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Abstract

This thesis presents three independent contributions to the large and juvenile field of Com-
pressed Sensing (CS). Thereby, a close connection to the mature field of channel coding is
established with an interdisciplinary motivation. Both fields are united by their search for a
unique sparsest solution to an underdetermined System of Linear Equations (SLE).

Within the first contribution, Sparsity Aware Simplex Algorithms (SASAs) are provided
which extend the well-known approach of Basis Pursuit (BP). The common concept of BP
resembles a convex ℓ1-relaxation to the non-deterministic polynomial-time hard sparse recon-
struction problem. In case this relaxation does not lead to the sparsest solution, BP fails
inevitably. By extending the famous simplex method for linear optimization, the sparsest
solution might be found nevertheless. Thereby, the circumstance is exploited that the desired
solution is contained in a degenerated vertex with high probability for systems in general
position. All proposed SASAs favor such a degenerated solution against the ℓ1-relaxation
and improve thereby the recovery performance, where the variants differ in their trade-off
between complexity and potential gain.

The second contribution generalizes a minimal distance maximization approach for real-
valued spherical codes to vector spaces over complex numbers. Furthermore, an equivalence
relation is introduced by the concept of antipodal spherical codes, which ensures that vector
pairs of minimal coherence correspond to those of largest minimum distance for these antipo-
dal codes as it is proven within this thesis. Consequently, this relation can be used to extend
the aforementioned distance optimization approach to the problem of coherence minimiza-
tion for the case of antipodal spherical codes. The resulting Best Antipodal Spherical Code
(BASC) search approach obtains vector sets which improve significantly on previous numer-
ical results and are often close to the theoretical limit. Since the coherence is an important
and limiting factor in many applications, the proposed BASC search approach is not only rel-
evant for CS, where coherence is commonly used as uniqueness assuring property for sensing
matrices. Beyond the direct CS application with respect to optimized sensing matrices, the
potential use for adapting a measurement matrix to a given dictionary is also investigated.
Thereby, the influence of two different coherence-based adaptation strategies is examined.

The application of Complex-valued Reed–Solomon (CRS) codes as a deterministic CS
scheme is described in details within the third contribution. Previous results in this di-
rection have been extended, whereby particular focus has been put on noise resilience, as
this is an often criticized weakness of CRS-based approaches. Within this chapter, power
decoding methods have been adapted for three types of error locator algorithms: Peterson’s,
Berlekamp–Massey, and extended Euclidean. Together with two error evaluator algorithms,
namely Gorenstein–Zierler and Forney’s, the potential application in corresponding determin-
istic CS schemes has been considered. In order to counter the observed noise sensitivity, an
iterative erasure and evaluation algorithm can be used which aims to determine the correct
error locations. In contrast to conventional channel codes over finite fields, a low-degree Padé-
approximation can be used for complex vector spaces to obtain reliability-like information on
the error locations, which is subsequently used by continuity assisted decoding in order to
decode even beyond the power decoding radius.
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1
Motivation and Overview

D
ue to the plethora of research fields, similar solution approaches to common
problems are often developed independently by different scientific groups. There-
fore, interdisciplinary research approaches are of immediate importance in order
to accelerate scientific progress by advantageous synergy effects. An example for

one common research problem is the search for the sparsest (least number of non-zeros) so-
lution to an underdetermined System of Linear Equations (SLE). Within the mature field of
channel coding, such a system is often used to describe syndrome decoding and its sparsest
(minimum Hamming weight) solution is likely to correspond to some unwanted error which
needs to be identified for correction. The juvenile field of Compressed Sensing (CS), which
is sometimes also denoted as compressive sampling, focuses also on such a sparse recovery
problem. Consequently, there is natural interest in transferring knowledge from one field to
another. In this spirit, the DFG (German Research Foundation) funded the project "Methods
of Channel Coding for Compressed Sensing"1, which provides the theme of this dissertation.

The first mentioned field of channel coding is based on the work of Shannon and Ham-
ming [Sha48, Ham50], who laid out the foundations for reliable communication as we know
it today. Good channel codes correspond to a high-dimensional embedding of some lower-
dimensional information vector such that the added redundancy can be efficiently used for
correcting potential errors (decoding). Typical research concentrates on the construction of
such codes, theoretical bounds, as well as on efficient decoding algorithms, where commonly
all operations are performed on finite fields. Modern, digital life would not be possible with-
out channel coding, since it heavily depends on protecting communication, processing, and
storage systems against errors [WB99, Bos99].

The second domain of this interdisciplinary dissertation is the field of CS. With the publica-
tions of Candes & Tao and Donoho [CT06, Don06a], both awarded by the IEEE Information
Theory Society Paper Award 2008, CS has been established and received considerable at-
tention ever since. Within CS, the sparsest high-dimensional representation which fits to
some low-dimension measurement is commonly searched. Thereby, fields of characteristic
zero, like complex and real vector spaces, are typically considered. Research considers po-
tential performance bounds, matrix properties and corresponding constructions, efficient and
robust recovery algorithms, as well as additional constraints introduced by specific practi-
cal aspects. Potential applications are not limited to magnetic resonance imaging [HHL11],
radar [HS09, End10], or the single-pixel camera [DDT+08].

1Original title: Methoden der Kanalcodierung für Compressed Sensing, Bo 867/27-1.
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1. Motivation and Overview

Due to the strong connections between these research fields, it is not further surprising that
several researchers proposed channel coding based methods for CS. Typically, such contribu-
tions focus on the construction of (deterministic) sensing matrices as well as corresponding
dedicated recovery algorithms: e.g., [DeV07, PH08, HCS08, AHSC09, CHJ10a, AMM12].

The aforementioned DFG project resulted in three independent contributions to the general
field of CS, which are presented in details within this thesis. The corresponding structure of
the remaining chapters is as follows:

Chapter 2 introduces briefly the necessary foundations of channel coding. Thereby, the
focus is on the principles of linear block codes over finite fields, where the relevant terms
are introduced as well as the Discrete Fourier Transform (DFT) over finite fields. Subse-
quently, the concept of algebraic syndrome decoding is generally introduced. The well-known
Reed–Solomon (RS) codes are defined with the help of the previously introduced DFT over
finite fields. Based on the concept of interleaved RS codes, virtual (syndrome) extension
(also commonly known as power decoding) is introduced for three types of error locator al-
gorithms: Peterson’s, Berlekamp–Massey, and extended Euclidean. Furthermore, two error
evaluator algorithms, namely Gorenstein–Zierler and Forney’s, are introduced which conclude
this overview chapter.

Subsequently in Chapter 3, underdetermined SLE are discussed. In a first step, two
common non-sparse approaches are introduced: A minimum norm solution can be obtained
by the Moore–Penrose pseudoinverse. Linear optimization identifies an optimal solution based
on a given (linear) objective function. In the second half of the chapter, sparsity is introduced
as uniqueness providing criterion. Thereby, the solution space is described by intersecting
hyperplanes and its dimensionality is determined for the typical case of systems in general
position. Based on the corresponding observations, a necessary condition for the uniqueness
(with high probability) of sufficiently sparse solutions is introduced. Furthermore, a common
necessary and sufficient guarantee for unique sparse solutions is provided, which is based on
the null space. This bound corresponds to decoding until half the minimum distance as it is
known in channel coding. By this chapter, the foundation for CS is built with respect to the
existence of unique sparse solutions. Furthermore, this chapter also forges the link to channel
coding.

Chapter 4 introduces several principles of CS. The first focus is on feasible reconstruction
algorithms which intend to recover the unique sparsest solution. Thereby, convex relaxation,
with the prominent example of an ℓ1-minimization in case of Basis Pursuit (BP), is introduced
as a reconstruction type as well as iterative methods, where orthogonal matching pursuit is
particularly highlighted. Both approaches are subsequently extended or used as reference.
Afterwards, the coherence and the well-known restricted isometry property are introduced as
uniqueness assuring properties and their interconnections are summarized. In contrast to the
conditions of the previous chapter, these properties relate to guarantees for specific recon-
struction algorithms. Subsequently, suitable sensing matrices are categorized based on their
potential recovery approaches. Random, optimized, and deterministic matrix constructions
are presented for general reconstruction algorithms. Furthermore, dedicated reconstructions
based on certain deterministic matrix constructions are briefly summarized as well. Finally,
two common variants of CS are explicitly introduced in order to apply subsequent contri-
butions: Noisy CS scenarios introduce an additional non-sparse noise term which hinders
reconstruction. Sparsifying dictionaries allow to extend the theme CS to non-sparse vectors
which can be sparsely represented by a linear transform.
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Based on these theoretical foundations, three contributions to the general field of CS are
given in the subsequent chapters.

In Chapter 5, the well-known simplex method for linear optimization is extended for the
specific setting of sparse recovery in the context of BP. In a first step, the conventional simplex
method is introduced which can be separated into the actual simplex algorithm and the
two-phase method. Subsequently, degeneracy is used as an indicator which allows for sparsity
awareness. Based on this property, three path-oriented search variants are proposed which
can be considered as trade-offs between additional complexity and improved reconstruction.
Furthermore, closeness of the convex relaxation can be examined and utilized. Based on these
concepts, variants for the sparsity aware two-phase method are proposed and examined for
their recovery potential in the context of CS. This chapter is mainly based on [ZLB15].

Chapter 6 focuses on the more general problem of coherence optimization which is also of
interest for CS since the coherence has been previously introduced as a uniqueness assuring
property. In order to provide a reasonable theoretical basis, the coherence optimization prob-
lem is formally defined first, and subsequently, corresponding theoretical bounds are given.
Furthermore, the problem of coherence optimization is connected to the research fields of
frame theory and Grassmannian line packing which underlines its general importance. Ad-
ditionally, a brief overview of existing (analytical and numerical) optimization approaches
is given. Based in this foundation, the general concept of Best Antipodal Spherical Codes
(BASCs) is introduced, where the equivalence of coherence and distance optimization is ex-
plicitly established and subsequently used for coherence optimization. The success of the
proposed search approach is numerically evaluated and discussed. Finally, the potential of
the given BASC-based search approach within the field of CS is demonstrated for two CS vari-
ants. Thereby, the straightforward application for sensing matrix optimization is considered
as well as measurement matrix adaptation, which highlights the universality of the provided
approach. This chapter combines and extends the results of [LZB13, ZLB13, ZAB13, ZB15].

The third contribution is described in Chapter 7. Thereby, a deterministic CS scheme
based on Complex-valued Reed–Solomon (CRS) codes is presented, where noise robustness is
explicitly considered. First, CRS codes and their properties are introduced and a connection
to CS is established. Based thereon, robust decoding of CRS codes is proposed by adapted
RS power decoding algorithms. In noisy scenarios, the reliability of the error locations are
decreased. Therefore, an iterative erasure and evaluation scheme is used to improve the
reconstruction performance as it is shown by corresponding evaluations. Based thereon, the
concept of continuity assisted decoding extends this approach and allows to decode even
beyond the power decoding radius with the help of a low-degree Padé-approximation. The
reliability-like information obtained by this approximation is unique to fields with continuous
norms, and therefore, not possible for conventional channel coding over finite fields. The
corresponding approach is subsequently evaluated for its potential use in CS schemes. Within
this chapter, the results of [MRZB15] have been extended.

Finally, a conclusion is given in Chapter 8.
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2
Principles of Channel Coding

C
laude Elwood Shannon laid the groundwork for modern digital communication,
and therefore also for channel coding, with his seminal article in 1948 [Sha48].
Therein, he stated and proved the famous channel coding theorem which intro-
duces the channel capacity as absolute bound on the code rate for which digital

communication is nearly error-free possible for any noise level. However, the provided proof
for the channel coding theorem is not constructive, and therefore, there is no general code
construction provided which actually achieves the channel capacity. As argued by Massey
in [Mas84], Shannon established the scientific basis of communications, and thereby a whole
new field of science, with his information theory.

Starting with Hamming [Ham50], many researchers proposed new code constructions and
discussed their properties in the subsequent decades. Within this development, two code
classes evolved: convolutional and block codes. Well known examples of block codes are
Reed–Muller (RM) [Mul54, Ree54], Bose–Chaudhuri–Hocquenghem (BCH) [Hoc59, BRC60],
Reed–Solomon (RS) [RS60], Low-Density Parity-Check (LDPC) [Gal62, MN95], and Ham-
ming codes [Ham50]. For the remainder of this chapter, RS codes over finite fields and
their decoding algorithms are primarily considered. Besides the code construction, corre-
sponding decoding algorithms pose an important and demanding research field. The needed
computational complexity became a crucial property of a decoding algorithm. Conventional
approaches are limited to a maximal error correcting radius of half the minimum Hamming
distance. Recently, the potential to decode beyond the maximal error correcting radius by
accepting multiple results or decoding failures (with small probability) has became an active
field of research, e.g., [GS99, SSB10].

Since the focus of this thesis is on Compressed Sensing (CS), this chapter on channel
coding is kept brief and compact. Within this chapter, the necessary notation is established
and properties and algorithms are introduced for the later use in subsequent chapters. For
a broader introduction to channel coding, the reader should refer to existing textbooks and
overview articles, e.g., [MS88, Bos99, Bla03, JH04, Moo05, Rot06, BB13]. In Section 2.1,
the fundamental concept of finite fields is provided and the basic notation is established.
Additionally, the Discrete Fourier Transform (DFT) for finite fields is introduced which is
subsequently used in Section 2.2 for the definition of RS codes. Based thereon, Interleaved
Reed–Solomon (IRS) codes are defined and the concept of virtual extension is given which
allows power decoding. Afterwards, (power) decoding algorithms for RS codes are provided
as well. Since the complex-valued equivalents of RS codes are introduced in Chapter 7 on
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2. Principles of Channel Coding

page 75 for the application in CS, the definitions of this chapter are used as reference for the
later discussion of Complex-valued Reed–Solomon (CRS) codes and their decoding algorithms.

2.1. Linear Block Codes over Finite Fields

The theory of finite fields goes back to Évariste Galois, a famous French mathematician of
the 19th century [Gal30, Rot82]. To honor him, the term Galois field is also commonly
used. In Section 2.1.1, the subsequently used notation for finite fields and their DFT is
established. Afterwards, the basics of algebraic coding with linear block codes are presented
in Section 2.1.2 on the facing page.

2.1.1. Finite Fields and Their Discrete Fourier Transform

This section provides the notation of finite fields and their DFT for the subsequent use in this
thesis. Deeper details about the corresponding theory, as well as possible applications, can
be found in standard literature, e.g., [LN97, MP13]. Channel coding related books provide
also profound introductions, e.g., [Bos99, Bla03, Rot06].

The finite field of order q is denoted by Fq, where q = pn is the n-th power of some prime p.
Each finite field Fq contains subfields Fpm for every m dividing n. In case of m = 1, the
subfield Fp is denoted as prime (sub)field or basefield. The finite field Fq contains q elements
and its characteristic is equal to p.1 The field Fq can be further extended to the extension
field Fqm , where m is the degree of the field extension.

The primitive element of Fq is denoted by α and generates the multiplicative group F
∗
q by

its powers: F∗
q =

{
αi ∀ i ∈ [0, q − 2]

}
. Since F

∗
q consists of the non-zero elements of Fq, α can

be used to describe the finite field:

Fq = {0} ∪ F
∗
q =

{
0, αi ∀ i ∈ [0, q − 2]

}
(2.1)

The set of polynomials with coefficients from Fq is denoted by Fq[z]. A polynomial a(z) ∈ Fq[z]
is commonly expressed by

a(z) =
n−1∑

i=0

aiz
i = a0 + a1z + . . .+ an−1z

n−1, ai ∈ Fq ∀ i ∈ [0, n− 2] , an−1 ∈ F
∗
q , (2.2)

where the degree of a(z) is dega(z) = n − 1. Polynomial roots are given by a(z) = 0. An
irreducible polynomial over Fq cannot be written as product of polynomials over Fq with lower
degree. The ring of all polynomials of degree smaller than n over Fq is denoted by Fq [z]/(zn−1).

In [Pol71], the DFT over Fq is proposed, which is briefly introduced in the following. The
set of all n-tuples with elements from Fq is denoted by F

n
q . Subsequently, vectors are used to

represent such tuples. For a vector a = (a0, a1, . . . , an−1)
T ∈ F

n
q , the DFT a = F [a] ∈ F

n
q is

calculated elementwise by

ai =

n−1∑

l=0

alα
li ∀ i ∈ [0, n− 1] . (2.3)

1In comparison, the fields R and C are of characteristic zero.
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2.1. Linear Block Codes over Finite Fields

The vectors a and a are denoted as time and frequency domain vector, respectively. With
the help of polynomials, it is possible to represent the DFT efficiently as evaluation of the
polynomial a(z) at the points αi for i ∈ [0, n− 1], where the coefficients of a(z) are taken
from a as described by (2.2):

ai = a
(
αi
)
∀ i ∈ [0, n− 1] (2.4)

Therefore, the polynomials a(z) and a(z) are denoted as time and frequency domain poly-
nomials, respectively. The Inverse Discrete Fourier Transform (IDFT) a = F−1 [a] over Fq

can be similarly defined by

ai =
1

n

n−1∑

l=0

alα
−li =

1

n
a
(
α−i
)
∀ i ∈ [0, n− 1] . (2.5)

For the later discussion, it is more convenient to express the DFT with the means of vector
matrix multiplication: F [a] : a =Da, where

D =




α0 α0 α0 · · · α0

α0 α1 α2 · · · αn−1

α0 α2 α4 · · · α2(n−1)

...
...

...
...

α0 αn−1 α2(n−1) · · · α(n−1)(n−1)




is the DFT matrix. Since D has the form of a Vandermonde matrix, and is therefore of full
rank (for α being a primitive element), an inverse D−1 exists [AL69] with

D−1 =
1

n




α0 α0 α0 · · · α0

α0 α−1 α−2 · · · α−(n−1)

α0 α−2 α−4 · · · α−2(n−1)

...
...

...
...

α0 α−(n−1) α−2(n−1) · · · α−(n−1)(n−1)




. (2.6)

The scaling factor 1/n in Equations (2.5) and (2.6) is necessary to ensure D−1D = I. Con-
sequently, the IDFT can be described by F−1 [a] : a =D−1

a.

2.1.2. Algebraic Coding with Linear Block Codes

A linear block code C is defined as a subspace of Fn
q . A codeword c ∈ C is therefore a vector

with elements over Fq. The addition of two codewords results also in a codeword. If every
cyclic shift of a codeword results in a valid codeword, the code is cyclic. The dimension of C is
denoted by k and the length by n, therefore, C is also denoted as (n, k) code. The coderate r
is given by r = k/n ld q, which simplifies to r = k/n for binary codes.

The Hamming weight w(c) of a vector is equal to the number of non-zero components
in the vector. The Hamming weight of the difference between two distinct codewords a
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2. Principles of Channel Coding

and c is denoted as Hamming distance d(a, c) = w(a − c). The smallest Hamming weight
of any non-zero codeword c ∈ C\ {0} is denoted as minimum distance dmin of the linear
block code C. The minimum distance of any linear (n, k) code is bounded by the Singleton
bound [Kom53, Jos58, Sin64]:

dmin ≤ n− k + 1 (2.7)

A code satisfying the Singleton bound with equality is denoted as Maximum Distance Sepa-
rable (MDS) code.

Since C is a subspace, it can be completely described as the column-space2 of an n × k
matrix G, where the columns can be any set of basis vectors for C. Such a matrix G is
therefore denoted as generator matrix of C. The encoding of an information vector i ∈ F

k
q

into some codeword c can be efficiently described by c = Gi. The set of all vectors orthogonal
to C is again a subspace of Fn

q and called the dual code C⊥. The n× (n− k) generator matrix
of C⊥ is denoted by H. Since HTG = 0, some codeword c ∈ C can be tested for validity by
verifying HTc = 0. Therefore, H is also called the parity check matrix of C. The application
of the parity check matrixH to some received vector r ∈ F

n
q results in the syndrome s ∈ F

n−k
q

which is given by s =HTr. In case of r = c+e, where e ∈ F
n
q is some error vector and c ∈ C,

the syndrome depends only on the error: s = HTr = HTe. Therefore, the syndrome s
provides information which can be used to decode the received word r.

Assuming a received word r which has been affected by an error vector with w(e) = τ
errors, the unique decoding of r is possible as long as τ ≤ ⌊(dmin−1)/2⌋. There are several
possible decoding principles: For Maximum Likelihood (ML) decoding (also known as nearest
neighbor decoding), the codeword c is returned which minimizes the Hamming distance d(r, c)
over all codewords. Due to its complexity, the optimal ML decoding is only feasible for small
codes. In the case of Bounded Minimum Distance (BMD) decoding, the received word is
only decoded if τ ≤ ⌊(dmin−1)/2⌋ errors are detected, elsewise, a failure is declared. More
recent approaches aim to decode beyond ⌊(dmin−1)/2⌋, where the uniqueness of a decoding
result cannot be guaranteed. Examples for suboptimal algorithms following this principle
are list-decoders like the Guruswami–Sudan (GS) algorithm [GS99], where multiple possible
codewords are returned, or schemes like power decoding [SSB10], where some small failure
probability is accepted.

2.2. Reed–Solomon Codes

The well-known class of RS codes goes back to [Bus52, RS60]. These codes are widely
used, e.g., for coding schemes used in deep space communication, f.i. in the Voyager and
Galileo program; for digital communication, f.i. Digital Video Broadcast (DVB) and Dig-
ital Subscriber Line (DSL); as well as for storage systems, f.i. Compact Discs (CDs) and
their successors Digital Versatile Discs (DVDs) and Blu-ray Discs (BDs) [WB99, Blu12]. In
Section 2.2.1, the definition and properties of RS and IRS codes are given. Corresponding
(power) decoding algorithms are provided in Section 2.2.2 on page 11.

2Opposed to the common notation in coding theory, column vectors are used within this thesis.
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2.2. Reed–Solomon Codes

2.2.1. Definition and Properties

In the following, RS codes are defined. Subsequently, IRS codes are introduced in order
to provide the concept of virtual extension. For the sake of brevity, only the definition of
primitive RS codes is given. More general definitions can be found in [Bos99, Bla03]. However,
the given variant is sufficient as basis for the later use in Chapter 7.

Reed–Solomon Codes

RS codes are cyclic linear (n, k) codes over the field Fq with length n = q − 1 and can be
defined by the IDFT as set of polynomials:

RS(n, k) =
{
c(z) | ci =

1

n
c
(
α−i
)
∀ i ∈ [0, n− 1], degc(z) < k

}
,

where c(z) ∈ Fq [z]/(zn−1) and α is the primitive element of Fq. As before, the coefficients
of c(z) can be equivalently represented as vectors, and consequently, a k-dimensional vector
subspace of Fn

q is described by RS(n, k). By this definition, the generator matrix G equals a
partial IDFT matrix

G =
1

n




α0 α0 α0 · · · α0

α0 α−1 α−2 · · · α−(k−1)

...
...

...
...

α0 α−(n−1) α−2(n−1) · · · α−(n−1)(k−1)




.

Usually, the parity check matrix H is similarly defined to be a partial DFT matrix:

H =




α0 α0 α0 · · · α0

αk α(k+1) α(k+2) · · · αn−1

...
...

...

α(n−1)k α(n−1)(k+1) α2(k+2) · · · α(n−1)(n−1)




Both matrices still possess the Vandermonde structure and are, therefore, of full rank. RS
codes are MDS, since they fulfill the Singleton bound with equality dmin = n− k + 1 [Bla03,
Theorem 6.2.1], cf. (2.7). As a consequence, up to

τmax =

⌊
(n− k)

2

⌋
(2.8)

errors can be uniquely decoded by RS codes.
Although BCH codes are not explicitly described here, it should be noted that they are

closely connected to RS codes: Over finite fields, RS codes can be obtained from BCH codes by
limiting the length. However, BCH codes over Fq are subfield-subcodes of RS codes over Fqm .
For details about BCH codes and their connection to RS codes, refer to [Bos99].
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2. Principles of Channel Coding

Interleaved Reed–Solomon Codes and Virtual Extension

As the name suggests, an IRS code corresponds to an interleaved structure of several RS
codes. Therefore, it can be considered as a set of codeword matrices, where each matrix itself
consists out of RS codewords:

IRS(n, k1, . . . , kl) = {(c1 c2 · · · cl) : ci ∈ RS(n, ki)}

Alternatively, a codeword can be interpreted as vector with elements from the extension field
Fql . With this representation, it can be shown that IRS codes are MDS in the homogeneous
case of ki = k for all i [SSB09]. However, for heterogeneous IRS codes, this is generally
not the case since the weakest RS code determines the minimum distance [SSB09]: d =
min1≤i≤l n− ki + 1. Consequently, the guaranteed correction radius is limited by

τ ≤ min
1≤i≤l

⌊
n− ki

2

⌋
.

For channels which introduce burst errors affecting the same positions in all RS codewords,
IRS codes are especially suited [KL97]. Due to the collaboration, the correction radius can
be increased to

τ ≤ min

{
l

(l + 1)
·
(
n− 1

l

l∑

i=1

ki

)
, min
1≤i≤l

n− ki

}
,

with a small failure probability [SSB09].
In [SSB10], a RS decoding scheme has been proposed which can be described as a virtual

extension of an RS code to an IRS code. Instead of interleaving multiple codewords from
different RS codes, only a single low rate code is used, where the received word r(z) =
c(z) + e(z) with c(z) ∈ RS(n, k) is powered component-wise with some positive integer l:

r〈l〉(z) :=
n−1∑

i=0

rliz
i =

n−1∑

i=0

(ci + ei)
lzi =

n−1∑

i=0

(cli + e
(l)
i )zi

=c〈l〉(z) + e(l)(z) (2.9)

As a consequence of the binomial distribution, ei = 0 results in e
(l)
i = 0, while the converse is

not necessarily true. Therefore, the indices of the non-zero coefficients of e(l)(z) are a subset
of those of e(z), and consequently, the errors are at the same positions in all (virtually)
received words r〈l〉(z). Powering c(z) component-wise to c〈l〉(z) is equivalent to powering the
whole frequency domain polynomial c(z) to c(z)l, due to the definition of the DFT (see (2.4)
on page 7). Since c(z) is an RS code with degc(z) ≤ k− 1, the relation deg c(z)l ≤ l(k− 1)
is implied and results in

c〈l〉(z) ∈ RS(n, k(l) := l(k − 1) + 1) with k(l) ≤ n. (2.10)

It is possible to build an IRS codeword from a single RS codeword c(z) ∈ RS(n, k):

(c〈1〉 c〈2〉 · · · c〈lmax〉) ∈ IRS(n, k, k(2), . . . , k(lmax)),
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2.2. Reed–Solomon Codes

where the maximum l fulfilling the inequality in (2.10) is denoted by lmax. Although there is
only one RS code used, the resulting IRS code is heterogeneous since the virtual extension
implicitly uses different RS codes [cf. (2.10)].

As a consequence, collaborative decoding of the IRS(n, k, k(2), . . . , k(lmax)) code can be
used to improve the decoding capability for the RS code, where an upper bound for lmax is
given by [SSB10, Section II-E]:

lmax ≤
√
(k + 3)2 + 8(k − 1)(n− 1)− (k + 3)

2(k − 1)

Using powers l ≤ lmax, it can also be shown that, except for a negligible probability of
decoding failure, collaborative decoding can correct up to [SSB10, Equation (10)]

τ (l)max :=

⌊
2ln− l(l + 1)k + l(l − 1)

2(l + 1)

⌋
≤ τ (lmax)

max (2.11)

errors. Furthermore, it is shown in [SSB10] that the approach of virtual extensions can only
enlarge the decoding radius for a code rate of r . 1/3. Since the scheme is based on powering
polynomials, it is often also denoted as power decoding. Algorithms capable of power decoding
are introduced in the subsequent section.

2.2.2. Decoding

In the following, syndrome decoding of RS codes is considered, where the information con-
tained in the syndrome s is used to decode the received word r by determining an error esti-
mate ê. Since the frequency domain codeword polynomial is of limited degree with degc(z) ≤
k − 1, the n − k highest coefficients of F [c(z) + e(z)] are equal to those of the frequency
domain error polynomial e(z) and provide the syndrome s(z) with si = ei+k ∀ i ∈ [0, n−k−1].

The error locator polynomial Λ(z) is defined such that it has roots α−ui at all τ error
locations ui ∈ U = {u1, u2 . . . , uτ}, where U is also denoted as support set of e:

Λ(z) =
∏

ui∈U
(1− αuiz) = 1 +Λ1z +Λ2z

2 + · · ·+Λτz
τ (2.12)

Due to the DFT, the coefficients λu1 , λu2 , . . . , λuτ of the polynomial λ(z) = F−1 [Λ(z)] =
λ0 + λ1z + . . . λn−1z

n−1 are zero. Since the coefficients in λ(z) and e(z) are complementary
equal to zero, coefficient-wise multiplication yields λiei = 0 ∀ i ∈ [0, n− 1] and results in

Λ(z)e(z) = 0 mod (zn − 1). (2.13)

A linear system of equations can be derived from (2.13), which includes only equations con-
sisting of coefficients from the error locator polynomial Λ(z) or the syndrome, since si = ei+k:




s0 s1 · · · sτ−1

s1 s2 · · · sτ

...
...

...

sn−k−τ−1 sn−k−τ · · · sn−k−2




︸ ︷︷ ︸
S

·




Λτ

Λτ−1

...

Λ1




︸ ︷︷ ︸
Λ

=




−sτ

−sτ+1

...

−sn−k−1




︸ ︷︷ ︸
t

(2.14)
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2. Principles of Channel Coding

This system of equations can be represented also by polynomials

Λ(z)s(z) =Ω(z) mod zn−k,

degΩ(z) < degΛ(z) = τ, (2.15)

where Ω(z) is denoted as error evaluator polynomial. Often, (2.15) is referred to as key
equation, since its solution reveals the decoding result.

Due to the virtual extension performed in power decoding, multiple syndromes can be
obtained from the component-wise powered received polynomials r〈l〉(z), cf. (2.9) [SSB10]:

s
(l)
i = e

(l)

k(l)+i
, i ∈

[
0, n− k(l) − 1

]
∀ l ∈ [1, lmax] (2.16)

Therefore, the previously described concept of power decoding can also be considered as
syndrome extension. With these syndromes, an extended linear system SΛ = t can be
established based on (2.14):




S
(1)

S
(2)

...

S
(lmax)




︸ ︷︷ ︸
S

·




Λτ

Λτ−1

...

Λ1




︸ ︷︷ ︸
Λ

=




t
(1)

t
(1)

...

t
(lmax)




︸ ︷︷ ︸
t

, (2.17)

where

S
(l) =




s
(l)
0 s

(l)
1 · · · s

(l)
τ−1

s
(l)
1 s

(l)
2 · · · s

(l)
τ

...
...

...

s
(l)

n−k(l)−τ−1
s
(l)

n−k(l)−τ
· · · s

(l)

n−k(l)−2




, t
(l) =




−s
(l)
τ

−s
(l)
τ+1

...

