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Abstract

One of the major remaining challenges to improving accuracy
in state-of-the-art speaker recognition algorithms is reducing
the impact of channel and handset variations on system perfor-
mance. For Gaussian Mixture Model based speaker recognition
systems, a variety of channel-adaptation techniques are known
and available for adapting models between different channel
conditions, but for the much more recent Support Vector Ma-
chine (SVM) based approaches to this problem, much less is
known about the best way to handle this issue. In this paper we
explore techniques that are specific to the SVM framework in
order to derive fully non-linear channel compensations. The re-
sult is a system that is less sensitive to specific kinds of labeled
channel variations observed in training.

1. Introduction

Support Vector Machines (SVMs) have recently proved capa-
ble of providing good performance when applied in the speaker
identification and verification domains [1, 2]. Not only is per-
formance close to that of the best Gaussian Mixture Model
(GMM) based systems, but these system possess substantial ad-
vantages in terms of computational cost, both in training and
testing. When scores of SVM- and GMM-based systems are
fused, the result is typically much better than either system
alone, indicating in some sense that they provide information
that is complementary.

These desirable properties motivate the study of ways to im-
prove SVMs on their own account, and in the context of speaker
recognition; an important place to start is the channel variation
problem. By this we mean the performance degradations caused
by variations in handsets and channel types that occur between
testing and training in speaker recognition systems. For ex-
ample, training data for an individual may be observed on one
channel type (e.g. a carbon-button microphone telephone), and
test data on another (e.g. cellphone). In this case impostors us-
ing carbon-button handsets are more likely to match the target
speaker than usual, and the target speaker on a cell telephone is
more likely to be incorrectly rejected.

In the case of GMM based systems, a variety of maxi-
mum likelihood model and feature space adaptations are known
and have been studied in detail in the speech recognition and
speaker-recognition literature (e.g. [3], [4]). Because we of-
ten combine an SVM-based speaker recognition system with a
GMM system running in parallel, it’s quite natural to consider
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GMM-derived feature transformations as a front-end to an SVM
system. While this approach may have its merits, we constrain
ourselves here to consider approaches inherently dependent on
the SVM approach and the underlying mathematical machinery
available in that setting.

In accordance with standard SVM practice, we make mod-
ifications of input feature vector data by mapping to a high di-
mensional space and then performing compensation. The out-
line of the paper is as follows. In Sections 2 and 3, we review
support vector machines and their application to speech prob-
lems. Next, in Section 4, we consider unsupervised analysis of
feature vector data using Kernel Principal Component Analysis
(KPCA) [5]. KPCA enables us to visualize the basic structure of
the data to suggest possible compensation methods. Section 5
covers the core approach of our paper which involves using pro-
jections to eliminate irrelevant directions in the expanded high-
dimensional space. Section 6 illustrates our approach on the
NIST extended data task.

2. Support Vector Machines

At the most basic level, SVMs are two-class hyperplane-based
classifiers operating in a (usually) high-dimensional space re-
lated nonlinearly to the original (usually lower-dimensional) in-
put space. Given an observation z € X and a kernel function
K, an SVM, f(z) is given by

N
f(z) = Z A&K(x,z)+ b
iil (]_)
=Y Nbig(x) - p(zi) +b

i=1

Note that we have assumed the Mercer condition [6]; that is,
K(z,y) is an inner product expressible as ¢(z) - ¢(y) where
¢ : x — y €Y for some expansion space Y. We compare the
output of the SVM in (1) to a threshold in order to produce a
decision. The z;, &, and A; > 0 are obtained through a training
process. The x; are called support vectors and the &; are the
target class values: +1 for in-class and —1 for out-of-class.

For the purposes of this paper, we will be studying various
potential modifications to the kernel function K (z,y) which
increases its ability to be invariant to channel effects. We can
view this as modifying the metric used by the SVM in order to
destroy the ability of the SVM based system to tell apart dif-
ferent channel conditions. The hypothesis that we will make is
that channel variations tend to lie in low-dimensional subspaces
of Y, and that if we can project out of Y these dimensions, most
of the speaker-dependent information in Y will be unaffected.



3. Speaker Recognition with Support
Vector Machines

Speaker recognition fundamentally requires a decision based on
an utterance z;, which consists of a set of IV; feature vectors.
As a result, methods for comparing sequences of vectors via
a kernel will be important in our application. Several meth-
ods for comparing sequences of vectors have appeared in the
literature. The Fisher kernel [7, 8] is a general method of com-
paring sequences based upon a generative model. Methods for
comparing strings using automata theory are realized in ratio-
nal kernels [9]. Finally, methods derived from the train/test pro-
cess in speaker recognition are given in [2, 10]. We focus on
the final set of methods since they are implemented specifically
for speaker recognition, are computationally and parameter ef-
ficient, and are known to have low error rates.

