γ has been introduced. If γ = 1, all
training samples will be weighted equally, and if γ < 1, old training samples will

78 Associative Networks

be down-weighted exponentially. The elements of G and H are

G[i, j] =
T∑

t=1

γT−tat[i]at[j] (7.10)

H[i, j] =
T∑

t=1

γT−tut[i]at[j] , (7.11)

where at[i],ut[i] is the value of channel i in training sample t for the input and
output respectively. Note that G is symmetric. Also consider the case where all
input samples at are channel encodings of single values. Since the kernel function of
the channel coding has compact support, we have that at[i]at[j] = 0 for i and j that
are sufficiently far apart. This holds for all t, and consequently G[i, j] = 0 for such
i, j. This means that G is a symmetric band matrix, and hence relatively cheap
to invert. Since G is sparse, only the non-zero elements need to be represented.

The derivation of this method is similar to ideas from the recursive least squares
(RLS) method commonly used in adaptive filtering [46]. Using the full RLS
method, the solution to the unconstrained problem could be found recursively
without the need to invert the matrix G in each time step. However, since we
are primarily interested in positive solutions of C, this method is of limited use.
Another alternative to the projected Landweber method would be to use coordi-
nate descent. This has been examined in [32]. A detailed examination of different
algorithms for solving the minimization problem is outside the scope of this thesis
and has not been performed.

7.2.2 Handling the Positivity Constraint

The positivity constraint is handled by noting that the iterative solution in (7.3)
can be written as

C← max
[
0,C− (CG−H) diag−1{G1}

]
. (7.12)

During the incremental learning, we can keep track of a C computed using the
training set we have so far. When new samples arrive, G and H are updated, and
(7.12) can be run for a few iterations to obtain a new C, using the old C as an
initial guess. Since G and H have only been changed slightly, one might suspect
that the expected number of iterations required in each step is very low. One
option is to perform exactly one iteration when each new sample arrives. In this
case, the entire incremental update can be written as

G(t) ← γG(t−1) + atat
T (7.13)

H(t) ← γH(t−1) + utat
T (7.14)

C(t) ← max
[

0,C(t−1) − (C(t−1)G(t) −H(t)) diag−1{G(t)1}
]

. (7.15)

7.2 Incremental Learning 79

To understand how a new sample affects the linkage matrix in this case, we can
insert (7.13) and (7.14) into the update term from (7.15) and get

C(t−1)G(t) −H(t) =

C(t−1)
(
γG(t−1) + atat

T
)
−
(
γH(t−1) + utat

T
)

=

γ
(
C(t−1)G(t−1) −H(t−1)

)
+
(
C(t−1)at − ut

)
at

T =

γ
(
C(t−1)G(t−1) −H(t−1)

)
+
(
û

(t−1)
t − ut

)
at

T , (7.16)

where û
(t−1)
t is the output of the network in step (t − 1) from input at. Here,

the first term is an update related to the error on previous training samples,
accumulated in G and H. The second term is an update related to the new sample
(at,ut). Assume now that at some point we have the optimal linkage matrix C,
and that a new sample arrives affecting some new part of the linkage matrix. If
C(t−1) is optimal, the first term (old errors term) in (7.16) is zero. The update is
only related to the new sample, and is made only in the part of the linkage matrix
where there is an error in the output and where active input features are present.
The preconditioner diag−1{G(t)1} is also involved in weighting the updates, but
does not change the important point – that the updating is relatively local in C.
Because of this locality, the updating can be done very efficiently.

7.2.3 Maintaining Two Datasets for Early Stopping

It is well-known that linear least-squares problems of this kind suffer from semi-
convergence due to over-fitting. This is a problem especially if the number of
training samples is small compared to the number of parameters in the model. In
[52], the iterative solution from (7.3) was run and the performance was monitored
on a separate validation set. Even though the error on the training set constantly
decreased, after a certain number of iterations, the error on the validation set
started to increase. It was suggested to use early stopping as a regularization
method. The network can be trained on a training set, and the error evaluated
on a separate validation set. The iterative optimization (7.12) is stopped once
the error on the validation starts to increase. In this section, it is shown how this
behavior can be achieved in an incremental way, without keeping neither the entire
training nor validation set.

Let A,U be the channel-coded inputs and outputs of the validation set accord-
ing to (7.1). The sum-of-squares error on this dataset using an arbitrary linkage
matrix C is

E2 =
T∑

t=1

‖Cat − ut‖2 =
T∑

t=1

(Cat − ut)
T(Cat − ut) =

=
T∑

t=1

at
TCTCat − 2

T∑

t=1

ut
TCat +

T∑

t=1

‖ut‖2 . (7.17)

This error will be used only to compare different linkage matrices, and since the
last term is independent of C, it can be dropped. With a slight abuse of notation,

80 Associative Networks

the same symbol E will still be used. The terms in the first two sums can be
rewritten using the Frobenius product, producing

E2 =
T∑

t=1

〈
CTC,atat

T
〉

F
− 2

T∑

t=1

〈
C,utat

T
〉

F
. (7.18)

By moving the summation inside the products and recognizing G and H from
(7.6)-(7.7), we get the compact expression

E2 =
〈
CTC,G

〉

F
− 2
〈
C,H

〉

F
. (7.19)

The strategy is now to maintain matrices Gtr,Htr for the training set and Gval,Hval

for the validation set by assigning different proportions of the training samples to
each set. When the linkage matrix C is needed, the iterative solution procedure
(7.12) is performed using Gtr,Htr. During the iterations, the error is monitored
using (7.19) with Gval,Hval, and the C currently under calculation. The procedure
is stopped when E2 starts to increase.

7.2.4 Stochastic Gradient Method

There may be cases where the number of input features is much larger than the
number of output features, and where the channels overlap in such a way that
the number of non-zero elements in G is prohibitively large. In such cases, a
stochastic gradient [47] method is an alternative. The idea of stochastic gradients
is to update the parameters using gradient descent, but to compute the gradient
from the last training sample only. In this context, we would also like to keep the
monopolarity constraint. This can be achieved by dropping the ”old errors” term
from (7.16), leading to

C(t) ← max
[

0, C(t−1) − (û
(t−1)
t − ut)at

Tdiag−1{G(t)1}
]

. (7.20)

This may perhaps be more accurately described as a stochastic projected Landweber
method, but will be referred to as a stochastic gradient method throughout this
text. Assuming a normalized input vector such that

∑

i at[i] = 1, we get

G(t)1 =

∑

j

G(t)[i, j]

i

=

=

∑

j

t∑

τ=1

γt−τaτ [i]aτ [j]

i

=

=
t∑

τ=1

γt−τaτ = s(t) . (7.21)

Instead of keeping track of G, we can keep track of the discounted sum of input
channel vectors a, here denoted s(t). This sum can easily be updated incrementally

7.2 Incremental Learning 81

Figure 7.2: Target function. The horizontal and vertical axis are the input space,
and the graylevel represent the output values.

using

s(t) ← γs(t−1) + at . (7.22)

The update to C can then be written as

C(t) ← max
[

0, C(t−1) − (û
(t−1)
t − ut)(at./s

(t))T
]

, (7.23)

where ./ denotes element-wise division. To avoid division by zero, s can be initial-
ized to some small value. Note that the first time channel n is non-zero, we have
at[n]/s(t)[n] = 1. This means that the update will be very fast when new input
channels are activated. As channel n appears in more and more training samples,
s[n] will start to increase, and the update of C will be made in smaller and smaller
steps.

7.2.5 Experiments

The incremental learning methods were tested on the double spiral dataset used
and described in [30]. The target function is shown in Fig. 7.2. The input coordi-
nates were encoded using 25× 25 evenly distributed separable cos2-channels, and
the output using 8 cos2-channels. A maximum of 1000 random samples were used.

Several schemes were compared. The iterations were made either until ‖C(t)−
C(t−1)‖F < δ, with δ = 0.02 (full), or until the error started to increase on a
separately maintained validation set (early-stop). In the latter case, every fourth
training samples was incrementally assigned to this validation set. The linkage
matrix C was optimized either using the previous C as an initial guess (previous
C), or by doing a complete re-optimization starting from an all-zero matrix (zero-
init). The last case may not be considered as an incremental procedure, but was
included for comparison.

As another option, exactly one iteration of C was performed each time a new
sample was added (single). Finally, also the stochastic gradient method from
Sect. 7.2.4 was examined. If we assume a constant flow of training samples, we may

82 Associative Networks

not have time to stop the system and perform an unknown number of iterations,
so these two are perhaps the most realistic options.

The linkage matrix C was re-optimized after every fourth training sample, ex-
cept for the single iteration and stochastic gradient methods, where it was updated
after each new sample (due to the non-iterative nature of these methods). The
reconstruction errors of all methods are shown in Fig. 7.3. The error was com-
puted on a validation set consisting of a grid covering the entire data range. This
validation set is of course not the same as the incrementally maintained validation
set in the early-stopping methods, which explains why the error is not necessarily
monotonically decreasing even for early-stopping methods.

Also note that the approximation errors of the full optimizations are quite
different depending on the initial C used in the optimization. When the number
of training samples is low compared to the degrees of freedom in C, the learning
problem is likely to be underdetermined in parts of C, and different solutions
could be selected depending on the initialization of the iterations. Even if several
solutions give an equally small error on the training set, the difference in results
on the entire grid may be large.

Figure 7.4 shows the number of iterations required at each re-optimization.
For the full optimizations, we see that the maximum number of iterations was
frequently reached. The slow convergence of the projected Landweber method has
also been noted previously [32]. However, as these results show, it is not desired to
iterate until convergence anyway, since the early-stopping methods clearly perform
better than the full optimizations.

7.3 Relation to Voting Methods

With a voting method, I refer to any method which extracts some kind of primitives
from an image, described with feature vectors f in some feature space. For each
f , a vote function produces a vote density d(v), v ∈ V, where V is the vote space.
The vote densities from all individual primitives are summed together, and the
output of the method is given by modes of the vote density.

As an example, consider the Hough transform. The primitives here are edge
pixels characterized by image position such that f = (x, y). The vote space is
the space of line parameters (θ, ρ) and is represented using a histogram. The vote
function is the function mapping an edge pixel in the original image to a vote
density contribution, which in the Hough case maps a pixel coordinate (x, y) to a
sinusoid in (θ, ρ)-space.

The Hough transform represents the vote density as a discretized histogram,
but other methods may represent the density in different ways. In some methods,
each primitive may vote on just one or a few number of discrete hypotheses. This
is the case in the popular local features approach to object recognition. Here, the
primitives can be e.g. affine-invariant descriptors extracted around homogeneous
regions [78] or SIFT keypoints [67]. In that case, the vote space consists of object
parameters like position, rotation and scale, and the vote density is a number of
Diracs, represented by a list of points. Mode seeking is usually done by some

7.3 Relation to Voting Methods 83

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Sample nr

M
ea

n
 s

q
u

ar
e

er
ro

r

Reconstruction error

Full, zero−init

Full, previous C

Single, previous C

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Sample nr

M
ea

n
 s

q
u

ar
e

er
ro

r

Reconstruction error

Early stop, zero−init

Early stop, previous C

Stochastic gradient

Figure 7.3: Reconstruction error for all methods on a separate validation set.

0 200 400 600 800 1000
0

20

40

60

80

100

Sample nr

N
u

m
b

er
 o

f
it

er
at

io
n

s

(a) Full, zero−init

0 200 400 600 800 1000
0

20

40

60

80

100

Sample nr

N
u

m
b

er
 o

f
it

er
at

io
n

s

(b) Full, previous C

0 200 400 600 800 1000
0

5

10

15

20

25

Sample nr

N
u

m
b

er
 o

f
it

er
at

io
n

s

(c) Early stop, zero−init

0 200 400 600 800 1000
0

5

10

15

20

25

Sample nr

N
u

m
b

er
 o

f
it

er
at

io
n

s

(d) Early stop, previous C

Figure 7.4: Number of iterations required at each optimization for the iterating
methods.

84 Associative Networks

clustering algorithm like mean shift clustering [15].
There are several properties that make the associative networks especially well-

suited for voting methods. Instead of mapping every input to just a single output,
as in many traditional machine learning approaches, these networks give a channel
vector as output, which can represent several hypotheses with different weights.
The decoding of a channel vector has been shown to correspond to robust estima-
tion of an underlying continuous density function – in this case the vote density.
Modes in vote space can be found by summing the responses u from each feature
and decoding the resulting channel vector. This has the potential of giving a much
higher accuracy than in a hard-binned histogram approach. Finally, the positivity
constraint comes in naturally, since there is usually no such thing as a negative
vote.

Under certain circumstances, it is possible to process all feature points in a
given image at once, due to the linearity of the network. Assume that we have a
set of channel coded feature vectors ai generating responses ûi. Let ū be the final
channel-coded vote density. We then have

ū =
I∑

i=1

ûi =
I∑

i=1

Cai = C

I∑

i=1

ai = Cā . (7.24)

We see that all encoded feature vectors can be combined into a single vector ā,
which is fed through the network once. If the number of primitives is large, this is
significantly more efficient than processing each one individually. The resulting ū
is the channel-coded vote density, which can be decoded by any available decoding
algorithm.

Using associative networks, the behavior of Hough transform methods can
be learned from examples. This is in the spirit of the COSPAL project (see
Sect. 1.3), where one goal was to replace engineering with learning in artificial
cognitive systems. Some initial exploration of this idea was made in the technical
report [60], but these experiments are not reproduced in the thesis since this di-
rection of research was not followed much further. Instead, I shifted focus to the
correspondence-free learning setting, which is treated in Chapter 8.

7.4 Discussion

This chapter has shown how to update the associative networks incrementally.
The full power of the recursive least squares method was not used because of
the positivity constraint on the linkage matrix. In the RBF literature, recursive
orthogonal methods can also be found, which show improved numerical properties,
see e.g. [36]. In the future, the application of such methods to the associative
networks should be examined. We have also touched the application of associative
networks in Hough-transform methods. What remains to be done is a detailed
study of the accuracy of the line detection compared to the bin spacing.

In the next chapter, we continue to analyze the behavior of associative networks
using similar techniques but in a different setting.

Chapter 8

Correspondence-Free

Learning

...where we try to relax some of the assumptions of supervised learning in order to
create something new and exciting. It is found that in order to learn something,
it is not necessary to know what belongs together. Correspondence is a luxury we
can do without.

Traditional supervised learning approaches [47] have mostly aimed at solving a
classification or regression problem. In both cases, the starting point is almost
always a number of corresponding examples of input and output data. In this
chapter, I consider the harder problem of learning relations between two continu-
ous spaces without actually having access to matching training samples, but only
to internally unordered sets of input/output examples (Fig. 8.1). The goal is to
learn the mapping by looking at several such examples. I call this problem setting
correspondence-free learning.

A related but rather different problem is finding a parameterized mapping (e.g.
a homography) between two spaces, given only a single set of unordered points. For
this problem, robust methods like RANSAC [29, 45], have been highly successful.
Other related approaches are [4, 18], all looking for parameterized mappings. In
[20], a minimum-work transformation between two point sets is sought instead of
a parameterized mapping. All these approaches have in common that they start
out from just a single set of points in each domain. As a result, the types of
transformations that can be obtained are very limited. In this chapter, we seek
a virtually non-parametric transformation, but assume having access to a large
number of sets of unordered points as training data. Despite an extensive literature
search, I am not aware of any other work directed at this problem formulation.

The actual algorithm is in fact identical to the associate networks from Chapter
7, the only difference being that the inputs and outputs within each group are
summed before sending them as training examples to the system. The contribution
of this chapter is in analyzing the correspondence-free behavior theoretically and
experimentally.

86 Correspondence-Free Learning

Input space Output space

Figure 8.1: One training example of a 2D problem: 15 points in each space, with
unknown correspondence structure + 5 outliers in the input space.