−s
(l)

n−k(l)−1




.

As long as rankS = τ , this system allows to decode beyond half the minimum distance.
In case of available reliability information, soft-decoding schemes, such as the Koetter–Vardy

algorithm [KV03] or Generalized Minimum-Distance (GMD) [FJ66] decoding algorithms, can
further increase the decoding capabilities. Erasure decoding combines the concepts of soft
and hard decoding. Thereby, a set of erasures E is defined which marks missing (or potentially
unreliable) received word coefficients ri, i ∈ E . These coefficients are considered erroneous
and are, therefore, erased by setting ri = 0. Since their positions are known, they can be
considered as fixed factors (1−αiz) in Λ(z) and only their values need to be determined. Thus,
the number of unknowns is reduced, and consequently, more errors can be decoded with the
available equations (two correct erasures allow to decode one additional error). The number
of correctable errors is, therefore, smaller than (dmin−#E)/2 for the case of unique decoding.
The concept of erasure decoding is applied, for example, in the GMD decoding algorithm,
where the number of erased least reliable positions is iteratively increased. Thereby, a list of
potential codewords is obtained.

12



2.2. Reed–Solomon Codes

Usually, decoding is divided into two steps: Error location, where the error positions are
determined (and potential erasures considered), followed by error evaluation, where the cor-
responding values are determined for non-binary codes. Often, error location is also described
as Padé-approximation, cf. Section 7.3.1 on page 89. In the following, three types of error
location algorithms capable of performing power decoding are provided, where the name of
the typification originates from the non-power decoding variants of the algorithms. Subse-
quently, error evaluation algorithms are given as well. A unified view on decoding algorithms
can be found in [BB13].

Peterson Type Algorithm

The Peterson algorithm is one of the first RS decoding algorithms and goes back to [Pet60].
However, since the algorithm is not very efficient, it is rarely used in practice.

In a first step, the number of errors τ needs to be determined, which is typically done by
exploiting rankS = τ . For an assumed number of errors ν ≤ τ

(lmax)
max , the square matrix Mν

can be built as the first ν rows of S from (2.17) for ν errors. Obviously, Mν is singular if

too many errors are assumed (ν > τ). Therefore, by reducing ν stepwise from τ
(lmax)
max until

detMν 6= 0, the rank of S can be determined. Consequently, the key equation can be solved
by applying the inverse: Λ =M−1

τ tτ , where tτ contains the first τ entries of t.

Berlekamp–Massey Type Algorithms

The Berlekamp–Massey (BM) algorithm has been introduced by Berlekamp in [Ber68]. Sub-
sequently, Massey provided a simplified description which illustrates the problem as synthesis
of the shortest Linear Feedback Shift-Register (LFSR) capable of generating a prescribed finite
sequence [Mas69]. In [SS06], the BM algorithm is generalized to multi-sequence synthesis,
such that it can be used in power decoding [SSB10]. The resulting algorithm is also denoted
as Schmidt–Sidorenko (SS) algorithm, due to their common principle, the term BM type is
used to address both algorithms in the following.

Since the submatrices S
(l) in (2.17) possess Hankel structure, the corresponding linear

system can be represented for ν ≤ τ
(lmax)
max assumed errors by

s
(l)
i +Λ1s

(l)
i−1 + . . .+Λνs

(l)
i−ν = 0 ∀ i ∈

[
ν, n− k(l) − 1

]
. (2.18)

In the context of LFSR synthesis, the resulting Λ(z) is also denoted as connection polynomial.
The smallest integer ν fulfilling (2.18) is the linear complexity of the sequence s

(l). For a
minimum length LFSR, the length of the connection polynomial equals the linear complexity
of a given set of sequences. As soon as one minimum length LFSR is found for all sequences
given by S

(l) ∀ l ∈ [1, lmax], the connection polynomial equals the locator polynomial, and
therefore, the key equation is solved with ν = τ .

In order to determine a minimum length LFSR, the different lengths of the sequences need
to be equalized with s

(l)
i = 0 for i ∈

[
n− k(l), n− k − 1

]
resulting in [SS06]:

s
(l)

i+k(l)−k
+

ν∑

ξ=1

Λξs
(l)

i+k(l)−k−ξ
= 0 ∀ i ∈

[
k − k(l) + ν, n− k(l) − 1

]
(2.19)
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2. Principles of Channel Coding

Based on this extension, the multi-sequence shift-register synthesis determines the minimum
length LFSR by iteratively increasing and/or modifying the connection polynomial until all
given sequences can be generated. For the description of the iterative process, the connec-
tion polynomial for a sequence of length t is denoted by Λ

[t](z) and its length by νt. Based

upon (2.19), the discrepancy ∆
(l)
t is introduced in order to evaluate whether Λ

[t](z) can gen-
erate the sequence s

(l):

∆
(l)
t = s

(l)

t+k(l)−k
+

νt∑

ξ=1

Λ
[t]
ξ s

(l)

t+k(l)−k−ξ
(2.20)

Thus, ∆(l)
t 6= 0 indicates that the current connection polynomial Λ

[t](z) is not able to generate
the first t components of the sequence s

(l), and therefore, it needs to be modified. The length
of Λ

[t](z) might be increased according to νt = max {νt−1, t− νt−1}. The new connection
polynomial is subsequently given by

Λ
[t](z) =Λ

[t−1](z)− ∆
(l)
t

∆
(l)
ζ

zt−ζ
Λ
[ζ−1](z),

where the last length change took place at a sequence length of ζ. The complete SS algorithm
is given in the Appendix (Algorithm A.1 on page 103) with the corresponding initial values
according to [SS06].

Extended Euclidean Type Algorithms

The use of the Euclidean algorithm for channel coding goes back to Sugyiama et al. [SKHN75].
Instead of integers, polynomials are usually considered in the context of channel coding. The
Euclidean algorithm can be described by repeated divisions for the polynomials ρ−1(z) and
ρ0(z) with degρ0(z) ≤ degρ−1(z) [MS88]:

ρ−1(z) = q1(z)ρ0(z) + ρ1(z), degρ1 < degρ0,

ρ0(z) = q2(z)ρ1(z) + ρ2(z), degρ2 < degρ1,

...
...

ρi−2(z) = qi(z)ρi−1(z) + ρi(z), degρi < degρi−1,

ρi−1(z) = qi+1(z)ρi(z),

where the last non-zero remainder ρi(z) = gcd(ρ−1(z),ρ0(z)) is a greatest common divisor of
ρ−1(z) and ρ0(z). In comparison to the Euclidean algorithm, the Extended Euclidean (EE)
algorithm provides additionally the polynomials u(z) and v(z), such that

gcd(ρ−1(z),ρ0(z)) = ρ−1(z)u(z) + ρ0(z)v(z), (2.21)

with degu(z), deg v(z) < degρ−1(z). Commonly, (2.21) is also known as Bézout’s iden-
tity [Bé79]. The EE algorithm calculates iteratively with u−1(z) = 0, u0(z) = 1, v−1(z) = 1
and v0(z) = 0

ρi(z) = ρi−2(z)− qi(z)ρi−1(z),

ui(z) = ui−2(z)− qi(z)ui−1(z),

vi(z) = vi−2(z)− qi(z)vi−1(z), (2.22)
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2.2. Reed–Solomon Codes

where qi(z) is determined by the first equation in (2.22), such that degρi < degρi−1.
The EE algorithm can be applied in channel coding by solving the key equation (2.15) with

ρ−1(z) = zn−k and ρ0(z) = s(z). Stopping the EE algorithm as soon as degρi(z) < n−k/2
and degρi−1(z) ≥ n−k/2 results in Ω(z) = ρi(z) and Λ(z) = vi(z).3 More details about EE
algorithm and its application to channel coding can be found in corresponding textbooks, e.g.,
[MS88, Bos99, Moo05].

In order to perform power decoding, the known EE algorithm needs to be generalized. As it
is pointed out in [Nie13], the Mulders–Storjohann (MS) algorithm [MS03] can be considered
as such a generalization. Therefore, its application to power decoding according to [Nie13] is
described briefly in the following. Subsequently, both algorithms are addressed as EE type
due to their common principle.

For the description, vectors of polynomials v [z] = (v0(z), . . . ,vlmax(z)) ∈ F [z]lmax+1 are
used. The degree of such a polynomial vector is given by deg v [z] = maxi∈[0,lmax] (deg vi(z))
and the leading position is denoted by LPv [z] = argmaxi∈[0,lmax] (deg vi(z) = deg v [z]). The
polynomial at LPv [z] is described as leading term LTv [z] = vLP v[z](z).

For the case of power decoding, there are lmax key equations, cf. (2.15) on page 12:

Λ(z)s(l)(z) =Ω
(l)(z) mod zn−k(l)

degΩ
(l)(z) < degΛ(z)

∀ l ∈ [1, lmax] , (2.23)

where degΛ(z) should be minimal. A solution to (2.23) can be represented by the vector
(Λ(z),Ω1(z), . . . ,Ωlmax(z)) ∈ F [z]lmax+1 which lies in the solution space M, where M can be
described as row-space of the basis

M [z] =




1 s
(1)(z) s

(2)(z) · · · s
(lmax)(z)

zn−k(1)

zn−k(2)
0

0
. . .

zn−k(lmax)




. (2.24)

A basis P [z] ∈ F [z](lmax+1)×(lmax+1) is in weak Popov form if the leading positions of all rows
are different [MS03]. Consequently, as shown in [Nie13], the row p [z] of a basis in weak Popov
form P [z] with LPp [z] = 0 contains the error locator polynomial Λ(z) = p0(z).

The weak Popov form can be reached by applying the Mulders–Storjohann algorithm to
M [z] [MS03]. Therein, row reductions are performed until the weak Popov form is reached.
These row reductions select two rows with LPpi[z] = LPpj [z] and deg pi[z] ≤ deg pj [z].
Subsequently, pj [z] is replaced with pj [z]− ξzζpi[z], where ξ ∈ F and ζ ∈ N0 are chosen such
that the highest coefficient in the leading term LTpj [z] is canceled.

Since the error locator polynomials obtained by the previously presented algorithms provide
only the error positions, the error values need to be determined subsequently by error evalu-
ation algorithms. In the following, brief descriptions of the algorithms by Gorenstein–Zierler
(GZ) and Forney are provided.

3The polynomials obtained by the EE algorithm are unique to within a factor [Bos99].
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2. Principles of Channel Coding

Gorenstein–Zierler Algorithm

Due to the definition of the syndrome, the following linear matrix equation can be set up:



αu1k αu2k · · · αuτk

αu1(k+1) αu2(k+1) · · · αuτ (k+1)

...
...

...

αu1(n−1) αu2(n−1) · · · αuτ (n−1)




︸ ︷︷ ︸
W

·




eu1

eu2

...

euτ




︸ ︷︷ ︸
e

=




s0

s1

...

sn−k−1




︸ ︷︷ ︸
s

(2.25)

This overdetermined linear system can be solved by the GZ algorithm which utilizes matrix
inversion: ê = W−1

τ s, where the first τ rows of W form a square matrix and are denoted
as Wτ [GZ61]. Since Wτ is still a Vandermonde matrix, it is invertible for the correct error
positions. Due to the use of a general matrix inversion, the GZ algorithm is of high complexity,
and therefore, usually not considered in practice.

Forney’s Algorithm

The algorithm by Forney [FJ65] utilizes the Vandermonde structure of W in (2.25) for error
evaluation [Moo05]. By utilizing the error evaluator polynomial, cf. (2.15) on page 12, Forney’s
algorithm allows to calculate the error values by [Rot06]

êui
= −α−ui(k−1) Ω(α−ui)

Λ
′(α−ui)

∀ ui ∈ U , (2.26)

where Λ
′(z) denotes the formal derivative of Λ(z). For the complete derivation of (2.26), the

reader is referred to the recommended coding textbooks.
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3
Underdetermined Systems of Linear Equations

A
collection of several linear equations over a set of unknowns is commonly denoted
as System of Linear Equations (SLE). The theory of SLEs is fundamental for the
whole subject of linear algebra and its applications can be found in a plethora
of fields. Since SLEs are of such fundamental relevance, there are many good

text-books covering this subject, e.g., [Mey00, Lay12].
In principle, an SLE over real or complex numbers can have either infinitely many, a single,

or no solution at all. In case of no solution, the system is called inconsistent since at least two
equations contradict, cf. the well-known Kronecker–Capelli theorem [Cap92, Kro03, Mil10,
Pra94]. For the common case of general position [Yal68, p. 164], which is assumed hereafter,
overdetermined SLEs have less unknowns than equations and are therefore inconsistent. In
most applications, the least squares solution which fits best to the given equations is targeted
in these cases. In contrast to this, a unique solution can be identified as soon as every unknown
variable is matched by one linearly independent equation. In case of an underdetermined
system, there are more unknowns than equations, and consequently, infinite many solutions
are possible. Within this chapter, such underdetermined SLEs are mainly considered.

Underdetermined systems have already been implicitly established over finite fields by
Equations (2.14) and (2.17) within the domain of channel coding in Section 2.2.2. For this
case, the number of non-zero coefficients τ of the error locator polynomial is minimal. For
many applications, such τ -sparse solutions are of interest. This circumstance actually led to
the success and popularity of CS, where sparsity is an important key property. Both scientific
fields are unified in the search of the sparsest solution to underdetermined SLEs.

In the following, common non-sparse approaches to underdetermined SLEs over a real or
complex vector space, which are subsequently used within this thesis, are given in Section 3.1.
Thereby, the solution with minimal Euclidean norm is considered, which can be obtained by
the Moore–Penrose pseudoinverse. Afterwards, the concept of linear optimization is briefly
introduced which allows to find an optimal solution with respect to a given linear objective
function. In Section 3.2 on page 20, sparsity is used as criterion to identify one out of infinite
many solutions. Therefore, the solution space is described by intersecting hyperplanes and
its dimensionality is determined for typical cases. Based on these derivations, it is shown
subsequently that sufficiently sparse solutions are unique with high probability. Furthermore,
a necessary and sufficient condition for the existence of a unique sparsest solution is provided
which is based on the null space. These observations provide the foundation for CS, which is
introduced in detail within the subsequent chapter.
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3. Underdetermined Systems of Linear Equations

3.1. Common Approaches to Underdetermined SLE

In the following, the n unknowns of an underdetermined SLE are represented by the vector
x ∈ K

n with K ∈ {C,R}. The corresponding m equations are given by a coefficient matrix
A ∈ K

m×n and by a vector b ∈ K
m representing the constant terms, where m < n:

Ax = b

As it has been stated before, there are infinite many solutions for underdetermined and
consistent SLEs. Depending on the actual problem described by the SLE, a certain solution
among the infinite many might be more suited than others. Such examples can be stated as
optimization problems, where an optimal solution is searched among the allowed solutions.

In the following, two common non-sparse approaches to underdetermined SLEs are provided
as they are subsequently used in the thesis: The minimum norm solution to a given system can
be obtained by the well-known Moore-Penrose pseudoinverse as it is described in Section 3.1.1.
Beyond that, the more general scenario of linear optimization can be used to determine
an optimal solution with respect to some given linear objective function as introduced in
Section 3.1.2 on the facing page.

3.1.1. Minimum Norm Solution Provided by Moore–Penrose Pseudoinverse

Among the infinite many solutions of an SLE, the minimum norm solution is often especially
interesting for engineering problems since it corresponds to the solution with minimal energy.
With the help of the Moore–Penrose pseudoinverse

A† =
(
AHA

)−1
AH for rankA = n

A† = AH
(
AAH

)−1
for rankA = m,

which has been independently described by Moore, Bjerhammar and Penrose [Moo20, Bje51,
Pen55], this solution can be obtained:

x̂ = A†b = argmin
x∈Kn

‖x‖ ∀ Ax = b

In case the Moore–Penrose pseudoinverse is applied to an inconsistent SLE, a least squares
solution

x̂ = argmin
x∈Kn

‖Ax− b‖

is obtained, which is of minimal error. This circumstance is later used in Section 7.2.1 in
order to cope with additional noise.

For details and further properties about the given pseudoinverse, refer to standard liter-
ature, e.g., [GVL96]. Since the solutions of the Moore–Penrose pseudoinverse are generally
not sparse, they are not directly suited for CS. However, the pseudoinverse is later used
for illustration and it is applied within several algorithms in order to obtain least squares
solutions.
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3.1. Common Approaches to Underdetermined SLE

3.1.2. Linear Optimization

As mentioned before, the search for a particular solution among the infinite many of an under-
determined SLE can be considered as optimization problem, where the optimum is searched
with respect to a given objective function. In the following, a linear objective function is
considered which is typically expressed for all variables by the vector multiplication cTx

with c ∈ K
n. Such an optimization problem is, for the case of K = R, also known as Linear

Program (LP). Often, the general case of inequalities is also used to describe such LPs.
In the literature, several forms and notations of LPs have been introduced, which are

however not uniform. In the following, the definition of [BV09] is used, where two special
cases of LPs are given:

• the inequality form

min cTx s.t. Ax ≤ b

• the standard form

min cTx s.t. Ax = b and x ≥ 0

Thereby, the inequalities over vectors are taken component-wise.
Optimization problems, which are stated in another form, can be simply transformed: The

sign of the inequalities can be inverted by multiplying with −1. An equality can be formulated
by the intersection of two inequalities: Ax = b⇔ Ax ≥ b∩Ax ≤ b. Missing non-negativity
constraints on the variables x can be avoided by the following substitutions:

given substitution constraint

x ∈ R
n
≤0 −x1 x1 ∈ R

n
≥0

x ∈ R
n x1 − x2 x1,x2 ∈ R

n
≥0

A maximization of cTx corresponds to a minimization of cT
1 x, with c1 = −c. By these

transformations, an LP of a certain form can be translated into any other form.
There are several solvers for LPs available. The simplex method [DT97] is a well-known

example, which is more closely presented in Chapter 5, where an extension for sparsity aware-
ness is proposed. Another kind of popular solvers are the interior point algorithms for which
the running-time is proven to be polynomial [Kar84], where the simplex method comes with
an exponential running-time in the worst case [KM72].

Since LPs are known to be convex [BV09], all solvers provide the same optimal solution if
existing. The LP-related research has therefore separated into two relatively distinct commu-
nities: The performance and robustness of solvers is an independent research field. On the
other side, much research-effort is spent on the modeling of a given problem as LP, where the
solver is merely applied as tool in the end of the process. Similarly, LPs can also be applied in
CS, where a convex relaxation, the so called Basis Pursuit (BP), provides an LP as it is sub-
sequently shown in Chapter 4. By reunifying both research strands, the previously mentioned
simplex method is extended in order to provide sparsity awareness for CS in Chapter 5.
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3. Underdetermined Systems of Linear Equations

3.2. Existence of Unique Sparse Solutions

In the previous section, common non-sparse approaches for underdetermined SLEs have been
presented. Within the context of channel coding, the sparsest solution to an underdetermined
SLE is searched in Section 2.2.2. Sparse solutions to such SLEs are also of fundamental
interest in CS as it is subsequently shown in Chapter 4. In order to pave the ground for
the subsequent chapter on CS, two necessary conditions on the existence of a unique sparse
solution are introduced within this section for SLEs over complex or real numbers. The first
condition can be used for a probabilistic guarantee, while the second is also sufficient.

The following derivations and explanations of this section are mainly based on the unpub-
lished lectures and tutorials of Lazich [Laz13, Laz14]. However, similar results and observa-
tions can also be found in [VB98, FR13].

3.2.1. Dimensionality of Intersecting Hyperplanes

A hyperplane is defined as an (n − 1)-dimensional subspace of the n-dimensional ambient
space, consequently, it corresponds to an (n−1)-flat. Within an SLE, each equation describes
an individual hyperplane which contains all points fulfilling this equation. Thereby, each
equation reduces the degree of freedom in the choice of a potential solution. Naturally, the
intersection of all these hyperplanes describes the corresponding solution space of the SLE
which is consequently an r-flat, where the actual value of r is determined by the SLE as
subsequently shown.

In the following, it is assumed that all sets of points and subspaces are in general position
if not stated otherwise, cf. [Yal68, p. 164], which essentially ensures that no set of p points is
contained in a (p − 2)-flat. Consequently, any p-flat is determined by at least p + 1 points.
The intersection of a p-flat and a q-flat within an n-dimensional space results in an r-flat.
The dimensionality of this r-flat is discussed by Sommerville in [Som29, Ch. 1.12] and a more
detailed description can be found in [Har97, Ch. 7]:

p+ q − n ≤ r ≤ min{p, q},

where the left equality is valid for the case of general position. Consequently, in case of
p+ q < n, both flats can be skew with no common point.

This can be extended to the case of m intersecting subspaces S1, . . . ,Sm:

m∑

i=1

dimSi − n(m− 1) ≤ dim

m⋂

i=1

Si ≤ min
i

dimSi (3.1)

For m hyperplanes H1, . . . ,Hm, which are intersecting into an r-flat, this extends to

n−m ≤ dim

m⋂

i=1

Hi = r ≤ n− 1. (3.2)

This relation confirms the number of solutions for an SLE in general position: A unique
solution exists only in case of m = n, no solution is expected for n < m, and infinitely many
solutions are possible for the underdetermined case of n > m.

In the following section, this result is used in order to illustrate how sparsity introduces
the uniqueness which is necessary to identify the sparsest solution.
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3.2. Existence of Unique Sparse Solutions

3.2.2. Sparsity Provides Uniqueness

Necessary Sparsity Level for Uniqueness

A τ -dimensional Cartesian subspace τ -CS of an n-dimensional ambient space is described
by the τ included coordinate axes. There are

(
n
τ

)
of such subspaces. For every τ -CS, all

included points have at most τ non-zero values. Consequently, all τ -sparse points are located
in τ -dimensional Cartesian subspaces.

Based on these observations, it is clear that τ -sparse solutions to an SLE exist only in the
s-flat which corresponds to the intersection of the solution space with all τ -CS. Considering
Equations (3.1) and (3.2), the dimensionality s = dim (τ -CS ∩⋂m

i=1Hi) of the resulting flat
for τ -sparse solutions is bounded by

τ −m ≤ s ≤ n−m.

Consequently, there are typically no sparse solutions with less than m non-zero components
for underdetermined systems in general position. Furthermore, it is not possible to reconstruct
a certain τ -sparse vector for τ > m only based on its sparsity since there are infinitely many
solutions. For the special boundary case of τ = m, there are

(
n
τ

)
different τ -sparse solutions.

On a first sight, this seems to contradict sparse recovery approaches like CS, where it is pos-
sible to recover unique sparse solutions. However, the existence of a sufficiently sparse solution
with τ < m is presupposed in these cases. As a consequence from the previous derivations, it
can be therefore argued that this solution is unique with high probability. Obviously, this is a
necessary condition for a successful reconstruction, and therefore, fundamental to the sparse
recovery problems which arise in the context of CS.

Necessary and Sufficient Condition by the Null Space

However, the previous condition is obviously not sufficient for all SLEs with sparse solutions
as it is already implied by the assumption of general position. With the help of the null space
kerA = {x ∈ K

n : Ax = 0} (sometimes also denoted as kernel) of a matrix A ∈ K
m×n, a

necessary and sufficient condition can be derived: As long as the null space does not contain
any vector with 2τ or less non-zero components (with exception of 0), every τ -sparse vector
is the unique sparsest solution. Since for two τ -sparse vectors x1 and x2, both resulting in
the same vector b = Ax1 = Ax2, the subtraction leads to A(x1−x2) = 0, where x1−x2 has
at most 2τ non-zero components. Since 0 is the only sparse vector in the null space, equality
x1 = x2 is enforced. For details and further derivations regarding this null space observation,
refer to [FR13]. Since this condition is sufficient for all τ -sparse vectors, it is generally very
pessimistic as it is observed subsequently.

Sparse solutions to underdetermined SLEs represent the direct connection of channel coding
and CS. Within this brief chapter on underdetermined SLEs, common non-sparse approaches
to such linear systems have been presented, which are applied as intermediate step in subse-
quent algorithms or even extended for sparse recovery. For the existence of a unique sparsest
solution, necessary general conditions have been established in a further step. Motivated by
the potential existence of a unique sparsest solution to an underdetermined SLE, its efficient
recovery leads to the principles of CS which are introduced in the subsequent chapter.
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4
Principles of Compressed Sensing

W
ithin the last decade, CS gained a considerable amount of attention due

to the award-winning1 publications of Donoho [Don06a], who coined the term
CS, and Candes & Tao [CT06]. These contributions acted as catalyzer for the

new research field of CS, which attracted scientists from a plethora of different
research fields. The interest in this field has not ceased as the recent establishment of the
new six-year priority program (SPP 1798): Compressed Sensing in Information Processing
(CoSIP) by the DFG (German Research Foundation) reflects the vivid interest in CS [DFG14].

The earliest contributions to sparse recovery in general are commonly associated with de
Prony [Pro95] from 1795. The first modern results arose in the context of ℓ1-minimization
in the mid 1960s [Log65] which has been independently used by geophysicists in the late
1970s [TBM79] as well. Within the 1990s, interest in sparse recovery has increased and the
basis for CS has been established [DL92, MZ93, Nat95, CDS98]. For more detailed overviews
regarding the history of CS refer to [DDEK12, FR13].

The fundamental setting within CS is commonly described by an underdetermined SLE,
where the sensing matrix linearly connects measurements with an unknown sparse vector.
By the means of CS, it is possible to recover this sparse vector from a small number of its
measurements under certain conditions.

Research on CS has spread on several subfields, where the following list is naturally not
exhaustive: Due to the underlying recovery problem, there is considerable interest in recon-
struction algorithms, where the requirements, e.g., reliability and speed, vary with potential
applications [Ran11, BT15]. Another important point in research are properties of the SLE
which favor successful recovery [HN07a, WZP+15], and therefore, lead to the search for new
constructions of potential sensing matrices [CHJ10a, AMM12]. There are also further exten-
sions of CS theory leading to related research fields as f.i. matrix completion [CP10]. Of course,
a considerable amount of research is driven by potential applications, e.g., magnetic resonance
imaging [HHL11], radar [HS09, End10] and the famous single-pixel-camera [DDT+08].

In the following Section 4.1, different types of well-known reconstruction algorithms are
introduced which are subsequently extended or used as reference. Afterwards, several unique-
ness assuring properties and their interconnections are briefly introduced in Section 4.2 on
page 27. Based thereon, suitable sensing matrices are categorized and discussed in Section 4.3
on page 29. Finally, two variants of CS are given in Section 4.4 on page 31, which provide
the basis for subsequently proposed contributions to CS.

1IEEE Information Theory Society Paper Award 2008
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4. Principles of Compressed Sensing

4.1. Reconstruction Algorithms

As previously mentioned, the unique sparsest solution to an underdetermined SLE is com-
monly searched within CS. In the following, the sensing matrix is denoted by Θ ∈ K

m×n.
The corresponding measurements are contained in a vector β ∈ K

m and the unknown sparse
vector is given by χ ∈ K

n. Commonly, CS problems are considered over the real or complex-
valued vector space K = {R,C}. The resulting underdetermined system (m < n) is usually
given by the means of linear algebra:

Θχ = β (4.1)

Typically, the ℓ0-"norm"2 is used as mathematical measure for the sparsity of the unknown
vector χ by determining the cardinality of its support set U :

‖χ‖ℓ0 = #{i : χi 6= 0} (4.2)

Thereby, the ℓ0-"norm" equals the Hamming weight w(χ) which is commonly used in chan-
nel coding, cf. Section 2.1.2 on page 7. The ℓ0-"norm" is an asymptotic extension of the
ℓp-(quasi)-norms

‖χ‖ℓp =

(
n∑

i=1

|χi|p
) 1

p

, 0 < p <∞,

‖χ‖ℓ∞ = max
i
|χi|. (4.3)

For 1 ≤ p ≤ ∞, the expression ℓp describes a norm and for 0 < p < 1 a quasi-norm since
the triangle inequality is not satisfied. In consequence, a norm is convex in contrast to a
quasi-norm, cf. [Ela10, FR13].

The reconstruction problem can consequently be described as ℓ0-optimization:

χ̂ = argmin
χ
‖χ‖ℓ0 subject to Θχ = β (4.4)

This straightforward approach is proven to be Non-deterministic Polynomial-time (NP)-hard,
cf. [Nat95, FR13], and therefore, intractable for large problems. Consequently, suboptimal
approaches need to be considered.

In the following, the optimization problem (4.4) is approached by convex relaxation in
Section 4.1.1, since it is known that such convex problems can be efficiently solved. As an
alternative, iterative methods, which typically aim to solve the sparse optimization directly,
are briefly discussed in the subsequent Section 4.1.2 on the next page.

4.1.1. Convex Relaxation

A suboptimal approach to the NP-hard ℓ0-minimization is the well-known Basis Pursuit
(BP) [CDS98], which replaces the ℓ0-"norm" in (4.4) by a convex ℓ1-norm resulting in the
simple optimization problem:

χ̂ = argmin
χ
‖χ‖ℓ1 subject to Θχ = β (4.5)

2Mathematically, this is actually neither a norm nor a quasi-norm since it is not homogeneous [FR13].
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4.1. Reconstruction Algorithms

Since the ℓ1-norm equals the summation of vector component magnitudes

‖χ‖ℓ1 =
n∑

i=1

|χi| ,

the BP described in (4.5) can be transformed into an LP, cf. Section 3.1.2 on page 19. Thereby,
the absolute value function need to be considered in the description, which can be achieved
for example by the following translation into a standard form LP, where two non-negative
vectors χ1 and χ2 are used therefore:

BP : χ̂ = argmin
χ
‖χ‖ℓ1 s.t. Θχ = β

LP (standard form) : min
x
cTx s.t. Ax = b and x ≥ 0

A = [Θ,−Θ]

c = 1

b = β

xT =
[
χT
1 ,χ

T
2

]

χ̂ = χ1 − χ2 (4.6)

There are several potential algorithms available to solve the LP given by (4.6). Typically these
approaches are divided into simplex methods and interior-point algorithms. In Chapter 5,
more details on reconstruction algorithms are given, where the focus is on the simplex method
which is extended to be sparsity aware in order to favor the sparse solutions of (4.4).

As subsequently discussed in Section 4.4.1 on page 31, there might be additional perturba-
tions, e.g., µ = Θχ+η, which need to be considered by the reconstruction algorithm. (Refer
to Section 4.4.1 for further details on different perturbation models.) The presented BP is
not suited for such noisy scenarios. However, there are also convex relaxations available for
these cases. For example, there is Basis Pursuit DeNoising (BPDN) [CDS98]:

χ̂ = argmin
χ

1

2
‖µ−Θχ‖2ℓ2 + λ‖χ‖ℓ1 , (4.7)

where λ ≥ 0 is a free parameter controlling the similarity to BP. Furthermore, there are sev-
eral other similar approaches, which provide the same solutions under certain circumstances:
There are the well-known Least Absolute Shrinkage and Selection Operator (LASSO) [Tib96]
or quadratically constrained BP. Refer to [FR13] for an overview and more details on the
individual links between the approaches.