After selection of an appropriate sequence kernel, speaker
recognition is straightforward.  Training is accomplished
through a one vs. all strategy. For each enrolled speaker, we
train with the target speaker’s utterances labeled as +1 and ut-
terances from a set of “background” speakers with a label of —1
using a standard SVM algorithm and the implemented sequence
kernels. Testing is also straightforward. Given an input utter-
ance, we evaluate the SVM using a sequence kernel and (1).
The output f(z) is compared to a threshold and the speaker is
accepted or rejected based upon whether the value is above or
below the threshold, respectively.

4. Visualization using KPCA

While SVM classifiers are nonlinear when their decision bound-
aries are viewed in the low-dimensional observation space X,
they are linear in the related high-dimensional space Y. This
allows us to use techniques like Principal Components Analy-
sis (PCA), or Multi-Dimensional Scaling (MDS) from another
point of view, to visualize what is occurring within these spaces.

PCA can be used to derive a low-dimensional projection
of data. For example, for a d-dimensional projection, this
amounts to taking the projection of the data on to the d prin-
cipal eigenvectors of the covariance matrix, and results in the
d-dimensional projection with minimum error in the Lo norm.
Given column vector data {p;}, arranged in a matrix A =
[p1, p2, - - - pn], the covariance matrix C' may be written

c=Lasra=Lasa @)
n n

where J = J? is the centering matrix that subtracts out the
mean. This can be written in terms of 1, the column vector of
all ones, as

J=1- L1t (3)
n

On occasion, it is easier to carry out PCA using a related
method that does not use C, but the related matrix K where

K=J'AAJ (4)

This has the same nonzero eigenvalues as equation (2) and re-
lated eigenvectors. Equation (4) is much more practical when
the dimensionality of the data is much higher than the number
of points n. Also, the matrix A®A consists only of inner prod-
ucts p; - p;j, and occasionally only inner-products of the data are
available. Equation (4) is what is solved when using MDS, and
it exactly matches our requirements in the case of SVM. In this
case, the process is typically described as Kernel PCA (KPCA).
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Figure 1: Two-dimensional representation of utterances from
the 2003 NIST extended-data speaker evaluation using a
phonetic-SVM kernel and KPCA. Green | = male-electret, Blue
— = male-carbon-button, Yellow \ = female-electret, Red / =
female-carbon-button.

Because we are great believers in visualizing data, and
KPCA provides a simple method for viewing aspects of the
high-dimensional space where the SVM classifier operates, we
used this technique for several SVM speaker recognition sys-
tems. KPCA is performed by first calculating the kernel matrix
K(z;,xz;) for all utterances z; and z;. The first few eigen-
vectors, !, - - -, (corresponding to the largest eigenvalues)
are then calculated using an iterative Lanczos method; we use
ARPACK++ for this purpose [11, 12]. A k-dimensional repre-
sentation of the sth utterance, r;, is then obtained as

ri=[al o - ol (5)

Figure 1 depicts the principal two eigenvectors of a pho-
netic SVM speaker recognition system described in [2]. Center-
ing of the kernel was used as mentioned earlier and as described
in detail in [5]. One should keep in mind that this picture is for
an SVM system that doesn’t directly use spectral features—it
uses statistics derived from the output of speaker-independent
phone recognizers in order to classify speakers. Despite the fact
that one might expect these features to be somewhat decoupled
from gender and channel effects, these two factors appear to de-
scribe the two principal eigenvectors of the covariance matrix.

This picture immediately tells us that our phonetically
based system is far from independent of channel effects. But
is also suggests the expedient of projecting out the confounding
channel dependent dimensions, and the results of our attempts
to do this are reported below in the remainder of this paper.

Figure 2 depicts eigenvectors 1 and 4 of a LP-cepstra-based
SVM speaker recognition system. It also has significant separa-
tion between the two channels. See section 6 for a description
of the corpora used by this system.