The correspondence-free learning problem is expected to be encountered fre-
quently by self-organizing cognitive systems. A discrete example is language ac-
quisition, where a child hears a lot of different words while observing a lot of
different events in the world, having no idea which word should map to which
particular aspect of its experiences. A more continuous example is in learning the
perception-action map. In this context, a percept can be understood as a feature
of a visual input, e.g. an edge segment or an image region. A cognitive system is
confronted with a large number of percepts observed simultaneously. Each of these
percepts transforms as a result of an action. Given a percept list pt at time t and
another list pt+1 at time t + 1 as a result of some action a, it is desired to learn
the mapping (pt,a) → pt+1 without necessarily knowing a priori which percepts
from the two time instances are corresponding. As a final example, consider the
temporal credit assignment problem in reinforcement learning [88], which is the
problem of attributing a reward to some previous action. Assume that an agent
generates actions that produce a randomly delayed reward. By taking the set of
all actions performed and all rewards given in the previous T time steps, we know
that some of these actions correspond to some reward, but the exact correspon-
dence structure is unknown. Using a number of such sets as training samples, the
action-reward mapping could be learned.

These ideas are related to the COSPAL project (see Sect. 1.3). In COSPAL,
one key issue was to minimize the amount of hard-coding and modeling and use
as much learning as possible. The correspondence-free learning is one attempt in
this direction.

8.1 Problem and Solution

8.1.1 Notation and Problem Formulation

Consider an input space X and an output space Y. We want to find a mapping
f : X → Y given a set of training samples {St | t = 1 . . . T}. Each sample St is a
tuple (Xt, Yt), where Xt and Yt are sets of input and output points:

Xt = {xt,i | i = 1 . . . Iin} ⊂ X (8.1)

Yt = {yt,i | i = 1 . . . Iout} ⊂ Y . (8.2)

Furthermore, Xt and Yt are divided into inliers and outliers. For each inlier xt,i,
there is an inlier yt,j such that yt,j = f(xt,i), where f is an unknown function that

8.1 Problem and Solution 87

we want to approximate. The outliers are random and independently distributed.
The sets Xt and Yt are unordered, such that we have no information about which
xt,i’s and yt,j ’s are corresponding or which are outliers. One example of a single
training sample St for an R

2 → R
2 problem is shown in Fig. 8.1.

It will be convenient for the later discussion to assume that Iin and Iout are the
same for all t and that each St contains Ic corresponding (x, y)-pairs and Ox, Oy

outliers in X and Y respectively, such that Iin = Ic +Ox and Iout = Ic +Oy. The
proposed method will work even if each training sample contains a different ratio
of inliers and outliers, but the theoretical analysis will be more clear this way.

The goal is now to learn the function f . It is not obvious how to define a cost
criterion to minimize for this problem. Instead, I adopt a bottom-up approach,
first describing the proposed method and later analyzing its theoretical properties.

8.1.2 Solution using Associative Networks

To solve the correspondence-free problem, we encode all inputs and outputs in
each Xt and Yt together, and seek a direct linear transformation in the channel
domain. From each training sample St, we define

āt =

Iin∑

i=1

at,i =

Iin∑

i=1

enc(xt,i) (8.3)

ūt =

Iout∑

i=1

ut,i =

Iout∑

i=1

enc(yt,i) . (8.4)

We now want to find a C according to

min
C

1

T

T∑

t=1

‖Cāt − ūt‖2 (8.5)

This is the same kind of problem formulation considered in Chapter 7. Analogous
to Sect. 7.2, we construct the normal equations CG = H, with

G =
1

T

T∑

t=1

ātāt
T , H =

1

T

T∑

t=1

ūtāt
T . (8.6)

Ideally, we would like to get a matrix C similar to what would have been ob-
tained from the basic associative network method with known correspondences.
To motivate (8.5) intuitively, assume that there exists a perfect C implementing
the sought mapping f exactly, such that enc(y) = C enc(x) if y = f(x). If there
are no outliers in Xt and Yt, we would also have ūt = Cāt because of the linear-
ity. However, when no such exact C exists or when there are outliers, it is not
as obvious how the solution to this problem relates to the solution to the ordered
problem.

88 Correspondence-Free Learning

8.2 Asymptotical Properties

In this section, we examine the asymptotical properties of the method as the
number of samples drawn goes to infinity. Will the chosen C approach that of the
corresponding ordered, outlier-free problem, or will it be biased in some way?

Each training sample St is now viewed as a realization of a random process,
where at,i,ut,j are realizations of the random variables ai,uj . We assume that the
inliers and outliers follow the same distribution and are drawn independently. This
means that all ai’s are i.i.d and all uj ’s are i.i.d (but the ai’s and uj ’s of course
are linked together by f). In a similar way, we can view āt and ūt as different
realizations of the random vectors ā and ū, where

ā =

Iin∑

i=1

ai, ū =

Iout∑

i=1

ui . (8.7)

To summarize, a “bar” always means “sum over i”, and dropping the index t
means “view as a stochastic variable”.

8.2.1 The Ideal Ordered Problem

We would like to compare the behavior of the method to a hypothetical ideal
situation. For simplicity of presentation, assume that the first Ic x’s and y’s in
each St are mutually corresponding inliers, such that yt,i = f(xt,i) for 1 ≤ i ≤ Ic,
and that the rest are outliers. An associative network with access to the ordering
structure would try to find the following C:

min
C

1

TIc

T∑

t=1

Ic∑

i=1

‖Cat,i − ut,i‖2 . (8.8)

As T →∞, this expression tends towards

min
C

Ec

{
‖Cai − ui‖2

}
, (8.9)

where Ec means the expectation over the inlier set, i.e. for i ≤ Ic. The normal
equations of this problem are CGc = Hc, with

Gc = Ec

{
aiai

T
}
, Hc = Ec

{
uiai

T
}

(8.10)

analogous to (8.6).

8.2.2 The Correspondence-Free Problem

We now return to the correspondence-free problem. The main result of this section
can be summarized in the following theorem:

Theorem 8.1 Let aµ = E {ai} ,uµ = E {ui} (which is independent of i). Then,
as T →∞, the unordered problem from (8.5) is equivalent to

min
C
E(C) (8.11)

8.2 Asymptotical Properties 89

where

E(C) = Ec

{
‖Cai − ui‖2

}
+ (Iin − 1)‖Caµ − kuµ‖2, and (8.12)

k = (IinIc − Ic)−1(IinIout − Ic) . (8.13)

This holds both with and without a positivity constraint on C.

Before jumping to the proof (given in Sect. 8.2.3), we analyze the consequences
of this theorem. First assume that Oy = 0. Then Iout = Ic, k = 1, and the
unordered problem becomes equivalent to the ordered problem but with the ad-
ditional term ‖Caµ − uµ‖2 included in the minimization. The larger Iin is, the
more weight this term gets. As Iin → ∞, the problem approaches a constrained
minimization problem, where the first term is minimized subject to the last term
being exactly zero. But Caµ = uµ is a very natural constraint, just saying that
the mean output of the method should equal the true mean of the channel encoded
output training samples. Furthermore, this constraint only uses up one degree of
freedom of each row of C and is not expected to degrade the performance much.

Still assuming Oy = 0, we note that the number of x-outliers Ox and the
number of correspondences Ic enters (8.11) only through the coefficient (Iin − 1),
which shows that increasing Ox has the same effect as increasing Ic. However,
this only holds for the asymptotical solution – the speed of convergence may be
degraded. Also, keep in mind that we assumed the outliers to follow the same
distribution as the inliers.

Unfortunately, when Oy > 0 the story is different. Then k ≈ Iout/Ic > 1,
and suddenly the second term of (8.11) forces Caµ to be larger than is motivated
by the corresponding data only. There is an imbalance between the two terms of
(8.11), which leads to undesired results.

8.2.3 Proof of Theorem 8.1

As T →∞, G and H from (8.6) tend towards

G = E
{
āāT

}
, H = E

{
ūāT

}
. (8.14)

By combining (8.7) and (8.14) we get

G =E

(
Iin∑

i=1

ai

)(
Iin∑

i=1

ai

)T

(8.15)

H =E

(
Iout∑

i=1

ui

)(
Iin∑

i=1

ai

)T

. (8.16)

Expanding the products and swapping the sum and expectation gives

G =

Iin∑

i=1

Iin∑

j=1

E
{
aiaj

T
}
, H =

Iin∑

i=1

Iout∑

j=1

E
{
ujai

T
}
. (8.17)

90 Correspondence-Free Learning

The expectation E
{
aia

T
j

}
is independent of the actual indicies i, j – what matters

is only if i = j or not (note that Ec

{
aiai

T
}

= E
{
aiai

T
}
, since the inliers and

outliers are assumed to follow the same distribution). Thus, we can split the sum
into two parts:

G = IinEc

{
aiai

T
}

+ (Iin
2 − Iin)Ei 6=j

(
aiaj

T
)
. (8.18)

H can be treated in a similar way. E
{
ujai

T
}

is only dependent on whether ai and
uj correspond or not. Since each training sample contains Ic correspondences, we
can split the sum into

H = IcEc

{
uiai

T
}

+ (IinIout − Ic)Enc

{
ujai

T
}
, (8.19)

where Ec takes the expectation over corresponding inliers ai,ui, and Enc takes the
expectation over non-corresponding pairs – inliers as well as outliers.

Note that the first expectation terms in (8.18) and (8.19) are exactly Gc and
Hc from (8.10) of the ordered problem. Furthermore, the factors within the expec-
tation of the last terms are independent, since non-corresponding (x, y)-pairs are
assumed to be drawn independently. We can exchange the order of the expectation
and the product, which gives

G = IinGc + (Iin
2 − Iin)aµaµ

T (8.20)

H = IcHc + (IinIout − Ic)uµaµ
T . (8.21)

C only needs to be determined up to a multiplicative constant since the channel
decoding is invariant to a constant scaling of the channel vectors. This means that
we can normalize G and H by dividing by Iin and Ic respectively. We reuse the
symbols G and H and write

G = Gc + (Iin − 1)aµaµ
T (8.22)

H = Hc + I−1
c (IinIout − Ic)uµaµ

T . (8.23)

On the other hand, consider the normal equations of (8.11). Appendix A motivates
my notation on derivatives and shows some useful results. Differentiating E(C)
following (A.22) and (A.23) gives

dE = 2
〈
CEc

{
aiai

T
}
− Ec

{
uiai

T
}
, dC

〉

F
+

+ 2(Iin − 1)
〈
Caµaµ

T − kuµaµ
T, dC

〉

F
. (8.24)

Recognizing Gc and Hc from (8.10) and combining the products into a single one
gives

dE = 2
〈
C(Gc + 2(Iin − 1)aµaµ

T)− (Hc + (Iin − 1)kuµaµ
T), dC

〉

F
=

= 2
〈
CG−H, dC

〉

F
(8.25)

with G and H from (8.22) - (8.23). From this expression, the normal equations
are simply CG − H = 0, which are the same normal equations as obtained in

8.3 Experiments 91

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

I
c
 = 50, 200 Training Samples

True function

O
x
 = O

y
 = 0

O
x
 = O

y
 = 50

channel centers

Figure 8.2: True 1D function and two examples of resulting approximations.

the correspondence-free setting. This shows that the correspondence-free setting
effectively minimizes (8.11) in the unconstrained case.

For the constrained case, the projected Landweber as used in Chapter 7 is
simply a gradient descent on E(C) together with a projection into the feasible set
in each iteration. Since the gradient of E(C) is CG−H, we see that running the
batch mode updating scheme

C← max
[
0,C− (CG−H) diag−1{G1}

]
(8.26)

from (7.12) using G and H obtained from the correspondence-free setting is equiv-
alent to minimizing (8.11) with a projected Landweber method. This completes
the proof of Theorem 8.1.

8.3 Experiments

8.3.1 1D Example

In the first experiment, a one-dimensional function was learned using various num-
bers of inliers and outliers. Figure 8.2 shows the function together with the learned
approximation in two different settings, with the channel centers indicated. Note
that the accuracy is much higher than the channel spacing.

A number of experiments on learning speed have been performed. In all cases,
the results were averaged over 30 runs. In Fig. 8.3, the RMS approximation error
is shown as a function of the number of training samples. Note that the method
converges faster when the number of simultaneously presented pairs increases,
which is explained by the fact that the total number of (x, y)-pairs grows faster in
this case. Also note that Ox does not affect the asymptotical solution, as expected,
but does affect the rate of convergence. When Oy is large the method breaks down
and leaves a residual error.

Figure 8.4 shows the approximation after 50 training samples plotted against
the number of correspondences Ic in each sample (no outliers). We see that the
benefit of using more (x, y)-pairs in each training sample saturates rather quickly.
Furthermore, if Ic is very high, all vectors ā and ū have a large DC offset, and the

92 Correspondence-Free Learning

10
1

10
2

0

0.05

0.1

0.15

0.2
R

M
S

E

O
x
 = O

y
 = 0

I
c
 = 1

I
c
 = 20

I
c
 = 400

10
1

10
2

0

0.05

0.1

0.15

0.2

R
M

S
E

I
c
 = 20, O

y
 = 0

O

x
 = 0

O
x
 = 20

O
x
 = 80

10
1

10
2

0

0.05

0.1

0.15

0.2

R
M

S
E

I
c
 = 20, O

x
 = 0

O

y
 = 0

O
y
 = 20

O
y
 = 80

10
1

10
2

0

0.05

0.1

0.15

0.2

R
M

S
E

I
c
 = 20

O

x
 = O

y
 = 0

O
x
 = O

y
 = 20

O
x
 = O

y
 = 80

Figure 8.3: Approximation error as a function of number of training examples
under various configurations (averaged over 30 runs).

10
0

10
1

10
2

10
3

0

0.01

0.02

R
M

S
E

Without noise

With noise

Figure 8.4: Approximation error as a function of the number of correspondences
within each training example (no outliers).

significant part will be small in comparison, which can lead to numerical problems.
The dashed curve of Fig. 8.4 shows the final approximation error when white
Gaussian noise with a standard deviation of 1% of the mean channel magnitude
has been added to the channel vectors. When Ic is large, this relatively small noise
term starts to destroy the significant part of the channel vectors, which leads to
an increased error.

8.3 Experiments 93

True mapping

In
p

u
t

S
p

ac
e

Training Example Learned Mapping

O
u

tp
u

t
S

p
ac

e

Figure 8.5: 2D example of correspondence-free learning. Some points have been
marked with circles to visualize the orientation of the mapping. See the text for
details.

True mapping

In
p

u
t

S
p

ac
e

Training Example Learned Mapping

O
u

tp
u

t
S

p
ac

e

Figure 8.6: One additional 2D example of correspondence-free learning, this time
the mapping to learn was a homography.

8.3.2 2D Examples

The second experiment shows the qualitative behavior of an R
2 → R

2 mapping.
Each training example consisted of 15 unordered points in both spaces, plus 5
additional outliers in the input space. Both spaces were encoded using 12 × 12
channels. The behavior of the system after being presented with 200 such training
examples is shown in Fig. 8.5.

A second example is shown in Fig. 8.6, where the mapping to learn was a
homography. Of course, this was unknown to the system, and exactly the same
setup is used to learn this mapping as in the first example.

94 Correspondence-Free Learning

Figure 8.7: Example of training input to the color learning experiment. In this
example, the user input was “brown, orange”.

red
green
blue
cyan
magenta
yellow
black
white
brown
orange
purple
pink
dark gray
bright gray
sand

red
green
blue
cyan
magenta
yellow
black
white
brown
orange
purple
pink
dark gray
bright gray
sand

red
green
blue
cyan
magenta
yellow
black
white
brown
orange
purple
pink
dark gray
bright gray
sand

red
green
blue
cyan
magenta
yellow
black
white
brown
orange
purple
pink
dark gray
bright gray
sand

red
green
blue
cyan
magenta
yellow
black
white
brown
orange
purple
pink
dark gray
bright gray
sand

Figure 8.8: Results of the color learning experiment. A random input color is
shown together with the generated responses.

8.3.3 Discrete Output Space

In the final experiment, the input space was the 3D space of RGB colors and the
output space was a discrete set of color labels. A training set was constructed by
letting a user manually judge the dominant color(s) of a number of pixels. The
user had the opportunity to select zero, one or more labels from a predefined list.
The presented image often included several dominant colors. The correspondence
between individual pixels and color labels is unknown. The motivation for this
experiment is to show how symbolic and continuous entities can be used seamlessly
within the channel-coding framework.

The images presented to the observer were constructed by creating two random
dominant colors in RGB space, around which normally distributed pixel values
were drawn. Within each training sample, 20% of the pixels were from one color
and 50% from the other. The rest of the pixels are outliers, uniformly distributed in
RGB space. Figure 8.7 shows an example of one such randomly generated training
input. After being presented with 100 images of this kind together with the user
input, the system was tested on some random colors. Some typical examples are
shown in Fig. 8.8.