4.1.2. Iterative Methods

In contrast to the previously introduced convex relaxation, iterative methods aim to solve the
intractable sparse recovery problem (4.4) directly. During the last decades, several iterative
approaches have been introduced and extended. In the following, the focus will be on the
Orthogonal Matching Pursuit (OMP) [PRK93], which is a well-known extension of the clas-
sical Matching Pursuit (MP) [MZ93] and subsequently used as reference. Further extensions
and approaches are briefly mentioned and corresponding references are given at the end of
this section.
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4. Principles of Compressed Sensing

Orthogonal Matching Pursuit (OMP)

The OMP has been independently introduced by several researchers, e.g., [CBL89, PRK93,
DMZ94]. It is a greedy algorithm since the best fitting column of Θ is added to a support
set of active columns in each iteration until a given stopping criterion is met. This support
set is subsequently used to determine a least squares solution to the recovery problem by an
orthogonal projection via Moore–Penrose pseudo inverse. The whole procedure is formally
given in Algorithm 4.1 according to [DDEK12, FR13]. There are several stopping criteria
possible, e.g., the number of iterations or the norm on the residual β −Θχ̃, as it has been
used for the subsequent simulations (cf. Appendix H.1.2 on page 120).

Algorithm 4.1: Orthogonal Matching Pursuit algorithm [PRK93]
Input : sensing matrix Θ, measurement vector β
Output: estimated sparse vector χ̂ = χ̃ supported on the set Û = Ũ

1 Ũ ← ∅, χ̃← 0 /∗ initialization ∗/

2 while stopping criterion is not met do

3 Ũ ← Ũ ∪ arg max
i∈[1,n]

|〈θi,β −Θχ̃〉| /∗ add next best index to the support set ∗/

4 χ̃Ũ ← Θ
†
Ũβ /∗ determine least squares solution for current support set ∗/

In contrast to conventional MP, all coefficients corresponding to the support set Ũ are
updated in every iteration by the orthogonal projection. However, this projection step comes
with considerably increased computational effort which is of course especially intense for vec-
tors χ with larger support sets U since many iterations are required in such cases. Another
disadvantage of OMP is that once an index is added to the support set Ũ , it cannot be re-
moved. This is especially disadvantageous if the sparsity is used as stopping criterion. These
drawbacks are addressed by several OMP extensions, where the most common are Compres-
sive Sampling Matching Pursuit (CoSaMP) [NT09], Regularized Orthogonal Matching Pursuit
(ROMP) [NV08] and Stagewise Orthogonal Matching Pursuit (StOMP) [DTDS12].

Further Approaches

Besides the previously described MPs (including the OMP extensions), there are further
promising approaches to the sparse recovery problem. For example, there are thresholding
based approaches, which are usually quite fast due to the typicall threshold operation. A well-
known example is the Iterative Hard Thresholding (IHT) [BD09]. Another popular approach,
which is called Approximate Message Passing (AMP) [DMM09], gathered recently consider-
able attention and led to several extensions [Ran11, SS12, MG15]. It combines thresholding
with believe propagation in graphical models based on BP and LASSO [DMM10a, DMM10b].

The choice of an ideal algorithm depends naturally on several factors: There is the actual
system itself including its dimensions and the used number field. The available resources
influence the selection of a certain algorithm as well as potential a-priori information and
necessary reliability or quality of the reconstruction. Within this thesis, BP and OMP have
been considered mainly as reference due to their generality and popularity.
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4.2. Uniqueness Assuring Properties

4.2. Uniqueness Assuring Properties

With the increased interest in CS, research on uniqueness assuring properties has intensified.
This led to a variety of interesting properties and corresponding extensions. Opposed to the
necessary conditions on the existence of unique solutions stated previously in Section 3.2.2
on page 21, the following properties arose in the context of CS and can be directly related to
guarantees for certain reconstruction algorithms.

In the following Section 4.2.1, the coherence is introduced as important uniqueness assuring
property which is of central interest in Chapter 6. Subsequently, the famous Restricted
Isometry Property (RIP) is briefly introduced in Section 4.2.2 on the following page as it is
later used as reference.

4.2.1. Coherence

For the case of a sensing matrix which consists out of two concatenated bases, the coherence
of the sensing matrix

M(Θ) = max
i 6=j

|〈θi,θj〉|
‖θi‖‖θj‖

∀ i, j ∈ [1, n] , (4.8)

has been introduced as property for sparse recovery by BP in [DH01, EB02]. Subsequently,
the results have been extended to the case of sensing matrices which consist out of multiple
bases as well as general sensing matrices [GN03, DE03, Fuc04, Fuc03].

Often, the coherence is also expressed by the maximal off-diagonal value of the correspond-
ing Gram matrix G:

M(Θ) = max
i 6=j

Gi,j with G = Θ
H
Θ

The coherence is trivially bounded by 0 ≤ M(Θ) ≤ 1 for normalized sensing matrices,
as it can be orthogonal or some columns can be collinear. For the relevant non-trivial case
of overcomplete sensing matrices, corresponding lower bounds on the coherence are given in
Section 6.1.1 on page 50.

Extending the result of [DH01], it is shown in [DE03, Fuc04] that BP is successful as its
result is unique and equivalent to the ℓ0-minimization (4.4) for

‖χ‖ℓ0 ≤
1 + 1

M(Θ)

2
. (4.9)

Consequently, the number of non-zero components in the sparse vector χ can be higher for
sensing matrices of lower coherence. As shown in [Tro04], the condition, which is given
by (4.9), is also valid for a reconstruction by OMP.

For the case of sensing matrices built by the concatenation of several bases, similar bounds
on the sparsity are given in [FN03, GN03]. Therein, a separate tight bound for the uniqueness
of the ℓ0-minimization is given, which implies a non-bridgeable gap between the optimal
reconstruction and its convex ℓ1-relaxation.

The coherence of a given sensing matrix Θ can be computed with low complexity. This cir-
cumstance makes the coherence an attractive criterion for the construction of sensing matrices
as it is subsequently described.
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4. Principles of Compressed Sensing

4.2.2. Restricted Isometry Property

The RIP is one of the most known uniqueness assuring properties and has been introduced
by Candès and Tao in [CT06, CT05]. It is actually based on Restricted Isometry Constants
(RICs) δτ , which are defined as smallest non-negative quantity for which

(1− δτ )‖χ‖2 ≤ ‖Θχ‖2 ≤ (1 + δτ )‖χ‖2 (4.10)

is fulfilled for all τ -sparse vectors χ. As a direct consequence, the singular values of any column
submatrix ΘT , with #T ≤ τ , are restricted to the interval [1− δτ , 1 + δτ ], cf. [CT05, FR13].
This circumstance is subsequently used for Monte Carlo experiments.

An RIP of a sensing matrix Θ is an upper bound on the RICs3 and requires that every
subset of τ or less columns behaves approximately like an orthonormal system [CRTV05].
Within [CT05], it has been shown that the τ -sparse solution to the ℓ0-minimization is unique
as long as

δ2τ < 1. (4.11)

Similarly, the first RIP for the uniqueness of the BP solution is given in [CT05] as well.
Corresponding RIPs have been proposed and refined by several researchers [CRTV05, Can08,
FL09, CWX10, Fou10]. A more recent sufficient RIP for exact recovery of all τ -sparse vectors
via BP is given in [CZ13] with

δ2τ <
1

3
. (4.12)

For the case of a quadratically constrained BP, similar bounds can be given which consider
also the achieved error [FR13]. Since OMP might choose a wrong column in its first stage, it
is impossible to provide an RIP which guarantees success within τ iterations [Don06b]. This
can be avoided by performing more iterations (by using a different stopping criterion) [FR13]
or by removing columns as the CoSaMP does for which RIPs exist [NT09].

As it can be seen by the numerical values in Equations (4.11) and (4.12), there is a gap
observable which implies that BP cannot achieve the reconstruction performance of the direct
ℓ0-minimization. Since the BP is merely a convex relaxation, this is not further surprising.

It is proven in [BDMS13, TP14] that determining the RIC for a matrix is actually an
NP-hard problem. However, it is possible to infer a lower bound on the RIC by Monte Carlo
experiments. Based on the previous connection between the range restriction on the singular
values of the column submatrix ΘT and the definition of RICs [cf. (4.10)], the maximal
occurring δτ can be obtained by Monte Carlo experiments over a large set of submatrices.
Thereby, the corresponding ranges of singular values for several different subsets T lead to
an empirical lower bound on the RIC.

The RIC of a column-normalized sensing matrix Θ is connected to the previously introduced
coherence by [CXZ09]

δτ ≤ (τ − 1) M(Θ), (4.13)

which is often used to construct sensing matrices with good RIP.
There are several extensions to the RIP, which are designed for special applications or

are less restrictive, e.g., the Dictionary-adapted RIP (DRIP) [CENR11], the Generalized RIP
(GRIP) [HN07b], or the Statistical RIP (StRIP) [CHJ10a].

3In some publications, Restricted Orthogonality Constants (ROCs) [CT05] are also used to express RIPs.
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Another notable example for a condition on the suitability of a sensing matrix is the
Null Space Property (NSP) [CDD09]. The RIP is used thereby for several proofs regarding
reconstruction guarantees for BP and BPDN. In contrast to the necessary null space based
condition of Section 3.2.2, the NSP considers also vectors which are approximatively sparse.

4.3. Sensing Matrices

As pointed out in the previous section about uniqueness assuring properties, a well-condi-
tioned sensing matrix is crucial for a successful recovery. There are several variants to create
suitable sensing matrices for which an overview is given in the following.

Potential sensing matrices Θ ∈ K
m×n can be categorized into two groups based on the

possible reconstruction approaches: All sensing matrices can be used in combination with
the general reconstruction algorithms provided in Section 4.1. Beyond that, there are also
deterministic matrices which are intentionally constructed such that they possess exploitable
structures, which allow dedicated reconstruction algorithms. However, certain applications
might enforce restrictions on the sensing matrix which prevent or at least limit deterministic
approaches.

Within Section 4.3.1, the common approaches for sensing matrices are briefly summarized
which includes random matrices, as well as potential optimization strategies, and explicit
constructions. Deterministic sensing matrices are discussed in Section 4.3.2 on the following
page, which allow dedicated recovery algorithms.

4.3.1. Sensing Matrices for General Reconstruction

Sensing matrices for general reconstruction are either based on random distributions, the
result of a matrix optimization with respect to a uniqueness assuring property, or even deter-
ministically constructed. In the following, these three categories are briefly summarized.

Random Matrices

The milestone publications [Don06a, CT06] focus on random sensing matrices. Thereby, the
columns of an orthonormal basis or some tight frame are selected uniformly at random and
combined to sensing matrices which allow to reconstruct sufficiently sparse vectors with high
probability by BP. The authors of [CT05] extend their previous results by introducing the
earlier described RIP which allows to provide reconstruction guarantees in case of Gaus-
sian matrices (whose elements are independent and identically distributed Gaussian with
zero mean and a fixed variance). These results have been subsequently generalized, e.g.,
to Bernoulli random variables and related distributions [BDDW08], or to the wider class of
sub-gaussian distributions [Ver12]. A brief overview on random sensing matrices is provided
in [DDEK12].

As an advantage, random sensing matrices can be typically obtained for any desired size.
Furthermore, randomized sensing matrices can be applied in several applications which allows
to give probabilistic reconstruction guarantees [Rom09, TLD+10]. As a drawback, there is
the non-zero risk of obtaining an ill-conditioned sensing matrix. Furthermore, these matrices
might be demanding in memory and computational requirements. The usage of pseudo-
random number generators can reduce the memory demands since only a relatively small

29



4. Principles of Compressed Sensing

seed needs to be stored. It is known that these random matrices fulfill uniqueness assur-
ing properties with high probability, however, there is the potential of obtaining improved
matrices by applying optimization strategies with respect to such beneficial properties.

Optimized Matrices

While the RIP is usually used to promote random sensing matrices, the computable coherence
is commonly considered as criterion for sensing matrix optimization. Often, the previously
given connection (4.13) is used to derive also guarantees on the RIP for such coherence based
optimization approaches. However, such RIP guarantees are not competitive to those of
random matrices [FR13].

Within Chapter 6 on page 49, coherence optimization is discussed separately in general.
Therein, several numerical approaches are summarized in Section 6.1.2, which can be used
to obtain low-coherence sensing matrices. Furthermore, a novel algorithm is provided in
Section 6.2, which is based on the maximization of certain spherical codes with respect to
their minimal distance.

Optimized matrices come typically with the advantage of improved reconstruction per-
formance. The optimization process itself might be time-consuming, however, it is usually
performed off-line during development, and therefore, corresponding complexity is of lower
relevance. However, the memory requirements of such optimized matrices are potentially
higher than for pseudo random variants, since the full matrix has to be stored compared to
a potentially small random seed.

Deterministic Matrices

In order to avoid probabilistic performance guarantees and to reduce the potential memory
consumption, several deterministic approaches for sensing matrices have been proposed. Typ-
ically, a minimal coherence is targeted by such approaches. Therefore, such sensing matrices
correspond to vector sets which are obtained by analytical approaches for which an overview
is given in Section 6.1.2 on page 54. As for the previously mentioned optimized matrices, RIP
guarantees are typically provided by the given connection to the coherence, cf. (4.13). Thus,
these guarantees share the same drawbacks.

Deterministic sensing matrices have the advantage of known and proven reconstruction
guarantees. The matrices might be computed if needed and do not have to be stored in
memory. However, they exist only for a limited range of matrix sizes. Furthermore, practical
limitations might prevent the application of such approaches as previously mentioned.

4.3.2. Deterministic Sensing Matrices for Dedicated Reconstruction

Opposed to the deterministic matrices of the previous section, certain uniqueness assuring
properties are not primarily targeted in this section. Here, the focus is on introducing ex-
ploitable structures, which can be utilized during the reconstruction by dedicated recovery
algorithms. Thereby, the focus can be on either computational speed, memory consumption,
or reconstruction performance. Of course, general recovery algorithms can still be applied,
however, the performance is typically limited since beneficial properties are often sacrificed
in order to establish the deterministic structures.
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As aforementioned, many theoretical results in CS are based on randomness in the sens-
ing process. There had been a similar situation in the early time of channel coding: Ran-
dom codes have been used as an argument in order to prove Shannon’s channel coding
theorem [Sha48, Bos12]. However, for practical applications, non-random (deterministic)
codes are used since they allow specialized decoding algorithms, which exploit the given
code structure and allow efficient implementations. Therefore, it is not surprising that sev-
eral researchers proposed coding based methods for deterministic CS [DeV07, PH08, HCS08,
AHSC09, CHJ10a, AMM12]. Subsequently, CRS codes are used in Chapter 7 on page 75 as
a deterministic CS scheme.

The previously mentioned drawbacks of deterministic sensing matrices for general algo-
rithms apply here as well. Furthermore, such coding based deterministic CS schemes with
dedicated coding-based reconstruction algorithms are typically rather sensitive to noise since
robustness is no issue in coding theory where complexity reduction is of main interest. As it
is shown in Chapter 7, this circumstance needs to be considered in corresponding approaches.

4.4. Variants of Compressed Sensing

With the fast growing interest, several related variants of CS have been proposed. Typically,
basic CS problems are described by an underdetermined SLE, cf. (4.1). In the following,
two basic variants are discussed which will be of interest in the subsequent chapters. In
Section 4.4.1, the previously mentioned case of additional non-sparse noise is formally intro-
duced. Subsequently, the scenario of sparsifying dictionaries is given in Section 4.4.2 on the
following page.

4.4.1. Noisy Scenarios

Especially in the context of potential applications, noisy CS scenarios are typically discussed
since measurement noise can never be completely avoided. Most commonly, the occurring
noise is modeled as Additive White Gaussian Noise (AWGN). The additional noise terms can
be considered at two different positions in a CS system:

µ = Θ (χ+ η1) + η2,

where η1 ∈ K
n and η2 ∈ K

m represent the two possible additional terms. The effective
noise Θη1 corresponds to a filtered noise term and can also be modeled within η2. The parts
of η1 which lie in the null space of Θ do not influence the actual measurement and reconstruc-
tion and can therefore be neglected. The scaling of the noise for fair comparisons depends
on the actual application, the noise sources occurring therein, as well as the constraints on
the designed system. Consequently, there are many possible ways for comparison. In the
following,

µ = Θχ+ η

is used as noisy CS scenario. Refer to Appendix H.1 on page 119 for a precise definition
how the components in η are obtained for the subsequent simulations. Several techniques for
noisy scenarios can also be used for CS variants which describe the reconstruction of sparse
approximations to non-sparse vectors [FR13].

31



4. Principles of Compressed Sensing

Sometimes it is argued, why noiseless CS schemes are considered at all. Due to its generality,
CS has connections to a plethora of different research fields. Naturally, each field comes with
its own individual problems, requirements and assumptions. Especially for direct applications,
noise is a major issue and needs to be addressed. However, in less practical research fields,
the actual problem lies in solving the NP-hard sparse reconstruction and noise is of minor
interest if at all. This discussion is closely related to the (almost philosophical) question on
the importance of fundamental research.

4.4.2. Sparsifying Dictionaries

Another important CS variant utilizes so-called sparsifying dictionaries in order to allow the
application of the CS methodology to a non-sparse vector ζ ∈ K

l. Thereby, ζ needs to have a
sparse representation χ ∈ K

n with respect to a (possibly overdetermined l ≤ n) basis denoted
as dictionary Ψ ∈ K

l×n:
ζ = Ψχ

A measurement matrix Φ ∈ K
m×l can be applied on this non-sparse vector ζ in order to

obtain β = Φζ, the so-called measurement with β ∈ K
m and typically m < l. By combining

both matrices into the sensing matrix Θ = ΦΨ, the well-known underdetermined SLE of
CS is obtained, cf. (4.1). Since sparse representations are often applied in many practical
scenarios, e.g., lossy compression [Mal08], such variants opened CS to a large variety of
potential applications [Ela10].

This variant of CS raised several interesting problems and questions, e.g., whether a dictio-
nary is already known or needs to be acquired by observations (dictionary learning [Ela10]), or
which properties a suitable measurement matrix needs to possess [CENR11]. The latter ques-
tion is often answered by two different yet similar properties. The authors of [CR07, CW08],
argue that the rows of Φ (the measurements) should be incoherent to the columns of Ψ (the
elementary signals). This demand results in the following coherence-like description:

M(Φ,Ψ) = max
i,j

|〈φi,ψj〉|
‖φi‖‖ψj‖

(4.14)

The intra row coherence of Φ should be small as well since it is only reasonable to collect as
much potentially different information as possible. However, it is also desirable to choose a
potential measurement matrix such that the resulting sensing matrix Θ suits the uniqueness
assuring properties previously given in Section 4.2. Due to its computability, the sensing
matrix coherence M(Θ), cf. (4.8), is especially suited. Since both properties are based on the
coherence, caution needs to be applied by reading the referred literature.4 As an advantage of
Gaussian measurement matrices, the resulting sensing matrix is again Gaussian for most typ-
ical dictionaries, and therefore, the earlier RIP-based probabilistic reconstruction guarantees
can be directly applied [BDDW08].

The coherence optimization technique subsequently introduced in Section 6.2 on page 55 can
be adapted in order to optimize the coherence between measurement matrix and dictionary,
as shown within Section 6.3.2 on page 70. This allows to estimate the influence of both
coherence-based criteria numerically as it is done in the corresponding section.

4In [CR07], it is referenced that [DH01, DE03] introduce coherence between measurement matrix and dictio-
nary as in (4.14), however, the coherence of the sensing matrix (4.8) is actually described therein.
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Figure 4.1.: Overview of several aspects in CS.

4.5. Summary and Overview

Within this chapter, several aspects of CS which are relevant for the subsequent contributions
have been introduced. After establishing the CS problem as search for the sparsest solution
to an underdetermined SLE, common reconstruction algorithms have been summarized in
Section 4.1. Thereby, special focus is put on convex ℓ1-norm relaxations and on iterative
methods, where the OMP is of primary interest (among the plethora of iterative approaches)
for the subsequent thesis. Two uniqueness assuring properties have been discussed in Sec-
tion 4.2, where the computable coherence and the well-known RIP are highlighted. Potential
constructions or sources for sensing matrices have been discussed altogether in Section 4.3.
Thereby, matrices for general reconstruction algorithms are separated from special sensing
matrices which allow also dedicated reconstruction algorithms. Finally, two basic variants on
CS have been given in Section 4.4: noisy CS scenarios which consider additional non-sparse
noise terms hindering the reconstruction, the CS variant of sparsifying dictionaries which
allows to cover also non-sparse vectors by the CS theory as long as they can be sparsely
represented with respect to some dictionary.

As it is clear from the current introductory chapter, CS resembles a large umbrella field
for several different scenarios and objectives. In order to classify quickly the contributions
of the subsequent chapters into the overall big picture of CS, the visualization of Figure 4.1
is introduced. Similar figures are used at the end of each contributing chapter, where the
relevant aspects of the corresponding contribution are highlighted in order to allow a fast clas-
sification of the individual contribution. Since the approaches often differ for the underlying

33



4. Principles of Compressed Sensing

field, it is indicated whether complex or real vector spaces are considered. The potentially
applied reconstruction is separated into dedicated, iterative, and convex algorithms. For the
used sensing matrices, deterministic, optimized, and random approaches are differentiated.
And of course, the corresponding CS variant is provided, where the classical case of directly
sparse vectors is possible as well as the previously introduced variants of noisy scenarios and
sparsifying dictionaries.
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5
Sparsity Aware Simplex Algorithms

S
ince the direct approach to the sparse recovery problem is commonly known to
be NP-hard [Nat95, FR13], suboptimal approaches are considered, for example, those
discussed in Section 4.1 on page 24. One of the prominent examples is the convex
ℓ1-relaxation called BP proposed by [CDS98]. Utilizing the ℓ1-norm for sparse re-

covery has already an older history [Log65, DL92] with applications in geophysics [TBM79].
Besides the benefits for theoretical derivations, the possibility of transforming the ℓ1-min-
imization into an LP (cf. Section 3.1.2 on page 19) contributed to the popularity of this
optimization approach, since the well-known solvers for LPs can be applied.

An early and famous example for such an LP solver is the simplex method originally pro-
posed by Dantzig [DT97] in 1947, which has been subsequently improved and revised by
several researchers, e.g., [Bea54, Lem54, FG92]. The term simplex method had been coined
by Motzkin who described the approach as a movement from one simplex to another [DT97].
Since there are interior point algorithms for which the running-time is proven to be polyno-
mial [Kar84], those approaches are also very popular. However, simplex algorithms are often
faster although their worst case running time is known to be exponential [KM72]. Within this
chapter, the focus will be on the simplex method for which there are many good textbooks
available providing detailed introductions, e.g., [NS95, DT97, BT97].

Subsequently, Sparsity Aware Simplex Algorithms (SASAs) are provided by utilizing de-
generated vertices. Degeneracy is caused by redundant constraints and leads to solutions
which contain one or more zeros [DT97]. In conventional simplex approaches, such vertices
are usually unwanted, since they might lead to cycles which could prevent the algorithm from
finding the solution to the optimization problem [DT97]. However, for sparse recovery prob-
lems, degenerated vertices are actually very attractive, since they are sparse by definition. For
cases where the sparsest solution does not have minimal ℓ1-norm, degenerated vertices allow
therefore to improve on the reconstruction performance of a conventional BP. Consequently,
this technique allows to investigate the "closeness" of the sparsest solutions with respect to
the solution with minimal ℓ1-norm for cases where those do not coincide and BP fails.

In the following Section 5.1, the conventional simplex method is introduced, where the
simplex algorithm is applied within the so called two-phase method. Subsequently, degen-
eracy is used for sparsity awareness in Section 5.2 on page 39, where different variants for
SASAs are proposed. These variants resemble a trade-off between additional complexity and
improved reconstruction. Finally, within Section 5.3 on page 43, variants for the sparsity
aware two-phase method are proposed and examined for their recovery potential in CS.
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5. Sparsity Aware Simplex Algorithms

5.1. Simplex Method

One should note the difference between the simplex method and the simplex algorithm: For
LPs in the inequality form (cf. Section 3.1.2 on page 19) with only ≤-relations (b ∈ R

m
≥0), the

origin is a feasible initial solution and the simplex algorithm can be directly used to solve the
linear optimization problem. In case of equality or ≥-relations (e.g., an LP in standard form,
cf. Section 3.1.2), there is typically no such initial feasible solution known. As a consequence,
the LP has to be extended in a first phase such that the simplex algorithm can be applied in
order to find a feasible solution. Based on this solution, the LP can be reduced again and the
simplex algorithm obtains in a second phase the optimal solution. The term simplex method
describes thereby the general approach of solving LPs with the help of one or more instances
of the simplex algorithm. The mentioned two-phase (simplex) method is subsequently used
as an example for solving an LP in standard form. In Section 5.1.1, the simplex algorithm is
introduced for LPs in inequality form. Subsequently, the two-phase method is explained in
Section 5.1.2 on page 38 which allows to solve all forms of LPs. The following introduction
is mainly based on [AHK+11, DT97, BT97].

5.1.1. Simplex Algorithm

The feasible solution space of an optimization problem in inequality form corresponds to a
polytope, which is the intersection of all half-spaces given by the corresponding inequalities.
Consequently, optimal solutions can only be located on the surface of this polytope, whereby
the unique optimal solution corresponds to a certain vertex. Based on this observation, the
fundamental idea of the simplex algorithm is to walk from one vertex to an improving vertex
until the optimum is found. Figure 5.1 illustrates the concept for a minimization of −x3.
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Figure 5.1.: Solution space of an LP in inequality form Ax ≤ b with A ∈ R
m×n, x ∈ R

n
≥0,

b ∈ R
m visualized as polytope. Exemplary path of vertices covered by the simplex

algorithm displayed in dark blue.

In order to apply the simplex algorithm, the constraints of an LP in inequality formAx ≤ b
with A ∈ R

m×n, x ∈ R
n
≥0 and b ∈ R

m
≥0 need to be transformed into a system of linear
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5.1. Simplex Method

equations.1 Therefore, slack variables x̃ are introduced into every inequality leading to

Ax+ Ix̃ = b, (5.1)

with x̃ ∈ R
m
≥0 and I being the identity matrix. These additional variables can be interpreted

as indicator for the degree of how close an inequality is to being equal. Naturally, at least
one of the introduced slack variables is equal to zero on the surface of the polytope.

An under-determined linear system of m equations in n +m variables [as in (5.1)] is said
to be canonical if there are m variables (one for each equation) which occur in all equations
only once with a 1 as coefficient. Consequently, the matrix representation of such a system
contains m distinct canonical unit vectors as columns. This special form allows to identify
directly a basic feasible solution: The non-zero components attain the values from b and are
located according to the columns containing the canonical unit vectors. Such a basic feasible
solution corresponds to a vertex of the polytope. For example, in (5.1), the unit columns
identify x̃ = b which corresponds to x = 0 to the origin as currently selected vertex.

An LP, which comprises a system of linear equations in canonical form together with a
corresponding objective function given by minx c

Tx, can be represented by a simplex tableau



A I b

cT
0 0


 , (5.2)

which is an extended matrix consisting out of known values from the original optimization
problem. As argued before, the basic feasible solution corresponds to the vertex p ∈ R

n+m,
which equals pT =

[
xT, x̃T

]
for the given example.

For the subsequent description of the simplex algorithm, the components of a tableau are
identified as: 



a1,1 . . . a1,k b1
...

. . .
...

...

al,1 . . . al,k bl

α1 . . . αk α



, (5.3)

where k = n + m and l = m for the current example of (5.2). As before, canonical unit
vectors can be used to identify non-zero components of the current basic feasible solution p,
where the actual values are obtained from the corresponding entries in the right column of
the tableau (b1 . . . bl). The value of the objective function for the currently selected vertex p
is given by −α. Consequently, for the given minimization problem, the solution can only be
improved if some positive value is added to α.

In order to walk from the current vertex to another (also denoted as simplex step), a new
canonical unit vector has to be formed within a column of the tableau without changing the
actual solution space. This can be accomplished by row operations (cf. Gaussian elimination).
Consequently, the optimal solution is obtained as soon as αi ≥ 0 for all i ∈ [1, k], since only
the selection of columns with αi < 0 improves on α. The vector component, which becomes 1
during the simplex step, is denoted as pivot element ar,c. There are several pivoting strategies
for selecting the corresponding pivot column c. In the following, two strategies are considered:

1Here, b ∈ R
m
≥0 is assumed. Negative values in b correspond to ≥-relations. Consequently, a transformation

has to be performed as subsequently described in Section 5.1.2.
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5. Sparsity Aware Simplex Algorithms

Rule of Bland [Bla77]: c = min {i | αi < 0}
Smallest reduced cost: c = argmin

i
{αi | αi < 0}

Obviously, the rule of Bland selects the column with the smallest index i, while the greedy
strategy, denoted as smallest reduced cost, chooses the one with minimal αi. Within column c,
the pivot row r of the pivot element ar,c is selected by the minimum ratio test:

r = argmin
i∈[1,l]

{
bi
ai,c
≥ 0

}
(5.4)

As soon as the pivot element ar,c has been identified, a simplex step can be performed by
applying the corresponding row operations such that a new canonical unit vector is created
in column c. The continuous application of such simplex steps until there is no better vertex
reachable, i.e., αi ≥ 0 for all i ∈ [1, k], is denoted as simplex algorithm.

If the result of the minimum ratio test (5.4) is provided by br/ar,c = 0, a degenerated vertex
has been reached. Consequently, at least two equal ratios preceded such a vertex during the
previous minimum ratio test. Such degenerated vertices are dangerous, since they might lead
to cycles which can stall the algorithm as the value of the objective function is not further
improved. It is possible to avoid such stalling cycles by a suitable choice for the pivot ele-
ment. The rule of Bland is a simple and elegant example for an anti-cycling strategy [Bla77].
Since these degenerated vertices are given by br = 0, they contain additional zeros. Conse-
quently, sparse solutions are located at such degenerated vertices. Therefore, degeneracy is
subsequently used in Section 5.2 on the facing page to provide sparsity awareness.

5.1.2. Two-Phase Method

In case of an LP which is not given in inequality form Ax ≤ b with A ∈ R
m×n, x ∈ R

n
≥0

and b ∈ R
m
≥0, the previously described simplex algorithm cannot be directly applied: Since

the missing slack variables cannot provide a system of linear equations in canonical form, no
basic feasible solution can be obtained directly. However, it is possible to determine a valid
starting vertex of the polytope by introducing an additional preparation step called the first
simplex phase. For a general LP of the form

min cTx s.t. x ≥ 0,

Alex < ble

Aeqx = beq

Agex > bge

,

with ble, beq, bge ≥ 0, artificial variables are introduced for equations and >-inequalities
within this first phase. With the help of these additional variables, an enlarged simplex
tableau can be created:




Ale Islack 0 0 0 ble

Age 0 −Islack Iartif. 0 bge

Aeq 0 0 0 Iartif. beq

c 0 0 0 0 0

−Σ 0 1 0 0 −Σ0




, (5.5)
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where Σ contains the summed elements from each column of Age and Aeq. Similarly, Σ0

contains the summed elements of bge and beq. The previous objective function is now denoted
as primary, while the last row resembles the secondary objective function which corresponds
to a summation of the artificial variables.