5. Channel Compensation using Projections

In this paper, we try to develop a modified kernel matrix for a
SVM which projects out the effects of channel, or some other



Figure 2: Two-dimensional representation of utterances from
the 2003 NIST extended-data speaker evaluation using a
cepstra-SVM kernel and KPCA. Green | = male-electret, Blue
— = male-carbon-button, Yellow \ = female-electret, Red / =
female-carbon-button.

confusing attribute. So, we seek an appropriate projection ma-
trix P in the expansion space Y to do this job. We assume a
priori that P’s null space has a single dimension, spanned by
the vector w, so P has the form

P =1T1—wuw', with |Jw|] =1,

and effectively we are trying to find a new expansion space map-
ping qAS(:c) = P¢(x). Our goal is then to find w.

We define the matrix K as the SVM kernel evaluated on
the training points: K;; = ¢(z;) - ¢(x;). If we define the
expansion space data matrix A as

A = [¢((L'0), ¢(x1)) DR} ¢($n)],

then K = A®A and our modified kernel matrix K’ is defined
by

K' = (PA) (PA) = K — Kv(Kv)?,
where v is some vector satisfying w = Aw. Since ||w| = 1,
this is the same as requiring that v* Kv = 1.

One criterion for constructing w (or P) is to minimize (over
all possible P) the average distance, in the expansion space be-
tween a carbon button training point and an electret training
point:

P=argmin Y [|P(¢(z:) — é(x;)) |-
P i€elec,jEch
A somewhat lengthy calculation described in section 5.4 shows
that the w satisfying this criterion is obtained from the eigenvec-

tor having the largest eigenvalue of the generalized eigenvalue
problem

KZKv = AKv. (6)

with
Z = diag(W1) — W,

and W is a weight matrix with positive elements for training
point pairs we want to move together, and zero elements for
training point pairs we don’t want to move together. In our
channel compensation case this gives us

woo=4 1 if z; and «; have different channels
Y10 otherwise

This problem is somewhat awkward since K is generally
singular: if our training data is centered as is done for KPCA,
then A1 = 0and K'1 = 0. Most algorithms for solving the gen-
eralized eigenproblem involve a Cholesky decomposition of the
RHS matrix, processing the left side matrix with the Cholesky
factor, and then solving an ordinary eigenvalue problem. This
seems impossible or at least awkward in this case. A more con-
venient approach is to multiply both sides on the left by K !
(the singularity of K does not cause any problem here) giving
the nonsymmetric eigenvalue problem

ZKv = \v. Q)

The vector v needs to be normalized so that v!Kv = 1.
This should happen automatically if the symmetric generalized
eigenproblem (6) is solved, but not in the nonsymmetric case of
equation (7).

5.1. Possible Modifications
5.1.1. Projecting Away Multiple Dimensions

We might want to use a set of m vectors to project out instead

of just one, letting
P=1-— Zwiwf
i

be a projection matrix of rank n —m, and minimize the distance
between channels over all such matrices. This corresponds to
finding the m eigenvectors with largest eigenvalues of the same
generalized eigenvalue problem (6).

5.1.2. Other Choices of Weightings

One possible drawback to the method of channel compensation
presented here is that we try to minimize the average distance
between all cross-channel pairs, not just the ones that would be
very close except for channel differences. For example it tries
to bring together pairs of utterances where the speakers sound
very different, and happen also to be on different channels.

To eliminate this, the pairs being minimized might be
weighted in different ways. One could minimize only the dis-
tance between point pairs that were both different channel and
same speaker. A possible difficulty is that this might allow
only a small number of pairs, requiring some kind of backoff
or smoothing.

Another possibility is to cluster training speakers somehow
and then only include pairs that were different channel and same
cluster. Or we could assume that pairs that had small distances
before channel compensation were probably similar-sounding
speakers and minimize pairs that are different channel and small
distance.

5.1.3. A Mixed Speaker-Channel Formulation

A related issue is the fact that the equation (6) tries to minimize
cross-channel distances, but does nothing to increase cross-
speaker distances, which might also result in an increase in per-
formance. Presumably the eigenvalue problem that addresses



both of these issues is
K(aZcha.nnel - ﬂZspeaker)KU = )\KU: (8)

where « and 3 are two positive weights and Zchanne iS the
channel difference matrix described earlier and Zspeaker IS an
analogous speaker difference matrix, based on the weight ma-
trix

W _ | 1 ifx; and z; have different speakers
(Wepeaker) 0 otherwise

This eigenvalue problem is no more difficult to solve than (6).

5.2. Channel Compensation On Data Different From the
Training Set

We usually want to do channel compensation on a set of points
different from the ones we trained the projection vectors on.
This requires a slightly different approach than what we have
been describing.