8.4 Discussion 95

8.4 Discussion

In this chapter I have studied the rather uncommon problem of learning mappings
through training data with unknown correspondence structure. A rather simple
method has been presented which gives surprisingly good results. In the outlier-
and noise-free case, the mapping is learned at least as quickly as in the known-
correspondences case, regardless of the size of each group. Outliers in the input
space following the same distribution as the inliers are suppressed, but arbitrary
outliers in any domain lead to remaining errors.

The second 2D example ties to the discussion about perception-action learning
in the introduction to this chapter. The input and output points could be points
from the ground plane extracted from two cameras. As the system moves around,
it encounters different situations, with interest points located on different positions
on the ground plane, but there is never an explicit information about which point
in the left image is corresponding to a certain point in the right image. There
are of course several sophisticated stereo matching algorithms available that do
the job perfectly, but all of them rely on a lot of engineering. The typical algo-
rithm would find tentative correspondences, select subsets using RANSAC, find
homography candidates by solving equation systems, and verify and refine promis-
ing candidates. On the other hand, in the correspondence-free learning context,
everything just boils down to a linear mapping between two channel-coded spaces.
This certainly follows the COSPAL philosophy of minimum application-specific
engineering.

So far, the method has only been evaluated on rather artificial problems, but
the kinds of situations in which the method would be applicable are indicated.
Since all approaches to artificial cognitive systems have so far failed to produce
anything even remotely similar to human beings in terms of learning and self-
organizing capabilities, we must try to attack the problem from new angles by
looking at alternative methods, structures and problem formulations. This chapter
has been an attempt in that direction.

96 Correspondence-Free Learning

Chapter 9

Locally Weighted Regression

...where the Channel Vector will have to wait patiently while we explore another
machine learning approach. However, the wait will not be too long, since in the
next chapter, the locally weighted regression will be applied to channel-coded feature
maps, and the two will live happily ever after.

This chapter reviews the method of locally weighted regression as described by
Atkeson and Schaal [5]. I propose using a version of this method with an adaptive
kernel width, making the method invariant to a rescaling of the input space. I also
present the analytical derivative of the approximation procedure. This derivative
will be needed in later chapters, when the method will be used in an iterative
optimization procedure.

9.1 Basic Method

Locally weighted regression is a general method for learning in medium-dimensional
spaces. Assume that we during training are given a set of T input-output pairs
(xt,yt). In operation mode, we are given a query q and want to produce an
estimated output ŷ. The actual training consists only of storing the training ex-
amples. At runtime, we select a number of training samples which are close to q
in the input space and fit a local linear model to these samples. Each sample is
weighted by a radially symmetric basis function centered at the query point. The
principle is illustrated in Fig. 9.1.

Let B be a monotonically decreasing weighting kernel profile which is non-zero
on [0, 1] only. The training samples are weighted according to

wt = B(s−1‖q− xt‖) (9.1)

where s will be called the kernel width. Most wt’s will be zero, and the correspond-
ing training samples can be disregarded. Since we are only looking at the function
in a small neighborhood around q, it is reasonable to assume that the function is

98 Locally Weighted Regression

Figure 9.1: Illustration of the locally weighted regression principle. At a given
query input (marked with a cross), a local linear model is fitted to the training
samples, and the output is computed from this local model.

approximately locally linear. We seek a local approximation f of the form

f(x) = y0 + C(x− x0) . (9.2)

The vector x0 can be chosen arbitrarily. It will be convenient to use x0 = q, since
then f(q) = y0. We find the y0 and C that fit the training data as well as possible
by solving the weighted least-squares problem

min
C,y0

∑

t

wt‖y0 + C(xt − x0)− yt‖ . (9.3)

By constructing

C̃ = [C y0] (9.4)

X =

[
(x1 − x0) . . . (xT − x0)

1 . . . 1

]

(9.5)

Y =
[
y1 . . . yT

]
(9.6)

W = diag(w), w =
[
w1 . . . wT

]
T (9.7)

the problem can be rewritten compactly as

min
C̃

‖(C̃X−Y)W1/2‖F . (9.8)

I consider only the case where the number of training samples with non-zero weight
is larger than the degrees of freedom of the local model. Unless the configuration
of sample points is degenerate, X is full-rank, and the solution is given by

C̃ = YWXT(XWXT)−1 . (9.9)

9.2 Weighting Strategies

One problem with this approach is that we do not know how many training samples
that will be included within the support of B. If the kernel width is small, there

9.2 Weighting Strategies 99

may be too few points included to produce a robust estimate of the linear model,
or in the extreme case no points at all will be included. In contrast, if the weighting
kernel is too large, the linear approximation may be poor. This section describes
how this problem can be solved by introducing an adaptive kernel width.

9.2.1 Adaptive Kernel Width

An alternative to using a weighting kernel could be to always select the K nearest
neighbors without any weighting in the spirit of the K nearest neighbor classifier
[12]. The number K can be selected in a way that suits the linear model fitting.
As an example, a linear model mapping R

3 to R has 4 free parameters, so at least
4 points are needed to fully determine the mapping. Using more points increases
the robustness against noise but may render the local linearity assumption invalid.

However, when the query point is shifted such that the set of K nearest neigh-
bors changes, the resulting linear model could change abruptly, which causes a
discontinuity in the mapping. Such discontinuities can cause problems when using
the mapping together with iterative optimization algorithms, as will be the case
in Chapter 11.

The proposed method places itself somewhere in between these two extremes
by using a weighting kernel that is scaled according to the distance to the nearest
training samples. Let the support of B(r) be [0, 1] and sort the training samples
by their distance to q such that ‖q − xt‖ ≤ ‖q − xt+1‖ for all t. We now select
the kernel width s in (9.1) as

s = β‖q− xK‖ . (9.10)

If β = 1, this gives zero weight to the K’th sample and non-zero weight to all
samples strictly closer to q. Most of the time, this will produce K − 1 samples
with non-zero weights, as at the rightmost query point of Fig. 9.2. However, if
there are several samples with the same distance to q as xK , all these samples will
get zero weight as well. This situation is illustrated in the leftmost query point
of Fig. 9.2. Having to few active samples may cause the model fitting to be very
unreliable. In the extreme case where all the K closest neighbors are equally far
away from the query point, no single sample will have non-zero weight. Choosing
β slightly larger than 1 ensures that there is at least K samples with non-zero
weight.

Given a fixed set of training samples, each weight wt is a continuous function
of q, while C,y0 depend continuously on the wt’s. This ensures that the approxi-
mated function is continuous in q, at least as long as X is full-rank such that the
inverse in (9.9) is well-defined.

9.2.2 Reducing Noise Sensitivity

Having an adaptive kernel weight like in the previous section also has its draw-
backs. As more and more training samples get included close to a given query
point, the kernel width becomes smaller and smaller. If the training samples are
noisy, the local behavior will be dominated by noise once the sampling density is

100 Locally Weighted Regression

W
ei

g
h
ts

O
u
tp

u
t

sp
ac

e

Input space

Figure 9.2: Illustration of adaptive kernel width with K = 5, β = 1. The upper
plot shows the weights of the active samples at two different query points.

Figure 9.3: Illustration of the noise sensitivity problem when there are many
training samples.

high enough, as illustrated in Fig. 9.3. This means that when the sampling den-
sity increases, it will be less and less meaningful to do a local linear approximation
based on K samples only. Especially the slope of the local model may be very
different from the slope of the approximated function.

In this case we would actually benefit from having a fixed kernel, which would
increase the accuracy by including more and more points in the approximation.
If we have some prior knowledge about the noise levels, we could prescribe a
minimum kernel width and choose s as

s = max(β‖q− xK‖, smin) . (9.11)

This is the recommended strategy. If no prior knowledge about smin is available
and an ad-hoc choice is not good enough, we must think about another approach.
One option might be to select the scale where the sample points best appear to
follow a linear model. Doing so in a computationally cheap way may be difficult,
and a detailed exploration of different scale selection criteria is outside the scope
of this thesis.

9.3 Analytical Jacobian 101

9.3 Analytical Jacobian

9.3.1 Motivation

At run-time, a local linear model is fitted to the nearest training points, and the
approximated function value is y0 from this approximation. Let g be the function
which takes a query q as input, runs the local model fitting, and returns the
computed y0. At a first glance, one may believe that the derivative of g is C from
the local model fitting, but this is in fact incorrect. This section derives the true
analytical expression for the Jacobian of g.

Intuitively, if we shift our query q a little and rerun the entire procedure, the
weights of the training samples will be different, and different y0 and C might be
selected. There is no theoretical guarantee that y0 actually moved in the direction
indicated by C. This is illustrated in Fig. 9.4, where a one-dimensional example
was chosen for illustrative purposes. The unfilled circles represent training samples,
and the lines are examples of linear models constructed at some query points. In
the left plot, the training samples are completely random, while in the right plot
they follow a smooth sinusoidal curve without noise. The solid curves show the
function g and are constructed by computing the y0’s from input points on a fine
grid.

We clearly see that the derivative of the local model f is different from the
derivative of the approximation g, even in the noise-free case. In fact, the two
derivatives may even have different signs. If this model is used as part of a gradient-
based optimization (which will be the case in Chapter 10 and 11), a line search
on g in the direction specified by C would fail to find a descent step if the true
gradient actually points in the opposite direction.

In the remainder of this section I derive an analytical expression for the Jaco-
bian of g in the general, multi-dimensional case. The derivation is rather involved
and may be skipped without loss of continuity. The final results are summarized
in Section 9.3.5. Many general relations for derivatives in linear algebra are given
in Appendix A. These rules will be frequently used here, so unless you are fluent
in linear algebra differentiation, you are advised to browse through this appendix
first.

9.3.2 Derivative of g

First, recall that x0 can be selected arbitrarily. I argued that x0 = q is a good
choice in runtime, such that the output is given simply by y0. When deriving the
Jacobian, we are better off keeping x0 fixed, since that makes the entire matrix X
fixed (independent on q) and greatly simplifies the derivation. The output of the
method is then

g(q) = y0 + C(q− x0) . (9.12)

Note that both C and y0 depend on q through the weights w, although this
dependence is not made explicit in (9.12) for compactness. Differentiating g with

102 Locally Weighted Regression

Figure 9.4: Illustration of some examples where the approximated derivative has
the wrong sign. See the text for details.

respect to q gives

dg(q) = dy0 + dC (q− x0) + Cdq . (9.13)

We evaluate the derivative at q = x0, which makes the second term above vanish.
The complete Jacobian is then

dg

dq
(x0) =

dy0

dq
+ C . (9.14)

We see that the derivative of g is the derivative C of the local model completed
with an extra term dy0

dq , which can be seen as a compensation for the fact that
the weights of the local model fitting are changed as the query point is moved.
Intuitively, if the local model fits the closest points very well, the exact values of
the weights should be less important. For a linear model that fits the training
data perfectly, this compensating term is expected to be zero.

9.3.3 Derivative of y0

Recall that y0 is the rightmost column of C̃ and that C̃ is given by (9.9), repeated
here for convenience:

C̃ = YWXT(XWXT)−1 . (9.15)

To simplify the notation, define

M = XWXT . (9.16)

Since we kept x0 fixed, W is the the only object in (9.15) that depends on q.
Differentiating C̃ by using the product rule gives

dC̃ = Y dWXTM−1 + YWXT d(M−1) . (9.17)

9.3 Analytical Jacobian 103

Differentiating matrix inverses is handled in Appendix A, and we see that d(M−1) =
−M−1X dWXTM−1. This produces

dC̃ = Y dWXTM−1 −YWXTM−1
︸ ︷︷ ︸

C̃

X dWXTM−1 =

= (Y − C̃X) dWXTM−1 . (9.18)

Define R = Y−C̃X. This matrix is recognized as the (unweighted) residuals from
the minimization problem (9.8). Since we are only interested in dy0 , we define v
as the rightmost column of XTM−1, which together with (9.18) lets us write

dy0 = RdWv . (9.19)

Since W is a diagonal matrix, we can write dWv as diag(v) dw , which gives

dy0 = Rdiag(v) dw , (9.20)

and the complete derivative of y0 becomes

dy0

dq
= Rdiag(v)

dw

dq
. (9.21)

As expected, if the local model fits the training samples perfectly, R becomes a
zero matrix, and the entire term dy0

dq vanishes.

9.3.4 Derivatives of w

What remains now is to find the derivative of the weight vector w with respect
to the query q. This derivative depends on our weighting strategy. Consider first
the simplest case of fixed kernel width. A certain weight wt is here defined as

wt = B(s−1‖q− xt‖) , (9.22)

where s is the kernel width. From Appendix A, we have that d‖x‖ = ‖x‖−1xT dx .
The chain rule gives us

dwt = B′(s−1‖q− xt‖)s−1 d‖q− xt‖ =

= B′(s−1‖q− xt‖)s−1‖q− xt‖−1(q− xt)
T dq . (9.23)

To make the notation more compact, define pt = q − xt and let ˜ denote vector
normalization. The entire Jacobian of w is then

dw

dq
= s−1

B′(s−1‖p1‖) p̃1
T

. . .
B′(s−1‖pT ‖) p̃T

T

 . (9.24)

If an adaptive kernel width is used according to Sect. 9.2.1, the situation is slightly
more tricky. Consider the definition

wt = B

(‖q− xt‖
β‖q− x∗‖

)

, (9.25)

104 Locally Weighted Regression

where x∗ is the training sample that determines the kernel width. For compactness,
define

p∗ = q− x∗

zt =
‖pt‖
‖p∗‖

. (9.26)

By use of (A.11) and (A.12) from Appendix A and the chain rule, we find that

dwt = B′(β−1zt)β
−1 dzt

= B′(β−1zt)β
−1‖p∗‖−1

(
d‖pt‖ − zt d‖p∗‖

)
=

= B′(β−1zt)β
−1‖p∗‖−1

(
p̃T

t dpt − ztp̃
T
∗ dp∗

)
=

= B′(β−1zt)β
−1‖p∗‖−1

(
p̃T

t − ztp̃
T
∗

)
dq (9.27)

and the complete Jacobian becomes

dw

dq
= β−1‖p∗‖−1

B′(β−1z1)
(
p̃1 − z1 p̃∗

)
T

. . .
B′(β−1zT)

(
p̃T − zT p̃∗

)
T

 . (9.28)

9.3.5 Summary

The complete Jacobian is given by combining (9.14) and (9.21), with dw
dq selected

by (9.24) or (9.28). In pseudo-Matlab notation, this can be written as

v = (XTM−1)[: , end] (9.29)

dg

dq
(x0) = C + (Y − C̃X)diag(v)

dw

dq
. (9.30)

The compensated Jacobian is not much more expensive to compute than the ap-
proximative. The major workload in the main method is in solving the minimiza-
tion problem (9.8). This is typically done using the pseudo-inverse (XW1/2)† =
W1/2XTM−1, which can be computed using the SVD of (XW1/2). Once this
pseudo-inverse is available, v is easy to obtain, and the true Jacobian is available
after a few matrix multiplications.

9.4 Discussion

This chapter has reviewed the basic method of locally weighted regression and
discussed different ways of selecting an adaptive kernel width. This subject is
in no way exhausted, and it could be possible to find more advanced methods.
However, as the kernel width selection becomes more sophisticated, it becomes
increasingly difficult to find an analytical derivative of the entire procedure.

On the other hand, it can be argued whether or not this analytical derivative
is needed. The matrix C is a good approximation to the derivative as long as the
residuals of the local linear model fitting are small.

9.4 Discussion 105

One large part of the workload of the algorithm consists in finding theK nearest
neighbors of the query sample. Much work on fast neighbor lookup structures has
been done by using various forms of tree structures [7, 73]. This topic is outside
the scope of this thesis.

106 Locally Weighted Regression

Part III

Pose Estimation

Chapter 10

Linear Interpolation on

CCFMs

...where we will try a different linear approach, and find that locality is king. We
also find that it is sometimes preferable to turn a problem on its head. At the
end of the chapter, we will have constructed our first view-based pose estimation
method.