The SLE, which is provided by (5.5), is obviously of canonical form due to the introduced ar-
tificial variables represented by Iartif. and due to the previously described slack variables Islack.
Consequently, the simplex algorithm can be applied to find an optimal solution to the sec-
ondary objective function. Thereby, the primary objective function is ignored during the
minimum ratio test, however, all row operations are performed on this row as well. At the
end of the simplex algorithm, the secondary objective function reaches its minimum with 0,
where no artificial variables are used. Consequently, they are not needed in order to deter-
mine the basic feasible solution. This allows to reduce the simplex tableau again by skipping
the columns corresponding to artificial variables as well as the secondary objective function.

In a second phase, the simplex algorithm can be applied to the reduced simplex tableau
and an optimization can be performed with respect to the primary objective function. The
combination of both phases is commonly known as two-phase simplex method. There are
also other methods available, e.g., the Big M method [DT97].

A sparse recovery problem can be expressed as LP in standard form as described in (4.6)
on page 25. Since only equations are involved, the corresponding simplex tableau for the first
phase is equal to [cf. (5.5)] 



A I b

c 0 0

−Σ 0 −Σ0


 .

For the element identification in (5.3), the parameters are k = n +m and l = m, where the
primary objective function is ignored for the identification.

In the subsequent section, the concept of sparsity awareness based on degeneracy is intro-
duced. Thereby, the previously described simplex method is extended to be sparsity aware.

5.2. Sparse Solutions through Degeneracy

Since the BP is just a convex relaxation, the optimization of the derived LP is not the original
goal but merely the chosen suboptimal approach. The solution space, which corresponds to
the given under-determined system, is naturally the same for the sparse recovery problem as
well as for the ℓ1-minimization. As it has been previously mentioned, sparse solutions are
found in degenerated vertices, which correspond by definition to the intersection of more than
l hyperplanes. Therefore, it is only reasonable to look out for degenerated vertices during the
walk on the surface described by the simplex algorithm.

For systems in general position (cf. Section 3.2.1 on page 20), such a degeneracy based
approach is well legitimated: By extracting a vertex from a simplex tableau, only l components
are not set to zero. Consequently, every solution corresponding to a vertex has at most l
non-zero components. A degenerated vertex has at least one zero on the right hand side of
the tableau, and therefore, the number of non-zero components is less than l. The degenerated
vertex can be assumed to be unique for a linear system in general position since there exists
with probability 1 no other solution of sparsity less than l (cf. Section 3.2.2).
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5. Sparsity Aware Simplex Algorithms

In the following, two general approaches for the search of sparse solutions are provided.
The first concept is based on the path which is chosen by the simplex algorithm, while the
second is based on the closeness of the convex relaxation with respect to the sparse solution.
Both concepts can also be combined and result in variants of SASAs.

5.2.1. Path Oriented Search Variants

While the simplex algorithm walks from one vertex to another, the solution space can be
explored for degenerated vertices up to different extends. Three exemplary variants of such
searches along the path are provided in the following. Thereby, each variant represents a
trade-off between potential reconstruction gain and complexity.

1. Direct path: This is the most straight forward variant. Each visited vertex on the
path to the optimal solution is checked for degeneracy. If such a degenerated vertex is
found, the obtained sparse solution is returned and the algorithm stops. In case there
is no degenerated vertex found, the algorithm continues until the optimal solution of
the LP is reached (αi ≥ 0 ∀ 1 ≤ i ≤ k). A vertex is checked for degeneracy by the
minimum ratio test (5.4): As soon as br/ar,c = 0 is obtained, a sparse solution is found.
Since the minimum ratio test has to be performed anyway, no additional complexity is
required for this variant. On the contrary, simplex steps might be even avoided because
of an earlier termination, and consequently, computation time might be decreased.

2. Improving neighbors: In addition to the visited vertices, this variant checks all neigh-
boring vertices which improve the current value of the objective function for degeneracy.
As noted before, the corresponding columns are identified by αi < 0. The degeneracy
is verified by searching for rows with equal ratios during the minimum ratio test for
each improving column. In order to estimate the additional complexity, the number of
improving columns has to be known. On average, this number can be roughly approx-
imated to half the columns, which leads to kl/2 ratios which have to be calculated and
compared. The additional computation time might be compensated by the increased
probability for an earlier termination, if a sparse solution is found.

3. All neighbors: The second variant can be extended to check not only the improving
but all neighboring vertices for degeneracy. On the first sight, it might sound implausible
to consider non-improving vertices, however, it follows directly the general spirit of
sparsity awareness: The objective function is defined by the ℓ1-minimization, which is
only the convex relaxation of the underlying sparse problem. Consequently, the sparsest
solution can be found in a non-improving neighbor, as soon as it does not coincide with
the convex relaxation. Since kl ratios have to be determined per simplex step, this
variant comes with the highest complexity but has also an increased probability of
finding the sparsest solution.

The difference of the three variants can be visualized by an exemplary polytope. Since the
first variant examines only the vertices on the path, its visualization corresponds to Figure 5.1
on page 36. In addition to the vertices on the direct path, their neighbors are also checked
during the second and third variant as depicted in Figure 5.2 for a minimization of −x3. As
it can be seen from the figure, some vertices might be checked several times during the third
variant which may be avoided in corresponding implementations.
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(a) Variant 2: Improving neighbors
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(b) Variant 3: All neighbors

Figure 5.2.: Visualization of path oriented search variants for sparsity aware simplex algo-
rithms which examine neighboring vertices. The direct path (Variant 1) is given
in dark blue (cf. Figure 5.1).

Further variants with different complexity trade-offs can be derived, for example by selecting
all columns with αi < κ ∈ R, where κ is a corresponding arbitrary threshold. Since the
performance of such derived variants is bounded by the presented extremal cases, only these
variants are considered for the remainder of this chapter.

A common parameter for all variants is the choice of the pivoting strategy: The rule of
Bland is applied to avoid cycling in degenerated vertices and usually results in considerably
longer paths. Since such an avoidance is not needed for the presented approach of sparsity
awareness, the smallest reduced cost pivoting strategy is applied for the presented variants of
sparsity aware simplex algorithms.

Within Figure 5.3, the proposed variants are evaluated. The complexity differences between
the three provided search variants with respect to the number of performed simplex steps and
examined vertices are visualized over the sparsity τ of the unknown vector for all variants
in Figure 5.3a. Similarly, the success rates of determining the sparse solution are given in
Figure 5.3b. For the underlying simulation, 10 000 realizations of CS-schemes with random
sensing matrices of size 32× 128, resulting in an LP with n = 256, m = 32, have been used.
A reconstruction is considered to be successful here if the squared error of the underlying
sparse vector is below 10−10. Further simulation details can be found in Appendix H.2
on page 120. For the direct path search (Variant 1), there is only one vertex examined
per simplex step, therefore, the numbers are equal. Since variants 2 and 3 examine their
neighbors, these search approaches may terminate earlier, and therefore, their number of
performed simplex steps is less than for the first variant, where the number of examined
vertices is consequently significantly larger. Obviously, Variant 3 examines most vertices,
since all neighbors are considered. Since a degenerated vertex might be found thereby, this
Variant has the tendency to terminate earlier than Variant 2, as it can be seen at the outliers
for sparsity τ = 9. The success rate given in Figure 5.3b illustrates the performance gains
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Figure 5.3.: Evaluating path oriented search variants. Simulation parameters: Appendix H.2.

of the presented path oriented search variants. Each of the given variants corresponds to a
trade-off between complexity and improved reconstruction. The more vertices are visited and
examined for sparse neighbors, the higher is the probability of finding a degenerated vertex
which provides the sparsest solution.

5.2.2. Closeness of Convex Relaxation

The convex relaxation of BP is justified by the circumstance that the sparsest solution has
also minimal ℓ1-norm as long as it is sparse enough. As soon as the searched solution is not
sufficiently sparse, the BP fails consequently. However, the desired degenerated vertex, which
resembles the sparsest solution, might still be in the vicinity of the vertex corresponding
to the smallest ℓ1-norm. Searching the sparsest solution within the neighbors of the vertex
obtained by BP resembles another approach to SASAs.

The underlying assumption can be investigated by applying several simplex steps to all
columns of the corresponding simplex tableau. The obtained vertices are checked for degen-
eracy as described before. By recursively repeating this procedure for all vertices until the
desired sparse solution is found, the distance d between both solutions can be determined
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5.3. Sparsity Aware Simplex Methods for Compressed Sensing

with respect to the number of necessary simplex steps (which equals the count of involved
edges on the polytope). For a concrete CS-like scenario with sensing matrices of size 16× 32
and a sparsity range of 1 ≤ τ ≤ 8, the closeness of the convex ℓ1 relaxation within the so-
lution space of the resulting LP with n = 64, m = 16 has been examined for cases where
BP fails to obtain the sparsest solution. The corresponding distance distribution given in
Table 5.1 has been determined over 10 000 random realizations of sensing matrices and sparse
vectors. The corresponding simulation details can be found in Appendix H.2 on page 120.
The sparsest solution coincides with the one of minimal ℓ1-norm (d = 0) for sufficiently sparse

τ
d

1 2 3 4 5

3 91.3% 8.7% 0 0 0

4 80.2% 17.6% 2.1% 0 0

5 69.5% 27.1% 3.3% 0 0

6 55.3% 34.7% 9.1% 0.9% 0

7 41.7% 39.0% 15.7% 3.2% 0.3%

8 29.2% 38.0% 22.9% 8.1% 1.6%

Table 5.1.: Relative distance distribution between the sparsest solution and the one with
minimal ℓ1-norm in case of a failed BP for an LP with n = 64, m = 16.

vectors (τ ≤ 2). As previously assumed, the resulting vertex is still located in the vicinity
of the sparsest solution for sufficiently small values of non-zero components (cf. 3 < τ ≤ 7).
Consequently, examining the vicinity of the vertex determined by the BP for degeneracy is a
potential approach for sparse recovery.

Checking the degeneracy of vertices up to different distances can be considered as variants of
this closeness-based approach. As for the previously discussed schemes of sparsity awareness,
such variants correspond to trade-offs between complexity and reconstruction performance.
Since the number of neighboring vertices grows exponentially with the distance, only the
direct neighbors (d = 1) are considered in the following.

The described approach to sparsity awareness, which is based on the closeness of the convex
relaxation, can be combined with the previously introduced path oriented search variants. The
resulting possibilities for a sparsity aware two-phase method are described subsequently in
Section 5.3, where its potential for CS is evaluated as well.

5.3. Sparsity Aware Simplex Methods for Compressed Sensing

As described in Section 5.1.2 on page 38, the simplex method can be used for sparse recovery
problems as they arise in the context of CS. Since degenerated vertices provide sparse solu-
tions, corresponding search approaches were given within the preceding Section 5.2. In the
following, variants of sparsity aware two-phase simplex methods are given which combine the
described search strategies. Subsequently, the resulting sparsity aware simplex methods are
evaluated for their potential in CS scenarios.
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5.3.1. Sparsity Aware Two-Phase Simplex Method

The previously introduced variants of SASAs can be embedded into two-phase simplex meth-
ods. Thereby, one has to differ between first and second phase: In the first phase, a valid
starting vertex is determined by the simplex algorithm. Since the corresponding objective
function is not a convex relaxation of the sparse recovery problem, there is no point in exam-
ining non-improving vertices. This observation rules out the third variant of the path oriented
search variants (all neighbors, cf. Section 5.2.1), as well as the search within the vicinity of
the obtained optimum (cf. Section 5.2.2). The optimal vertex of the first phase is degenerated
if the corresponding starting point for the second phase provides already a sparse solution
itself, therefore, the first two path oriented search variants of Section 5.2.1 can be applied
in the first phase as well. In case a degenerated vertex has been obtained within this first
phase, its validity with respect to the reduced original problem Ax = b has to be verified
since artificial variables might have been used within this vertex. Even if a zero is assigned to
an artificial variable, which is not implausible for a degenerated vertex, the resulting reduced
system will be invalid. If the validity check is not passed, a conventional simplex algorithm
can be applied in order to determine the starting vertex for the second phase.

Within the second phase, both search approaches can be applied: In case there is no
degenerated vertex found during the (sparsity aware) simplex algorithm, the vicinity of the
obtained vertex with minimal ℓ1-norm can be checked for degenerated vertices. For the
path oriented search variant in which all neighboring vertices are examined (Variant 3, cf.
Section 5.2.1), a subsequent check of the direct vicinity is not necessary, since these neighbors
have already been checked on the way.

The presented variants on sparsity aware two-phase simplex methods are illustrated as
flowchart in Figure 5.4. The alternative path oriented search variants (cf. Section 5.2.1) are
represented by blue boxes with rounded corners. In case a valid sparse solution is found in
the first phase, the corresponding tableau is reduced and the path oriented SASAs return the
result immediately in the second phase. As mentioned before, a conventional simplex algo-
rithm has to determine a valid starting point for the second phase as soon as no valid sparse
solution has been obtained. After the first phase has been completed, the three path oriented
search variants can be utilized. In case a sparse solution is obtained therein, it is directly
returned and the recovery procedure is completed. The green block represents the optional
(dashed edges) examination of the vicinity close to the vertex representing the solution with
minimal ℓ1-norm, which may be performed if no sparse solution could be obtained by the
path oriented search variants.

5.3.2. Potential of Sparsity Awareness in Compressed Sensing

The previously introduced two-phase sparsity aware simplex methods can basically be ap-
plied in every CS-scenario where the underlying BP is suitable. With the help of numerical
simulations, the potential of sparsity awareness in CS is evaluated in the following.

The subsequently examined CS schemes are based on random sensing matrices of size
32 × 128 resulting in an LP with m = 32 equations and n = 256 unknowns. More details
on the simulation can be found in Appendix H.2 on page 120. In Figure 5.5, the success
rate of the sparse reconstruction is plotted over the sparsity of the unknown vector.2 For

2For further comparison, the corresponding boxplots of the squared error are given in Appendix B on page 105.
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Figure 5.4.: Flowchart of the possible variants for the presented sparsity aware two-phase
simplex method. Alternative path oriented search variants (cf. Section 5.2.1) are
in blue color. The optional (dashed edges) examination of the ℓ1-vicinity (cf.
Section 5.2.2) is represented by the green block.

comparison, the performance of the original BP is added as well as for the greedy OMP (cf.
the corresponding paragraph on page 26). For all sparsity aware simplex methods within these
simulations, the search on the direct path (Variant 1, cf. Section 5.2.1) has been performed
within the first phase. For the second phase, all three path oriented search variants have been
examined together with the optional check of the ℓ1-vicinity. As it can be seen in the figure,
the sparsity aware simplex methods improve on the BP as expected. The first variant of
examining the direct path alone comes only with small performance gains. The examination
of the ℓ1-vicinity comes always with a significant performance gain. With increasing number of
examined vertices, the success rate improves as well, as it can be seen for path oriented search
variants which check neighboring vertices for degeneracy (variants 2 and 3, cf. Section 5.2.1).
Comparing the success rates of OMP with those of the other schemes, it can be observed
that there are cases where the OMP fails earlier than the convex relaxation BP (sparsity
3 < τ < 6). Due to the sparsity awareness, the proposed variants are able to successfully
reconstruct the sparse vector more often than OMP for sparsity levels up to τ < 10.
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Simulation parameters: Appendix H.2.

5.4. Summary and Overview

The concept of SASAs has been proposed as contribution to CS in this chapter. Within Sec-
tion 5.1, the well-known simplex algorithm and the two-phase method have been introduced,
which allow to solve LPs with arbitrary linear inequality constraints. The simplex method
can be used to apply BP to CS problems since the corresponding convex ℓ1-optimization are
transformed into an LP. As it is argued in Section 5.2, BP provides only a convex relaxation
to the actual sparse recovery problem, which is known to have the same solution if the un-
known vector is sparse enough. Consequently, if the original solution has not been sufficiently
sparse, the optimization of the LP does not provide in the searched sparse solution. In order
to approach this dilemma, degenerated vertices can be used which are unwanted in typi-
cal simplex schemes since they might result in stalling cycles. Often, anti-cycling strategies
are applied which come with an increased complexity. In the proposed approach of sparsity
awareness, degenerated vertices are actually searched since they provide the sparse solutions.
Thus, anti-cycling strategies are not needed. Degenerated vertices can be searched by differ-
ent ways: Path oriented variants have been provided which examine the vertices (and possibly
their neighbors) on the way to the optimum for degeneracy. It is also possible to search the
vicinity of the obtained ℓ1-solution for degenerated vertices. The potential of each search
variant has been evaluated by numerical simulations, whereby the individual complexity has
been considered as well. Afterwards, it was shown in Section 5.3 that these search variants
can be combined into sparsity aware two-phase simplex methods. Subsequently, the potential
of sparsity awareness for CS has been evaluated by simulations.
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Figure 5.6.: Classification of this chapter’s contents within the overall picture of Compressed
Sensing (cf. Figure 4.1 on page 33).

The proposed approach of sparsity awareness resembles a proof of concept. Consequently,
a basic variant of the simplex algorithm has been used for the given illustration, however, the
fundamental concept of sparsity awareness can be principally adapted to more sophisticated
simplex algorithms, e.g., the revised or the dual simplex algorithms [Lem54, Bea54, DT97].

In Figure 5.6, the efforts of the current chapter on sparsity aware simplex methods are
put into the overall context of CS, cf. Figure 4.1. The methods provided within this chapter
extend the conventional simplex method, therefore, they share the same possible applications
within CS. For real-valued scenarios, the BP can be translated into an LP which can be solved
by the (sparsity aware) simplex method. Within the numerical simulations, random matrices
have been considered. However, the method does not depend on the used sensing matrix,
as long as it is not ill-conditioned and the resulting system of linear equation is in general
position. Elsewise, the uniqueness of a sufficiently sparse solution cannot be assured with
high probability (cf. Section 3.2.2), and consequently, there are multiple degenerated vertices.
Similarly, sparsifying dictionaries, although not explicitly discussed within this chapter, can
be applied as long as the resulting sensing matrix is not ill-conditioned. Within this chapter,
only directly sparse CS variants have been considered. Noise is not considered in this chapter,
since the underlying BP itself would not be applied in noisy CS scenarios (cf. Section 4.1.1
on page 25). The provided reconstruction algorithms are based on the convex ℓ1-relaxation,
where the search for a degenerated vertex might be performed in a greedy way.
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6
Coherence Optimization by Best Antipodal
Spherical Codes

W
ithin CS, the inter-column coherence of a sensing matrix is a popular property

which is often used to provide performance guarantees for certain reconstruction
algorithms or to assess the suitability of the matrix itself as previously introduced

in Section 4.2.1 on page 27. Beyond the significance for CS, the coherence of vec-
tor sets is an important and limiting factor in many other applications, e.g., Multiple-Input
Multiple-Output (MIMO) and Code Division Multiple Access (CDMA) wireless systems or
non-orthogonal multi-pulse modulation [HMR+00, MV02, HJSP06, GD09, SJW09]. Con-
sequently, there is considerable demand for vector sets with low coherence, and therefore,
research in corresponding optimal constellations or optimization strategies is of general inter-
est and not limited to the field of CS.

Coherence optimization is closely related to several other well known optimization prob-
lems, e.g., Grassmannian line packing, sphere packing, frame design and minimum distance
optimization. Due to this circumstance, the overall field has already a considerable his-
tory [CHS96, LHJS03, FMT12]. Many approaches cover only the case of real vector spaces.
Within this chapter, the more general complex case is mainly discussed and the special case
of real vector spaces is explicitly derived. Since only a few very specific analytical (nearly)
optimal solutions are known, there have been several different numerical approaches proposed
in the last years [HMR+00, ARU01, XZG05, KCB07, DHJST08, SJW09, GD09, MD14]. Due
to the very challenging optimization problem, there is still ongoing research. As shown in
this chapter, Best Antipodal Spherical Codes (BASCs) result in vector sets of minimal coher-
ence. Motivated by this observation, a corresponding concept for coherence minimization is
proposed which is based on distance maximization of antipodal spherical codes.

In the following Section 6.1, the optimization problem is defined and corresponding theo-
retical bounds are given. Additionally, the problem of coherence optimization is connected
to frame theory and Grassmannian line packing. Furthermore, a brief overview of existing
optimization approaches is given. In Section 6.2 on page 55, the general concept of BASCs
is introduced. Thereby, the equivalence of coherence and distance optimization is explicitly
established and subsequently used for coherence optimization. The success of the proposed
search approach is numerically evaluated and discussed. In Section 6.3 on page 68, the po-
tential of the given BASC-based search approach within the field of CS is demonstrated for
two CS variants.

49



6. Coherence Optimization by Best Antipodal Spherical Codes

6.1. Coherence of Vector Sets

As a uniqueness assuring property, the inter-column coherence has already been introduced
in Section 4.2.1 on page 27 within the context of CS. In order to favor general applicability,
the coherence is introduced for an arbitrary vector set W in the following. Such a set can
generally be represented by a matrix W ∈ K

m×n, where the n columns of dimension m
correspond to the n vectors contained in W. Thereby, K can be either C or R resulting in
complex or real vector spaces. If not stated otherwise, K = C is assumed in the following.
Based on the introduced matrix notation, the coherence of W is defined as the maximal
magnitude of all inner products between two different columns scaled by their corresponding
Euclidean norms:

M(W ) = max
i 6=j

|〈wi,wj〉|
‖wi‖‖wj‖

, (6.1)

where wi denotes the i-th column of W . The normalization is often omitted in the context
of matrices with columns of constant norm, which consequently results in another common
definition of the coherence: M(W ) = maxi 6=j |〈wi,wj〉|. By these definitions, the coherence
depends only on the angle between the corresponding vectors and is not influenced by their
individual norms.

As argued before, there are several applications demanding for vector sets with low coher-
ence. The search for a minimum-coherence set W can be stated with the above mentioned
matrix notation as optimization problem:

min
W∈Km×n

M(W ), (6.2)

where naturally only the non-trivial case of m < n is of interest. Since the coherence is
independent of the individual vector norms, it is sufficient to consider only normalized vector
sets for the optimization.

The problem of coherence minimization is often considered in the literature and research.
Therefore, the remainder of this section provides a brief overview. In Section 6.1.1, bounds
on the achievable coherence are introduced and the connection to other research fields is
established. Subsequently, existing approaches to coherence optimization are summarized in
Section 6.1.2 on page 54 for later comparison.

6.1.1. Theory on Coherence Optimization

For important theoretical aspects of coherence optimization, an overview is given in the
following. Therein, several bounds on the minimal achievable coherence are summarized for
the non-trivial case of m < n. These bounds are later used to evaluate numerical optimization
approaches. Subsequently, a connection between coherence minimization and related research
fields is established.

Theoretical Bounds

As it is clear from its definition [cf. (6.1)], the coherence of a vector set is trivially upper
bounded by 1 for the case of equal or antipodal vectors. However, lower bounds are not
trivial at all, and thus, they are subject of several studies. Since the focus of this chapter is
on coherence minimization, such lower bounds are naturally of immediate interest.
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6.1. Coherence of Vector Sets

The most prominent lower bound on the coherence is the Welch bound :

M(W ) ≥
√

n−m

m(n− 1)
(6.3)

Actually, this bound was stated first for the real-valued case W ∈ R
m×n by Rankin [Ran56],

and subsequently, for the complex-valued case by Welch [Wel74]. Thus, this bound is some-
times also called Rankin or simplex bound [CHS96].

Naturally, a vector set W is desired which achieves equality in (6.3). However, there is
potential confusion in the literature: Two different criteria have been established which claim
to determine whether a vector set satisfies the Welch bound with equality [Sar99]. In order
to avoid any misleading ambiguity, both variants are provided in the following. Massey et
al. [MM93] consider the Root Mean Square (RMS) magnitude of the inner product and denote
vector sets as Welch Bound Equality (WBE) sequences for which

√√√√√
1

n(n− 1)

n∑

k=1

n∑

l=1
l 6=k

|〈wk,wl〉|2 =
√

n−m

m(n− 1)
(6.4)

is fulfilled. This nomenclature introduced potential ambiguity, since equality in (6.3) is not
necessarily implied by (6.4). In order to avoid further confusion with respect to the terms
introduced in [MM93], Sarwate denoted vector sets, which achieve equality in (6.3), as Max-
imum Welch Bound Equality (MWBE) sequences [Sar99]. These vector sets form a subclass
of previously described WBE sequences. In the case of MWBE sequences, the maximal inner
product is considered for the classification as it is also used as optimization criterion within
this chapter. Consequently, only MWBE sequences, which lead to vector sets with equality
in (6.3), are considered in the following.

The Welch bound (6.3) cannot be achieved for too large vector sets: According to [DGS75],
MWBE sequences can only exist if

n ≤ m(m+ 1)

2
for W ∈ R

m×n,

n ≤ m2 for W ∈ C
m×n. (6.5)

Thereby, it should be noted that these conditions are only necessary, and therefore, do not
ensure the existence of MWBE sequences for the given range of vector sizes. In [CHS96], cor-
responding examples are shown, where equality in (6.3) cannot be achieved. Consequently,
the Welch bound can only be met in certain combinations of number of vectors n and dimen-
sionality m.

For large vector sets, which exhibit the limits of (6.5), the original Welch bound cannot
be met with equality according to (6.5), consequently, such cases need to be considered by
further bounds. For example, the orthoplex bound is given in [CHS96] for the real-valued case
and has been subsequently extended to the complex-valued case in [Hen05, PTB11]:

M(W ) ≥
√

1

m
(6.6)
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6. Coherence Optimization by Best Antipodal Spherical Codes

As the Welch bound, the orthoplex bound (6.6) is also only achievable for a certain range of
vectors n:

m(m+ 1)

2
< n ≤ (m− 1)(m+ 2) for W ∈ R

m×n

m2 < n ≤ 2(m2 − 1) for W ∈ C
m×n

For the described case of large sets, another bound has been developed several decades before
by Levenshtein et al. [LK78, Lev83, DY07]:

M(W ) ≥
√

3n−m2 − 2m

(m+ 2)(n−m)
for W ∈ R

m×n

M(W ) ≥
√

2n−m2 −m

(m+ 1)(n−m)
for W ∈ C

m×n (6.7)

A further bound for this case has been derived in the 2000s by [MSEA03, XZG05] based on
the maximal overlap radius of a beamformer codebook:

M(W ) ≥ 1− 2n− 1
m−1 (6.8)

All lower bounds [Equations (6.3) and (6.6) to (6.8)] are relevant for the subsequent coherence
minimization. By taking the maximum over all mentioned bounds within their corresponding
regimes, the following composite lower bound can be derived for the complex-valued case:

M(W ) ≥





√
n−m

m(n−1) ∀ n ≤ m2

max
{√

2n−m2−m
(m+1)(n−m) , 1− 2n− 1

m−1 ,
√

1
m

}
∀ m2 < n ≤ 2(m2 − 1)

max
{√

2n−m2−m
(m+1)(n−m) , 1− 2n− 1

m−1

}
∀ 2(m2 − 1) < n

(6.9)

This composite bound is subsequently used as reference to evaluate the performance of co-
herence minimization approaches.

Connections to Other Research Fields

The general problem of optimizing the coherence of vector sets can also be found in other
research fields. In the following, prominent examples for such theoretical fields and their
connection to coherence optimization are given.

Frame Theory The concept of frame theory has been introduced already in 1952 by Duffin
et al. [DS52] and has been brought to new attention by Young and Daubechies et al. [You01,
DGM86]. Since m < n, a frame can be considered as an overcomplete basis. Consequently,
orthogonality between all vectors is not possible, and therefore, linear dependency cannot
be avoided. Within this chapter, only finite-dimensional vector sets are of interest, and
therefore, only finite frames are considered in the following. A vector set W = {wi}n1 of n

52



6.1. Coherence of Vector Sets

vectors spanning C
m is denoted as frame if there exist two constants 0 < a ≤ b < ∞, such

that for all x ∈ C
m

a‖x‖2 ≤
n∑

i=1

|〈wi,x〉|2 ≤ b‖x‖2,

where a, b ∈ R are the so called frame bounds. If a = b, the vector set W is denoted as
a-tight frame. As a consequence, the rows of the corresponding matrix W are of equal-norm
and orthogonal to each other. In case of unit columns (‖wi‖ = 1 ∀ i ∈ [0, n]), the vector
set W is called a unit norm frame. Thus, a Unit Norm Tight Frame (UNTF) has necessarily
a frame bound a = n/m which is also known as frame redundancy. An Equiangular Tight
Frame (ETF) has the additional property |〈wi,wj〉| = M ∀ i 6= j. By this definition, an
ETF consists out of MWBE sequences. Detailed introductions to frame theory can be found
in [KC07a, KC07b, CKP13]. In [SHJ03], frames minimizing the Welch bound (6.1) are defined
as Grassmannian frames. Therefore, an ETF is an optimal Grassmannian frame by definition.
For a given full-rank matrix W , the closest a-tight frame WTF in Frobenius norm can be
calculated by

WTF = a(WWH)−1/2W (6.10)

according to [TDHJS05]. This relation can be used to obtain an a-tight frame which is close
to a non-optimal Grassmannian frame which has been, for example, numerically obtained.
In [BF03], the frame potential

FP({wi}n1 ) =
n∑

k=1

n∑

l=1

|〈wk,wl〉|2

is introduced from a frame force, whereby this force is notably different from the forces sub-
sequently defined in Section 6.2.2. Minimizing the frame potential results in a UNTF [BF03].
For these frames, FP({wi}n1 ) equals (6.4) up to a constant factor, and thus, such a UNTF
consists out of WBE sequences.

Grassmannian Line Packing The set of all l-dimensional subspaces of Cm (or R
m for the

real-valued case) is denoted as Grassmannian space G(m, l) [CHS96]. The problem of finding
the best packing of n l-dimensional subspaces in C

m, with respect to some distance function,
is commonly described as the Grassmannian subspace packing problem. Several distance
functions are considered in the literature (e.g., the chordal or geodesic metric) [CHS96]. For
the one-dimensional case of l = 1, which is also known as Grassmannian line packing, these
different metrics lead to the same optimal solution if existing [DHJST08]. Such a perfect
Grassmannian line packing corresponds to a Grassmannian frame (which motivated the name
of these frames) [SHJ03].