Suppose {y1, ..., ym } is a set of test points,

B = [¢(y1), .-+, P(ym)],

and w = Auw is the vector that is projected out in the expansion

space. If
Sa 1[5 4]

Then the channel-compensated matrices are defined as follows:
K' = K — pp', where p = Kv,
and
M' =M — qq°, where g = Lv,
and
L'=L- pqt.
Here M = B!B is the kernel matrix for the test points and
M’ its channel-compensated version. The matrices L = A‘B
and L’ are cross-corpus kernel matrices. L' doesn’t have any

application that we know of, but we describe it anyway.
In expansion space the channel-compensated test matrix is

B'=PB = (I -ww')B =B —wq".

5.3. Average Interpoint Distances

How does channel compensation effect the average distance
between points in expansion space? Since a dimension is be-
ing projected away, we would expect that that average distance
would get slightly smaller. Here we show this is true.

Without any channel compensation, the average interpoint
distance is

3= n—i > llélws) — o)l

A bit of algebra gives us
n?8% = 2n||All3 — 2/|A1|%.
If the points are centered, then A1 = 0, so
n?6” = 2n||A||% = 2ntr(JK J), 9)

where ||-|| 7 is the Frobenius norm of a matrix. After the channel
compensation a few lines of algebra give

n’3” = 2n (Al ~ Ipl*) = 20 (e (K D) - [pI),

and this is never bigger than the average distance without com-
pensation.

5.4. Derivation of the Channel Compensation Equation (6)

This derivation is similar in style to the derivation of the Lapla-
cian version of Locally Linear Embedding (LLE) equation (see
[13]), but somewhat more elaborate.

Let W be an n x n weight matrix. We have discussed the
two channel compensation case but other choices are possible,
including negative values of W;; for pairs of points we want to
spread apart, or non-binary values of W;;. The only require-
ment on W is that it be symmetric.

To make the equations less messy, we write ¢(z;) = ¢;.
Then the figure of merit we want to minimize is

5= WilP(¢i—¢;)II". (10)
i

Substituting in P = I — ww', ||w|| = 1, unfolding the
vector norm and doing a couple lines of algebra gives

5= Wi (16— 91l — o —99)") @

2%

Since the first term does not depend on w we ignore it, giving
8 ==y Wi (w' (¢ = 65)".
i

Unfolding the square and doing some algebra gives

0= =D Wi (')’ + (w'ey)” — 2u'diw's;)
i
= =2} Wi ((w'é:)” —w'giw's;)
i

= 2> (D Wiy)w'eidiw+ Y Wijw'digjw.
i J tj

Now we re-express all this in terms of A = [¢1,...,¢,] and
s=W1I:
8 = —2w'Adiag(s)A'w + 2w’ AW A'w
= 2uw'A(W — diag(W1))A'w (12)

We want to minimize this, subject to the constraint that
|lw|| = 1, which is equivalent to finding the smallest eigenvalue
of the symmetric eigenvalue problem

A(W — diag(W1))Alw = Aw. (13)

This eigenvector problem occurs in expansion space, which
we usually want to avoid working in. To work in kernel space,
we can say that w = Aw, and then we want to minimize

8 = 20" A' A(W — diag(W1)) A’ Av (14)

subject to the constraint that || Av|| = v*Kv = 1, which corre-
sponds to the generalized eigenvalue problem

K(W —diag(W1))Kv = AKw,

which is the channel compensation equation (6).



5.5. Examination of &o and &’

It is also of interest to look at the first term of (11). This is the
value of the objective function before channel compensation. A
comparison of the first and second terms gives an indication of
how effectively the compensation is working:

So = D Willgi — ol
i

trA(diag(W1) — W)A".

How do we express this in terms of K, in kernel space?
Recall that we can reorder the matrices of a product when com-
puting their trace: tr(M N) = tr(INM ), and so

do

tr(diag(W1) — W)A'A
tr(diag(W1) — W)K
trK (diag(W1) — W).

Let {\;}; be the eigenvalues of the generalized eigenvalue
problem (15), ordered from most positive to most negative.

Then N
Jo=y_ N,
i=1
and N
§=0—-0=> X
=2

5.6. Positive and Negative Eigenvalues

We have seen that the figure of merit § is composed of two
terms, §o which is the figure of merit without any channel com-
pensation, and &' which is the change in § from channel com-
pensation. If §’ is not negative, then channel compensation has
not improved our figure of merit.

If we choose a w for channel compensation according to
(6), then —g§’ = X, the principal eigenvalue of the equation. We
need that eigenvalue to be positive for channel compensation to
be successful.