This chapter deals with interpolation on channel-coded feature maps and linear
equation systems for the purpose of classification or estimation of continuous pose
parameters of an object. In this chapter, I do not deal with issues such as localiz-
ing an object in a larger image or giving continuous values for position, rotation
and scale in the image plane. In the later chapters 11 and 12, all pieces will be
put together in a complete object recognition system, where object detection in a
cluttered scene is also handled.

The examples within this chapter are taken from the COIL-100 database
[76], where 100 different object have been photographed for different orientations
around the vertical axis and placed well-centered in 128× 128-pixel images. This
dataset is often criticized for being too simple since there is no background clutter
or occlusions but is still useful for illustrative purposes.

Previous chapters have covered the associative networks, which transform a
channel-coded scalar or vector to another channel-coded scalar or vector using
a linear mapping. In this chapter, the input is instead an entire channel-coded
feature map. This makes the problem rather different, and I argue that a direct
linear mapping from the CCFM to the response is no longer sufficient.

This chapter begins from a slightly different angle – from the idea of view
interpolation – and ends up with connecting the locally weighted regression from
Chapter 9 to channel-coded feature maps. The Euclidean distance is used in the
presentation, but recall from Chapter 5 that we could as easily use the square-
root distance instead by simply taking the square root of all channel values before
further processing.

110 Linear Interpolation on CCFMs

Figure 10.1: Illustration of why view interpolation on raw images does not work.

10.1 View Interpolation

As a motivating example, consider Fig. 10.1. Here, two images of a toy car viewed
from different poses are represented by low-resolution gradient magnitude images
which we refer to as a1 and a2. If we interpolate linearly between these two views
and construct a new view a = 0.5a1 +0.5a2, we see that this view does not match
the expected appearance of the car at an intermediate pose, showing that this
space is not well-suited for linear view interpolation. In order for this kind of view
interpolation to work at all, the resolution must be small enough for the same
object structure to appear within the same pixel of the low-resolution image. For
this car, we would have to settle with perhaps 4 × 4 pixels, which is a rather
non-informative representation.

In contrast, consider representing the the car with a channel-coded feature map
of spatial resolution 4× 4, but using at the same time 4 orientation channels and
4 color channels. This would give 16 different 4 × 4 images, each one containing
information about a certain kind of image structure, namely edges of a specific
orientation and color. Due to the low spatial resolution, it is more likely that
interpolating between the CCFMs from two views of an object produces something
similar to the expected CCFM of an intermediate view. At the same time, the
specificity of the representation is improved compared to a simple downsampling
of the graylevels.

This motivates trying to represent an observed view q as a linear combination
of a number of training views which are located close enough in feature space
for view interpolation to be meaningful. In general, given a set of such views
at organized in a matrix A, we look for a set of linear coefficients r such that
E = ‖Ar−q‖ is minimized. If we want a strict convex combination of our training
views, we can enforce that each rk ≥ 0 and rT1 = 1. If we are satisfied with an
unconstrained solution of r, it is given as r = A†q.

If each CCFM included in A has some continuous parameters (e.g. pose an-
gles) associated to it, we can use the same interpolation coefficients to interpolate
between these parameters in order to get an estimated parameter vector for the
query view. This will be discussed in more detail in Sect. 10.2.2. But first, we will
move to a different problem formulation, which turns out to be more or less the
same thing as view interpolation.

10.2 Least-Squares Formulations 111

10.2 Least-Squares Formulations

This section gives an overview of some linear least-squares formulations that can
be constructed using channel-coded feature maps as input. The purpose of the
presentation is to identify the limitations of these methods and motivate using
local linear models. The view interpolation idea from the previous section will be
used as a tool for interpreting the behavior of these linear methods.

10.2.1 Basic Problem Formulation

Assume that we are given a number of training examples (at,ut), where the at’s
are CCFMs and the ut’s some associated responses. These ut’s can in general
represent any information associated with the input, and some concrete examples
will be considered in the next few subsections. Let q be a query CCFM. We
now look for a linear mapping û = Cq that gives an estimated response from
the query. By organizing the training samples in matrices A = [a1, . . .aT] and
U = [u1, . . .uT], C can be found by solving the minimization problem

C = arg min
C
‖CA−U‖F . (10.1)

Often, the number of training examples will be less than the dimensionality of
the CCFMs. In this case, the problem is under-determined, and the traditional
least-squares selects the solution with minimum norm. In any case, the solution
can be written as

C = UA† . (10.2)

This gives the entire mapping from a query input to response as

û = UA†q . (10.3)

An important interpretation of this expression is obtained by recalling that r =
A†q is the solution to the view interpolation problem from Sect. 10.1. This shows
that the solution of (10.1) can be obtained by first writing the query view as a
linear combination of the training views, and then using the same set of coefficients
to interpolate between the training outputs in U by

û = Ur =
∑

t

r[t]ut . (10.4)

An alternative here is to replace r = A†q with the constrained r from Sect. 10.1.
The effects of doing so will be studied in more detail later on.

This interpretation will be the tool for analyzing the behavior of different linear
mappings in this chapter. In order to understand the behavior of the least-squares
method for different representations of the output space, it is thus sufficient to
understand how the representations behave under linear interpolation. In the
next few subsections, the consequences of some different representations of u are
discussed.

112 Linear Interpolation on CCFMs

[0.01

[0.00

−0.11

0.00

0.61

0.51

0.40

0.31

−0.22

0.00

0.22

0.00

−0.07

0.09

0.14

0.09

0.03]

0.00]

Figure 10.2: A query view with interpolation coefficients (in CCFM space) for all
training views of the same object class. Top: Unconstrained coefficients. Bottom:
Positive, unit-sum coefficients.

10.2.2 Continuous Pose Parameters

The first case is where u is a vector of real-valued parameters governing the ap-
pearance of an object. The typical example is where u = [θ, φ]T is a pair of
rotation angles around two axes distinct from the optical axis. However, u could
also include quantities like the opening angle of a pair of scissors or the rotation
angles of the joints of a robotic arm.

The parameters in u do not necessarily have to refer to intrinsic properties of
the object. Instead, a set of purposeful parameters can be used, for example a set
of real-valued parameters representing how a robotic arm should be moved in order
to grip the object. Having such a direct mapping between an observation and an
action without using any engineered intermediate representation like object pose
is along the philosophy upon which the COSPAL project was based (see Sect. 1.3).

If the constrained r is used, the resulting output of the algorithm in (10.4)
becomes a weighted mean of all ut’s. This has the same problem with outliers
as most methods based on mean values have. Consider the example in Fig. 10.2.
Here, even if there is a clear peak at the correct views, the other coefficients
still have non-zero values and will contribute to the weighted mean value. The
situation is better but still not perfect when the constrained coefficients are used.
This motivates using a strategy that removes the effect of outliers by including
only views close to the final estimate.

In [27], this method was used for ego-localization from a fish-eye camera. The
input was a P-channel-coded feature map (a representation related to CCFMs) and
the output was 6 continuous parameters representing the position and orientation
of the camera. The experiments showed nice results despite the lack of an outlier-
suppressing mechanism, which shows that this simple method can still work well
if the data is well-behaved.

10.2.3 Classification

Instead of finding continuous parameters, we can address the problem of classifi-
cation. In this case, the output is not a continuous parameter but a discrete class
label. Assume that we are given a training set consisting of T tuples (at, lt), where
at is a CCFM and lt ∈ [1, L] is the true class label of this input. We then want to
estimate the class of a query CCFM q. In order to use the linear framework, we

10.2 Least-Squares Formulations 113

represent the true classes using vectors u according to

ut[l] =

{
1 l = lt
0 otherwise

. (10.5)

This is referred to as a “1-of-K binary coding scheme” in [12], and the vector u is
often called a discrimination vector. This scheme is frequently used for encoding
class labels in multi-class problems (see also [47]). Since the CCFMs are already
quite high-dimensional, it may be argued that the problem is likely to be linearly
separable according to Cover’s theorem on the separability of patterns [47].

We now look for a linear mapping C that gives a membership score for each
class using u = Cq. This C can be found according to (10.1)-(10.2), giving the
complete relationship from query to output as u = UA†q like before. To analyze
this method, we first interpret r = A†q as a set of interpolation coefficients as
usual and note that

u[l] =
∑

t

U[l, t]r[t] =
∑

t : lt=l

r[t] . (10.6)

Because of the special binary structure of U, each u[l] is simply the sum of the
interpolation coefficients in r corresponding to all views from class l. However, this
may not be a good certainty measure. Consider again Fig. 10.2. The CCFM from
a cup with two handles – one at each side – may very well be possible to express
as a linear combination of the CCFMs from the first and fifth view of Fig. 10.2.
This classification algorithm would not distinguish between this case and a case
where only neighboring views participate with large coefficients.

In the extreme case where each class has exactly one training view, U is di-
agonal and u = r. This approach was used on the COIL database in the related
publication [28]. P-channels were used as view representation. The view with the
largest r coefficient determined the final estimated object class. This technique
has a different drawback. In Fig. 10.2, the largest coefficient is 0.61 (or 0.51 for
constrained coefficients) because the query view happens to be in between two
training views. For a query view that shows the same pose as the training views,
the largest score would be close to 1. This means that the score varies in an
undesired way depending on the exact view of the object.

From these examples, we can draw the conclusion that it should be beneficial
to combine neighboring views only and use the approximation error as a quality
measure rather than the interpolation coefficients.

10.2.4 Channel-Coded Output

Consider an image set like the COIL database (Fig. 10.3). Assume for a moment
that we only look at a single object and want to find the best matching view. There
are two options. We can treat each view as a separate class and use the classifica-
tion procedure in Sect. 10.2.3 to find the view in memory that best matches the
query. Alternatively, we can view it as a continuous pose estimation problem and
use a continuous parameter as output, according to Sect. 10.2.2.

114 Linear Interpolation on CCFMs

Figure 10.3: Some examples of objects in the COIL database.

A third option would be to encode the continuous pose parameters into a
channel vector u. This produces a representation which is somewhere in between
the discrete and continuous case. We know from Sect. 2.4 that averaging a set of
channel vectors and decoding the result is equivalent to computing a robust mean
of the encoded values. Thus, if the ut’s are channel-coded scalars instead of regular
scalars, (10.4) will produce a weighted robust mean of the encoded values. This is
significantly more well-suited for situations like the one in Fig. 10.2, since only the
views close to the peak would actually contribute to the resulting pose estimate.
However, the coefficients r are still produced using an interpolation between all
views, even views which are eventually not needed. It is a bit disturbing that
views considered as outliers still are allowed to contribute to our interpolation
coefficients. It would make sense to run the process twice; once to find the peak,
and then once again using views close to the peak only. But in this second run,
channel-coding the output is no longer necessary, since only related views are
included in the first place.

Using channel-coding both on the input and output side of a linear mapping
may seem very similar to the methods in 7 and 8, but there is a major difference
in the representation on the input side. Using associative networks, the input
is a channel-coded single value. In this chapter, the input is an entire channel-
coded feature map, i.e. the sum of a number of encoded single points. In the
correspondence-free learning case, we also summed up the channel vectors from
several encoded points, but we were looking for a mapping from individual points
in the input space to individual points in the output space. A superposition of
points on the input side should simply map to the same superposition of points in
the output space. In this chapter however, we are not looking for a mapping from
single points in the spatio-feature space. Rather, it is the entire joint configuration
of points that is significant. The same analysis can not be applied in these two
cases.

10.3 Local Weighting and Inverse Modeling

As has been seen in the previous section, in order for view interpolation to perform
well, we should select only those views which can be expected to be connected by
a smooth manifold in feature space. This can be done using the locally weighted
regression idea from Chapter 9. If we select the K training views that closest to
the query view, weight them according some strategy from Chapter 9 and perform
the view interpolation from Sect. 10.2.2, we get something which is very related

10.3 Local Weighting and Inverse Modeling 115

to locally weighted regression.
A problem with this approach is that the least-squares problem minimization

problem is under-determined, especially now when only a few neighboring views
are included. The standard least-squares framework chooses the solution with
minimum norm, which may not be the best choice. In the next section, we will
obtain a more robust method by instead approximating the forward model.

10.3.1 Approximating the Forward Model

Consider a function f that maps a continuous pose vector u (e.g. a set of pose
angles φ, θ) to a feature vector a:

a = f(u) . (10.7)

What our system is supposed to actually solve is the inverse of f – given a channel-
coded feature map, find the pose angles of the object. However, there are several
reasons for trying to model f instead of its inverse. First, it is usually easier to
find a mapping from a low-dimensional space to a high-dimensional space than
the other way around, and the space of pose angles has much lower dimensionality
than the feature vectors. Secondly, in approximating the forward model, we can
enforce the correct intrinsic dimensionality of the manifold which increases the
robustness against noise.

In approximating f , the method of locally weighted regression (LWR) can also
be applied. Here, the input space is relatively low-dimensional, so we can easily
choose a K that makes the model fitting over-determined unless we are really
unlucky in how the training views are distributed, such that the problem is degen-
erated.

10.3.2 Solving the Inverse Problem

The LWR method produces a linear approximation of the forward model given a
point of linearization u. This section describes how to solve the inverse problem
by formulating it as a minimization problem

min
u
‖f(u)− q‖ , (10.8)

meaning that we look for the u that brings the expected appearance of the object
as close as possible to the observed q. One solution strategy is to start by finding
the prototype at closest to our query vector q and linearize f around the associated
ut according to the locally weighted regression technique. The linearized version
of (10.8) is then

min
u
‖f0 + Cu− q‖ , (10.9)

from which u can be obtained as u = C†(q − f0). Note that C† and f0 de-
pend on how the neighbors are weighted, which in turn depends on the point of
linearization. This motivates using an iterative procedure, where f is linearized

116 Linear Interpolation on CCFMs

around successively better and better estimates of u. This essentially becomes a
Gauss-Newton method for solving (10.8) and is related to the patch tracking from
Sect. 3.3. In Chapter 11, these two problems will be fused into a single iterative
optimization.

To increase the robustness of the method, the whole optimization process could
be run several times for different initial guesses of u, e.g. the ut’s associated to
the K best matching at’s.

10.4 Summary

The techniques described in this chapter can be combined into several distinct
methods. I suggest to avoid including all available training views in the same least-
squares problem but to restrict the interpolation to a subset of views which are
believed to be related to the query view. I suggest taking the response u from the
best matching training view and fine-tune u by running an iterative optimization
based on an LWR model of the forward function according to Sect. 10.3.2.

The forward model requires that each training view is equipped with a true
pose parameter. If the training views are associated with a class label only, this
model can not be applied. It may still motivated to run the view interpolation
from Sect. 10.1 anyhow, since the fact that the query view can be written as a
convex combination of two training views from the same object class is a strong
indication that the view in fact belongs to this class. In this case I suggest to run
the view interpolation between the K best matching views within each class, and
use the residual error between the interpolated CCFM and the query CCFM as a
quality measure.

10.5 Experiments

10.5.1 Pose Estimation in Clutter

In the first experiment, the goal is to determine the pose of a toy car given its
known position in the image. The motivation for assuming a known image position
is to test the performance of the view interpolation method in isolation. In order to
provide a realistic setting, the method was trained on images of the car with black
background and evaluated on images with cluttered background (see Fig. 10.4 and
10.5)1. Views were available for every 5◦ in both the φ and θ domain. The method
was trained on views 20◦ apart in each domain and evaluated for all intermediate
angles, such that the exact same angle is never present in both the training and
evaluation set. Table 10.1 shows the RMS error of the estimated angles (both
individually and together) for parameter variations around some manually selected
good values. In the best case, the pose error was around 3◦, which is 15% of the
training view spacing.

The most striking observation is that the results are dramatically degraded
when L1 normalization is used. This is because of the background clutter. Since

1The images were produced by Viksten, Johansson, Moe in connection with [33]

10.5 Experiments 117

Figure 10.4: All training views. Y-axis: θ, X-axis: φ.

Figure 10.5: Examples of evaluation views with background clutter.