Due to the presented relations, the search for ETFs, Grassmannian frames, or line packings
corresponds to coherence minimization. Consequently, results in one of the research fields
can be directly conveyed to the other fields. These relations emphasize the importance and
generality of coherence optimization approaches. In the next section, existing approaches on
coherence minimization are briefly summarized. Within Section 6.2, a numerical optimization
approach is provided which is based on spherical codes.
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6. Coherence Optimization by Best Antipodal Spherical Codes

6.1.2. Existing Approaches to Coherence Optimization

As described by (6.2) on page 50, the search for a vector set W with optimal coherence can
be interpreted as optimization problem. The Welch bound cannot be obtained for all desired
combinations of m and n, as it has been previously described in Section 6.1.1. Consequently,
if such MWBE sequences do not exist (and therefore can not be achieved), vector sets with
lowest possible coherence are naturally desired. Due to the importance for several research
fields and applications, a variety of optimization algorithms and concrete constructions have
been developed in order to solve (6.2) and to obtain vector sets with coherence as small as
possible. Since the Welch and orthoplex bounds are only valid for a limited number of vectors
[cf. Equations (6.5) and (6.6)], the composite lower bound (6.9) needs to be considered as
reference in such cases.

In order to provide an overview and to assist reading the referred literature, direct solutions
to the coherence optimization problem are briefly summarized in the following, as well as
several common examples for analytical and numerical approaches. This summary is not
intended to be exhaustive.

Analytical Approaches and Direct Solutions

For several specific dimensions m and numbers of vectors n, analytical approaches exist which
are able to obtain MWBE sequences. See [CHS96] for a summary of methods and solutions
for the real-valued case. Quite prominent examples are based on conference matrices C of
size l × l, which have zeros on their main diagonal and ±1 on all other entries such that
CTC = (n− 1)I [vLS66, CHS96, HJSP03].

By extending an approach of [HMR+00], where rows of an IDFT matrices are selected in
order to build W , cyclic difference sets are used in [XZG05] to produce MWBE sequences.
This idea is further extended to different types of difference sets in [Din06, DF07].

There are also approaches based on frame theory: For example, one approach utilizes so
called Steiner systems in order to build sparse ETFs [FMT12]. As shown in [JMF14], a large
class of these Steiner ETFs can be transformed into so called Kirkman ETFs for which all
entries are of constant modulus.

Further types of analytical approaches are, for example, sequences based on cosets of certain
codes (e.g. expurgated sets of Gold sequences) [MM93, Sar99] or the well-known method of
simplex signaling [PS08].

For vector sets which cannot meet the Welch bound with equality according to (6.3),
several analytical approaches exist which achieve a relatively low coherence. For example,
the previously mentioned approaches based on difference sets can be extended to cyclotomic
and almost difference sets [Din06, DF08, ZF12a, ZF12b, HW14]. This can be even further
generalized by associated binary sequences [Yu12a, Yu12b, YFZ12].

For cases where the Welch bound cannot be achieved since the number of vectors n is
too large [cf. (6.5)], Mutually Unbiased Bases (MUBs) are used in [WF89, DY07] to achieve
the bound by Levenshtein (6.7). Such MUBs consist out of multiple m-dimensional bases
for which the inner products between the elements of different bases have the same magni-
tude 1/

√
m [Sch60, WF89]. Consequently, the orthoplex bound (6.6) can also be achieved by

MUBs. For example, the existence of MUBs with m+1 bases is shown in [WF89] for m being
a prime power. In [DY07], this construction is further generalized and the corresponding
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

matrices are able to fulfill the bound by Levenshtein (6.7) and the orthoplex bound (6.6)
with equality, which implies n = m2 +m.

Further approaches for low-coherence vector sets are based on extended small Kasami codes
or non-linear Kerdock codes [Sar99].

Numerical Approaches

As described before, optimal solutions are only known for certain dimensions m and numbers
of vectors n if even existing. Therefore, numerical approaches are especially for cases of
great interest, where optimal solutions are not known. In the last decades, many different
algorithms have been published and the whole topic is still very active. Examples for such
numerical approaches are not limited to:

• The authors of [HMR+00] propose row-pruning on DFT matrices based on random
search strategies.

• Smooth approximations of the max operator, which is used in (6.2), are often applied
such that an introduced free parameter can be utilized iteratively for a subsequent
optimization [ARU01, GD09, MD14].

• Application of a generalized Lloyd algorithm in order to obtain a sphere vector quantizer
which leads to low-coherence sets [XZG05].

• Within [KCB07], a non-linear map (exponential parametrization) is applied on space-
time codes for coherent systems.

• Alternating projections are used in [DHJST08] to enforce alternately spectral and struc-
tural properties.

• In [SJW09], an expansion-compression algorithm is proposed, which alternately applies
a max-min and a min-max optimization of the distance.

• Iterative decorrelation is applied by by a series of locally convex optimizations in [Rus13].

• The approach of [TKK14] combines shrinkage and matrix nearness [cf. (6.10)] with an
optional averaging step.

Subsequently in Section 6.2, a numerical scheme is proposed which aims to obtain vector sets
with minimal coherence by finding BASCs. Thereby, an approach for distance optimization
is extended and applied to the problem of determining vector sets with low-coherence.

6.2. Best Antipodal Spherical Codes for Coherence Optimization

A spherical code Cs(m,n)1 corresponds to a set of n points placed on the surface of the
m-dimensional unit sphere Ωm which is centered at the origin of Km, where K can be either
C or R. This definition extends the real-valued variant from [CS99, EZ01, Slo] to the complex
space. Any point of

Cs(m,n) = {sp}np=1 with sp ∈ K
m

1The suffix (m,n) may be skipped subsequently if it is of no further importance or clear from the context.
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6. Coherence Optimization by Best Antipodal Spherical Codes

is commonly interpreted as codeword and determined by its position vector sp. Naturally, any
set of n points can be equivalently described as m× n matrix comprising the corresponding
position vectors as columns. Spherical codes, which maximize the minimal Euclidean distance
dpq = ‖sp − sq‖ with p 6= q and p, q ∈ [1, n] (or equivalently, minimize the maximal inner
product of the corresponding vectors), are denoted as Best Spherical Codes (BSCs) Cbs(m,n).
Usually, all rotations of a BSC are considered equivalent, consequently, a BSC is only char-
acterized by its distance distribution.

In the following, antipodal spherical codes are defined with an additional equivalence prop-
erty: Antipodal vectors are considered equivalent, which results in

sq ≡ −sq ∈ Cras(m,n) ∀ q ∈ [1, n] (6.11)

for real-valued antipodal spherical codes Cras(m,n) and in

sq ≡ sq · ejφ ∈ Ccas(m,n) ∀ φ ∈ R, q ∈ [1, n] (6.12)

for complex-valued antipodal spherical codes Ccas(m,n). As a consequence of these defini-
tions, two equivalent vectors lie on the same (complex) line (cf. [LHJS03]). Every antipodal
spherical code is obviously still a valid Cs. Naturally, a BASC, denoted by Cbas, maximizes
the minimal Euclidean distance between all its vectors (considering the equivalence relation).

In the subsequent Section 6.2.1, the equivalence of coherence and distance optimization
is shown for the case of antipodal spherical codes. In Section 6.2.2 on the facing page, an
approach is proposed which searches for BASCs. By the aforementioned equivalence, this
concept can be used to obtain low-coherence vector sets.

6.2.1. Equivalence of Coherence and Distance Optimization

The concept of utilizing BASCs as source for low-coherence vector sets is based on the equiv-
alence of maximizing the minimal distance in an antipodal spherical code and minimizing the
coherence of a vector set. It seems (cf. [LHJS03]) that this connection is commonly known also
for the complex case2, however, this connection is explicitly derived within a complex vector
space in the following for the sake of completeness and illustration, since the subsequently
proposed approach is based thereon.

The magnitude of the inner product is invariant to a phase-change of the corresponding
vectors:

|〈sp, sq〉| =
∣∣∣
〈
sp, sq · ejφ

〉∣∣∣ ∀ sp, sq ∈ Cs, φ ∈ R

Consequently, it is sufficient to consider only complex antipodal spherical codes Ccas for the
optimization:

min
Cs

max
p 6=q
|〈sp, sq〉| = min

Ccas

max
p 6=q
|〈sp, sq〉|

For these antipodal codes, the following equation can also be established due to the implied
equivalence [cf. (6.12)]:

Re (〈sp, sq〉) ≡ Im
(〈
sp, sq · ej

π
2

〉)
≡ Im (〈sp, sq〉)

2For real vector spaces, the connection is trivial. However, a simple generalization is neither obvious nor
given in [LHJS03] for the complex case.
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

From the squared absolute of the inner product |〈sp, sq〉|2 = Re2 (〈sp, sq〉) + Im2 (〈sp, sq〉), it
follows consequently:

|〈sp, sq〉| ≡
√
2Re (〈sp, sq〉) (6.13)

Since sp, sq ∈ Cs, only unit vectors are considered 〈sp, sp〉 = 〈sq, sq〉 = 1. This can be
combined with the squared distance

‖sp − sq‖2 = 〈sp, sp〉+ 〈sq, sq〉 − 2Re (〈sp, sq〉) , (6.14)

where it should be noted that the square function is monotonic for positive real values. The
desired equivalence follows directly by inserting (6.13):

Cbcas = argmax
Ccas

min
p 6=q
‖sp − sq‖ = argmin

Cs

max
p 6=q
|〈sp, sq〉|

Consequently, by determining a Best Complex Antipodal Spherical Code (BCASC) Cbcas, a
spherical code is obtained which results in a complex matrix of minimal coherence.

As within this section, BASCs correspond to vector sets with minimal coherence. Based
on this observation, numerical schemes for the search of BASCs can be used for coherence
minimization. For such numerical schemes, it typically cannot be guaranteed that the global
optimum is actually found. Consequently, it is of interest whether a near optimal solution
for a maximal minimum distance optimization is also close to the optimum for coherence
minimization: Due to the previously used definition in (6.14), a discrepancy in the distance
contributes quadratically while the influence of the inner product is only linear. As a direct
consequence, near optimal solutions of numerical approaches for BASCs will also result in
close to optimal low-coherence vector sets.

6.2.2. Search for Best Antipodal Spherical Codes

Within this section, an approach is proposed which allows to obtain spherical codes close to
BASCs for the cases of real and complex vector spaces. The given procedure is based on the
method of [LSZ88] which numerically searches spherical codes close to BSCs in real vector
spaces. In the following, the approach of [LSZ88] is summarized in order to provide a basis
for the subsequent extension to complex vector spaces and to antipodal spherical codes.

Search for Best Spherical Codes

Often, physically motivated models are established for the optimization of spherical codes,
as for example in [Lee57]. Thereby, the points of spherical codes are typically considered
as n charged particles on the unit sphere. Consequently, these charges are subject to some
field of repelling forces. Starting from an arbitrary initial position, these particles will move
until the total potential energy of the system reaches a (local) minimum. Typically, there are
multiple local minima. The particles will settle in any one of these which results in a stable
or unstable equilibrium of mutual repelling forces. Depending on the nature of the assumed
forces, there are principally multiple potential functions possible. In [Laz80], a generalized
potential function g(Cs(m,n)) is introduced, for which a specific form is given in [LBK86]:

g(Cs(m,n)) =
n∑

p=1

p−1∑

q=1

‖sp − sq‖−(ν−2), (6.15)
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6. Coherence Optimization by Best Antipodal Spherical Codes

where ν ∈ N with ν > 2 is a free parameter. For this potential function, the global minimum
of g(Cs(m,n)) is attained by a BSC in case of ν →∞.

In order to minimize the generalized potential function under the unit radius constraint
of the sphere, the method of Lagrange multipliers L = {λp}np=1 with λp ∈ R can be used.
Thereby, the Lagrange function G(Cs(N,M),L), which corresponds to the potential func-
tion (6.15) and the unit radius constraint, is given by

G(Cs(m,n),L) = g(Cs(m,n)) +

n∑

p=1

λp

(
‖sp‖2 − 1

)
. (6.16)

The necessary conditions for a global minimum of the potential function (6.15) are conse-
quently equal to

∂G(Cs(m,n),L)
∂spu

= 0 and
∂G(Cs(m,n),L)

∂λp
= 0 ∀ p ∈ [1, n] , u ∈ [1,m] ,

where spu is the u-th element of sp. As already derived in [LSZ88], these conditions can be
expressed by the equilibrium:




sp =

∑
q 6=p

[
(sp − sq)/‖sp − sq‖ν

]

∥∥∥∥∥
∑
q 6=p

[
(sp − sq)/‖sp − sq‖ν

]∥∥∥∥∥





n

p=1

(6.17)

In order to simplify expressions, the underlined denotation of unit vectors s = s/‖s‖ is used
hereafter. Thereby, the equilibrium (6.17) can be represented by:



sp =

∑

q 6=p

sp − sq
‖sp − sq‖ν

=
∑

q 6=p

δpq





n

p=1

(6.18)

The right side within (6.18) can be interpreted as a superposition of all effective forces
which act on the corresponding code words of the spherical code: fp =

∑
q 6=p δpq ∀ p ∈ [1, n].

Based on these forces, a mapping P can be introduced:

P (Cs(m,n)) =

{
sp + αf

p

}n

p=1

, (6.19)

with α ∈ R being a "damping factor". For a small enough values of α, the iterative application
of the mapping

Cs(m,n)(k+1) = P (Cs(m,n)(k)), k = 0, 1, . . . (6.20)

converges to one fixed point.
For ν large enough, it is already numerically inferred in [LSZ88] that these fixed points

correspond to spherical codes whose minimal distances are close to those of BSCs. Conse-
quently by finding a fixed point for the iterative process (6.20) with a sufficiently large ν, the
corresponding spherical code should be close to the best one.

Within this section, the original approach of [LSZ88] for real vector spaces has been pre-
sented as basis for subsequent extensions. Subsequently, this approach is formally extended
to complex vector spaces.
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

Search for Best Complex Spherical Codes

Subsequently, it is shown that a minimum of the generalized potential function g(Cs(m,n))
can be expressed by the equilibrium (6.18) also in the case of complex vector spaces. Based
thereon, the approach of [LSZ88] is formally extended in the following for the search of Best
Complex Spherical Codes (BCSCs).

The Lagrange function (6.16) is also valid for the case of complex vector spaces and is
still real-valued. The same holds for the Lagrange multipliers L and the constraint functions{
‖sp‖2 − 1 = 0

}n
p=1

. However, the necessary conditions for a global minimum of the potential
function (6.15) are slightly different in a complex vector space:

∂G(Cs(m,n),L)
∂spRu

= 0,
∂G(Cs(m,n),L)

∂spIu
= 0 and

∂G(Cs(m,n),L)
∂λp

= 0, (6.21)

for all p = [1, n] and u = [1,m].
The norm of a vector difference is subsequently denoted by δpq = ‖sp − sq‖ and the

abbreviated functions f(x) = x−(ν−2) and ϕ(sp) = ‖sp‖2 − 1 are introduced in order to
simplify expressions. With the help of these abbreviations, the generalized potential function
is provided by [cf. (6.15)]

g(Cs(m,n)) =
n∑

p=1

p−1∑

q=1

f(δpq),

which leads to an abbreviated Lagrange function:

G(Cs(m,n),L) =
n∑

p=1


λpϕ(sp) +

p−1∑

q=1

f(δpq)




With the help of the following derivations

∂ϕ(sp)

∂spRu
= 2sp

R
u ,

∂δpq
∂spRu

=
sp

R
u − sq

R
u

δpq
, and

∂f(δpq)

∂δpq
=
−(ν − 2)

δν−1
pq

,

the necessary condition for a minimum of the potential function, which considers the real-
part sp

R
u [cf. (6.21)], can be reformulated. Thereby, it should be noted that for the double

sum
∑n

p=1

∑
q<p, only summands need to be considered, which depend on p, since all other

summands are canceled by the derivation. Due to δpq = δqp, these summands correspond to
those of

∑
q 6=p:

∂G(Cs(m,n),L)
∂spRu

=
∂λp · ϕ(sp)

∂spRu
+
∑

q 6=p

∂f(δpq)

∂spRu
= 0

=2sp
R
uλp +

∑

q 6=p

∂f(δpq)

∂δpq
· sp

R
u − sq

R
u

δpq

=2sp
R
uλp − (ν − 2)

∑

q 6=p

sp
R
u − sq

R
u

δνpq

⇒ sp
R
u =

ν − 2

2λp

∑

q 6=p

sp
R
u − sq

R
u

δνpq
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6. Coherence Optimization by Best Antipodal Spherical Codes

The necessary condition for the imaginary-part sp
I
u [cf. (6.21)] can be equivalently reformu-

lated with the imaginary instead of the real part. The remaining necessary condition for λp

can also be reformulated with the help of the previously introduced abbreviations and deriva-
tions:

∂G(Cs(m,n),L)
∂λp

=
∂λp · ϕ(sp)

∂λp
= ϕ(sp) = ‖sp‖2 − 1 = 0

⇒ 1 =

m∑

u=1

sp
R
u

2
+ sp

I
u

2

=
m∑

u=1


ν − 2

2λp

∑

q 6=p

sp
R
u − sq

R
u

δνpq




2

+


ν − 2

2λp

∑

q 6=p

sp
I
u − sq

I
u

δνpq




2

=
(ν − 2)2

4λ2
p

m∑

u=1


∑

q 6=p

(sp
R
u − sq

R
u )

δνpq




2

+


∑

q 6=p

(sp
I
u − sq

I
u)

δνpq




2

=
(ν − 2)2

4λ2
p

∥∥∥∥∥∥
∑

q 6=p

sp − sq
δνpq

∥∥∥∥∥∥

2

⇒ 2λp

ν − 2
=

∥∥∥∥∥∥
∑

q 6=p

sp − sq
δνpq

∥∥∥∥∥∥

By combining the above reformulations of the necessary conditions, the equilibrium of a
codeword element can be given:

spu = sp
R
u + j · spIu

=
ν − 2

2λp

∑

q 6=p

(sp
R
u − sq

R
u )

δνpq
+ j · (sp

I
u − sq

I
u)

δνpq

=

∑
q 6=p

(spu − squ)/δνpq
∥∥∥∥∥
∑
q 6=p

(sp − sq)/δνpq

∥∥∥∥∥

These results can be combined to vectors as for the equilibrium of (6.18). Consequently, a
minimum of the generalized potential function g(Cs(m,n)) can be expressed by the equilib-
rium (6.18) also in the case of complex vector spaces.

The above derivation allows to utilize the iterative process, which has been previously
described for real vector spaces [cf. Equations (6.18) to (6.20)], also for the case of a complex
vector space. Based on this result, the search for BCASCs is described in the subsequent
section, which can be used for coherence minimization.
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

Search for Best (Complex) Antipodal Spherical Codes

Within Section 6.2.1, the equivalence of coherence and distance optimization has been estab-
lished for antipodal spherical codes. In order to apply the previously described approaches
for the search of BSCs and BCSCs to antipodal spherical codes, additional restrictions have
to be considered during the calculation of the accumulated forces.

Calculation of Accumulated Forces The previously described antipodal equivalence (cf.
Equations (6.11) and (6.12) on page 56) needs to be resembled such that the absolute value
in the definition of the coherence (6.1) is accounted for. This can be achieved during the
calculation of f

p
for the used mapping (6.19). In real vector spaces, this is accomplished by



fp

=
∑

q 6=p

sp − sq
‖sp − sq‖ν

+
sp + sq
‖sp + sq‖ν





n

p=1

, (6.22)

where the antipodals can be thought of as additional vectors. In contrast to the real-valued
case, a complex factor of exp[jφ] has to be considered for the complex-valued case [cf. (6.12)].
Previously, additional equivalent points have been used for the antipodals in the real vector
space. However, an infinite number of such additional points would be needed since the
phase φ in (6.12) is continuous. For a first approximation, a finite number of K distinct
points can be evaluated, which is generated by exp[j2πk/K] ∀ k ∈ [1,K]:




f
p
=

K∑

k=1

∑

q 6=p

sp − sqej2π
k
K

∥∥∥sp − sqej2π
k
K

∥∥∥
ν





n

p=1

(6.23)

In order to have a reasonable numerical approximation, the number of additional equivalent
points K must be sufficiently large. In case of K → ∞, the inserted sum over k in (6.23) is
transformed into an integral:




f
p
=

2π∫

κ=0

∑

q 6=p

sp − sqejκ∥∥sp − sqejκ
∥∥ν dκ





n

p=1

(6.24)

However, because of the norm in the denominator, this integral is hard to solve analytically
(if this is even possible) and numerical integration must be used in consequence.3

Best (complex) spherical codes can be searched with the help of the previously described
mapping (6.19) in combination with the iterative process (6.20) and superimposed forces
[cf. Equations (6.22) to (6.24)]. Depending on whether the real or complex vector space is
considered, the described method is denoted as BASC or BCASC search approach. Thereby,
it is emphasized that these methods are not guaranteed to obtain optimal solutions. An
algorithmic description of the proposed search approach is given in the next section.

3Details on the numerical integration, which has been used within this thesis, are given in Appendix H.3.
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6. Coherence Optimization by Best Antipodal Spherical Codes

Algorithm 6.1: Iterative BCASC search approach

Input :
{
sp
}n
p=1

/∗ initial spherical code of n codewords of in m dimensions ∗/

Output: Cs /∗ optimized spherical code ∗/

1 αinit ← 0.9, ǫ← 10−4
/∗ exemplary numerical parameters ∗/

2 ν ← 2, νmax ← 210

3 imax ← 105, α← αinit

4 while ν < νmax do

5 FixedPoint← false /∗ initialize indicator ∗/

6 i← 0 /∗ initialize iteration counter ∗/

7 while i < imax and FixedPoint = false do

8 for p←1 to n do /∗ for each vector ∗/

9 fp ←
2π∫

κ=0

∑
q 6=p

sp−sqejκ∥∥∥sp−sqejκ
∥∥∥
ν dκ /∗ calculate superimposed forces ∗/

10 {sp}np=1 ←
{
sp + αf

p

}n

p=1

/∗ apply accumulated forces ∗/

11 if

∥∥∥f
p
− sp

∥∥∥ < ǫ ∀ p ∈ [1, n] then /∗ check for fixed point ∗/

12 FixedPoint← true /∗ stop loop and proceed ∗/

13 i← i+ 1

14 ν ← 2ν /∗ adjust free parameter ∗/

15 α← αinit

ν−1 /∗ adjust damping factor ∗/

16 return Cs ←
{
sp
}n
p=1

/∗ return obtained spherical code ∗/

Algorithmic Description The iterative application of the earlier described mapping (6.19) is
proposed in [LBK86, LSZ88] as minimal distance optimization algorithm. Based thereon, an
algorithmic description for the described BCASC search approach is given in Algorithm 6.1.
Therein, empirically determined exemplary numerical parameters are provided as well. Start-
ing with a small initial value for the free parameter ν, a fixed point is determined by iteratively
applying the aforementioned mapping. Thereby, a fixed point is assumed if the norm on the
difference between the normalized accumulated force f

p
and current vector sp is less than

some threshold ǫ. This is reasonable, since in case the fixed point is found, the effective
tangential forces vanish and the resulting accumulated force f

p
points in the same direction

as sp. If no fixed point is reached within imax iterations, the algorithm proceeds as in the case
of an obtained fixed point in order to avoid stalling. As soon as a fixed point is obtained (or
if the maximum number of iterations is reached), the free parameter ν is increased and the
damping factor α is reduced. The reduction of α follows a numerically inferred rule-of-thumb
which has been obtained by [LBK86]. The overall procedure is repeated until a sufficiently
large free-parameter νmax has been reached. As bed in [LBK86, LSZ88], the procedure of
increasing ν and decreasing α promotes convergence.

The presented algorithmic description of a BCASC search can be transformed into further
search approaches by exchanging the formula used to calculate the accumulated forces (Line 8
in Algorithm 6.1): For example, by inserting (6.22), BASCs can be searched.
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

Evaluation with Respect to Coherence Optimization The previously presented BCASC
search approach for coherence optimization is evaluated in the following. Since the proposed
approach is based on random seeds and typically results in some local optimum, ten random
seeds have been used for optimization and the vector set with the lowest coherence has
been selected subsequently. As reference for comparison, the composite lower bound (6.9) is
considered which includes also the Welch bound. Furthermore, the approach of [MD14], for
which the source code can be found at [Med], is also considered for comparison. Thereby,
the set with minimal coherence out of ten runs is considered as well. The range of coherence
values, which had been obtained within the ten runs, is given as vertical bars in the subsequent
figures in order to provide a measure for the obtained range of coherences. Further simulation
details are given in Appendix H.3.

For m = 3 dimensions, a comparison of the obtained coherence values is given in Figure 6.1.
As it can be seen in the figure, the BCASC search approach provides coherence values which
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Figure 6.1.: Best coherence out of ten runs for varying number of vectors n in m = 3 dimen-
sions. Vertical bars indicate the range of obtained coherence values. The lower
bound is drawn solid if the Welch bound (6.5) is fulfilled.

meet the Welch bound with equality or are very close to it as long as the Welch bound
can be met according to (6.5) (n ≤ 9 = n2). For n ≤ 12, the BCASC search method and
the approach by [MD14] obtain vector sets with almost identical coherence. Especially the
quasi-constant coherence level, which is obtained by both methods for the range 10 ≤ n ≤ 12,
is remarkable. It corresponds to the orthoplex bound (6.6) and can be also observed in other
dimensions, as subsequently shown, where this effect is further discussed, as soon as results
for higher dimensions are presented. For larger vector sets, the proposed BCASC obtains
generally smaller coherence levels. As it can be seen from the vertical bars in the figure, the
coherence values of the obtained vector sets are quite stable. Consequently, most of the found
(local) optima result in similar coherence values. Starting from n ≥ 13, the orthoplex bound
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(a) m = 4
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(b) m = 5

Figure 6.2.: Best coherence out of ten runs for varying number of vectors n in m dimensions.
Vertical bars indicate the range of obtained coherence values. The lower bound
is drawn solid if the Welch bound (6.5) is fulfilled.

is replaced by (6.7) as active lower bound in (6.9). For even larger vector sets, the bound
of (6.8) is dominating for n ≥ 39. As in [XZG05], the lower bound (6.8) gets tighter for larger
vector sets.
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

Further illustrations for dimensions m = 4 and 5 are given in Figure 6.2. The coherence
values of the vector sets, which have been obtained by both methods, are almost equivalent
for n ≤ 20 and 30 respectively. Thereby, the achieved coherence values are more stable within
the ten runs in case of the BCASC search approach, as indicated by the vertical bars. There
is a level of constant coherence observable for n > m2 as it has been observable for m = 3.
After this plateau, the BCASC search approach always provides vector sets with smaller
coherence than the method of [MD14]. As previously mentioned, this described plateau
corresponds to the orthoplex bound (6.6). Since it is limited by (6.7), its length is equal to
the individual dimensionality m for the mentioned cases. Such an almost constant level can
also be observed for m = 2 (cf. [XZG05, Fig. 3]). The n = m2 +m vectors of each obtained
set for m = 3, 4 and 5 can be put into a matrix W such that the corresponding Gram matrix
G =WHW has a block diagonal structure. Within this structure, there are m+ 1 identity
matrices of dimension m on the diagonal while all other entries are of constant modulus.
Consequently, the vector sets of each diagonal block correspond to an orthonormal basis
for an m-dimensional subspace. Thus, the obtained solutions correspond to Grassmannian
subspace packings G(m,m) of m + 1 subspaces (cf. corresponding paragraph on page 53).
These vector sets correspond also to the previously mentioned constructions of MUBs given
in [WF89, DY07]. For higher dimensions, cf. Appendix C on page 107, such a plateau-like
level for m2 < n < m2+m has not been found by the described methods. Other plateaus can
generally be found implicitly: In case, a vector set, which has been obtained by optimization,
has a smaller coherence but larger cardinality n compared to some other set, arbitrary vectors
can be removed while the low coherence remains the same. Consequently, sets with lower
cardinality but same coherence can be derived therefrom, which outperform the previously
known sets with respect to coherence. For example, there is a plateau for 35 ≤ n ≤ 43
implicitly given by the vector set of n = 43 in Figure 6.2b. Plateaus of almost constant
coherence usually precede the optimal constellation of n = m2. Increasing dimensionality
favors the vector sets obtained by BCASC search approach also for small number of vectors
(n < m2), as it can be seen for m = 6, · · · , 10 in Appendix C.

In [XZG05, Table II], the performance of numerical coherence optimization approaches is
compared. Based thereon, the updated Table 6.1 is extended by the results corresponding to
the proposed BCASC search approach. With exception of the setting with n = 16 vectors

Table 6.1.: Comparison of numerical search algorithms as in [XZG05]

m n BCASC
search

Medra et al.
[MD14]

Love
[Lov]

Xia et al.
[XZG05]

Composite
bound (6.9)

2 8 0.7950 0.7997 0.8415 0.8216 0.7500

3 16 0.6491 0.6590 0.8079 0.6766 0.6202

4 16 0.4472 0.4473 0.7525 0.4514 0.4472

4 64 0.6869 0.7151 0.7973 0.7447 0.6000

of m = 4 dimensions, the Welch bound cannot be obtained since n > m2 [cf. (6.5)]. For
this case, the BCASC search approach reaches the Welch bound (bold). For the other cases,
vector sets with lowest coherence are provided by the BCASC search approach.

Similarly to the previous table, the results of [DHJST08] are compared with respect to the
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6. Coherence Optimization by Best Antipodal Spherical Codes

Table 6.2.: Comparison of numerical search algorithms as in [MD14]

m n BCASC
search

Medra et
al. [MD14]

Dhilon et al.
[DHJST08]

Composite
bound (6.9)

4 5 0.2500 0.2502 0.2500 0.2500

4 6 0.3277 0.3274 0.3275 0.3162

4 7 0.3536 0.3540 0.3536 0.3536

4 8 0.3780 0.3787 0.3782 0.3780

4 9 0.4022 0.4021 0.4034 0.3953

4 10 0.4118 0.4113 0.4114 0.4082

4 16 0.4472 0.4473 0.4473 0.4472

4 20 0.5000 0.5001 0.5335 0.5000

5 6 0.2000 0.2002 0.2001 0.2000

5 7 0.2670 0.2665 0.2669 0.2582

5 8 0.2955 0.2954 0.2955 0.2928

5 9 0.3207 0.3203 0.3216 0.3162

5 10 0.3333 0.3341 0.3336 0.3333

5 16 0.3889 0.3932 0.3959 0.3830

coherence in Table 6.2 as in [MD14, Tab. II]. It can be seen from the table that the BCASC
approach reaches the composite bound (6.9) most often (bold). The method of [MD14]
obtained slightly better results in cases where the bound could not be reached, however, as
discussed earlier, this behavior changes significantly in favor of the BCASC search approach
for larger numbers of vectors n. In general, the algorithm of [DHJST08] comes with the worst
performance within this comparison. With exception of the setting with n = 20 vectors in
m = 4 dimensions, there are no significant negative outliers for [DHJST08].

Naturally, it depends on the needed level of coherence and the available computational re-
sources which numerical optimization algorithm should be used. The BCASC search approach
is computational costly especially for large n and m. The next section treats implementation
aspects and approximations which might reduce the needed computation time.

Implementation Aspects and Approximations The BCASC search approach comes with a
considerable computational effort. Due to its iterative nature, parallelization is only possible
during the calculation of the accumulated forces {fp}np=1, which results in n parallel com-
putational threads. However, the resulting overhead is considerable compared to the short
running time of the individual threads.