If all elements of W are nonnegative, then Z =
diag(W1)—W is a diagonally semi-dominant matrix and there-
fore positive semidefinite.

From there we can use the Sylvester Inertia theorem (see
[14]) to say that if K is strictly positive definite, then all eigen-
values of (6) are nonnegative.

So if W;; > 0 Vi, j then we can always successfully do
channel compensation, or at least successfully improve 4.

If W has some negative elements, then (6) will probably
have some negative eigenvalues. If W has enough negative el-
ements and they are large enough, then (6) can have no posi-
tive eigenvalues. We have observed this, when doing the joint
channel-speaker compensation, with large enough values of S.

Experimentally in this case, we have observed a reduction
in the improvement achieved by channel compensation.

6. Experiments

We performed experiments based upon the 2003 NIST extended
data task evaluation (using the “v1” lists). See [15] for a de-
tailed description of the corpus. We considered the case of
1 utterance enrollment and only male speakers to understand
channel compensation in a restricted case. A text-independent
generalized linear discriminant kernel [1] using monomials of
up to degree 3 was used. Input features were 18 LP cepstral

20

Miss probability (in %)

5
False Alarm probability (in %)

Figure 3: DET plot of the baseline (solid line) versus the
new channel compensation approaches, rank 1 compensation
(dashed) and rank 2 compensation (dash-dot).

coefficients (derived from 12 LP coefficients) and deltas. The
standard channel-compensating measures were applied to the
cepstra — per-utterance mean subtraction and RASTA normal-
ization. The dimension of the SVM expansion space was 9139.

Since the extended data task is landline telephone, we used
carbon button and electret as our two channels. If the necessary
label data are available, other choices of channel are possible.
This would be an worthwhile topic of further work. For exam-
ple, carbon button handsets differ greatly, and so calling each
specific telephone number a different channel might be effec-
tive, at least for the carbon button handsets. It would also be
interesting to see how the error rate differs between the same
phone number and different phone number conditions on en-
roliment and test. We do this below, but just for carbon button
and electret.

The training corpus is quite large, about 5600 utterances,
each about 2.5 minutes long for a total of about 230 hours of
speech. This entire corpus was used to train both the channel
compensation projections and the SVM background model. It
would be interesting to see how well the channel compensation
works with a smaller training set, but in this SVM speaker ID
context there is no reason not to use all of the data that is avail-
able for SVM training.

The test corpus consisted of 6190 true trials and 11544 false
trials. The 95% confidence interval for all of the results is about
+0.6% absolute.

Figure 3 shows some initial experiments with the new chan-
nel compensation method where @« = 1 and 8 = 1 in (8). In
the figure, the solid line shows a baseline approach using no
compensation. The new approach is shown for both the rank 1
and rank 2 case. Note that the channel compensation provides
a statistically significant decrease in the error rate. Also, note
that rank 2 does not provide substantial improvement; this may
be due to the fact that there are many superfluous dimensions
which need to be removed.

Table 1 shows the results of different selections of « and 3.
A marginally better (but not statistically significant) improve-



Table 1: Comparison of EERSs for different « and 8

System EER
Baseline 8.00%
a=1,8=0,rank1 | 7.51%
a=1,8=0,rank2 | 7.59%
a=1,8=1,rank1 | 7.43%
a=1,8=1rank2 | 7.45%

Table 2: Comparison of EERs for different training and testing
channels

System | Train Handset | Test Handset | EER

Baseline 9.79%
Rank 1 CB CB 9.88%
Rank 2 9.84%
Baseline 3.40%
Rank 1 ELEC ELEC 3.51%
Rank 2 3.56%
Baseline 8.18%
Rank 1 CB ELEC 7.46%
Rank 2 7.35%
Baseline 9.54%
Rank 1 ELEC CB 8.44%
Rank 2 8.44%

ment is obtained by using a weight on the speaker dependent
metric in (8). Table 2 shows the results broken out by channel
type for the case of « = 1 and 8 = 1. The table clearly shows
improvement in the cross-channel carbon-button (CB), electret
(ELEC) cases. Minor degradation is seen for same channel con-
ditions.

7. Conclusions

We have successfully demonstrated that SVM methods for vi-
sualization and channel compensations have substantial power
in improving speaker verification. Kernel PCA was used to an-
alyze sequence data and show clustering based upon gender and
channel type. Further exploration of KPCA will no doubt lead
to greater understanding of “speaker space.” A novel channel
compensation algorithm was then proposed and derived. Exper-
iments on the NIST extended data task showed improvements
in performance with the new method.
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