118 Linear Interpolation on CCFMs

Options Eθ Eφ Eθ,φ

Default 3.1 3.0 3.0
Distance: sqrt 5.6 4.8 5.2
Weights: soft threshold 3.4 3.1 3.3
Preprocess-σ: 2 3.7 3.6 3.7
Normalization: L1 11.0 16.6 14.1
Channels: 8× 8× 6 3.5 3.4 3.4
Channels: 6× 6× 6 4.4 4.9 4.7
Neighbors: 5 3.5 3.0 3.3
Neighbors: 6 3.6 3.1 3.4

Table 10.1: Pose estimation results on cluttered background for some parameter
variations around a manually selected good choice. Default choice is (Channels:
8× 8× 8, Normalization: None, Weights: Grad-magn, Preprocess-σ: 1, Distance:
Euclidean, Neighbors: 4).

nx × ny Eθ,φ

6x6 1.2
8x8 1.2

10x10 1.3
12x12 1.4
14x14 1.4

nf Eθ,φ

4 1.2
6 1.2
8 1.3
10 1.3

neighbors Eθ,φ

3 1.3
4 1.2
5 1.2
6 1.2
7 1.3
8 1.6
9 1.9

Table 10.2: Reproduction of results from [59]. RMS error in degrees for pose
angles around the manually selected option 8 × 8 × 6 channels, 4 neighbors, eu-
clidean distance, raw gradient magnitude weighting. Left: Varying spatial resolu-
tion. Middle: Varying number of orientation channels. Right: Varying number of
neighbors.

there are much more edges present in the cluttered images, normalizing the repre-
sentation decreases the values of the channels containing features from the object.

In [59], a similar dataset was used, but there the evaluation views also had black
background. The result was an RMS pose error of between 1◦ and 2◦ depending
on the parameters. For completeness, these results are reproduced in Table 10.2.

These datasets will be revisited in Chapter 11, where the position of the object
in the image plane will also be adjusted simultaneously.

10.5.2 COIL Classification

In the second experiment, I examine whether it is possible to improve the clas-
sification results on the COIL database by introducing a view interpolation. In
this case, I am not interested in determining the actual pose of the object, but
just to find its class label. First, the query view was compared to each training

10.6 Discussion 119

Features Eval/train ratio rNN rI Improvement
orient 8 93.30% 95.35% 30%

6 95.78% 97.65% 44%
4 97.94% 99.26% 64%

orient+color 8 99.35% 99.49% 22%
6 99.67% 99.93% 80%
4 99.89% 99.98% 83%

Table 10.3: Recognition results on the COIL database using Gauss-Newton on
LWR.

view. The best four matching object classes were selected for a refinement step.
In this refinement, the Gauss-Newton method was run on the forward LWR model
according to Sect. 10.3.2, initialized on the best matching view within the given
object class. The cost of a certain class assignment was then taken as the residual
error of the view interpolation process.

The best parameters from the experiments in Chapter 5 were used (square-
root distance, 5 channels in each dimension, non-thresholded gradient magnitude
as weights). The experiments were run both with and without color included in
the channel coding.

The resulting classification rates rNN for the nearest neighbor method and rI
for the interpolated version are shown in Table 10.3. The column “Improvement”
is computed as (rI− rNN)/(1− rNN) and shows the percentage of the classification
errors that were removed by switching to the interpolated method. The results
clearly indicate that the view interpolation helps improving the classification, espe-
cially if the training views are located more closely in pose space. This is natural,
since the local linear approximation of the training view manifold is more accurate
when the training views are close together. The best classification rate of 99.98%
obtained using ratio 4 means that only a single one out of the 5400 evaluation
views was erroneously classified.

10.6 Discussion

This chapter has discussed some variations on linear systems and interpolation
between CCFMs. The recommended approach is to perform a local interpolation
between neighboring views in pose space. This method gives improved classifi-
cation results compared to a raw nearest neighbor method and produces rather
accurate estimates of continuous pose parameters even in the presence of back-
ground clutter.

In Sect. 10.4, two distinct situations were considered – either the true pose
parameters of the training views are known or unknown. A situation somewhere
in between is where an object is observed continuously while changing pose, but
where the actual pose parameters are unknown. This is along the ideas of the
COSPAL project (see Sect. 1.3), where one goal is to keep the amount of engi-
neering and user intervention in artificial vision systems to a minimum. Instead of

120 Linear Interpolation on CCFMs

supplying the system with manually created training views, a more flexible option
is to let the system gather training views autonomously. One way to achieve this
is to move the robot semi-randomly, trying to push objects around in order to
create variations in pose. This was done within the project, see e.g. [31]. The
system could get some information about which views are close together in pose
space by simply assuming that closeness in time implies closeness in pose space
[39]. By connecting views believed to be close to some graph structure, a number
of neighbors in this graph could be selected without knowing their actual pose
parameters. Alternatively, some unsupervised learning method could be applied
to structure the training views into a continuous manifold. This kind of analysis
was never made in COSPAL or within my PhD work but is an interesting direction
of future research.

Chapter 11

Simultaneous View

Interpolation and Tracking

...where the tracking and view interpolation using channel-coded feature maps de-
cide to merge themselves into a single optimization problem. This results in a more
complete pose estimation method and makes it possible to track an object through
changes in pose.

Object recognition and pose estimation can be done in several ways. One popu-
lar approach is based on local features. Local coordinate frames are constructed
around points or regions of interest [66, 78], and features from each local frame vote
for a certain object and pose hypothesis. In the model-based approach [17, 87],
a geometrical model is fitted to the observed image. This approach is often very
accurate, but requires a good initial guess and a manually constructed 3D model.
Global appearance-based methods extract features from the appearance of the en-
tire object and match these to training views in memory. Ever since [79, 74], the
most common approach seems to be using PCA.

This chapter describes a view-based pose estimation method using channel-
coded feature maps that combine the patch tracking from Chapter 3 and the
view interpolation using locally weighted regression from Chapter 9 and 10. The
method simultaneously optimizes the position of the object in the image and a set
of continuous pose parameters as defined by the training set.

The motivation for using full object views is two-fold. The first reason is that
once we have formed an initial object hypothesis, it makes sense to use as much im-
age information as possible in order to get an accurate estimate. The second reason
is that using full views, we can focus on the interpolation and view representation,
and ignore other aspects like how to choose interest points and construct local
frames. This makes it easier to compare different view representations. Similar
interpolation techniques as proposed here should however be possible to integrate
also in a local features approach.

In contrast to model-based methods, our approach requires no knowledge of
3D geometry in the system, and is in no way specific to 3D pose estimation. The

122 Simultaneous View Interpolation and Tracking

training set could consist of any parameterized image set, e.g. a robotic arm in
different configurations. This is along the philosophy of the COSPAL project (see
Sect. 1.3), in which as little engineered knowledge of the world as possible should
be included in the system.

11.1 Algorithm

11.1.1 Image and Pose Parameters

Let us consider how an object may look in an image and ignore illumination
for a moment. The set of parameters governing the appearance of the object
can be factored into one set that causes transformations in the image plane only
(translation, rotation, scale change) which will be called image parameters and one
set of remaining parameters, e.g. rotation around the vertical and horizontal axis
which will be called pose parameters. For exactness, it should be noted that when
an object is moved closer to the camera, the change of perspective causes other
changes in appearance than just a scale change. This parameter could be included
as a pose parameter, but when the size of the object is small relative to the distance
between the object and the camera, this perspective effect is negligible.

Consider now a different problem, namely that of estimating the position and
orientation of a camera. If the image is resampled into cylindrical coordinates,
rotating the camera around its optical center causes translations and rotations in
the image plane only. On the other hand, moving the camera causes the image
to change in a way that is dependent on the unknown depth information at each
pixel. Occluded areas may become non-occluded and vice versa. In this case, the
image parameters would be the rotation of the camera, while the pose parameters
would be the camera translation.

In the view-based object recognition framework presented in this chapter, the
pose parameters are handled by a learning approach while the image parameters
are handled analytically.

11.1.2 Appearance Model

Assume that we are given a training set consisting of views of the object for
different pose parameters θt, but for the same canonical image parameters. Each
training view is encoded into a channel-coded feature map ct. We now introduce a
function c = f(θ) that gives a channel-coded feature map from a pose parameter,
such that the training views can be seen as input-output examples of this function.
To approximate f for intermediate pose parameters, the view interpolation using
locally weighted regression from the previous two chapters is used. This method
is briefly summarized here, to make this chapter more self-consistent.

Assume that we want to find the CCFM corresponding to a pose parameter
θ0. First, weight all training samples according to

wt = K(s−1‖θt − θ0‖) , (11.1)

11.1 Algorithm 123

where K is a smooth Gaussian-looking weighting kernel, but with compact sup-
port on [0, 1], and s is a scale parameter. This scale parameter could be selected
adaptively according to Sect. 9.2.1 or as a fixed value based on some prior knowl-
edge about the density of training views in pose space. We then find a local linear
model by solving the weighted least-squares problem

min
A,b

∑

t

wt‖(A(θt − θ0) + b− ct‖2 . (11.2)

Due to the compact support ofK, this produces an interpolation using neighboring
points only. From the Taylor expansion of f , we can identify b and A as the
approximated function value and derivative respectively:

f(θ) ≈ f(θ0) + f ′(θ0)(θ − θ0) ≈ b + A(θ − θ0) . (11.3)

However, the derivative of the local model is not the same as the derivative of
the entire approximation procedure. In Chapter 9, an analytical expression for
this derivative was presented. This analytical derivative is only marginally more
expensive to compute and should be used if one runs into numerical problems
using A as derivative.

11.1.3 Feature Extraction

In runtime, we want to find a patch in the query image that contains the object.
This patch is defined by parameters (s, α, x0, y0), where (x0, y0) is the patch center,
s the radius and α the orientation. From such a patch, a channel-coded feature
map is extracted, and this CCFM is compared to the feature maps extracted from
the training views. This whole process can be modeled by a function c = g(ψ),
giving a CCFM from the query image for a given set of image parameters ψ. This
formulation is used also in Chapter 3 for patch tracking, and in that chapter I also
presented the derivatives of the function g.

As before, the theory is general in that any features can be used. Color and
local orientation will be the primary example, but other interesting features include
curvature, corner energy, etc.

11.1.4 Optimization

Both the image and pose parameters can be optimized simultaneously by the
minimization problem

min
θ,ψ
‖r(θ,ψ)‖ = min

θ,ψ
‖f(θ)− g(ψ)‖ . (11.4)

In words, this will find a position in the image that looks as similar as possible to
something which can be interpolated from the training views.

Equation (11.4) can be solved using your favorite optimization method. I used
Gauss-Newton method with a simple backtracking line search [77]. The update
step direction s is given by

Js = −r , (11.5)

124 Simultaneous View Interpolation and Tracking

View Memory

Samples for different (θ, φ)

Interpolated curve: f(θ, φ)

Observable Features

g(s,α,x,y)

Feature Space

Figure 11.1: Illustration of the simultaneous optimization of image and pose pa-
rameters.

where J is the Jacobian of r, composed from the Jacobians of f and g:

J =

[
df

dθ
, − dg

dψ

]

. (11.6)

In each step of the iterations, we measure g(ψ) directly in the query image by cut-
ting out a new patch using the current ψ and extracting a new feature vector from
this patch. A faster but less accurate option would be to keep the original feature
vector and Jacobian, and use them as a linear approximation of g throughout the
entire solution procedure.

To fully understand the method, it is useful to have a geometrical image in
mind. The ranges of output of the functions f and g define two manifolds in
feature space. The first manifold contains all expected appearances of the object,
learned from training examples, and the second one contains all observable feature
vectors at different positions in the query image. The objective is to find one point
on each manifold such that the distance between the two points is minimal. This
is illustrated in Fig. 11.1.

What the Gauss-Newton method does is to approximate each manifold with its
tangent plane and find the points of minimal distance on these hyperplanes. Let
f(θ+sθ) ≈ f(θ)+f ′(θ)sθ and g(ψ+sψ) ≈ g(ψ)+g′(ψ)sψ. The minimum-distance
points are given by the over-determined equation system

f(θ) + f ′(θ)sθ = g(ψ) + g′(ψ)sψ , (11.7)

which is solved by (11.5) with s = [sθ sψ]T. If the linear approximation is good
enough, we can expect good results even after a single iteration.

11.2 Experiments

11.2.1 Quantitative Evaluation

The method was evaluated on the same dataset used in Chapter 10 with a toy
car scanned on a turn-table. Views were available for every 5◦ in both the θ and

11.2 Experiments 125

nx × ny Es Exy Eq
6x6 2.4% 1.3% 0.016
8x8 2.2% 1.3% 0.016

10x10 2.4% 1.5% 0.017
12x12 2.5% 1.5% 0.017
14x14 2.7% 1.6% 0.018

nf Es Exy Eq
4 2.4% 1.3% 0.015
6 2.4% 1.3% 0.016
8 2.5% 1.3% 0.015
10 2.7% 1.3% 0.016

neighbors Es Exy Eq
3 2.2% 1.3% 0.016
4 2.2% 1.3% 0.016
5 2.1% 1.2% 0.016
6 2.1% 1.1% 0.015
7 2.3% 1.3% 0.017
8 2.4% 1.3% 0.020

Table 11.1: Reproduction of experiments from [59], evaluated on black background.
RMS error for some parameter variations around the around the manually selected
option 8× 8× 6 channels, 4 neighbors.

φ domain. The method was trained on views 20◦ apart, and evaluated on all
intermediate views. This gives 50 training views and 629 evaluation views. The
optimization was initialized with the correct image parameters and at the closest
pose parameters present in the training set.

One problem in measuring the performance here is that the set of angles [α, θ, φ]
is ambiguous such that two distinct set of angles can represent the same 3D orien-
tation of the object. This makes it impossible to measure the error in each angle
separately. To avoid this problem, the pose angles and image rotation were com-
bined into a rotation quaternion, and the error was measured in the quaternion
domain. As a rule of thumb, an RMS quaternion error of 0.015 corresponds to
around 2◦ error in each angle. The scale parameter s is the radius of the local
frame containing the object. The error in scale and position is measured relative
to the true s.

In [59], the method was both trained and evaluated on views with black back-
ground. For completeness, the results from this paper are reproduced in Table
11.1. In a more recent experiment, the method was instead evaluated on views
with cluttered background, as shown in Fig. 10.5 of Sect. 10.5. The same parame-
ter combinations as in Sect. 10.5.1 were used, and the results are available in Table
11.2.

The current implementation runs at a few frames per second on an AMD
Athlon 3800+.

11.2.2 Tracking through Pose Changes

The method was also applied on video sequences of the toy car viewed by a moving
camera. The image and pose parameters of the car were optimized for each frame

126 Simultaneous View Interpolation and Tracking

Options Es Exy Eq
Default 6.0% 4.3% 0.044
Distance: sqrt 7.1% 4.8% 0.049
Weights: soft threshold 5.6% 4.1% 0.040
Preprocess-σ: 2 6.8% 5.3% 0.039
Normalization: L1 6.6% 5.3% 0.062
Channels: 8× 8× 6 5.1% 3.5% 0.044
Channels: 6× 6× 6 8.0% 9.6% 0.064
Neighbors: 5 6.0% 4.3% 0.051
Neighbors: 6 6.0% 4.4% 0.050

Table 11.2: Evaluation on cluttered background for some parameter variations
around a manually selected good choice. Default choice is (Channels: 8 × 8 × 8,
Normalization: None, Weights: Grad-magn, Preprocess-σ: 1, Distance: Euclidean,
Neighbors: 4).

Figure 11.2: Frames 1, 40, 80 and 120 of a sequence where the toy car was tracked
through pose changes.

11.3 Discussion 127

of the sequence, using the estimated parameters from previous frame as an initial
guess. The parameters of the first frame were selected manually since object
detection has not been handled in this chapter. Some frames of one such video
clip are shown in Fig. 11.2. For the graphical overlay, a set of images of the car
spaced 5◦ apart were used, such that the estimated pose angles are quantized
to 5◦ in the illustration. No video sequence with ground truth was available, so
no quantitative evaluation was made in this case. Fig. 11.2 still shows that the
method manages to track the car through significant changes in pose.

11.3 Discussion

In this chapter, I have described an accurate interpolation method for view-based
pose estimation using local linear models and Gauss-Newton optimization. Some
variations in the view representation have been compared in terms of fitness to
this framework. However, the evaluation is in no way complete. There are sev-
eral more parameters to play around with, e.g. the amount of overlap between
basis functions, different soft thresholdings of the orientation image etc. It would
also be interesting to perform a more detailed study on the performance of this
representation compared to other approaches like PCA, wavelet representations
etc. The experiments should also be extended to include occlusion and changes
in illumination. Furthermore, the tracking should be evaluated on a dataset with
known ground truth.