The magnitude of the damping factor α offers a more promising potential speedup. As
described earlier, a sufficiently small value of α is necessary for convergence [cf. (6.19)]. How-
ever, small values of α result also in slow convergence. This situation can be coped with
adaptively determining the values of α on a per force basis: In case the direction of the
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6.2. Best Antipodal Spherical Codes for Coherence Optimization

force f
p
, which acts on sp, has not changed from one iteration to another, the corresponding

value of αp is increased by a factor until a predefined maximum is reached. This approach
comes with an additional advantage: Even smaller values for α can be used in the beginning,
which leads to preciser solutions.

For the BCASC search approach, numerically solving the integral in (6.24) in each iterative
step of the algorithm is potentially the computationally most expensive part. Consequently,
there might be interest in less complex approximations. As given previously in (6.23), the in-
tegral can be approximated by summing over K points. The coherence of vector sets obtained
by this simple approximation is considered in the following by increasing the number of sum-
mands K. The best coherence out of ten runs is plotted in Figure 6.3 for the constellations
given in Table 6.1. By dotted lines, the result of an optimization with an elaborate numerical
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Figure 6.3.: Obtained coherence over the number of approximation points K. Dotted lines
indicate the results of an elaborate numerical integration.

integration is indicated as reference. As expected, the coherence converges with increasing
K. Thereby, the convergence is not monotonic (cf. K = 8 in Figure 6.3 for m = 4 and
n = 64). This effect is caused by the uniform point distribution on the unit circle implied by
K. The gaps between the K evaluation points influence the optimization, and consequently,
favor vector sets with increased or reduced coherence. For K = 22, the difference between
the numerical integration and the K-point approximation is surveyed by Table 6.3 in more
detail. The effect of the K-point approximation with respect to the obtained coherence and
corresponding running time (in seconds) can be observed within this table. As mentioned
before, the BCASC search approach is able to reach the Welch bound for the case of n = 16
vectors in m = 4 dimensions, while the approximation, which is based on K = 22 points, is
not able reach the Welch bound and takes even more time for the optimization. For the other
cases however, the K-point approximation is generally, as expected, significantly faster. This
advantage increases severely as the dimensionality m or the number of vectors n increase.
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Table 6.3.: Comparison of running time and coherence between elaborate numerical integra-
tion and K-point approximation. Detailed parameters: Appendix H.3

Numerical integration Summation

N M Coherence Time [s] Coherence Time [s]

2 8 0.7950 699.03 0.7971 419.47

3 16 0.6491 2 903.86 0.6506 1 132.97

4 16 0.4472 27.26 0.4496 89.28

4 64 0.6869 64 720.95 0.6892 3 627.88

Again, this is caused by the point distribution on the unit circle implied by K: Especially in
settings, where the actual solution is easily found (all ten runs achieved the Welch bound, cf.
Figure 6.2a for m = 4 and n = 16), the gaps between the K points mislead the optimization.
Generally, the coherence values obtained by the K-point approximation are slightly worse
than for the case with numerical integration. With exception of the Welch bound achieving
case n = 16 vectors in m = 4 dimensions (bold), the obtained coherence is still lower than for
the other numerical approaches given in Table 6.1. In consequence, the presented K-point
approximation might be a suitable alternative especially for settings with many vectors where
thy existing bounds on the coherence are typically not achieved.

In case of the K-point approximation, the complexity for one iteration can be calculated:
Since n codewords interact with each other and for K distinct evaluation points, whereby the
norm for each of the m vector elements is calculated, the complexity of one iteration for a
fixed ν scales asymptotically with O(m2n2K).

6.3. Applications in Compressed Sensing

The potential applications of the introduced coherence minimization approach are not lim-
ited to the previously mentioned examples of MIMO, CDMA, optical communication sys-
tems [HMR+00, HJSP06, GD09, SJW09, WF15], or CS. In the following, the described search
for best (complex) antipodal spherical codes is used exemplary for two problems arising in
the context of CS (cf. Section 4.4). The most straight forward utilization for the optimization
of the sensing matrix is introduced in Section 6.3.1. The BASC search approach is used to
adapt the measurement matrix with respect to a given dictionary in Section 6.3.2 on page 70.

6.3.1. Sensing Matrix Optimization

As aforementioned, the sensing matrix is naturally a crucial part of CS systems, and conse-
quently, several properties have been proposed to determine the suitability of a given matrix,
cf. Section 4.2 on page 27. Since the coherence, cf. Section 4.2.1, is efficiently verifiable, it
is often considered as criterion for the optimization of sensing matrices. This circumstance
provides the motivation for the B(C)ASC search based coherence optimization technique de-
scribed in Section 6.2. Therefore, it is only straightforward to utilize the proposed search
approach for sensing matrix optimization in the following.
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6.3. Applications in Compressed Sensing

The n codewords of a spherical code Cs(m,n) in an m-dimensional complex space are used
as columns for a sensing matrix ΘBCASC ∈ C

m×n in the exemplary case of n = 38 and m = 50.
The distribution of |〈θi,θj〉|/‖θi‖‖θj‖ ∀ i 6= j and i, j ∈ [1, n] can also be used to evaluate the
similarity of the columns. In Figure 6.4a, such a distribution is shown together with the Welch
bound for the case of the optimized matrix. For reference, a corresponding distribution is given
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Figure 6.4.: Evaluation of the given sensing matrix optimization with respect to the unique-
ness assuring properties (cf. Section 4.2). Detailed parameters: Appendix H.3.

also for the case of a random matrix Θrand. As bed in Section 4.2.2, the direct evaluation of Θ
for the RIP is not tractable, but a lower bound on the RIC δτ can be given by Monte-Carlo
experiments. In Figure 6.4b, corresponding bounds are given for the described matrices,
whereby 107 permutations per sparsity have been used for the Monte-Carlo experiments, cf.
Section 4.2.2. The proposed search approach obtained a sensing matrix, where the absolute
inner products are very focused resulting in a coherence M(ΘBCASC) = 0.0808 which is very
close to the Welch bound (M(W ) ≥ 0.0803). In comparison, the distribution of the random
matrix is wide spread and results in a coherence of M(Θrand) = 0.4225. Also the lower bound
on the RIC suggests the advantages of the optimized sensing matrix: According to the RIP
(4.12), BP is able to recover τ -sparse signals up to τ ≤ 5/2 in case of the optimized matrix,
where the random matrix is only able to recover 1-sparse signals.

The reconstruction performance of a low-coherence sensing matrix is evaluated in Fig-
ure 6.5 by combined boxplots for a noiseless CS scheme with respect to the achieved squared
error ‖χ− χ̂‖2. As it can be seen in the figure, the optimized sensing matrix clearly out-
performs the random reference. Already with a sparsity of τ = 13, there are reconstruction
failures in case of the random matrix, while the optimized sensing matrix is able to recon-
struct successfully for τ < 21. As the median indicates, the majority of sparse vectors are
reconstructed up to τ = 25 for the case of the random matrix, where the BCASC based
variant is able to reconstruct the majority of vectors until τ = 30. This result underlines the
pessimistic character of RIP guarantees, where unique decoding with BP is only guaranteed
up to τ = 1 and 2 at best for the case of given random and BCASC matrices.
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Figure 6.5.: Boxplots illustrating the squared error in CS schemes with an OMP reconstruc-
tion: An optimized low-coherence sensing matrix (blue) versus a random matrix
(yellow). Simulation parameters: Appendix H.3.

The provided CS scenario is noiseless in order to illustrate the influence of the coherence
on the reconstruction. The same optimized matrix is used as reference within a noisy CS
scheme in Figures 7.5 and 7.8 on page 88 and on page 95.

Within this exemplary evaluation, the complex-valued case of BCASC search based sensing
matrices has been discussed. Additionally, a real-valued low-coherence sensing matrix is used
as bounding reference within Section 6.3.2.

6.3.2. Measurement Matrix Adaptation

Beside the straight forward optimization of sensing matrices, the introduced coherence min-
imization approach can also be used in the context of CS schemes with a given sparsifying
dictionary Ψ, cf. Section 4.4.2 on page 32. Within such scenarios, Ψ is assumed to be fixed.
Consequently, only the measurement matrix Φ remains as free parameter for an optimization.
As it has been the motivation for the sensing matrix optimization in the previous section,
most approaches aim to determine Φ such that the coherence of the resulting sensing matrix
M(Θ) = M(ΦΨ) is minimized, e.g., [Ela07, DCS09, AFMS10, ZFLR14]. As described in
Section 4.4.2, it is argued in [CR07, CW08] that the rows of Φ should be incoherent to the
columns of Ψ resulting in minimal M(Φ,Ψ), cf. (4.14) on page 32. Since it is only reasonable
that the measurements themselves are also incoherent, the intra row coherence of Φ should
be optimized as well which excludes trivial equal measurement solutions. Within this section,
it is numerically investigated which optimization criterion is likely to result in more suitable
sensing matrices.

The proposed coherence optimization approach can be adapted such that M(Φ,Ψ) is op-
timized for a given dictionary Ψ. Thereby, the rows φi of Φ correspond to codewords of
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6.3. Applications in Compressed Sensing

a spherical code Cs. The dictionary is considered by adding its columns ψi as fixed code-
words into Cs. Consequently, the superimposed forces are calculated over all codewords but
affect only those corresponding to rows of Φ. The remainder of the previously described
algorithm is not changed. An algorithmic description for the overall approach is provided in
Appendix E on page 113 for a complex-valued scenario. The description can be adapted to
real vector spaces, as for the general search approach, by exchanging (6.24) on page 61 with
(6.22) in Line 8 of Appendix E. A measurement matrix, which is obtained by the given search
approach, is subsequently denoted by ΦM(Φ,Ψ).

The existing contributions to measurement matrix adaptation are typically limited to real
vector spaces. In order to provide a basis for comparisons, this case is also considered in
the following evaluation. Since it is the most prominent example, the M(Θ)-optimization
approach of [Ela07] is used in the following as reference4, whereby the obtained measurement
matrix is denoted by ΦM(Θ). Naturally, a BASC based sensing matrix can be considered
as non-achievable bound on the reconstruction performance of this approach, since it is not
limited by the fixed dictionary.

In the following, the performance of the two optimization approaches are further investi-
gated for Φ ∈ R

m×l with Ψ ∈ R
l×n. The performance of random measurement matrices is

considered as well for reference. As given dictionaries, a concatenation of the identity matrix
and its Discrete Cosine Transform (DCT) Ψ[I,DCT] has been considered as well as column nor-
malized random matrix Ψrand of corresponding size thats elements are drawn from a standard
normal distribution.

In order to compare the optimization approaches and to evaluate their success, the distri-
butions of |〈φi,ψj〉|/‖φi‖‖ψj‖ ∀ i ∈ [1,m] and j ∈ [1, n] and |〈θi,θj〉|/‖θi‖‖θj‖ ∀ i 6= j and i, j ∈ [1, n]
are given in Figure 6.6 for m = 30, l = 200 and n = 400. The described optimization ap-
proach has been able to adapt to the given dictionaries as it can be seen in Figure 6.6a. It
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Figure 6.6.: Evaluation of the optimization approaches for m = 30, l = 200 and n = 400.

4Since the comparison is of fundamental nature and not highly competitive, it is reasonable to chose a widely
known instead of some cutting-edge M(Θ)-optimization variant.
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6. Coherence Optimization by Best Antipodal Spherical Codes

might be surprising that ΦM(Φ,Ψ) is more incoherent to the dictionary Ψrand than to Ψ[I,DCT].
However, there is more space for an optimization of Φ since the elements of a random matrix
are more coherent than those of Ψ[I,DCT]. The approach of [Ela07] does not significantly influ-
ence the coherence between measurement matrix and dictionary. Similarly, the optimization
of M(Φ,Ψ) has almost no influence on M(ΦΨ), as it can be seen in Figure 6.6b where the
optimization result of [Ela07] can be observed. For reference, the corresponding distribution
of a non-restricted low-coherence matrix ΘBASC is given as well. As briefly mentioned before,
the approach of [Ela07] leaves still space for further improvement, as it can be also seen from
the figure.

The reconstruction performance of both optimization approaches is evaluated by plotting
the success rate over the sparsity of the unknown vector χ in Figure 6.7 for a noiseless
CS scheme in the case of Ψ[I,DCT].

5 Both optimization approaches lead to an increased
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Figure 6.7.: Evaluation of the measurement matrix optimization approaches by their success
rate for Ψ[I,DCT] with m = 30, l = 200 and n = 400. Simulation parameters:
Appendix H.3.

success rate compared to a random measurement matrix Φrand, where the achieved gains are
significantly larger in case of OMP. For the given example, the optimization of ΦM(Φ,Ψ) comes
with a slightly better success rate as the approach of [Ela07] in the case of BP. However, this
advantage is only marginal especially considering that the optimization approach of [Ela07]
leaves space for improvement, cf. Figure 6.6b. In contrast to this, ΦM(Θ) is clearly superior in
case of column coherence based reconstruction algorithms like the OMP, as it can be also seen
in the figure, since those naturally gain especially in case of an optimization with respect to
M(Θ). For other examples of dictionaries, e.g., Ψrand, also with different dimensions, similar
results have been obtained. Inferring from the provided numerical findings, the coherence

5For further comparison, the corresponding boxplots of the squared error are given in Appendix D on page 111.
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of the sensing matrix M(Θ) is the more influential criterion especially for corresponding
algorithms, e.g., OMP. In case of other reconstruction approaches, an optimization of M(Φ,Ψ)
might still be considered, whereas its advantage is marginal at best.

6.4. Summary and Overview

The BASC search approach is proposed in this chapter for coherence optimization. The rel-
evance of this contribution to the field of CS has been demonstrated for two independent CS
variants. The chapter started with a general introduction to the coherence of vector sets in
Section 6.1. In order to provide a theoretical foundation for coherence optimization, multiple
relevant bounds have been summarized for complex and real vector spaces. Additionally, con-
nections to other research fields, namely frame theory and Grassmannian line packing, have
been established. Subsequently, an overview on existing concepts for coherence optimization
has been provided, where analytical and numerical approaches have been considered. Within
Section 6.2, the concept of antipodal spherical codes has been introduced. Based on the
equivalence of coherence and distance optimization for these antipodal codes, a search strat-
egy for BASC has been proposed by extending an existing method for real-valued BSC to the
case of complex vector spaces and subsequently to antipodal spherical codes. The obtained
BCASC search approach has been thoroughly compared to other optimization methods. Fi-
nally, implementational aspects have been discussed as well as approximations which can be
used to reduce computational costs. In Section 6.3, applications of the obtained coherence
optimization approach are discussed. Due to the original motivation, the direct application
for sensing matrix optimization is most striking. The suitability of the obtained matrices
is estimated with respect to the earlier introduced uniqueness assuring properties and the
evaluated by numerical simulations. As another example for a potential application in CS,
the search method has been extended in order to accommodate a proposed optimization cri-
terion for measurement matrix adaption with respect to a given dictionary. The obtained
measurement matrix is finally examined and compared to the result of a common approach
which is based on a different optimization criterion. Thereby, some light could be shed on an
ongoing confusion of two different optimization criteria which are both based on coherence.

The proposed approach for coherence minimization is an extension to the distance opti-
mization method of [LSZ88], which has been provided for real vector spaces. Since coherence
is a limiting factor in many applications, its optimization is of natural interest and impor-
tance. Due to its fundamental character and its connections to other research fields, it is
obvious that further applications are not limited to the field of CS. For example in [WF15],
the proposed approach is used as reference. Compared to existing numerical approaches, the
provided method obtained improved coherence values for a wide range of vector sets. In the
case of complex vector spaces, a computationally costly numerical integration has to be per-
formed due to the lack of an analytical solution. This potential drawback can be countered
by utilizing a simpler but faster numerical summation which yields often only slightly worse
coherence results. An analytical solution to the described integral might be subject of future
investigations. As by the example of fixed codewords or a fixed dictionary, the proposed
scheme can be adapted in order to suit additional side conditions.

In Figure 6.8, the efforts of the current chapter on coherence optimization by BASC are
put into the overall context of CS, cf. Figure 4.1. The concept of BASC has been proposed
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Figure 6.8.: Classification of this chapter’s contents within the overall picture of Compressed
Sensing (cf. Figure 4.1 on page 33).

for real and complex vector spaces within this chapter. Since the sensing matrices arise from
numerical optimization, there is no deterministic structure, and consequently, there are no
structures which could be used by dedicated algorithms. However, all general reconstruction
algorithms can be applied, where coherence based variants, e.g., OMP, are especially suited in
case of coherence optimized sensing matrices. Therefore, potential applications are not limited
to noiseless CS scenarios. The proposed coherence minimization technique can be extended to
suit an optimization criterion by [CR07, CW08] for the adaptation of measurement matrices
with respect to a given sparsifying dictionary. Thereby, the coherence of the resulting sensing
matrix proofed to be the more adequate criterion in most cases.
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7
Compressed Sensing Based on
Complex-Valued Reed–Solomon Codes

T
he motivation of the previous chapter has been to obtain sensing matrices with
advantageous properties which allow for improved reconstruction performance with
well-established recovery algorithms. As an alternative approach, deterministic CS
schemes can be designed such that special structures of the sensing matrices can

be exploited by dedicated algorithms which might offer faster computation or an increased
reconstruction performance [DeV07, AMM12]. Most of the deterministic constructions, which
have been proposed in the last decade, are based on channel coding approaches [DeV07,
PH08, HCS08, AHSC09, CHJ10a, AMM12]. With the same motivation, the focus will be on
deterministic CS schemes based on CRS codes in the remaining chapter.

In the 1980s, Marshall [Mar81, Mar84] and Wolf [Wol83b] were the first to investigate
RS codes over the complex numbers. Within their work, they denoted the resulting CRS
codes as analog codes, DFT codes or real-number codes [Wol83a, Wol83b, Mar84]. Several
researchers worked on CRS codes and corresponding decoding techniques in the following
decades [MS85, Kum85, Hen89, MHET99, Red00, RG04, TH08, AT08, HHZ11, VL14, Red14].
Potential applications like Orthogonal Frequency-Division Multiplexing (OFDM) schemes fur-
ther increased research interest [Hen00, HH05, ADAA08, HHH12].

The CS scheme is compared to RS in [CW08, FR13], where typically its robustness against
noise is criticized. However, this is caused by not spending further attention on the necessary
adaption of the decoding algorithms. The application of CRS codes in CS is successfully
introduced in an explicit form by [PH08].

In the following section, CRS codes and their properties are introduced. Additionally, the
connection to CS is established. In Section 7.2 on page 79, the concept of robust decoding
is introduced and applied to CRS codes. Thereby, the potential of power decoding in noisy
scenarios is evaluated for different error location and evaluation algorithms. Afterwards,
the verification and iterative improvement on the actual error locations is discussed and the
performance of a corresponding CS scheme is evaluated. Subsequently in Section 7.3 on
page 89, the concept of Continuity Assisted Decoding (CAD), which allows to decode beyond
the radius for power decoding, is established and connected to the Padé-approximation. The
potential use of the additional reliability information for CRS codes and CS schemes based
thereon is presented as well in this section.

75



7. Compressed Sensing Based on Complex-Valued Reed–Solomon Codes

7.1. Complex-Valued Reed–Solomon Codes

In the following, the notation of RS codes from Section 2.2 on page 8 is reused for the
introduction of CRS codes in order to underline the close relationship, therefore, CRS codes
are referred to for the remainder of this chapter if not stated otherwise. In Section 7.1.1,
the definition of CRS codes is given and several properties are discussed. Subsequently, the
connection of CRS codes to CS is given in Section 7.1.2 on the next page.

7.1.1. Definition and Properties

The definition of CRS codes corresponds to the one of RS codes over Fq (cf. Chapter 2 on
page 5), where the DFT is used. Compared to the previously introduced DFT [cf. (2.3)], a
slightly different variant is considered for the complex case in the following:

ai =
1√
n
a(αi), ai =

1√
n
a(α−i) ∀ i ∈ [0, n− 1] (7.1)

Note the two scalar factors of 1/
√
n, which correspond to the factor 1/n which often occurs

in only one of the transforms. However, the given notation of (7.1) is beneficial since the
DFT and IDFT matrices are the complex conjugate of each other, which simplifies later
expressions.

With this definition of the DFT, a CRS code of length n and dimension k is defined as a
set of codewords a(z) ∈ C[z] with dega(z) = n− 1:

CRS =

{
a(z) | ai =

1√
n
a(α−i), ∀ i ∈ [0, n− 1], dega(z) < k

}
,

where a(z) ∈ C[z] and d = n− k + 1 is the minimum Hamming distance (hence, CRS codes
are MDS, cf. (2.7) on page 8) and α is an element of order n which is commonly chosen to
be an n-th root of unity α = e−j2π/n. The corresponding parity-check matrix H ∈ C

n×(n−k)

contains the factor 1/
√
n as well:

H =
1√
n




α0 α0 α0 · · · α0

αk α(k+1) α(k+2) · · · αn−1

...
...

...

α(n−1)k α(n−1)(k+1) α2(k+2) · · · α(n−1)(n−1)




(7.2)

As for conventional RS codes, a CRS codeword can be interpreted as a column vector c ∈ CRS
which can also be written as a polynomial c(z) =

∑n−1
i=0 ciz

i, where the components of c are
denoted by ci ∈ C. From c ∈ CRS and the definition of H as in (7.2), the relation HTc = 0

can be obtained.
In contrast to finite fields, there is no field built upon αi, although α is an element of order n,

which generates a multiplicative group by its powers, since the set
{
0, αi ∀ i ∈ [0, n− 1]

}

is obviously not closed under addition (cf. (2.1) on page 6). Additionally, all polynomial
coefficients are not restricted to the aforementioned multiplicative group and can attain any
complex number (ci ∈ C). Therefore, the results of all addition-based operations are generally
not restricted to

{
0, αi ∀ i ∈ [0, n− 1]

}
.
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The received word r ∈ C
n is the sum of the codeword and a sparse error e ∈ C

n: r = c+e.
The indices of the non-zero coefficients in e correspond to the error positions, which are
denoted by U = {i | ci 6= ri}. The number of errors in r is consequently equal to τ = #U .
The syndrome is defined as for conventional RS codes with s =HTr =HTe.

In the context of CRS codes, distributed background noise is typically considered which
may arise depending on the application and implementation. This additional noise η ∈ C

n

affects the received word r = c + e + η and needs, therefore, to be considered during the
decoding process as it is demonstrated subsequently in Section 7.2 on page 79.

Since all coefficients of CRS codes are complex, Marshall argues that the CRS codes are
analogous to complex-valued versions of BCH codes and denotes these codes as complex-
number BCH codes [Mar84]. Real-numbered BCH codes can be obtained by ensuring that H
contains for each column also the complex-conjugate as it is already described in [Mar81].
Since these real-numbered BCH codes can be considered as subfield-subcodes of CRS codes, it
would be more suited to describe just those real-number codes as BCH codes in this context.

For conventional codes, it is known that unique decoding is possible until half the minimum
distance: τ ≤ ⌊(d−1)/2⌋, where τ represents the number of errors [Bos99]. In case of CRS
codes however, Wolf showed in [Wol83b] that unique decoding is almost surely possible (with
probability 1) until τ ≤ d − 2 (cf. Section 3.2.2 on page 21). However, there is currently no
fast algorithm available which achieves this bound.

As for the above described CRS codes, the concepts of IRS codes and virtual extension, pre-
sented at the end of Section 2.2.1 on page 10, can be equivalently transfered to the complex-
valued scenario. For the sake of brevity, a mostly redundant introduction to Interleaved
Complex-valued Reed–Solomon (ICRS) codes is omitted here as well as the complex-valued
version of virtual extension. For references and definitions, the reader may refer to the cor-
responding section on page 10.

7.1.2. Connection to Compressed Sensing

The previously described CRS codes can be used in a CS scheme, as it is proposed in [PH08],
where a variant of the Coppersmith–Sudan decoding algorithm [CS03] is used: The sensing
matrix Θ used in this CS scheme corresponds to the transposed parity check matrix HT of
a CRS code which is based on a DFT matrix with m = n− k. The (noise-free) measurement
vector β = HTχ can be translated with help of the complex conjugate H∗ into a received
word [PH08]

r =H∗β = c+ e, (7.3)

which can be also represented as the addition of an arbitrary codeword c ∈ CRS and some
error vector e. As for any other received word, the syndrome can be computed by applying
the parity check matrix H:

s =HTr =HTe =HTH∗β. (7.4)

Since H∗ corresponds to a partial IDFT matrix, HTH∗ results in the identity matrix, and
therefore, the measurement vector β equals the syndrome s and, consequently, the searched
sparse vector coincides with the error χ = e. Hence, CRS decoding algorithms can be utilized
in a CS scheme to find χ. The actual value of the implicitly assumed codeword c is not of
further importance for the CS scheme and is therefore not calculated during the decoding.
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In power decoding, the syndrome is extended by component-wise powering the received
polynomial, cf. (2.16) on page 12. Due to the aforementioned relation, an explicit calculation
of s

(1) can be avoided since the measurement vector equals the syndrome. However, the
extended syndromes s

(l) with 1 < l ≤ lmax need to be calculated conventionally nevertheless.
Within the introduction of CRS codes in Section 7.1.1, potential background noise has been

described. As argued in Section 4.4.1 on page 31, noise is also often considered in the context
of CS. However, it should be noted that the noise is typically added in different places of the
overall scheme. For typical applications of CRS codes, noise affects the received word r, while
for CS schemes, the (noise-free) measurement vector β or the sparse vector χ are typically
affected. These different variants result in equivalent noise vectors which can be interpreted
as filtered versions of each other. This fact should be carefully considered when comparing
analyses based on different models. In order to assist comparability, it is assumed for the
remainder of this thesis that zero-mean AWGN η ∈ C

n−k is affecting the vector β resulting
in µ = Θχ+ η, cf. Section 4.4.1 on page 31.

In Figure 7.1, the potential application of CRS power decoding algorithms in a CS-scheme is
summarized as block-diagram. The green parts indicate the possible application of syndrome

HT + H∗ HT

Powering Partial DFTs

Syndrome Decoding l ∈ [1, lmax]

χ µ

η

β r s
(1)

r〈l〉

s
(l)

s
(1)

χ̂

HTH∗ = I ⇒ µ = s
(1)

Figure 7.1.: Block diagram for the application of CRS power decoding schemes to noisy CS.
Syndrome decoding is in green, where avoidable calculations are dashed.

decoding, where the dashed lines indicates that calculating s
(1) explicitly is not necessary.

In order to have a column normalized sensing matrix, a scaling factor needs to be intro-
duced: Θ =

√
n/mHT. As a consequence, this scaling factor needs also to be considered for

the reconstruction in (7.3) and (7.4). With exception of a slight potential loss of precision for
floating point implementations observable only in noise-free scenarios, this scaling factor does
not have further consequences for the decoding. In noisy cases however, it should be noted
that the value of such a scaling factor influences the performance of the system with respect
to some fixed noise power. Therefore, column normalized sensing matrices are considered for
the remainder of this thesis in order to provide reasonable and fair comparisons.

CRS codes can be uniquely decoded up to half the minimum distance as described before.
This bound corresponds to the condition for SLEs derived by the null space (cf. Section 3.2.2
on page 21). Subsequently, several approaches are introduced to overcome this bound. In the
context of CS, bounds similar to previously discussed almost sure decodability of CRS codes
up to d− 2 errors are obtained by [VB98, Wak06, FR13].
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The common separation of error location and evaluation in channel coding can also be
found in CS approaches which are focussed on support recovery, e.g., [CHJ10b]. Thereby, de-
termining the error positions is considered as the actual problem for which several algorithms
have been proposed, cf. Section 4.1 on page 24. The subsequent error evaluation is typically
obtained as a least-squares solution. However, there are also joint approaches for CS as well
as for decoding CRS codes, cf. BP or [Red00].

7.2. Robust Decoding of CRS Codes for Compressed Sensing

Since the principles of linear algebra do not differ between finite and infinite fields, all conven-
tional RS decoding schemes can be used for CRS codes as well. However, all combinatorial
arguments used in finite fields cannot be applied to infinite fields [Mar84]. Furthermore,
the numerical stability of a potential algorithm becomes an additional criterion. In conse-
quence, algorithms for RS codes might be intractable or unstable when applied to CRS codes.
For example, the Guruswami–Sudan algorithm contains a factorization step which makes it
unattractive for CRS codes [PH08]. The stability or robustness of CRS decoding algorithms
has been discussed and investigated in several publications since the early days of CRS codes,
e.g., [Kum85, Hen89, MHET99]. Thereby, non-sparse background noise is typically assumed
which may arise depending on the application and implementation. For example, such noise
can be caused by the finite-precision of the hard and software implementation, by quantization
of the vector components, or even by the measurement processes itself.

For the remainder of this work a floating-point representation [IEE08] is considered for the
real and imaginary parts of the complex-values which arise in the context of CRS codes. Due
to the finite precision, rounding errors cannot be avoided and the corresponding decreased ac-
curacy might accumulate or even amplify during subsequent calculations. Additionally, there
might be over and underflows where the calculated result leaves the representable number
range. In case of cancellation, significant bits of the number representation are lost which
can occur for example by subtracting two close numbers. Consequently, the result of such a
subtraction is less reliable and potentially inaccurate. As a direct result, it should therefore
be noted that the accuracy of a given algorithm in floating-point arithmetic depends also on
its implementation. For example, addition and multiplication are neither guaranteed to be
associative nor distributive in floating-point arithmetic. While these operations are commu-
tative for two terms or factors, the order of the operations can be influential in case of more
terms or factors. For more details about the consequences of floating-point operations on
algorithms, refer to [Hig96].

Due to the finite precision, the performance evaluation is more complicated for CRS codes
in comparison to the unique-decoding of RS codes over finite fields. Since the decoding result
of RS codes is unique, the performance is evaluated with respect to the complexity of the
decoding algorithm. However, for the presented scenario of CRS codes, the error location and
evaluation algorithms given in Section 2.2.2 on page 11 and their individual implementations
differ in the obtained accuracy level and stability when operated over the field of complex
numbers in a noiseless setting. Therefore, they need to be evaluated with respect to the
quality of the decoding result under distorting influences. Depending on the application,
the stability of an algorithm might even be the more important property. Furthermore,
additional distributed noise might overlay such precision losses and be the dominating effect
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depending on its magnitude. Therefore, the influence of the floating-point representation
might be of reduced relevance in noisy settings. Instead, the stability of the algorithms and
their implementations is even more important as soon as noise is considered.

In order to cope with the additional distributed noise, it is straight forward to add thresholds
to existing RS decoding algorithms, e.g., [Hen89, Red00]. The actual values of these thresholds
depend, besides on the finite precision, also on the additional noise which might not be
known a-priori. Therefore, the noise needs to be estimated in such cases. Depending on
the application, the used thresholds might also account for decreased precision, e.g., due to
many operations. Most approaches determine the actual values for the thresholds empirically,
however, there are also attempts to give adaptive thresholds or specialized algorithms [RG04,
TH08, HHZ11, Red14].