One problem with the dataset is that the spatial size and rough orientation
of the toy car is rather different for different poses. Still, each training view used
the same object bounding box. This has the effect that rather few channels are
activated by the front and back views of the car, leading to a poor resolution. On
the other hand, if we increase the resolution too much, the linearity assumption
will no longer be valid. I expect that the results can be improved by prenormalizing
the local frame of each training view such that the training views become more
similar. This could be done automatically by trying to align each new training
view to the previous ones using image space transformations according to Sect. 3.3.

128 Simultaneous View Interpolation and Tracking

Chapter 12

A Complete Object

Recognition Framework

Congratulations, you reached the final main chapter! Here we will deal with topics
that are not central to the thesis but of great practical importance when it comes
to creating a working system. This chapter is based much more on experience and
practical considerations than earlier chapters, even though it is my intention to
support all statements with convincing arguments.

Now all mathematical and algorithmical building blocks are in place. At this point
we are experts in how to compute channel-coded feature maps and its derivatives,
and using them in various learning scenarios. What remains are some more prac-
tical issues, like which actual features to use. There is a vast number of options
available. Should we include color? How should the orientation be computed and
weighted? Should we normalize the channel-coded feature maps, and how?

This final chapter gives a discussion of such issues based on my implemented
system. I will also discuss how choosing the parameterization of the system can
help making it easier to tune. Finally, I touch the subject of object-oriented design
and describe how virtual interfaces were used to make the system more flexible.

12.1 Object Detection

So far I only addressed the issue of classifying and estimating the pose and posi-
tion of an object where the rough position of the object in the image is already
given. In order to build a complete object recognition system, the issue of ob-
ject detection must also be solved. It would be infeasible to scan a large query
image by exhaustively varying both the position, rotation and scale of the region
of interest, at least using a straight-forward implementation. Instead, I used a
hypothesize-verify approach based on matching image primitives.

130 A Complete Object Recognition Framework

Figure 12.1: The type of objects used in the COSPAL project.

12.1.1 Primitives

From the query image and each training view, a number of primitives are extracted,
for example interest points, line segments or regions of some kind. In order to be
used in the system, these primitives must be equipped with an orientation and a
scale parameter. One option is the patch-duplets in [53], where a pair of interest
points is used, from which the rotation and scale are simply the angle of the line
connecting the points and the distance between the points respectively. Another
option is the SIFT keypoints from [66], which are extreme points of difference-of-
Gaussian filters in scale space. In [78], homogeneous image regions are extracted,
from which not just scale and orientation but an entire local affine frame (LAF)
is constructed.

In the COSPAL project [1], the objects of interest were rather simple geomet-
rical shapes (see Fig. 12.1), which motivated using line segments extracted from
edges. The line segments were constructed by growing lines from seed points of
large gradient magnitude. The orientation and length of the line was adjusted to
minimize a cost function based on the gradient magnitude and color homogeneity
on one side of the line. This is related to e.g. the line detector from [75]. Using
these line primitives is not recommended for general objects, and the object recog-
nizer is implemented such that it is easy to switch to a different feature extractor.
The system design which makes this possible will be described in Sect. 12.4.

After the primitives are extracted, the primitives from the query view are
matched to primitives in the training views. This matching can be made more
selective by equipping each primitive with some descriptor, e.g. a channel-coded
feature map. One tentative match defines a similarity transform between the
training view and the query image. This similarity transform then defines the
local frame in the query image in which the entire object is expected to be seen,
giving us an object hypothesis (see Fig. 12.2). This hypothesis is then either
verified or discarded. Two methods of verifying hypotheses have been tried and
are described in the following subsections.

12.1.2 Verification using Full Object View

Each hypothesis gives us a local similarity frame (a position, orientation and scale)
in the query image where the object is expected to be seen, as illustrated in
Fig. 12.2. In full-view verification, the position of this frame is then adjusted to-

12.1 Object Detection 131

Figure 12.2: Illustration of the similarity relationship between the query view and
training views, from an actual run of the system. In the verification step, the left
hypothesis got a lower cost than the right one.

gether with the pose parameters of the object according to the technique described
in Chapter 11.

This method works well, but is relatively slow when the system has been trained
for many objects, and several objects are present in the query image. The most
time-consuming step in the current implementation is the extraction of CCFMs
from the query image. First of all, one CCFM must be extracted in each step of
the iterative refinement. But even if this refinement is just run on the best few
hypotheses, at least one CCFM must be extracted from the query image for each
hypothesis. These CCFMs can not be reused, since each hypothesis defines its
own local frame.

12.1.3 Verification using Local Patches

Another option is to extract one CCFMs around each primitive only. This can be
done once and for all for each query image. The verification is then done using
these CCFMs only. This is more related to the common local features approach for
object recognition, see e.g. [67, 78, 81]. For the hypothesis construction, only one
primitive from the given training view is used. The similarity transform obtained
from the hypothesis predicts where the rest of the primitives from the training
view are expected to be found in the query image. These predicted primitives
are then matched to actual primitives in the query view, and a complete score of
the hypothesis is computed based on a combination of the geometrical error of
the primitive and of the difference between the CCFMs of the query and training
primitive.

Using this approach, the number of CCFMs extracted from the query image is
greatly reduced, but it becomes more difficult to apply the iterative refinement. In
principle, the image position of each CCFM could be adjusted to minimize some
cost, but this becomes more difficult than in the full-view case since there are
several patches to optimize at once, and some sort of geometrical consistency must
be maintained between the patches. Adjusting the pose parameters related to the
training views becomes even more difficult since there is no clear correspondence
between primitives of different training views.

If this verification scheme is used, we must also decide how the cost of the
different patches should be combined in creating a total cost for each object hy-
pothesis. This can be tricky especially if the same detection threshold is to be used

132 A Complete Object Recognition Framework

for all objects. The simplest approach is to sum the cost of all matching patches
and give a constant penalty for missing patches. In order not to punish objects
containing many patches, the cost should then be divided with the total number of
patches contained in the given training view. However, not all patches are equally
informative. A match between patches containing much structure should somehow
provide more evidence of the object hypothesis. A heuristic approach to partially
overcome this problem was proposed in [67]. Each primitive of the query view
was matched to primitives from the training views. The cost was then taken as
the ratio of distances associated with the best match and the next second best
match, which gives an advantage to highly specific patches. A detailed study on
such techniques are outside the scope of this thesis.

12.2 Preprocessing

Features such as local orientation and color can be computed in several ways, and
there are different strategies for weighting the pixels based on the certainty of
the feature extraction. In this section, I will discuss different choices for feature
extraction and preprocessing.

12.2.1 Orientation

The orientation of local image structures can be estimated in several ways. The
most straight-forward way is to take the angle of the gradient produced by a
simple operator like the Sobel filter. One major problem with this approach is
that the edges separating an object from the background are often among the
most prominent edges of an object. If the color of the background is changed
from dark to bright, the direction of the gradient can change 180◦. In order to
be invariant to background color, we can use double angle representation [43] or,
equivalently, take the gradient orientation modulo π.

For color images, we could simply convert the image to grayscale before the
gradient filtering, but this approach fails to find edges between isoluminant areas.
Simply filtering each channel separately and superposing the result gives the same
effect. Instead, I recommend using the color edge detector suggested by [95], also
described in [51] and used in the related publication [31].

Now assume that we want to include local orientation in a channel-coded fea-
ture map. Any orientation estimate will be very noise in areas where no clear
image structure is present. The simplest approach is to nevertheless weight each
pixel equally, hoping that these more or less random orientations will be uniformly
distributed, contributing roughly equally much to each channel. While this ap-
proach was used in [27] with good results, I personally find it much too unreliable.
A region with a weak oriented texture will get as much (if not more) attention as
a clear and sharp edge.

The second idea is to weight each pixel according to the gradient magnitude
by using the weights wi in the encoding (3.2), such that strong edges contribute
more to the CCFM than weak edges. The exact value of the gradient magnitude
is however often not a reliable feature, since it depends on factors such as camera

12.2 Preprocessing 133

Figure 12.3: Thresholded gradient magnitude with the proposed normalization,
using constant threshold and increasing σ to the right.

blur. This leads us to using thresholded gradient magnitude, such that the exact
magnitude does not matter as long as it is large enough. However, the thresholded
gradient magnitude has the form of a strip around the edge, and the width of
this strip depends on the fuzziness of the edge (see Fig. 12.3). If the image is
preprocessed by a smoothing filter, the width of different edges becomes more
similar. This is the approach used in the implemented system. Another option
could be to run a ridge-non-max-suppression on the edge image (e.g. Canny-style)
prior to creating the CCFMs.

It should be noted that we should never use a threshold relative to the maxi-
mum gradient magnitude in the image or patch. In theory, this would make the
algorithm more invariant to illumination, since multiplying the entire image with
a constant does not change the results. However, if the entire image or patch con-
tains only a relatively homogeneous background, this would cause lots of edges to
be detected everywhere, and some positions in the background may accidentally
be recognized as objects. Furthermore, the maximal gradient magnitude value
in the image is typically a very unstable feature. It would be interesting to test
different edge detectors with more stable certainty measures, e.g. [23].

12.2.2 Color

In order to be invariant to illumination effects such as shadows, it is advantageous
to use a color space that separates the color into intensity and two illumination-
independent color components like in the HSV (or HSI) color space [37]. By using
only the hue and saturation component of the HSV color, we get a representation
of color which is theoretically independent of lighting intensity and shadows. This
strategy was used in the P-channel matching in e.g. [27]. However, this represen-
tation has a singularity near pure black and pure white, making the hue of these
colors very unstable and in practice often determined by image noise only.

A simpler representation that avoids this problem it to use intensity (mean
value of red, green and blue) and two color components R − G and Y − B (red
minus green, yellow minus blue). These three components constitute an orthogonal
basis in RGB space. This is a relatively common color representation in computer
vision and also has some similarity to the receptive fields of certain color sensitive
cells in the brain [49].

If color is used together with weighted local orientation, each pixel is weighted
according to the gradient magnitude, which causes only pixels close to edges to

134 A Complete Object Recognition Framework

contribute to the CCFM. Often, the color within a uniform image region is a more
stable feature than the color at actual edge pixels. Consider the case of a non-
maximum-suppressed edge representing the termination of an occluding surface.
The actual color on the edge may be the color of the occluded or occluding surface
or a blend of both depending on the precision of the edge detection and the char-
acteristics of the camera. Instead of picking the color from the actual edge, we
should pick the colors on each side of the edge, located d pixels away orthogonal
to the edge in each direction.

If thresholded edges are used without non-max-suppression, each edge will give
rise to a strip of non-zero weights around the edge (see Fig. 12.3). If the color
values are extracted from the original unfiltered image, the colors from both sides
of all edges will be included as well as the blended colors from the actual edge.
The proportion of blended an unblended colors is dependent on the fuzziness of the
edge, which is in turn often dependent on the image capture conditions. However,
this is still one of the simplest approaches and works well in practice. This is the
method used in the experiments.

12.3 Parameter Decoupling

When building a large system of any kind, the number of parameters to tune
tends to increase rapidly in the size of the system. It is important to carefully
consider how these parameters are expressed in order minimize the burden of
manual parameter tuning. This is best illustrated with an example. Assume
that we have a simple system that finds edges by first blurring the image with a
Gaussian with standard deviation σ, and then detects edges using a threshold T
on the Sobel gradient magnitude. We now have two parameters to tune: σ and T .
When σ is increased, all edges get more blurred, and the gradient magnitude will
be lower everywhere, forcing us to select a new value for T as well. With just two
parameters this may be a small problem, but imagine a tightly coupled system
with tens or hundreds of parameters, where changing one means that many (if not
all) other parameters need to be adjusted accordingly.

A system that does not have this tight relationship between parameters, where
one can be changed more or less independently from the others, is said to have
an orthogonal parameterization1, and the process of making the parameters more
independent is referred to as parameter decoupling. This section describes how
this is achieved in my system. This is a practical aspect that may not be of
great theoretical interest, and most advice given here may seem rather obvious.
Nevertheless, overlooking this aspect can easily cost you many hours of tedious
parameter tuning.

12.3.1 Prefiltering Sigma and Gradient Magnitude

The first issue relates to the introductory example of gradient magnitude thresh-
olding. It is very common to normalize a Gaussian filter to unit sum. However, this

1Note that orthogonal in this context is not to be understood in a strictly mathematical sense.

12.3 Parameter Decoupling 135

is not the best approach if the blurring is to be followed by a gradient operation
and thresholding.

Consider a discrete image I and any Gaussian-looking discrete smoothing filter
kernel h of size N ×N . For simplicity of notation, h is indexed with the origin at
the center such that the filtering result at pixel (x, y) is

(I ∗ h)[x, y] =
∑

i,j

h[i, j] I[x+ i, y + j] , (12.1)

The discrete derivative of this filtering result with respect to x is

d(I ∗ h)

dx
[x, y] =

∑

i,j

h[i, j] I′x[x+ i, y + j] . (12.2)

If I contains a vertical edge passing through (x, y), this gives the gradient mag-
nitude of the filtered edge. If the edge is a step edge of unit height, I′x is a
“Dirac-line”, and the derivative of the filtered image becomes

k =
d(I ∗ h)

dx
[x, y] =

∑

j

h[0, j] . (12.3)

If the edge is not an ideal step edge, I′x will contain a ridge, but the total sum of
I′x in the neighborhood will only depend on the height of the edge (the intensity
difference between both sides of the edge). This means that (12.3) will still be a
good approximation if the filter kernel varies slowly in the area of the ridge, that
is if the standard deviation is large compared to the edge width.

If the filter kernel is isotropic, the same holds for edges in all directions. This
shows that in order to keep the gradient magnitude of edges independent of the pre-
processing filter size, we should normalize the filter kernel such that

∑

j h[0, j] = 1,
in contrast to the traditional unit normalization of the entire filter kernel. Some
thresholded edges obtained using this normalization are shown in Fig. 12.3.

12.3.2 Patch Resolution and CCFMs

Consider an image patch of size (X,Y) from which a channel-coded feature map is
to be constructed. If we resample the patch to a different resolution (kX, kY), the
CCFM should be approximately the same in order to decouple the patch resolution
from other parameters of the system. This is achieved in different ways depending
on how the CCFM is constructed. The simplest case is where the encoding weight
w(x, y) = 1 everywhere. In this case, simply use

cn =
1

I

∑

i

B(xi − x̃n) , (12.4)

where I is the number of encoded pixels. Things are less obvious when the weights
w(x, y) also depend on the input image. Consider the case where the weights are
thresholded, non-max-suppressed gradient magnitudes. In this case, the number

136 A Complete Object Recognition Framework

of pixels with non-zero weights does not scale linearly in the number of pixels of
the entire patch. Instead, since the non-max-suppressed edges make up a one-
dimensional structure, the total edge length scales linearly in the sides of the
patch. The normalization to use is rather

cn =
1√
I

∑

i

w(xi, yi)B(xi − x̃n) . (12.5)

If raw gradient magnitudes without thresholding and non-max-suppression are
used as weights, the lateral extension of the edge must also be considered. Consider
the gradient magnitude of a step edge filtered with a Gaussian with two different
σ. If the normalization from 12.3.1 is used, the maximal value of the magnitude is
roughly independent of σ, and all that differs is the width of the gradient magnitude
profile (see Fig. 12.3). This means that

∑

x,y

w(x, y) ∝ σl , (12.6)

where l is the total length of the edge. The length of the edge is proportional to
the lengths of the sides of the image patch, whereas σ is a design parameter that
can be set independent from the patch resolution. This means that a properly
normalized CCFM in this case would be computed as

cn =
1

σ
√
I

∑

i

w(xi, yi)B(xi − x̃n) . (12.7)

If the gradient magnitude is thresholded without non-max suppression, the width
of the thresholded gradient is still proportional to σ, so (12.7) is still valid. If
the gradient magnitude is subjected to some non-linear operation, e.g. a smooth
thresholding, the analysis could be made much more complicated. I will stop here
and use (12.7) as a heuristic normalization whenever the gradient magnitude is
somehow used for computing the weights.