Since most approaches to CRS decoding are based on well-established techniques from
channel coding over finite fields, the zero characteristic and the missing combinatorial argu-
ments in infinite fields are often presented as drawback. However, there are also advantageous
aspects of the infinite fields, as shown in the remainder of this chapter. In Section 7.2.1, basic
error location and evaluation algorithms and their adaptations to CRS codes are discussed.
Thereby, the influence of distributed noise is examined. Subsequently in Section 7.2.2 on
page 86, methods are presented which perform an additional verification step followed by an
iterative improvement of the error locations.

In the following, the case of conventional (almost sure) unique decoding is considered in
Sections 7.2.1 and 7.2.2. Therefore, the main interest is on numbers of errors which are limited
to the power decoding radius τm = τ

(lmax)
max , as described by (2.11) on page 11. The results

provided in this section have been partly obtained in the course of a supervised master’s
thesis [Riz14] and provide the basis for a subsequent extension given in Section 7.3 which
allows to decode even beyond the power decoding radius.

7.2.1. Basic Error Location and Evaluation in Noisy Environments

In the following, the error location and evaluation algorithms given in Section 2.2.2 on page 11
are modified for the use over the complex numbers in a power decoding manner. Their
performance is subsequently evaluated at the end of this section.

Peterson Type Algorithm

As described before for the decoding of RS codes on page 13, the Peterson algorithm deter-
mines the number of errors by exploiting τ = rankS. The common approach for RS codes
considers only the minimum number of equations from (2.17) on page 12 by reducing the
assumed number of errors ν (starting from τm) until detMν 6= 0. However, the stability of
CRS decoding algorithms is generally improved by considering all available equations (and
therefore the complete syndrome). Thus, the full matrix Mτm = S should be used for CRS
codes. Since the rank of a matrix equals the number of its non-zero singular values, this can
be achieved by applying the Singular Value Decomposition (SVD) on S = UΣV H, where U
and V are unitary square matrices and Σ is a real-valued matrix with singular values Σi,i

of S on the diagonal. In order to determine this number, a threshold ǫ or some other decision
criteria can be used as previously discussed:

τ = # { i : Σi,i > ǫ } ∀ i ∈ [1, τm]
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From this formula, it is obvious that the determined number of errors is upper bounded by τm.
For a noisy environment, ǫ needs to be adjusted correspondingly. As argued before, there are
also alternatives to empirically determining ǫ [RG04, TH08, HHZ11].

In a subsequent step, the error locator Λ is determined over (2.17). For RS codes over
finite fields, it is sufficient to reduce this system to a square matrix which can be efficiently
inverted and solved. However, for the presented scenario of CRS codes, the overdetermined
system will typically not have a unique solution due to noise and finite precision. Therefore,
an ℓ2-minimization over the full system in (2.17) can be used to determine Λ, instead of
computing the inverse of the reduced non-singular matrix Mτ . This least squares solution
can be obtained by a Moore–Penrose pseudoinverse [Moo20, Bje51, Pen55], cf. Section 3.1.1
on page 18. Due to the increased number of equations, this approach provides more stable
results and minimizes the remaining noise energy.

Berlekamp–Massey Type Algorithms

The SS algorithm [SS06] given in Algorithm A.1 and discussed on page 13, which extends the
well-known BM algorithm to power decoding, can also be generalized for CRS codes. For the
conventional case, the discrepancy calculated by (2.20) is compared to zero. Following the
previous discussion, a threshold must be used instead for the application to CRS decoding.
Furthermore, the accuracy of s

(l) for l ≥ 2 is reduced since the noise effects contained in s
(1)

are accumulated by powering component-wise. These accuracy differences need to be consid-
ered for the corresponding values of ǫ during the evaluation of ∆(l)

t by different empirically
determined values or by adaptive algorithms.

For the conventional description over finite fields, the synthesis algorithm checks all se-
quences with full length whether they can be generated by an LFSR found with ∆

(l)
t = 0.

Due to the finite characteristic of the field, this check is necessary since each field element
can occur with a finite probability, and therefore, ∆

(l)
t = 0 could have been obtained by

coincidence. Because of the finite precision and the potential noise, these checks are problem-
atic for the decoding of CRS codes, since even small values with ∆

(l)
t < ǫ might accumulate

subsequently and lead to an overestimation of the number of errors. However, since the com-
plex field is of characteristic zero, the probability of obtaining a short connection polynomial
generating only a partial sequence is zero, and therefore, these checks are not necessary. As
consequence, the varying length multi-sequence LFSR synthesis algorithm can be stopped as
soon as ∆

(l)
t = 0 is reached. Hence, the zero characteristic has an advantageous aspect for

the generation of minimum-length LFSR.

The length of the obtained error locator polynomial Λ(z) determines the number of detected
errors and the IDFT λ(z) = F−1 [Λ(z)] can be used to find the error positions. In an ideal
and noise-free scenario, the coefficients λi, which correspond to the error positions (i ∈ U),
of the time-domain polynomial λ(z) are zero according to the definitions of DFT and Λ(z).
For typical implementations of CRS codes, however, these coefficients are more likely of
rather small magnitude. Therefore, the selection of the error locations can be based on the
magnitudes of λi for i ∈ [1, n− k], cf. [Red00, ADAA08, TH08], such that the τ̂ coefficients
with smallest magnitudes provide the estimated error locations Û .
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Extended Euclidean Type Algorithms

As introduced in Section 2.2.2 on page 14, the EE algorithm and its generalized version for
power decoding, the MS algorithm, operate both over polynomials. Within these algorithms,
the degree of a polynomial p(z) ∈ C[z] needs to be determined which can be achieved by

deg p(z) = argmax
i∈N0

|pi| > ǫ.

Thereby, it should be noted that the magnitude of the coefficients can differ considerably.
Therefore, all polynomials in a row should be normalized with respect to the largest coefficient
of these polynomials after each iteration in order to prevent overflows. Such a scaling is not
harmful to the algorithm, cf. Footnote 3 on page 15. As soon as the algorithms terminated
successfully, the error positions Û can be obtained from the error locator polynomial Λ(z) as
described previously for BM type algorithms.

As it can be seen from the equations in (2.22), the MS algorithm is especially susceptible to
precision loss due to the iteratively repeated row reductions. (The same observation holds for
the row subtractions performed in the EE algorithm.) Since the row reductions are applied
in order to reduce the degree of the leading term, the corresponding highest coefficient can
be set to an exact zero, cf. the description on page 15. Similarly, it proved to be beneficial for
the overall stability that coefficients with values less than ǫ are also set to zero. Consequently,
it might happen that M [z] contains a row with zeros. Since deg 0 is commonly not defined,
such rows cannot be considered in the algorithm and are ignored.

Numerical Evaluation of Error Location Algorithms

In the following, the performance and noise sensitivity of the discussed error location algo-
rithms is evaluated. For the simulations of a noisy CS scheme, a CRS code of length n = 50
and dimension k = 12 is considered, where complex-valued zero-mean AWGN with a stan-
dard deviation of ση = 10−5 is affecting the measurement β as described in Sections 4.4.1
and 7.1.2 on page 31 and on page 78. Further details on the used simulation parameters are
summarized in Appendix H.4 on page 121. Since error location algorithms are evaluated, the
nomenclature of CRS codes instead of CS is subsequently used during the evaluation.

In a first step, the discussed algorithms are evaluated for the reliability of their estimated
number of errors τ̂ in Figure 7.2, where τ̂ is determined by the length of Λ(z) in the case of
BM and EE type algorithms. Within this figure, boxplots are used to illustrate the statistical
behavior, where the distributions of the obtained values for τ̂ are visualized over the actual
value τ . The solid line represents the ideal result for the case of successful power decoding
in a noise-less scenario, where, all three algorithms provide equally reliable results close to
the best achievable case. However, for the described noisy scenario, the number of errors
obtained by the SVD based approach of the given Peterson algorithm is more reliable than
those of the other two algorithms for a wide range of errors, e.g., for τ ≤ 18 in Figure 7.2.
For more errors, the Peterson type approach tends to underestimate τ , while the other two
algorithms generally tend to overestimation, where the BM type approach is usually closer to
the correct number. The EE type algorithm significantly overestimates the number of errors,
and therefore, it proves to be especially susceptible to noise. These described tendencies
of over and underestimation for the presented algorithms are exploited in the subsequent
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Figure 7.2.: Boxplots illustrating the reliability of the presented power decoding error loca-
tion algorithms in estimating the number of errors τ̂ . Simulation parameters:
Appendix H.4.

Section 7.2.2. Results with τm < τ̂ correspond to failures in BM and EE type approaches due
to the additional noise or too many occurred errors.

Since a correct number of errors does not necessarily indicate the recovery of the correct
support, the corresponding estimates of the described error location algorithms have to be
evaluated as well. For the described simulation setting, the average support recovery is given
in Figure 7.3, where the rate of the recovery is determined by the ratio

#Ûcorr

#Û
with Ûcorr = Û ∩ U

being the correct part of the estimated support set Û . On a first sight, the average support
recovery corresponds to the results for the number of errors as it can be seen in the figure: The
Peterson type algorithm provides the error locations most reliably, and for a larger number of
errors, the BM and EE type approaches achieve comparable reliability while the EE performs
typically worse due to its immense overestimation of the number of errors. However, on a
second sight, this result might be surprising since the under and overestimation in τ̂ could be
interpreted as an indication for a failure of the corresponding algorithm, and consequently,
the estimate of Λ̂(z) should be almost meaningless. As it is clear from Figure 7.3, this is not
the case: The obtained estimates for the error locator polynomial Λ̂(z) are not very different
from the actual Λ(z) and the dominating problem is in determining the correct number of
errors τ . Additionally, it might be surprising that the average support recovery is relatively
high (> 75%) for all three algorithms in case of a larger number of errors (τ ≥ τm), where
a total failure of the algorithms would have been expected. The effect of the good-natured
estimation Λ̂(z) is subsequently utilized and discussed in Sections 7.2.2 and 7.3.
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Figure 7.3.: Boxplots illustrating the average support recovery provided by the presented
power decoding error location algorithms. Simulation parameters: Appendix H.4.

In the following, the previously provided error evaluation algorithms for RS codes, the GZ
and the Forney algorithm, are applied to CRS codes and evaluated for the described error
location algorithms.

Gorenstein–Zierler and Forney Algorithms

The GZ algorithm, which is described in Section 2.2.2 on page 16, determines the error values
for a given set of error positions by solving an overdetermined system of linear equations which
has a unique solution, cf. (2.25). With the same argumentation as for the Peterson algorithm,
where an overdetermined system has to be solved as well, the conventional approach of solving
a reduced square system is not recommendable. Therefore, the least squares solution of the
system represented by (2.25) is considered here, in order to incorporate all available equations.

As previously argued, such an ℓ2-minimization based error evaluation is also applied in
the context of CS reconstruction: Approaches which focus on support recovery, where the
algorithms determine the positions of the non-zero components and obtain subsequently the
corresponding least squares solution, e.g., [CHJ10b]. The ℓ2-minimization should not be
confused with the convex relaxations like the BPDN, cf. (4.7) on page 25. These approaches
treat the noise also by an ℓ2-norm, however, the support is determined jointly within the
optimization.

For comparison purposes, the efficient Forney algorithm, which is briefly described on
page 16, is considered for CRS codes as well. Its main equation (2.26) is also valid for the
complex case, and therefore, no further adaptation for CRS codes is necessary.
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Numerical Evaluation of Error Evaluation Algorithms

For the given error evaluation algorithms, GZ and Forney, the performance with respect to the
achieved squared error ‖χ− χ̂‖2 is illustrated with combined boxplots in Figure 7.4, where
the outliers are canceled from the plot in order to improve overall readability. The simulation
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Figure 7.4.: Boxplots illustrating the squared error for the presented power decoding error
evaluation algorithms: Forney (red) and GZ (orange), in combination with the
presented power decoding error location algorithms (brightness). Outliers are not
explicitly shown. Simulation parameters: Appendix H.4.

is based on the previously obtained results for the error location algorithms. As it can be
seen in the figure, the efficient Forney algorithm is more susceptible to noise than the GZ
algorithm independent of the used error location algorithm. This behavior is caused by the
additional use of Λ(z) in (2.26), since the corresponding estimate Λ̂(z) is of course also affected
by the noise and determined by the preceding error location algorithm. Consequently, it is
not beneficial to rely also on Λ̂(z) for the error evaluation. Since the Peterson type algorithm
provided the best average support recovery, it is natural that the GZ algorithm shows the
best performance for this error location algorithm. It should be noted that the Mean Squared
Error (MSE) is a pessimistic performance measure since a single bad result might be of severe
influence. Since outliers are of reduced influence in the median, it might be a more reasonable
measure depending on the intended application. For example, the mean of the GZ algorithm
based on the error locator obtained by the BM type algorithm is below 10−7 for τ < 2, while
the median is below this limit for τ ≤ 21 = τm.

The severe differences in reconstruction performance between GZ and Forney emphasize
the importance of the additional robustness aspect for CRS codes. For conventional channel
codes over finite fields, robustness is not an issue and efficiency with respect to complexity
is of major interest. However, potential precision problems and additional noise enforce the
consideration of robustness as another criterion for the evaluation of decoding algorithms.
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Based on these simulations, only the GZ algorithm is considered in the following, as it
results in a least squares solution for a given set of error locations. Subsequently, the focus
will be on the iterative refinement of estimated error locations for the next section.

7.2.2. Verification and Iterative Improvement on Error Locations

The adapted standard algorithms given in the previous Section 7.2 arose from the (almost
sure) unique decoding of RS codes over finite fields. For such conventional RS codes, the
corresponding algorithms are sufficient and no further action is needed since the decoding is
proven to be (almost surely) unique for τ ≤ τm. The traditional separation into error location
and evaluation algorithms is also reasonable for unique hard-decoding schemes. The men-
tioned adaptations of the basic error location and evaluation help to cope with the additional
noise commonly assumed in CRS systems and allow the application of RS decoding schemes
to noisy CRS schemes. However, due to ambiguities introduced by the noise, the situation is
more challenging for CRS decoding since the result of an error location algorithm might be
erroneous and its failure could be detected during error evaluation. Therefore, the strict sep-
aration into error location and evaluation is not ideal for CRS decoding and joint approaches
for error location and evaluation are more promising.1 In the following, additional steps are
discussed which resemble such a joint error location and evaluation.

In order to increase the reliability of the obtained results, an additional verification step
can be introduced after the error location algorithm. In [Red00] for example, the decoding
result is checked by calculating a codeword estimate ĉ = r − χ̂. Subsequently, the parity
check matrix can be used to evaluate the validity of the estimation with the help of the
syndrome ŝ = HTĉ, which is supposed to be zero for a valid codeword. For this validation,
it proved to be beneficial to perform a component-wise check on ŝ. Consequently, an error
estimation χ̂ is assumed to be correct if

|̂si| < ǫ ∀ i ∈ [1, N −K] . (7.5)

Of course, the validity check (7.5) can only indicate whether decoding has been unsuccessful.
In such a case, the selected error locations might be wrong and a different set could result
in a successful decoding. The coefficients λi of the time-domain polynomial λ(z) can be
utilized to find the correct error positions. In [Red00], an empty set of positions is iteratively
increased by those corresponding to the coefficients λi with smallest magnitude until (7.5) is
fulfilled or τm positions have been selected. Another example for a similar approach can be
found in [ADAA08] with a validity check slightly different to (7.5): The ∆ν coefficients of
smallest magnitude are selected, with ∆, ν ∈ N and ∆ > 1, where ν is iteratively increased
from 1 to τm until the validity check is passed. From the resulting set of locations, all possible
combinations of ν coefficients are evaluated by the validity check. Thereby, it should be noted
that there might be more than τm coefficients considered, however, the final decoding result
has at most τm error positions.

Within his supervised master’s thesis [Riz14], our student proposed an Iterative Erasure
and Evaluation (IEE) scheme which proved to be suited for noisy scenarios. Afterwards,
a simplified description of this scheme has been published within [MRZB15]. Since it is

1Since (additional) information from the error evaluation is used, such joint approaches can be considered as
soft-decoding schemes.
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subsequently extended in Section 7.3, this IEE scheme is briefly described and further analyzed
in the following. Based on initial estimates for the error location polynomial Λ̂(z) and the
number of errors τ̂initial which are provided by some error location algorithm, the scheme aims
to provide an error estimate χ̂ for τ ≤ τm. The approach is partly inspired by GMD decoding,
where unreliable coefficients are iteratively erased and the resulting word is decoded each
time, cf. Section 2.2.2 on page 12. As for the two previous examples, [Red00] and [ADAA08],
the positions corresponding to the smallest magnitudes |λi| are considered as least reliable
and the obtained error estimate is verified by a validity check as in (7.5). The IEE scheme
consists out of two loops determining the error positions which are subsequently validated.
If this check is failed, the assumed set of erasures is considered to be incomplete and the
scheme aims to extend the set accordingly. The outer loop starts with τ̃outer = τ̂initial. The
set of erasures E , with #E = τ̃outer, is subsequently increased by the position corresponding
to the next smallest |λi| and the validity check is performed for each set until τ̃outer = n− k
(if the algorithm is not terminated earlier). In case of a non-valid error estimate, the outer
loop continues immediately and the set E is increased by the next element. A valid solution
with τ̃outer ≤ τm is directly returned and the algorithm terminates. However, in the case of
τ̃outer > τm, an inner loop is used to reduce the number of erasures in order to be within the
capacity of (almost sure) unique decoding. The number of erasures τ̃inner for the inner loop
is initialized with the number of the outer loop τ̃outer. The recent error vector χ̃ can be used
to determine which position is removed from E . Therefore, it is assumed that the position
resulting in the element with the smallest non-zero magnitude of the obtained error χ̃ is
due to the noise and not an actual error position. Consequently, such a position is canceled
from E within the inner loop until #E = τ̃inner = τm, whereby χ̃ is recalculated for each
reduced set E . If the thereby obtained vector χ̃ does not pass the validity check, the inner
loop is left and the outer loop continues with increasing τ̃outer and choosing the erasures E
as the τ̃outer the smallest magnitudes |λi|. An algorithmic description of the IEE scheme is
given in Appendix F on page 115.

Since the SVD based Peterson type algorithm proved to be most reliable in determining the
number of errors, this approach is chosen to provide τ̂initial. The described IEE approach does
not rely on Λ̂(z) having minimal degree but on the small magnitudes of λi for i ∈ U . In the
previous section, it is argued that the estimation of Λ(z) is good-natured for an overestimation
of the number of errors in case of the presented error location algorithms. Therefore, it is
possible to use error locator polynomials of degree τm which corresponds to the maximal
number of errors τm. The overestimation can be achieved for the Peterson type algorithm
by obtaining the least squares solution to (2.17) on page 12 with τ = τm. For the BM
and EE type algorithms, the used threshold ǫ needs to be reduced in order to obtain an
overestimated error locator polynomial Λ̂(z). The obtained polynomials possess still the
desired small magnitudes of λi. Due to the overestimated degree, these polynomials have
additional roots which are not limited to powers of α (not even to the unit circle), and
therefore, these roots are unlikely to result in λi = 0 with i /∈ U . Nevertheless, they might
potentially result in additional coefficients with small magnitude |λi|. Especially in noisy
scenarios, these additional coefficients might interfere with those of actual error positions. The
simulation results regarding the performance with respect to the average support recovery are
given in Appendix G on page 117 and show the improved performance, where the approach
based on the Peterson type algorithm performs slightly better than the other two approaches.
Therefore, this variant is used subsequently for the initial values required by the IEE scheme.
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In order to evaluate the presented IEE approach in the context of a noisy CS scheme, the
squared error ‖χ− χ̂‖2 has been determined as before. The result is given as boxplots in
Figure 7.5. For comparison, a GZ error evaluator combined with an error overestimating
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Figure 7.5.: Boxplots illustrating the squared error in CS schemes: Deterministic CRS based
scheme (green) with different dedicated algorithms (brightness) and a general
OMP algorithm (blue) in combination with different sensing matrices (bright-
ness). Simulation parameters: Appendix H.4.

Peterson type location algorithm is considered as well. Since the possibility to choose the
sensing matrix is implicitly assumed for deterministic CS schemes, an optimized sensing
matrix Θ is also investigated. The low-coherence matrix Θ, which is used therefore, is
based on the previously described BCASC approach (cf. Chapter 6) with a close to optimum
coherence of 0.809 > 0.8028, cf. (6.3) on page 51. For further comparison, the combined
result of 10 000 column-normalized random matrices is examined as well, where the real and
imaginary components of each matrix element is drawn from a zero-mean Gaussian random
source. For the reconstruction, the OMP is used for the matrices which are not based on CRS
codes. As it can be seen from the figure, the IEE approach can decode reliably up to τm, while
the non-refined GZ error evaluator starts to fail for some scenarios with τ > 12. However,
as the median indicates, GZ based decoding is successful most of the time for τ ≤ τm. The
conventional CS scheme based on random matrices starts to fails with τ > 12 as the GZ
decoding based approach. Naturally, the optimized low-coherence matrix provides better
results, where first unsuccessful recoveries occur for τ > 18. However, both non CRS based
CS schemes are able to provide correct reconstructions in most cases for τ > τm (cf. the median
in Figure 7.5). This is not possible for the presented approaches based on CRS decoding.
However, in the following section, an approach is introduced which aims to overcome this
restriction.
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7.3. Continuity Assisted Decoding beyond the Power Decoding
Radius

The schemes presented so far are by design only capable of decoding until τm errors since they
follow the concept of (almost sure) unique decoding. As mentioned before, it is principally
possible to decode beyond τm in the complex field. With the perspective of channel coding
over finite fields, the missing or disadvantageous features of fields over complex numbers are
usually spotted and discussed most often. However, the continuity of the Euclidean norm
resembles an advantageous feature which is not existing in this way for finite fields. The
corresponding distance can be used to measure the closeness between two elements within
the complex field while there is no equivalent measure for finite fields. Since the magnitude of
a complex number equals its Euclidean distance to zero, this measure provides closeness-based
reliability information whether a somehow distorted number might be actually equal to zero.
As described in Section 7.1.1 on page 76, the set

{
0, αi ∀ i ∈ [0, n− 1]

}
is not closed under

addition. Consequently, the evaluation of a polynomial at some power of α = e−j2π/n results
in a general complex number: Λ(αi) ∈ C with |Λ(αi)| ∈ R≥0 for all i ∈ [0, n− 1]. Since noise
and precision losses introduce small perturbations, the value of |λi| is already considered in
Section 7.2.2 as reliability information for i being an error position. A similar closeness-based
reasoning is used in the following to decode beyond the power decoding radius.

As commonly known, the error location can be interpreted as a Padé approximation. In
Section 7.3.1, additional closeness-based reliability-like information for CRS codes is obtained
with the help of a low-degree Padé approximation in the case of τ > τm. Subsequently, this
information is utilized for the decoding of CRS codes within Section 7.3.2 on page 93.

7.3.1. Low-Degree Padé Approximation Provides Reliability-Like Information

The technique of Padé approximation was developed in the late 19th century by Henri Padé
and has been published within his dissertation [Pad92]. However, the general concept has
been described before by [Jac46, Fro81]. A brief description based on [BGM96] is given in the
following. Refer to standard literature for a detailed introduction and analysis of the Padé
approximation, e.g., to the aforementioned book [BGM96].

For a given function f(z) with a power series
∑∞

i=0 fiz
i, the Padé approximation [u/w]f (z)

is a rational function

[u/w]f (z) =
a(z)

b(z)
=

a0 + a1z + · · ·+ auz
u

b0 + b1z + · · ·+ bwzw
,

where b0 is commonly normalized to one2. The MacLaurin expansion of [u/w]f (z) coincides
with power series of f(z) up to a degree of u + w. Consequently, the approximation can be
specified equivalently by

a(z)− f(z)b(z) ∈ O(zu+w+1) as z → 0. (7.6)

2The special case of b0 = 0 is not considered here. Refer to standard literature, e.g., [BGM96], for this case.
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Based on (7.6), the approximation can be determined by solving the system of equations:
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·




bw
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...

b1




=




−fu+1

−fu+2

...

−fu+w




(7.7)

Subsequently, the coefficients of a(z) can be determined by (7.6):

ai = fi +

min(u,w)∑

k=1

bkfu−k ∀ i ∈ [0, u]

Solving the key equation (2.15) on page 12 can be considered as Padé approximation of the
syndrome s(z):

[(τ − 1)/τ ]
s
(z) =

Ω(z)

Λ(z)
.

The equivalence of different error location algorithms to each other and to the Padé approx-
imation is commonly known for RS codes, e.g., [Fit95] (compare also (7.7) to the description
of the Peterson algorithm in Section 2.2.2 on page 13). For (almost sure) unique decoding,
there must be at least as many independent equations as there are unknowns in order to
determine the error locator polynomial by a Padé approximation. In case of τ > τm, the
corresponding system of equations cannot be solved. However, it is still possible to determine

[(τm − 1)/τm]
s
(z) =

Ω̂(z)

Λ̂(z)

from the given syndrome. Since the MacLaurin expansion of [(τm − 1)/τm]
s
(z) equals the

syndrome up to a degree of 2τm, both functions are related to each other. Therefore, the
obtained polynomial Λ̂(z) can be interpreted as low-degree approximation of the actual error
locator Λ(z). Generally, the roots of both polynomials, Λ̂(z) and Λ(z), do not coincide.
By definition, the roots of Λ(z) are located at all τ error locations α−ui with ui ∈ U for
i ∈ [1, τ ] (cf. (2.12) on page 11). By inspecting the magnitudes of Λ̂(α−i) for i ∈ [0, n− 1],
the approximation Λ̂(z) can be used to extract reliability-like information: The position
corresponding to the smallest magnitude is most likely in error. Consequently, the order of
the magnitudes provides a list of least reliable positions which can be used by subsequent
erasure decoding algorithms as soft information, and thus, decoding beyond τm becomes
possible. An example for such an approach is given in Section 7.3.2.

As discussed before, erasure decoding can correct up to τ = n− k errors if all erasures are
actual errors (U = E , cf. Section 2.2.2 on page 12). It is known that a τ -sparse error vector is
unique with high probability as long as τ < n− k (cf. Section 3.2.2 on page 21). There is no
contradiction for τ = n − k: The finitely many τ -sparse error vectors are identified by their
error positions. It is consequently possible to decode successfully for τ = n− k as long as the
actual error positions are provided.

On a first sight, the previous procedure of selecting the smallest magnitudes |λi| in noisy
scenarios (cf. Section 7.2.2), is very similar to the current approach of approximating the
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error locator polynomial and subsequently sorting |Λ̂(α−i)| = |λ̂i|. However, it should be
noted that the initial assumption is different. Due to noise, the actual roots of Λ(z) have
values of small magnitude for τ ≤ τm. For the currently presented concept, the low degree
approximation Λ̂(z) has different roots, but provides small magnitudes at α−ui with ui ∈ U
for i ∈ [1, τ ]. Of course, both effects are superimposed in the case of noise and τ > τm.

The approximated error locator polynomial Λ̂(z), which equals the denominator of a low-
degree Padé approximation [(τm − 1)/τm]

s
(z), can be determined by the error location algo-

rithms stated before. Based on the previously defined noisy scenario (cf. Appendix H.4), the
magnitudes of the described low-degree approximations of the error locator polynomial |Λ̂(z)|
are plotted with dashed lines over the unit circle (z = e−jκ with 0 ≤ κ ≤ 2π) for the case of
22 = τ > τm = 21 in Figure 7.6. For these approximations, the BM, Peterson and EE type al-
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Figure 7.6.: Magnitudes of error locator polynomials on the unit circle for 22 = τ > τm = 21.
Plots for approximations Λ̂(z) are dashed. Ideal reference Λ(z) is gray. Values
corresponding to λ̂i = Λ̂(α−i) are marked by circles. Filled marks belong to
the τ smallest magnitudes for each approximation. Dash-dotted horizontal lines
indicate corresponding boundary levels. Simulation parameters: Appendix H.4.

gorithms for power decoding have been used. The marks within Figure 7.6 indicate the values
for λ̂i = Λ̂(α−i), where the filled marks belong to the τ smallest |λ̂i| for each approximation.
The boundary level for which |λ̂i| belongs to the τ smallest is indicated by a dash-dotted
horizontal line. The curve for the correct error locator polynomial is given as reference in
gray. As it can be seen from this figure, the approximations which are based on the BM and
Peterson type error location algorithms obtain the support with their τ smallest values of
|λ̂i| for this exemplary case with τ > τm. For the EE type algorithm, 19 out of 22 positions
correspond to the actual error locations. However, the complete support is contained within
the 27 smallest values of |λ̂i|. Therefore, the number of smallest values, which are necessary
in order to contain all error positions, is subsequently investigated.
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In the following, P denotes the set of positions corresponding to the smallest values of |λ̂i|
such that all error positions are contained: U ∈ P. In order to investigate how many of
the smallest values |λ̂i| are necessary to contain all error positions U , the corresponding
statistic based on our previous simulations is given in Figure 7.7. For the non-gray area in
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Figure 7.7.: Boxplots illustrating the number of the smallest values |λi| necessary to contain all
error positions. Non-gray area allows application of erasure decoding. Simulation
parameters: Appendix H.4.

this figure, erasure decoding can be applied, since τ ≤ #P ≤ n − k. The inequality case
τ < #P ≤ n− k corresponds to additional erasures, which pose no further problems during
erasure decoding. As it can be seen from the figure, decoding is possible in the majority of all
cases for a sufficiently small number of errors. However, the assumed soft information is not
able to identify the actual error positions for larger numbers of errors including the previously
discussed boundary case of τ = n− k.

Table 7.1.: Probability of #P ≤ n− k in percent. Simulation parameters: Appendix H.4.

Algorithm
τ

20 21 22 23 24 25 26 27

BM type 100.00 99.99 97.49 90.88 80.40 66.09 49.51 35.20

Peterson type 100.00 100.00 98.16 92.45 83.65 70.35 55.07 40.07

EE type 100.00 98.53 94.80 86.89 75.60 61.38 47.21 33.89

The probability of #P ≤ n− k is also of interest, and consequently, it is given in Table 7.1
for 19 ≤ τ ≤ 25. As it can be seen from the table and the figure, the Peterson type algorithm is
especially successful in providing reliability-like information. The BM and EE type algorithms
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also allow to decode beyond τm, however, their estimated error positions are less reliable. Since
the Peterson type algorithm provides the most reliable results, it is considered in the following
as source for reliability-like information for subsequent soft decoding.

These results provide the basis for a recently accepted DFG project, in which a colleague
investigates the further potential of this continuity based reliability-like information for the
decoding of CRS codes and its application in CS. In the following section, we provide an
extension of the previously introduced IEE approach in order to decode beyond the power
decoding radius.

7.3.2. Exploiting Continuity for CRS-Based Compressed Sensing

As argued in the previous section, the low-degree Padé approximation on the syndrome
provides reliability-like information for cases of τ > τm. Based thereon, decoding algorithms
can be derived which are based on erasure decoding. The previously introduced IEE approach
is, by design, only capable of decoding up to τm, as almost all algorithms for CRS codes,
e.g., [Red00, ADAA08]. In the following, the CAD approach is provided which is capable of
decoding beyond τm. This new algorithm and can be interpreted as a modified and extended
version of the IEE concept.

The algorithm described in [ADAA08] as well as the previously given IEE approach con-
sider potentially more than τm of the smallest magnitudes |λi|. However, both algorithms
subsequently limit themselves to τm correctable errors by determining a set of τm error po-
sitions. The CAD approach does not come with such a limitation. Starting from the initial
estimation on the number of errors τinitial and the error locator Λ(z), both obtained by the
previously described Peterson type error location algorithm, the set of potential error posi-
tions is iteratively enlarged based on the smallest magnitudes of |λi|. As soon as a vector χ̃ is
found for which the syndrome fulfills the validity check (7.5), the set of error positions is not
further enlarged. The smallest coefficient of χ̃ is canceled from the error position set and the
erasure evaluation is repeated. This reduction is repeated until (7.5) is not longer fulfilled.
The last χ̃ fulfilling the check is returned as the estimated error vector χ̂. In case the validity
check is never passed, the GZ algorithm is applied to the initially estimated error positions.
An algorithmic description of the CAD scheme is given in Algorithm 7.1, where GZ(r, E)
denotes the GZ algorithm for a received word r and a set of erasures/error positions E .

There is an important difference between IEE and CAD: For the IEE approach, the set of
error positions is reduced until τm is reached and a single subsequent validity check (7.5) is
performed, while for CAD, the check itself is used as stopping criterion for each reduction
step. This allows CAD to obtain successful results for more than τm errors, while the IEE
approach always terminates with a result of at most τm errors. However, this comes also with a
potential drawback: The IEE approach might end up with a set of τm error positions which do
not result in a fulfilled validity check (7.5). In such a case, the set of smallest magnitudes |λi|
is increased and the complete reduction is performed again. By this, it is possible for the IEE
approach to consider larger position sets which is not possible for CAD, since therein, the
position set is not further increased once the validity check (7.5) is fulfilled. Consequently,
there are cases for which CAD fails while the IEE succeeds, however, as advantage, CAD
is principally able to decode beyond τm. For a direct comparison, refer to the algorithmic
description of the IEE scheme, which is given in Algorithm F.1 on page 115.

The presented CAD approach is evaluated for the previously described noisy CS scheme.
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Algorithm 7.1: Continuity Assisted Decoding (CAD) scheme

Input : r /∗ received word ∗/

Λ(z) /∗ estimate of the error locator polynomial ∗/

τinitial /∗ estimate on the number of errors ∗/

ǫ /∗ threshold for verification ∗/

Output: χ̂ /∗ estimate of the error vector ∗/

1 λ(z)← F−1 [Λ(z)], τ̃outer ← τinitial, success← false /∗ initialization ∗/

2 E ← locations corresponding to the τinitial /∗ determine default erasures ∗/

coefficients with smallest magnitudes |λi|
3 χ̂← GZ(r, E) /∗ default result ∗/

4 while τ̃outer ≤ n− k and success = false do /∗ outer loop ∗/

5 E ← locations corresponding to the τ̃outer /∗ determine erasures ∗/

coefficients with smallest magnitudes |λi|
6 χ̃← GZ(r, E) /∗ apply Gorenstein–Zierler ∗/

7 s̃ ←HT (r − χ̃) /∗ calculate temporary syndrome ∗/

8 if |̃si| < ǫ ∀ i ∈ [1, N −K] then /∗ validity check ∗/

9 τ̃inner ← τ̃outer /∗ initialization ∗/

10 while |̃si| < ǫ ∀ i ∈ [1, N −K] do /∗ inner loop ∗/

11 E ← positions of the τ̃inner elements /∗ determine erasures ∗/

with largest magnitude |χ̃i|
12 χ̃← GZ(r, E) /∗ apply Gorenstein–Zierler ∗/

13 s̃ ←HT (r − χ̃) /∗ calculate temporary syndrome ∗/

14 if |̃si| < ǫ ∀ i ∈ [1, N −K] then /∗ validity check ∗/

15 χ̂← χ̃ /∗ new candidate ∗/

16 success← true

17 τ̃inner ← τ̃inner − 1 /∗ reduce number of erasures ∗/

18 τ̃outer ← τ̃outer + 1 /∗ increase number of erasures ∗/

19 return χ̂ /∗ return result ∗/

The result is compared to the performance of the IEE approach by boxplots in Figure 7.8. As
for the evaluation of the IEE scheme, an optimized low-coherence matrix has been considered
as well for comparison, whereby an OMP has been used, cf. Figure 7.5. The aforementioned
cases of too small sets of error positions, for which CAD fails while IEE succeeds, occur within
the simulation only for 20 ≤ τ ≤ 21. However, by utilizing the reliability-like information from
the low-degree Padé approximation Λ̂(z), the proposed CAD approach is able to recover the
sparse vector successfully in most cases for τ < 26. This result fits to the earlier observations
of Figure 7.7 and Table 7.1. As a drawback of the proposed CAD approach, an erroneous
sparse vector is returned in case of a decoding failure which results in very large squared errors
(> 105). If a-priori knowledge on the expected range of values for the sparse vector exists,
these cases could be identified and taken care of by corresponding additional thresholds. By
comparing the results of CAD with those of OMP for the case of an optimized low-coherence
matrix, it can be observed that OMP provides earlier erroneous results (τ = 19), however,
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Figure 7.8.: Boxplots illustrating the squared error in CS schemes: Deterministic CRS based
scheme with different dedicated algorithms CAD (yellow) and IEE (green) and a
general OMP algorithm (blue) in combination with an optimized low-coherence
sensing matrix. Simulation parameters: Appendix H.4.

for a larger number of errors τ ≥ 25, OMP succeeds more often.
Based on a low-degree Padé approximation, the possibility of decoding beyond τm is illus-

trated by CAD. Future improvements should focus on increasing the reliability of the decoding
results for τ ≥ 20 and on the reduction of the squared errors in case of decoding failures.

The choice between CRS based sensing matrices (e.g., with CAD) and optimized low-
coherence matrices (e.g., with OMP) corresponds to a computational trade-off: For CRS
bases systems, the reconstruction is of higher complexity, while for low-coherence schemes,
the matrix optimization is typically computational demanding.

7.4. Summary and Overview

Within this contribution, power decoding of CRS codes has been introduced. Furthermore,
CAD has been proposed, which allows to decode beyond the power decoding radius by uti-
lizing a low-degree Padé approximation. In a first step, CRS codes have been introduced
within Section 7.1. A discussion of the commonalities and differences to RS codes followed.
Subsequently, the connection to deterministic CS has been established, which provides the
motivation to investigate and improve on CRS decoding schemes. After pointing out the
consequences of floating-point implementations with finite-precision, the power decoding al-
gorithms for RS codes, which are introduced in Section 2.2.2 on page 11 (namely the Peter-
son, BM, and EE type algorithms), have been adapted to CRS codes in Section 7.2. Due
to finite-precession and noise, the common separation in error location and evaluation is not
necessarily optimal for CRS decoding implementations, since the optimality of the individual
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Figure 7.9.: Classification of this chapter’s contents within the overall picture of Compressed
Sensing (cf. Figure 4.1 on page 33).

steps cannot be guaranteed. Consequently, joint approaches, which combine error location
and evaluation, are potentially more powerful. As an example, the IEE approach has been
subsequently discussed which aims to determine the error positions iteratively. This is ac-
complished by checking the validity of the estimated codeword by verifying the corresponding
syndrome. In case of a negative verification, the set of estimated error positions is iteratively
increased based on the estimate of the error locator polynomial. All previous CRS decoding
schemes are intrinsically limited to decode only until τ ≤ τm. In Section 7.3, it is explained
how a low-degree Padé approximation can be used to provide reliability-like soft information
for τm < τ which allows to decode even beyond τm. This is exploited by the proposed CAD
approach. The recovery performance of the presented decoding variants and their potential
compared to other noisy CS has been numerically evaluated by corresponding simulations.

The proposed CAD approach resembles a proof of concept and provides a first impression
on the potential of the observed reliability-like soft information which is based on a low-degree
Padé approximation. There is still space for further improvements during future research.
For example, CAD utilizes a threshold for the validity check, cf. (7.5) and Algorithm 7.1,
however, it might be more promising to apply step detection methods which observe the
variation of s̃ in the outer loop. Furthermore, the reliability-like information from Λ̂(z)
might be combined with the magnitudes of the sparse vector components |χ̃i|, where they
are treated separately in IEE or CAD (cf. reduction in Algorithm 7.1). Additionally, the
potential of further soft-information decoding algorithms in combination with the observed
reliability-like information needs to be investigated. Currently, Mostafa Hosni Mohamed, a
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valued colleague with whom CRS codes have been researched, pursues these new research
approaches.

The efforts of the current chapter on deterministic CRS-based CS schemes are put into the
overall context of CS in Figure 7.9. As the name of CRS codes suggests, the complex field C

has been considered as underlying field for all operations. The described sensing scheme
relies on CRS codes: The transposed parity check matrices, which correspond to partial DFT
matrices, are utilized as deterministic sensing matrices. Conventional decoding methods for
(complex) RS codes result in dedicated reconstruction algorithms which exploit the structure
of the used sensing matrices. Since the focus of this chapter is on dedicated algorithms and
the exploitation of the embedded matrix structure, the performance of general reconstruction
methods has not been further discussed. Since the structure of CRS based sensing matrices
typically hinders such general CS reconstruction algorithms, their application is possible but
not recommendable. Due to the fixed deterministic sensing matrices, sparsifying dictionaries
cannot be applied, and therefore, directly sparse scenarios are considered. Since the robustness
is an often described problem for CRS decoding algorithms, it is explicitly considered in this
chapter. As it has been demonstrated by simulations, the presented schemes are capable of
withstanding additional noise of moderate intensity.
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8
Concluding Remarks

W
ithin this thesis, three independent contributions to CS have been pre-

sented. Each contribution covers different aspects or variants in the large field
of CS. The presented work is mainly the result of interdisciplinary research which

investigated methods from channel coding for the application in CS. In the fol-
lowing, the three contributions are individually concluded.

Sparsity aware simplex methods of Chapter 5 resemble an interesting approach and are
less motivated by channel coding. The BP approaches a sparse recovery problem by an
LP, where the ℓ1-norm is used as convex relaxation. Standard solvers can be used to solve
these problems. However, the relaxation might fail with an increased number of non-zero
components, and consequently, BP fails as well. Sparsity aware simplex methods are based
on the observation that the sparsest solution is located at a degenerated vertex of the polytope
describing the solution space. As shown in Chapter 3, such a degenerated vertex is unique
with high probability for systems in general position. Since the simplex method passes several
vertices on its way to the optimum, degeneracy can be used to identify the actual solution for
the sparse recovery problem, and thereby, to improve the reconstruction performance of BP.
Future work might apply the presented approach to more elaborate variants of the simplex
method and concern noisy or complex CS scenarios.

Within Chapter 6, an approach for maximizing the minimal distance of real-valued spherical
codes is extended to coherence optimization and is generalized to complex vector spaces
by introducing BCASCs. The proposed search approach outperforms other algorithms and
can be used for the construction of low-coherence sensing matrices for CS which lead to
increased reconstruction performance. Furthermore, this approach allows the adaptation of a
measurement matrix with respect to a given dictionary by a simple modification. Due to the
generality of the coherence, potential applications are not limited to CS. The proposed search
approach relies on an integral which is currently solved numerically. Future work might focus
on advanced numerical integration methods or even on an analytical solution.

Chapter 7 considers deterministic CS schemes in noisy environments which are based on
CRS codes and corresponding decoding techniques. Within this contribution, well-known
RS power decoding approaches have been adapted for CRS codes. Furthermore, low-degree
Padé-approximation can be used for CRS codes in order to decode beyond the power decoding
radius which is not possible for conventional RS codes. Future work might focus on applying
soft-decoding strategies of RS codes in order to exploit the reliability-like information obtained
by the Padé-approximation as planed for a recently accepted DFG project.
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A
Pseudocode for the Schmidt–Sidorenko
Algorithm

The SS algorithm for varying length multi-sequence LFSR synthesis [SS06] is given in Algo-
rithm A.1 for completeness and is discussed on page 13. For its description, interim buffer
variables are used for each sequence s

(l) with l ∈ [1, lmax] which are denoted by the super-
script (l). Temporary variables are denoted with a tilde.

Algorithm A.1: Schmidt–Sidorenko algorithm [SS06]

Input : s
(l) =

{
s
(l)
i

}n−k(l)−1

i=0
∀ l ∈ [1, lmax] , n, k

Output: Λ(z)

1 ν ← 0, Λ(z)← 1 /∗ initial shift register ∗/

2 µ(l) ← k(l) − k, ν(l) ← 0 ∀ l ∈ [1, lmax] /∗ initialize buffers for all lmax sequences ∗/

3 Λ
(l)(z)← 0, ∆(l) ← 1 ∀ l ∈ [1, lmax]

4 for each i from 0 to n− k − 1 do

5 for each l from 1 to lmax do

6 if i > k − k(l) + ν then /∗ ensure causality ∗/

7 ∆← s
(l)

i+k(l)−k
+

ν∑
ξ=1

Λξs
(l)

i+k(l)−k−ξ
/∗ calculate discrepancy ∗/

8 if ∆ 6= 0 then /∗ shift-register has to be modified ∗/

9 if i− µ(l) ≤ ν − ν(l) then /∗ no prolongation necessary ∗/

10 Λ(z)←Λ(z)− ∆

∆(l)
zi−µ(l)

Λ
(l)(z) /∗ modification ∗/

11 else

12 ν̃ ← ν, Λ̃(z)←Λ(z) /∗ temporary variables ∗/

13 Λ(z)←Λ(z)− ∆

∆(l)
zi−µ(l)

Λ
(l)(z) /∗ modification ∗/

14 ν ← i− µ(l) + ν(l) /∗ update shift-register length ∗/

15 ν(l) ← ν̃, Λ
(l)(z)← Λ̃(z) /∗ update interim buffers ∗/

16 ∆(l) ← ∆, µ(l) ← i
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B
Simulation Results for Evaluation of Sparsity
Aware Simplex Methods

Additionally to the success rate plot of Figure 5.5 on page 46, boxplots for the squared
error are given in Figure B.1 for different levels of sparsity τ . The increasing performance
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Figure B.1.: Evaluation of sparsity aware simplex methods. Boxplots illustrating the squared
error of the reconstruction algorithms over the sparsity. Direct path search is
used as SASA in each first phase. In the second phase, the used SASA is denoted
by the legend. BP (orange) and OMP (red) are given as reference.

of the more complex sparsity aware simplex methods is also clear from this figure. As for
the success rate plot of Figure 5.5, it can be observed that OMP starts to return erroneous
results already at τ = 3. BP and the sparsity aware simplex methods based on the direct
path search (variant 1) follow at τ = 4, where the other sparsity aware approaches start to
fail with τ = 5. Starting with τ = 10, the OMP provides more successful results than the
other reconstruction algorithms, which is even more clear at τ = 11 if the median is observed.
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C
Further Results on Coherence Optimization

Additionally to the illustrations on the performance of the coherence optimization given in
Figures 6.1 and 6.2 on page 63 and on page 64, the corresponding results for m = 6, · · · , 10 are
provided in Figures C.1 to C.3. As argued before, the plateau-like level for m2 < n < m2+m
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Figure C.1.: Best coherence out of ten runs for varying number of vectors n in m = 6 dimen-
sions. Vertical bars indicate the range of obtained coherence values. The lower
bound is drawn solid if the Welch bound (6.5) is fulfilled.

has not been found by the described methods for higher dimensions. Since m = 6 is not a
prime power, it is already questioned in [WF89] whether a vector set of n = 42 vectors exists
which achieves equality in (6.6) and (6.7).

With increasing dimensions, the approach of [MD14] is less often able to obtain vector sets
with a coherence comparable to the BCASC search approach and the achieved coherence
values are more stable as indicated by the vertical bars.
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(a) m = 7
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(b) m = 8

Figure C.2.: Best coherence out of ten runs for varying number of vectors n in m dimensions.
Vertical bars indicate the range of obtained coherence values. The lower bound
is drawn solid if the Welch bound (6.5) is fulfilled.
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Figure C.3.: Best coherence out of ten runs for varying number of vectors n in m dimensions.
Vertical bars indicate the range of obtained coherence values. The lower bound
is drawn solid if the Welch bound (6.5) is fulfilled.
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D
Simulation Results for Evaluation of
Measurement Adaptation

Additionally to the success rate plot of Figure 6.7 on page 72, boxplots for the squared error
are given in Figure D.1 for BP and OMP with respect to the sparsity τ . As it can be seen
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Figure D.1.: Evaluation of CS schemes based on Ψ[I,DCT] and different measurement matrices.
Boxplots illustrate the squared error of the reconstruction algorithms over the
sparsity.

in this figure, the results are very close for the BP, where successful reconstruction is always
achieved for τ < 3. The differences of the proposed measurement matrices are more obvious
for the case of OMP, for which the reconstruction has been always successful only in case
of one single non-zero value. For τ = 7, the majority of reconstruction are still successful
for ΦM(Θ), in contrast to the other measurement matrices. For τ = 10, the same trend can
be observed, where the other matrices clearly fail for the majority of runs.
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E
Iterative BCASC Search Approach for
Measurement Matrix Adaptation

In Algorithm E.1, the optimization of M(Φ,Ψ) is summarized, cf. Section 6.3.2 on page 70.
Thereby, the rows of the measurement matrix Φ ∈ C

m×l are denoted by φi ∀ i ∈ [1,m], while
the columns of the dictionary Ψ ∈ C

l×n are given by ψi ∀ i ∈ [1, n].

Algorithm E.1: Iterative BCASC search approach for measurement matrix adaptation

Input :
{
sp
}m
p=1
←
{
φ
p

}m

p=1
,

{
sp
}m+n

p=m+1
←
{
ψ

p

}n

p=1
/∗ m+ n codewords of in l dimensions ∗/

Output: Cs /∗ optimized spherical code ∗/

1 αinit ← 0.9, ǫ← 10−4
/∗ exemplary numerical parameters ∗/

2 ν ← 2, νmax ← 210

3 imax ← 105, α← αinit

4 while ν < νmax do

5 FixedPoint← false /∗ initialize indicator ∗/

6 i← 0 /∗ initialize iteration counter ∗/

7 while i < imax and FixedPoint = false do

8 for p←1 to m do /∗ for each vector ∗/

9 fp ←
2π∫

κ=0

∑
q 6=p

sp−sqeiκ∥∥∥sp−sqeiκ
∥∥∥
ν dκ /∗ calculate superimposed forces ∗/

10 {sp}mp=1 ←
{
sp + αf

p

}m

p=1

/∗ apply accumulated forces ∗/

11 if

∥∥∥f
p
− sp

∥∥∥ < ǫ ∀ p ∈ [1,m] then /∗ check for fixed point ∗/

12 FixedPoint← true /∗ stop loop and proceed ∗/

13 i← i+ 1

14 ν ← 2ν /∗ adjust free parameter ∗/

15 α← αinit

ν−1 /∗ adjust damping factor ∗/

16 return Cs ←
{
sp
}m
p=1

/∗ return obtained spherical code ∗/
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F
Iterative Erasure and Evaluation Scheme

An algorithmic description of the IEE scheme is given in Algorithm F.1, where GZ(r, E)
denotes the GZ algorithm for a received word r and a set of erasures/error positions E .

Algorithm F.1: Iterative Erasure Evaluation (IEE) scheme [Riz14, MRZB15]

Input : r /∗ received word ∗/

Λ̂(z) /∗ estimate of the error locator polynomial ∗/

τ̂initial /∗ estimate on the number of errors ∗/

τm /∗ maximum number of correctable errors ∗/

ǫ /∗ threshold for verification ∗/

Output: χ̂ /∗ estimate of the error vector ∗/

1 λ(z)← F−1 [Λ(z)], τ̃outer ← τ̂initial /∗ initialization ∗/

2 while τ̃outer ≤ n− k do /∗ outer loop ∗/

3 E ← locations corresponding to the τ̃outer /∗ determine erasures ∗/

coefficients with smallest magnitudes |λi|
4 χ̃← GZ(r, E) /∗ apply Gorenstein–Zierler ∗/

5 s̃ ←HT (r − χ̃) /∗ calculate temporary syndrome ∗/

6 if |̃si| < ǫ ∀ i ∈ [1, N −K] then /∗ validity check ∗/

7 if τ̃outer ≤ τm then

8 return χ̂← χ̃ /∗ terminate algorithm ∗/

9 else

10 τ̃inner ← τ̃outer /∗ initialization ∗/

11 while τ̃i > τm do /∗ inner loop ∗/

12 τ̃inner ← τ̃inner − 1 /∗ reduce number of erasures ∗/

13 E ← positions of the τ̃inner elements /∗ determine erasures ∗/

with largest magnitude |x̃i|
14 χ̃← GZ(r, E) /∗ apply Gorenstein–Zierler ∗/

15 s̃ ←HT (r − χ̃) /∗ calculate temporary syndrome ∗/

16 if |̃si| < ǫ ∀ i ∈ [1, N −K] then /∗ validity check ∗/

17 return χ̂← χ̃ /∗ terminate algorithm ∗/

18 τ̃outer ← τ̃outer + 1 /∗ increase number of erasures ∗/

19 E ← locations corresponding to the τ̂initial /∗ determine default erasures ∗/

coefficients with smallest magnitudes |λi|
20 return χ̂← GZ(r, E) /∗ return default result ∗/
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G
Simulation Results for Error Location
Algorithms Based on Overestimation

As described in Section 7.2.2 on page 87, the presented error location algorithms can be
utilized such that the degree of Λ̂(z) is overestimated to τm. Based on these error locator
polynomials, the error positions are determined by the τ̂ time-domain coefficients |λi| of
smallest magnitude, where the estimated number of errors τ̂ is determined over the SVD-based
Peterson type algorithm. For the BM and EE type algorithms, the overestimated error locator
polynomials are obtained by setting the corresponding thresholds to sufficiently small values.
The used values are given in Table H.2. For the Peterson type algorithm, the least squares
solution to (2.17) on page 12 is obtained with τ = τm in order to overestimate the degree
of Λ(z).

The performance comparison of these algorithms with respect to the average support re-
covery is given in Figure G.1 on the next page. All algorithms show similar recovery results,
where the approach based on the Peterson type algorithm performs slightly better than the
other two approaches. In comparison to Figure 7.3 on page 84, it can be observed that the
overestimation also improved the estimation on the number of errors by the Peterson type
algorithm, where the tendency to underestimation is reduced, which is particularly helpful
for the extensions based thereon.

In Figure G.2, the performance of the two presented error evaluation algorithms is given
with respect to the squared error. Compared to Figure 7.4 on page 85, the obtained results
are more stable and less affected by the noise. However, the numerical drawbacks of the
Forney algorithm remain.

Due to the overestimation, more equations are utilized in the subsequent calculations, which
improves the robustness especially for demanding noisy scenarios. This highlights also an
important difference between the decoding of conventional RS codes and the investigated CRS
codes: For RS codes, the calculations are always exact and non-disturbed, and consequently,
the main research focus is on reducing the necessary number of calculations (complexity) or
on increasing the decoding radius. For CRS codes, robustness is an additional criterion which
needs to be considered, whereby a trade-off between complexity and robustness is unavoidable.
For example, the GZ approach is computationally more expensive than error evaluation by
Forney, however, it is also significantly more robust, as it can be seen in Figure G.2.
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G. Simulation Results for Error Location Algorithms Based on Overestimation
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Figure G.1.: Boxplots illustrating the average support recovery provided by the presented
error-overestimating power decoding error location algorithms. Simulation pa-
rameters: Appendix H.4.
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H
Simulation Details

In order to provide both, readability and accuracy, details regarding simulation parameters
are given separately in this appendix.

Statistical results are often visualized by boxplots. Therefore, a brief introduction to box-
plots is provided in Appendix I on page 123 together with the corresponding numerical defi-
nitions used for the presented boxplots. For the visualization of the boxplots used within this
thesis, the script of [Bik] has been used and extended.

H.1. General Settings

Within this section, common settings for the simulations of this thesis are provided. All
described simulations have been performed with MATLAB R© [Mat]. The plots have been
exported with the help of [Sch].

H.1.1. Evaluation of CS Schemes

For the numerical evaluation of the different CS schemes, 10 000 realizations are considered
for each level of sparsity τ . The obtained statistic of the squared error ‖χ− χ̂‖2 can be
visualized by boxplots over the sparsity τ . Alternatively, the success rate can be plotted
over τ , whereby a reconstruction is considered successful if ‖χ− χ̂‖2 < 10−10.

Often, column-normalized random sensing matrices Θ are considered as reference, their
elements are drawn from a normal distributed source with zero mean in case of Θ ∈ R

m×n.
For the complex valued case Θ ∈ C

m×n, the real and imaginary parts are drawn from the
same source.

The τ non-zero components of the sparse vector χ are uniformly distributed over the whole
vector length. In case of χ ∈ R

n, these components are drawn from a standard normal
distributed source. For a complex-valued vector χ, the real and imaginary parts are drawn
from a normal distributed random source with zero mean and standard deviation σ = 1/

√
2.

Some simulations consider a noisy environment (cf. Section 4.4.1 on page 31), where the
real and imaginary parts of the complex-valued noise components are drawn from a normal
distributed random source with zero mean and standard deviation σ = ση/

√
2 with ση = 10−5.

119



H. Simulation Details

H.1.2. Reconstruction Algorithms

For comparison, the BP is often considered. It is realized as LP according to (4.6) on page 25
for the simulations within this thesis. The corresponding LP is subsequently solved by a
common and fast interior point algorithm by MOSEK R© [Mos].

Additionally, the OMP is usually used for comparison. Therein, the Euclidean norm on the
residual has been used as main stopping criterion, where the algorithm terminated as soon as
this norm was less than a certain threshold ǫOMP or after the number of iterations equals the
count of available columns, cf. Section 4.1.2 on page 26. In case of noiseless CS schemes, the
threshold is chosen to ǫOMP = 10−7. For the previously described noisy case with ση = 10−5,
the threshold is equal to ǫOMP = 10−4.

H.2. Settings for Sparsity Aware Simulations

Beyond the general settings of Appendix H.1, the following details have been used in Chap-
ter 5. In the sparsity aware simplex algorithms, values with a magnitude of less than 10−10

are considered as zero in order to assure numerical stability with respect to the used floating
point number representation.

For the simulations investigating the potential of sparsity aware simplex algorithms within
LPs, CS based scenarios can be used, which have to be extended to LPs as described in (4.6)
on page 25 and to be transformed into a simplex tableau as described in Section 5.1.2 on
page 38. Consequently, a simulated LP with n unknowns, m equations in standard form
originates from a CS scheme, where the sensing matrix is of size m × n/2. For the provided
comparisons of Figures 5.3 and 5.5, 10 000 realizations of CS-schemes with random sensing
matrices of size 32 × 128, resulting in LPs with n = 256, m = 32, have been considered.
Similarly, Table 5.1 has been created for 10 000 realizations of random sensing matrices each
of size 16× 32.

H.3. Settings for B(C)ASC Based Coherence Optimization

The following parameters, which have been used in Chapter 6, are given in addition to the
general settings of Appendix H.1. For the proposed BCASC search approach, the exemplary
parameters of Algorithm 6.1 on page 62 have been used for all runs. Column-normalized
matrices, where the real and imaginary parts of the matrix elements are drawn from a standard
normal distributed source, have been selected as random seeds. If not stated otherwise,
the numerical integration of (6.24) has been performed with the help of the QAG adaptive
integration from the GSL [gsl, GDT+09]. Thereby, a 61 point Gauss-Kronrod integration rule
has been applied and a relative error of 10−4 with a maximal number of 1000 subintervals
has been chosen as stopping criterion.

The numerically obtained coherence values of Tables 6.1 to 6.3 correspond to the best vector
set out of ten independent runs. Similarly, the results of Figures 6.1 and 6.2 and Figures C.1
to C.3 are based on ten runs of each algorithm for every value of n. The running times given
in Table 6.3 have been averaged over the corresponding ten runs. For the distribution plots
in Figures 6.4a and 6.6, a binning with a width of 0.01 has been applied.
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H.4. Settings for Simulations Based on CRS Codes

H.4. Settings for Simulations Based on CRS Codes

Beyond the general settings of Appendix H.1, the following parameters are used if not stated
otherwise for simulations regarding CRS codes and CS schemes built thereon (cf. Chapter 7
on page 75): A CRS code of length n = 50 and dimension k = 12 is considered which results
in a sensing matrix Θ with m = 38 rows and n = 50 columns. The simulations consider a
noisy environment as described in Appendix H.1.

For the given standard deviation of the noise ση = 10−5, the thresholds of Table H.1 have
been empirically determined for the basic error location algorithms described in Section 7.2.1.

Table H.1.: Thresholds used for Figures 7.2 to 7.4

Threshold Variable Value

BM type ǫBM 3 · 10−5

Peterson type ǫPet 8 · 10−5

EE type ǫEE 1 · 10−5

Similarly, the thresholds of Table H.2 have been used for the overestimating versions of the
discussed error location algorithms described in Section 7.2.2 for the same standard deviation.

Table H.2.: Thresholds for Overestimation used for Table 7.1, Figures 7.5 to 7.8, G.1 and G.2

Threshold Variable Value

BM type ǫBM 10−11

Peterson type ǫPet 8 · 10−5

EE type ǫEE 10−11

For the IEE and CAD algorithms, ǫ = 3 · 10−5 has been used for the validity check (7.5) in
case of the described noisy scenario with ση = 10−5.
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Figure I.1.: Boxplot of X .

Within this thesis, boxplots are used to visualize
and to compare the distribution of given datasets.
Such plots are advantageous, since they combine
multiple properties of the actual distribution.

There are several different variants of box-
plots [FHI89]. Within this work, mainly the
model of Tukey [Tuk77] is used. The median m
separates a dataset X such that one half is smaller
or equal to the median and the other half is larger.
In case of a dataset with an even number of ele-
ments, the median is defined as the mean of the
two middle values. Hinges hl and hu (sometimes
also denoted as first and third quartile) are again
the median of all elements which are either ≤ m
or ≥ m, respectively. The main part of the box-
plot is built by a rectangle, which resembles the
values between both hinges. The median (also
known as second quartile) itself corresponds to
a horizontal band within this box. Attached to
this box, there are the upper and lower whiskers,
which are defined with the help of the interquar-
tile range iqr = hu − hl. The upper and lower
whiskers are defined as

wu = max
x∈X

x with x ≤ hu + 3/2 iqr,

wl = min
x∈X

x with x ≥ hl − 3/2 iqr.

Data elements, which are not covered by the
whiskers or the box itself, are denoted as outliers
and are marked by corresponding dots within the
plot. Additionally, the mean is given as circle
within the boxplots. In Figure I.1, the concept
is illustrated for an exemplary dataset X .
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