At this point, one may come to believe that just normalizing the CCFMs with
the total sum of the input weights at runtime is a better solution. However, this
has its own drawbacks, illustrated for example in the experiments in Sect. 10.5.1,
where the pose estimation results were severely impaired by using this kind of
normalization. The recommended approach is to normalize in a data-independent
way, but still take all expected systematic effects of resolution and prefiltering into
account as is described in this section.

12.3.3 CCFM Distance

Ideally, we would like to make our distance measure between the CCFMs indepen-
dent of the number of channels. As was seen in Sect. 5.2.1, this is not possible using
the Euclidean distance. In order to obtain this, I suggest using the square-root
distance according to

∑

n

(√

c1[n]−
√

c2[n]
)2

. (12.8)

12.4 Object-Oriented Design 137

Note especially that the distance is not normalized by dividing with the total
number of channels. Consider the spatial resolution of channels and an image
region where the features are relatively homogeneous. If the channel resolution
is doubled in the horizontal dimension, the number of pixels contributing to each
channel is halved, which makes the new channel values approximately half the old
ones. At the same time, the number of channels is doubled, so the final distance
is approximately the same, without the need for further normalization.

12.4 Object-Oriented Design

Also in software engineering, people talk about orthogonal systems. Here, orthog-
onality means that different parts of a system can be varied independently. The
implementation of one class should be able to change without affecting other parts
of the system, and different classes should only communicate through well-defined
interfaces. This section describes parts of my object recognition system from an
object-oriented design perspective. I do not aim at a complete description of the
system, but highlight some examples where the orthogonality principle has been
used. All code listings contain C++ code extracted from my actual implemented
system, but the code has been simplified in order to illustrate the key concepts.
In the pseudocode, variables with the prefix m are class member variables, and
class names starting with capital I denote virtual interfaces.

A more detailed description about my implementation is available as a technical
report [54]. A classical textbook on object-oriented design is [34], and for more
C++ specific concepts, I strongly recommend [70].

12.4.1 Hypothesize-Verify Framework

Many methods in computer vision use the hypothesize-verify-approach. In this
approach, there is some mechanism for creating hypotheses, often at random, and
another mechanism to verify these hypotheses by some more extensive computa-
tion. One example of this approach is finding transformations using RANSAC
[45]. Here, the hypothesize step consists of selecting a minimal subset of corre-
spondences. In the verification step, the transformation is computed using these
correspondences, and the number of inliers (points that fit to this transformation)
is used as a quality measure.

The object recognition approach described in Sect. 12.1 is another instance
of hypothesize-verify. In a flexible view-based object recognition framework, we
would like to be able to select the verification strategy independently from how
the hypotheses are created. This is possible using virtual interfaces. Listing 12.1
contains the interface specifications and a simple implementation of an abstract
hypothesize-and-verify algorithm that returns all hypotheses with a cost lower
than a threshold.

In another situation we might want to look for the single best hypothesis, to
stop once we find a hypothesis that is better than a certain threshold, to log all
examined hypotheses, and so on. The proposed design separates the control struc-
ture from the actual methods used for selecting and verifying hypotheses. This

138 A Complete Object Recognition Framework

Listing 12.1: Definition of an abstract hypothesize and verify framework

class IHypothesizer{
public:

virtual void start(const Image& img) = 0;

virtual ObjectHyp∗ getNextHyp() = 0;

};

class IVerifier{
public:

virtual double verify(const ObjectHyp& hyp) = 0;

};

HypList∗ ObjectRecognizer::hypAndVerify(

const Image& img, IHypothesizer∗ hypothesizer, IVerifier∗ verifier)

{
HypList∗ hypList = new HypList();

hypothesizer−>start(img);
while(...){

ObjectHyp∗ hyp = hypothesizer−>getNextHyp();

double cost = verifier−>verify(hyp);

if(cost < m threshold){
hyp−>cost = cost;

hyps−>add(hyp);
}

}

return hypList;

}

12.4 Object-Oriented Design 139

Listing 12.2: Interface for a primitives detector

struct SimilarityFrame{
double x;

double y;

double scale;

double rot;

vector<double> extra;

};

class ISimilarityDetector{
public:

virtual vector<SimilarityFrame> run(const Image& img) = 0;

virtual double match(const SimilarityFrame& sf1,

const SimilarityFrame& sf2,

bool useExtraOnly) = 0;

};

creates a more orthogonal system, where any hypothesizer can be used together
with any verifier in any control structure.

12.4.2 Image Primitives

The interface of a general image primitives detector that fits within the imple-
mented system is shown in Listing 12.2. Any class deriving from this abstract
base class can be used. The class SimilarityFrame defines a general image primi-
tive equipped with a position, rotation, scale and possibly some extra information,
like the color of a region or line segment.

At first, one may believe that a primitives detector should simply detect primi-
tives, and that it is sufficient to specify the run function in the interface. However,
when matching prototypes between the query view and training view we should
take into account any extra information equipped to the primitive (like color).
Only the detector itself knows what this extra information means, so the match-
ing must be done by the detector. Furthermore, when verifying a hypothesis
using the local patch approach from Sect. 12.1.3, each primitive from the train-
ing view is transformed to the query view based on the current hypothesis and
matched with the primitives in the query view. This matching is done using not
only the similarity-invariant information, but also including the actual similarity
parameters in order to enforce geometrical consistency between all primitives of
the object. The best strategy for weighting the error in position, rotation and
scale can be different for different primitives. For example, the endpoints of a line
segment are often much less reliable than its orientation. This means that an error
in orientation should be more costly than an error in scale.

The proposed solution is to include the matching function within the detector
as a function match. A boolean flag determines whether the actual similarity
parameters should be included in the matching. This design encapsulates all parts
of the system that require knowledge about the primitive extraction into a single

140 A Complete Object Recognition Framework

Listing 12.3: Interface for a CCFM Encoder

class ICcfmEncoder

{
public:

virtual void encode(

const Image& image, const Image& weights, Ccfm& result) const = 0;

virtual void encodeWithSimilDerivs(

const Image& image, const Image& weights, CcfmWithSimilDerivs& ccfm) const = 0;

};

class, which makes it easy to switch from one detector to another, even at run-time.

12.4.3 View Representations

A related situation is the extraction of a channel-coded feature map including
its derivatives from a similarity frame. The rest of the system should not have
to know about details of this feature extraction. For example, the iterative pose
optimization procedure sees only a feature vector and its derivatives. By encapsu-
lating all information about how these features are computed into a single class,
it is easy to switch between different encoding algorithms, or to a completely dif-
ferent view description. All that is required by the view encoder is that it derives
from the abstract base class ICcfmEncoder, specified in Listing 12.3. The Ccfm

and CcfmWithSimilDerivs are simple classes that contain the actual CCFM as a
vector, without or with the derivatives respectively.

Chapter 13

Concluding Remarks

Research is like a tree search. Every question answered raises new questions, and
different strategies can be adopted to traverse this tree. In a depth-first search,
you select an approach and try to exhaust it, following up on every new question
that appears. In a breadth-first search, you first try a multitude of approaches,
keeping many questions unanswered until you decide which approach to dig deeper
into. My work has been a breadth-first search restricted to the subject of channel-
coding within computer vision and machine learning. During my thesis work I
addressed several subjects like Bayesian statistics, correspondence-free learning,
tracking and object recognition in a quest for the application in which channel-
coding finds its best use. The issue that finally caught my largest interest, partly
due to the requirements of the COSPAL project, was object recognition and pose
estimation.

The objective of the work behind this thesis was to explore the properties of
and find good uses for channel-coding in artificial learning vision systems. From
a cognitive systems point-of-view, one important characteristic is its position in
between the continuous and discrete domain. This property has been exploited
e.g. in the correspondence-free learning, where discrete and continuous quantities
can be used more or less seamlessly. Another key property is the possibility of
representing the presence of multiple values. This makes channel-coded feature
maps more informative and robust against clutter than a simple low-resolution
image patch.

The use of B-spline piecewiseness should be considered as an engineering tool
for speeding things up on today’s serial computers. The exact shape of the basis
function is not expected to have any practical significance, and the computational
advantage may not hold on a different platform, e.g. a highly parallel analog system
more similar to the human brain.

The disadvantage of the breadth-first approach is that it leaves less time for
making exhaustive experiments and comparisons, and leaves many questions unan-
swered. Some remaining open issues are:

· Do we need all monopieces used in Chapter 4, or can we get as good results
in practice using only a small subset?

142 Concluding Remarks

· How much better is tracking using CCFMs compared to e.g. a KLT tracker?
Is it worth the additional effort?

· How can the ideas about soft message passing in Chapter 6 be used to
construct a computationally feasible algorithm?

· In what applications will the correspondence-free learning from Chapter 8
be really useful?

· What other features except color and orientation are useful?

· How well does the pose estimation method from Chapter 10 and 11 perform
compared to any other published method?

· How much does the methods presented in this thesis have to do with what
is actually going on in the human brain?

I simply have to realize that only so much can be done within a given amount
of time. Some chapters of this thesis could probably be expanded into an entire
thesis of its own by following-up on all loose ends, making experiments for different
application areas and detailed comparisons to other published methods. There is
always more to do. At some point one needs to draw a line and summarize what
has been done so far in order to be able to move forward. I hereby draw my line
and conclude my thesis.

Appendices

A Derivatives in Linear Algebra

A.1 Introduction

Taking derivatives of expressions involving vectors and matrices is often considered
complicated and confusing. This appendix gives a practical crash course in linear
algebra differentiation, without rigorous mathematical overhead. The goal of this
section is being able to compute complicated derivatives like dy

dw with

y = (XTWX)−1XTWp (A.1)

W = diag(w) (A.2)

related to what is required in Chapter 9. If you know how to find this derivative,
you can safely skip this appendix.

First of all, when dealing with linear algebra, we should think about the deriva-
tive as a linear mapping transforming an increment of the input variable to an
increment of the output variable. In the one-dimensional case, this mapping is
conveniently represented by a single number. In the multi-dimensional case, it
will be more convenient to express this linear mapping implicitly using differential
notation, like e.g. dy = 2xT dx . This should be interpreted as “the derivative of
y with respect to x is the linear mapping ∆x 7→ 2xT ∆x ”.

There are several ways to define differentials more precisely, see e.g. [19, 21].
In practice however, we can just think of dX as a small increment of X, such that
if X is an m × n matrix, so is dX . These differentials can be manipulated and
moved around just like regular vectors and matrices. If we ever need to express
the derivative explicitly, it will be denoted as dy

dx and defined from the indirect
relationship

dy =
dy

dx
dx . (A.3)

Note that dy
dx in this case is treated as a symbol of its own, and should not be

interpreted as a true division of dy and dx .
One common source of confusion is how the derivative should be transposed.

This becomes clear from (A.3) since the product must be well-defined. For exam-
ple, the derivative of a column vector with respect to a scalar is a column vector,

144 Appendices

whereas the derivative of a scalar with respect to a column vector is a row vec-
tor. Furthermore, the derivative of a vector with respect to another vector is (in
general) a matrix, and the derivative of a matrix with respect to a scalar is a
matrix.

However, when taking the derivative of a matrix with respect to another matrix,
we have no guarantee that the derivative can be expressed in the form prescribed
by (A.3). For example, assume that we have dA = X dBXT. There is no general
way in which this expression can be manipulated to put dB at the end unless we
introduce higher order linear objects. In this case, we are much better off using
the differential notation.

The only basic rules of differentiation we will need are the following:

d(A + B) = dA + dB (A.4)

d(AB) = dAB + A dB (A.5)

d(AT) = (dA)T (A.6)

dC = 0 for constant C . (A.7)

The frequently used linearity d(CA) = CdA (for a constant C) follows from
(A.5) and (A.7). By applying these simple rules systematically, we can tackle
most linear algebra expressions.

A.2 Derivatives with respect to Vectors

As the first example of how to differentiate with respect to a vector variable,
consider

d(‖v‖2) = d(vTv) =

= d(vT)v + vT dv =

= (dv)Tv + vT dv =

= 2vT dv , (A.8)

giving the explicit derivative as

d(‖v‖2)
dv

= 2vT . (A.9)

Another example is (considering C constant)

d(xT Cx) = d(xT)Cx + xT d(Cx) =

= (dx)TCx + xTCdx =

= xT(CT + C) dx . (A.10)

The Euclidean norm of a vector can be handled using

d‖v‖ = d(‖v‖2)1/2 =
1

2
(‖v‖2)−1/2 d

(
‖v‖2

)
=

= ‖v‖−1vT dv . (A.11)

A Derivatives in Linear Algebra 145

A useful variety of the quotient rule can be derived as

d(x−1v) = d(x−1)v + x−1 dv = −x−2 dxv + x−1 dv =

= x−1(dv − x−1v dx) . (A.12)

This can be used to differentiate a normalized vector. Let ṽ = ‖v‖−1v. We then
have

dṽ = ‖v‖−1(dv − ṽ d‖v‖) =

= ‖v‖−1(dv − ṽ‖v‖−1vT dv) =

= ‖v‖−1(I− ṽṽT) dv . (A.13)

If the vector instead is normalized to unit sum by ṽ = (1Tv)−1v, we get

dṽ = (1Tv)−1(dv − ṽ d(1Tv)) =

= (1Tv)−1(dv − ṽ1T dv) =

= (1Tv)−1(I− ṽ1T) dv . (A.14)

A.3 Derivatives with respect to Matrices

The inverse of a matrix can be handled by a product rule trick. Note that dI = 0,
since I is constant. We can then write

dI = d(A−1A) = d(A−1)A + A−1 dA = 0 . (A.15)

By solving for d(A−1) , we get

d(A−1) = −A−1 dAA−1 . (A.16)

This is an example where we really get an advantage from working with differentials

instead of derivatives, since the explicit derivative dA−1

dA can not be expressed
without higher-order linear objects.

When taking the derivative of a scalar with respect to a matrix M, it may seem
natural to represent the derivative with a matrix of the same dimensions as M,
but this does not follow (A.3) and is contradictory to the special case where M
has only one column (and looks like a vector). Some textbooks, e.g. [10], actually
use the opposite transpose. My advice is to avoid expressing derivatives explicitly
unless (A.3) is followed and stick to the implicit differential form instead, since
this is less ambiguous.

When differentiating scalar-valued expressions with respect to matrices, it is
often convenient to use the Frobenius matrix product:

〈
A,B

〉

F
=
∑

i,j

A[i, j]B[i, j] . (A.17)

Some useful relations involving this product are
〈
AB,C

〉

F
=
〈
B,ATC

〉

F
=
〈
A,CBT

〉

F
(A.18)

〈
A,B

〉

F
= tr(ATB) = tr(ABT) = tr(BTA) = tr(BAT) . (A.19)

146 Appendices

The product rule of differentiation also hold for the Frobenius product, in which
case it looks like

d
(〈

A,B
〉

F

)
=
〈
dA ,B

〉

F
+
〈
A, dB

〉

F
. (A.20)

Related to Chapter 7 and 8, we consider differentiating the least-squares expression

E = ‖CA−U‖2F , (A.21)

where A and U are constant. Using the Frobenius product, we get

dE = d
〈
CA−U,CA−U

〉

F
=

=
〈
dCA,CA−U

〉

F
+
〈
CA−U, dCA

〉

F

= 2
〈
(CA−U)AT, dC

〉

F
. (A.22)

Here, we could identify (CA −U)AT as the explicit derivative, but in order to
avoid confusion about the transpose, I recommend using the implicit form from
(A.22).

Least-squares problems based on expectation values can be handled in a similar
way. If a and u are random vectors, we have

E = E
{
‖Ca− u‖2

}
⇒

dE = 2
〈
CE

{
aaT

}
− E

{
uaT

}
, dC

〉

F
. (A.23)

This result is often used in statistical signal processing, see e.g. [46].

B Splines 147

−2 0 2
0

0.5

1

−2 0 2
0

0.5

1

−2 0 2
0

0.5

1

Figure B.1: First, second and third-order B-splines with knots marked as circles.

B Splines

B.1 B-Splines

In this thesis, the B-splines will play a central role as channel basis functions. A
spline is a piecewise polynomial with the pieces tied together in regularly spaced
positions called knots. It will be convenient to assume that the knots are unit-
spaced, which can be done without loss of generality. A k’th order spline is k − 1
times differentiable function. One central result in [90] is that all k’th order splines
can be written as a linear combination of regularly spaced special basis functions
called k’th order B-splines, often denoted by Bk. The zero’th order B-spline is the
box function

B0(x) =

{
1 −0.5 < x ≤ 0.5
0 otherwise

. (B.1)

The B-spline of order k + 1 is obtained by convolving Bk with B0. This produces
a piecewise polynomial of order k+ 1 with unit-spaced knots. Some examples are
shown in Fig. B.1. Written out explicitly, the first and second-order B-spline are

B1(x) =

{

1− |x| 0 ≤ |x| ≤ 1

0 otherwise
(B.2)

B2(x) =

3
4 − x2 0 ≤ |x| ≤ 1

2
1
2 (3

2 − |x|)2 1
2 < |x| ≤ 3

2

0 otherwise

. (B.3)

In the rest of the thesis, I will avoid using a subscript k to denote B-spline order,
since this subscript will be needed for other purposes in Chapter 4.

Apart from being the basis function for general k’th order splines, the B-splines
have a number of interesting properties, described in [90].

B.2 Function Interpolation

Assume that we are given a discrete set of training examples (xt, yt) and look for
a function f(x) that connects to these points perfectly. One way of doing this is
to choose a basis function B(x), put one such basis function at each xt and adjust
the linear coefficients of each basis function. We look for a function of the form

f(x) =
∑

t

atB(x− xt) (B.4)

148 Appendices

0 2 4 6
0

2

0 2 4 6
0

2

0 2 4 6
0

2

Figure B.2: The same points interpolated using first, second and third-order
splines.

and find coefficients at such that f(xt) = yt for each t. This is just a linear
equation system in the coefficients at which can be summarized as

Ba = y , (B.5)

where B[i, j] = B(xi − xj), y = [y1, . . . , yT]T (see e.g. [47]).
One key result in the theory on radial basis function networks is a connection

between the basis function used and the properties of the resulting interpolated f .
It can be shown that a function interpolation like above often finds the function
f that minimizes some additional smoothness term [47]. In fact, for any linear
differential operator L, there is a radially symmetric basis function B such that
function interpolation like above using B as basis function finds the function f
that minimizes

∫

‖Lf(x)‖2 dx . (B.6)

If f is viewed as a thin metal plate that is forced to connect to the training points,
L and B can be constructed to minimize the bending energy of this plate, leading
to thin plate interpolation. B can also be selected for simplicity, e.g. as a Gaussian,
and the corresponding L can be found theoretically, such that we know what is
minimized.

B.3 B-Spline Interpolation

In the case of splines, the B-spline kernel acts as our basis function. In spline inter-
polation, we are given regularly spaced points to interpolate between, e.g. at the
integers. We put a B-spline at each integer and find the interpolation coefficients
by solving the equations (B.5).

Since the basis functions are all located at the integers, B[i, j] = B(i − j),
and B will be a Toeplitz matrix, where only the main diagonals have non-zero
elements. This allows solving (B.5) by a recursive filter which can be derived
using the Z-transform. I will not go into details, but refer to [90]. The number
of operations required to solve (B.5) using a recursive filter is O(Tb) where T is
the number of sample points and b is the overlap – the number of B-splines active
at each position. In Fig. B.2, an example is shown where a number of points are
interpolated using B-splines of order 0, 1 and 2.

Bibliography

[1] COSPAL project. http://www.cospal.org, Oct. 2007.

[2] F. J. Aherne, N. Thacker, and P. I. Rockett. The Bhattacharyya metric as an
absolute similarity measure for frequency coded data. Kybernetika, 32(4):1 –
7, 1997.

[3] T. Ahonen, A. Hadid, and M. Pietikäinen. Face recognition with local binary
patterns. In Proc. European Conf. on Computer Vision, pages 469–481, 2004.

[4] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-D point
sets. IEEE Trans. Pattern Anal. Machine Intell., PAMI-9:698–700, 1987.

[5] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11:11–73, 1997.

[6] D. Ballard. Generalizing the Hough transform to detect arbitrary patterns.
Pattern Recognition, 2(13):111–122, 1981.

[7] J. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbor
search in high-dimensional spaces. In CVPR, 1997.

[8] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition
using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 24(24):509–522, April 2002.

[9] A. Berger, S. D. Pietra, and V. D. Pietra. A maximum entropy approach to
natural language processing. Computational Linguistics, 22(1):790–799, 1996.

[10] D. S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[11] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society, 48(3):259–302, 1986.

[12] C. N. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[13] M. J. Black and A. Rangarajan. On the unification of line processes, outlier
rejection, and robust statistics with applications in early vision. Int. Journal
of Computer Vision, 19(1):57–91, 1996.

150 Bibliography

[14] X. Boyen and D. Koller. Tractable inference for complex stochastic processes.
In Proc. 14th Annual Conf. on Uncertainty in Artificial Intelligence, pages
33–42, 1998.

[15] Y. Cheng. Mean shift, mode seeking and clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(8):790–799, 1995.

[16] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Trans. Pattern Analysis and Machine Intelligence, 25(5):564 – 577, May 2003.

[17] A. Comport, E. Marchand, and F. Chaumette. A real-time tracker for mark-
erless augmented reality. In Proc. The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, pages 36–45, 2003.

[18] P. David, D. DeMenthon, R. Duraiswami, and H. Samet. SoftPOSIT: Si-
multaneous pose and correspondence determination. International Journal of
Computer Vision, 59:259–284, Sept. 2004.

[19] L. Debnath and P. Mikusiński. Introduction to Hilbert Spaces with Applica-
tions. Academic Press, 1999.

[20] M. Demirci, A. Shokoufandeh, S. Dickinson, Y. Keselman, and L. Bretzner.
Many-to-many feature matching using spherical coding of directed graphs. In
Proc. 8th European Conf. on Computer Vision (ECCV), LNCS 3021, pages
322–335, May 2004.

[21] H. M. Edwards. Advanced Calculus: A Differential Approach. Birkhäuser,
1994.

[22] A. El-Yacoubi, M. Gilloux, R. Sabourin, and C. Suen. An HMM-based ap-
proach for off-line unconstrained handwritten word modeling and recognition.
IEEE Trans. Pattern Analysis and Machine Intelligence, 21(8):752–760, Au-
gust 1999.

[23] M. Felsberg, R. Duits, and L. Florack. The monogenic scale space on a rect-
angular domain and its features. International Journal of Computer Vision,
64(2–3), 2005.

[24] M. Felsberg, P.-E. Forssén, and H. Scharr. Efficient robust smoothing of
low-level signal features. Technical Report LiTH-ISY-R-2619, Dept. EE,
Linköping University, SE-581 83 Linköping, Sweden, August 2004.

[25] M. Felsberg, P.-E. Forssén, and H. Scharr. Channel smoothing: Efficient
robust smoothing of low-level signal features. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(2):209–222, February 2006.

[26] M. Felsberg and G. Granlund. P-channels: Robust multivariate M-estimation
of large datasets. In International Conference on Pattern Recognition, Hong
Kong, August 2006.

Bibliography 151

[27] M. Felsberg and J. Hedborg. Real-time view-based pose recognition and inter-
polation for tracking initialization. Journal of Real-Time Image Processing,
2:103–115, 2007.

[28] M. Felsberg and J. Hedborg. Real-time visual recognition of objects and
scenes using p-channel matching. In Proc. 15th Scandinavian Conference on
Image Analysis, volume 4522 of LNCS, pages 908–917, 2007.

[29] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[30] P.-E. Forssén. Low and Medium Level Vision using Channel Representations.
PhD thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden,
March 2004. Dissertation No. 858, ISBN 91-7373-876-X.

[31] P.-E. Forssén and A. Moe. Autonomous learning of object appearances using
colour contour frames. In 3rd Canadian Conference on Computer and Robot
Vision, Québec City, Québec, Canada, June 2006. IEEE Computer Society.

[32] V. Franc, M. Navara, and V. Hlavac. Sequential coordinate-wise algorithm
for non-negative least squares problem. Technical Report CTU-CMP-2005-
06, Faculty of Electrical Engineering, Czech Technical University, Technicka
2, 166 27 Prague 6, Czech Republic, February 2005.

[33] B. J. Fredrik Viksten and A. Moe. Comparison of local descriptors for pose
estimation. Technical Report LiTH-ISY-R-2841, Dept. EE, Linköping Uni-
versity, SE-581 83 Linköping, Sweden, November 2007.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[35] M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun. Cognitive Neuroscience. W.
W. Norton & Company, second edition, 2002.

[36] J. B. Gomm and D. L. Yu. Selecting radial basis function network centers
with recursive orthogonal least squares training. IEEE Transactions on Neural
Networks, 11(2), March 2000.

[37] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice-Hall,
second edition, 2002.

[38] G. Granlund. Organization of architectures for cognitive vision systems.
In H. Christensen and H. Nagel, editors, Cognitive Vision Systems, LNCS.
Springer, 2006.

[39] G. Granlund. Personal communication, 2007.

[40] G. Granlund, P.-E. Forssén, and B. Johansson. HiperLearn: A high perfor-
mance learning architecture. Technical Report LiTH-ISY-R-2409, Dept. EE,
Linköping University, SE-581 83 Linköping, Sweden, January 2002.

152 Bibliography

[41] G. H. Granlund. The complexity of vision. Signal Processing, 74(1):101–126,
April 1999. Invited paper.

[42] G. H. Granlund. An associative perception-action structure using a localized
space variant information representation. In Proceedings of Algebraic Frames
for the Perception-Action Cycle (AFPAC), Kiel, Germany, September 2000.

[43] G. H. Granlund and H. Knutsson. Singal Processing for Computer Vision.
Kluwer Academic Publishers, 1995.

[44] G. H. Granlund and A. Moe. Unrestricted recognition of 3-D objects for
robotics using multi-level triplet invariants. Artificial Intelligence Magazine,
25(2):51–67, 2004.

[45] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2001.

[46] M. H. Hayes. Statistical digital signal processing. John Wiley & Sons, 1996.

[47] S. Haykin. Neural Networks, A Comprehensive Foundation. Prentice Hall,
second edition, 1999.

[48] M. T. Heath. Scientific Computing, an Introductory Survey. McGraw-Hill,
second edition, 2002.

[49] D. Hubel. Eye, brain, and vision. http://hubel.med.harvard.edu/. Accessed
February 2008.

[50] M. Isard. PAMPAS: Real-valued graphical models for computer vision. In
Proc. Conf. Computer Vision and Pattern Recognition, 2003.

[51] B. Jähne, H. Haußecker, and P. Geißler, editors. Handbook of Computer
Vision and Applications. Academic Press, 2000.

[52] B. Johansson. Low Level Operations and Learning in Computer Vision. PhD
thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden, Decem-
ber 2004. Dissertation No. 912, ISBN 91-85295-93-0.

[53] B. Johansson and A. Moe. Patch-duplets for object recognition and pose
estimation. In 2nd Canadian Conference on Computer and Robot Vision,
pages 9–16, Victoria, BC, Canada, May 2005. IEEE Computer Society.

[54] E. Jonsson. Object recognition using channel-coded feature maps: C++ im-
plementation documentation. Technical Report LiTH-ISY-R-2838, Dept. EE,
Linköping University, 2008.

[55] E. Jonsson and M. Felsberg. Efficient computation of channel-coded feature
maps through piecewise polynomials. Journal of Image and Vision Comput-
ing. Submitted.

Bibliography 153

[56] E. Jonsson and M. Felsberg. Reconstruction of probability density functions
from channel representations. In Proc. 14th Scandinavian Conference on Im-
age Analysis, 2005.

[57] E. Jonsson and M. Felsberg. Correspondence-free associative learning. In
Proc. International Conference on Pattern Recognition (ICPR), 2006.

[58] E. Jonsson and M. Felsberg. Soft histograms for message passing. In Int. work-
shop on the representation and use of prior knowledge in vision (WRUPKV),
May 2006.

[59] E. Jonsson and M. Felsberg. Accurate interpolation in appearance-based pose
estimation. In Proc. 15th Scandinavian Conference on Image Analysis, 2007.

[60] E. Jonsson, M. Felsberg, and G. Granlund. Incremental associative learning.
Technical Report LiTH-ISY-R-2691, Dept. EE, Linköping University, Sept
2005.

[61] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37:183 – 233,
1999.

[62] S. Krishnamachari and R. Chellappa. Multiresolution Gauss-Markov random
field models for texture segmentation. IEEE Trans. Image Processing, 6(2),
February 1997.

[63] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory, 47(2),
February 2001.

[64] T. Leung and J. Malik. Representing and recognizing the visual appearance of
materials using three-dimensional textons. Int. Journal of Computer Vision,
43(1):29–44, 2001.

[65] Q. Liang, I. Wendelhag, J. Wikstrand, and T. Gustavsson. A multiscale
dynamic programming procedure for boundary detection in ultrasonic artery
images. IEEE Transactions on medical imaging, 19(2):127–142, February
2000.

[66] D. G. Lowe. Object recognition from local scale-invariant features. In IEEE
Int. Conf. on Computer Vision, Sept 1999.

[67] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int.
Journal of Computer Vision, 60(2):91–110, 2004.

[68] B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proc. 7th International Joint Conference
on Artificial Intelligence, pages 674 – 679, April 1981.

[69] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.

154 Bibliography

[70] S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs. Addison-Wesley, 3rd edition, 2005.

[71] T. Minka. Expectation propagation for approximate bayesian inference. In
Proc. 17th Conf. in Uncertainty in Artificial Intelligence, pages 362–369, 2001.

[72] T. Minka. Expectation Propagation for Approximate Bayesian Inference. PhD
thesis, MIT, 2001.

[73] A. W. Moore, J. Schneider, and K. Deng. Efficient locally weighted polynomial
regression predictions. In Proc. 14th International Conference on Machine
Learning, pages 236–244. Morgan Kaufmann, 1997.

[74] H. Murase and S. Nayar. Visual learning and recognition of 3-d objects from
appearance. International Journal of Computer Vision, 14(1):5–24, 1995.

[75] R. C. Nelson. Finding line segments by stick growing. IEEE Trans. Pattern
Analysis and Machine Intelligence, 16(5), May 1994.

[76] S. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-
100). Technical Report CUCS-006-96, Dept. of Computer Science, Columbia
University, 1996.

[77] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

[78] S. Obdrzalek and J. Matas. Object recognition using local affine frames on
distinguished regions. In British Machine Vision Conf., 2002.

[79] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular
eigenspaces for face recognition. In CVPR, 1994.

[80] J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann. Empirical evaluation of
dissimilarity measures for color and texture. In Proc. Int. Conf. on Computer
Vision, 1999.

[81] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D object modeling and
recognition using affine-invariant patches and multi-view spatial constraints.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2003.

[82] S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization and
mapping using scale-invariant features. In Proc. Int. Conf. on Robotics and
Automation, 2001.

[83] J. Shi and C. Tomasi. Good features to track. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR94), June 1994.

[84] H. P. Snippe and J. J. Koenderink. Discrimination thresholds for channel-
coded systems. Biological Cybernetics, 66:543–551, 1992.

[85] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine
Vision. Brooks / Cole, 1999.

Bibliography 155

[86] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. Nonparametric belief
propagation. In Proc. Conf. Computer Vision and Pattern Recognition, 2003.

[87] R. C. T Drummond. Real-time visual tracking of complex structures. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7), July 2002.

[88] G. Tesauro. Practical issues in temporal difference learning. Machine Learn-
ing, 8:257–277, May 1992.

[89] C. W. Therrien. Decision, Estimation and Classification: an introduction
into pattern recognition and related topics. John Wiley & Sons, Inc., 1989.

[90] M. Unser. Splines: A perfect fit for signal and image processing. IEEE Signal
Processing Magazine, 16(6):22–38, November 1999.

[91] S. V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. John
Wiley & Sons, second edition, 2000.

[92] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Proc. Int. Conf. on Computer Vision and Pattern Recog-
nition, 2001.

[93] J. Winn and C. M. Bishop. Variational message passing. Journal of Machine
Learning Research, 6:661–694, 2005.

[94] C. Yang, R. Duraiswami, and L. Davis. Fast multiple object tracking via a
hierarchical particle filter. In Proc. Int. Conf. on Computer Vision, volume 1,
pages 212–219, October 2005.

[95] S. D. Zenzo. A note on the gradient of a multi-image. Computer Vision,
Graphics and Image Processing, 33:116–125, Jan 1986.

