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Abstract—Recently, Altug and Wagner [1] posed a question
regarding the optimal behavior of the probability of error w hen
channel coding rate converges to the capacity sufficiently slowly.
They gave a sufficient condition for the discrete memoryless
channel (DMC) to satisfy a moderate deviation property (MDP)
with the constant equal to the channel dispersion. Their sufficient
condition excludes some practically interesting channels, such as
the binary erasure channel and the Z-channel. We extend their
result in two directions. First, we show that a DMC satisfies MDP
if and only if its channel dispersion is nonzero. Second, we prove
that the AWGN channel also satisfies MDP with a constant equal
to the channel dispersion. While the methods used by Altug and
Wagner are based on the method of types and other DMC-specific
ideas, our proofs (in both achievability and converse parts) rely
on the tools from our recent work [2] on finite-blocklength regime
that are equally applicable to non-discrete channels and channels
with memory.

Index Terms—Shannon theory, channel capacity, channel dis-
persion, moderate deviations, discrete channels, AWGN channel,
finite blocklength regime.

I. I NTRODUCTION

A random transformation is defined by a pair of measurable
spaces of inputsA and outputsB and a conditional probability
measurePY |X : A 7→ B. An (M, ǫ) code (average probability
of error) for the random transformation(A, B, PY |X) is a pair
of (possibly randomized) mapsf : {1, . . . , M} → A (the
encoder) andg : B → {1, . . . , M} (the decoder), satisfying

1

M

M
∑

m=1

P [g(Y ) 6= m|X = f(m)] ≤ ǫ . (1)

Similarly, an(M, ǫ) code (maximal probability of error)is a
pair of (possibly randomized) mapsf : {1, . . . , M} → A and
g : B → {1, . . . , M} , satisfying

max
m∈{1,...,M}

P [g(Y ) 6= m|X = f(m)] ≤ ǫ . (2)

In applications, we will takeA and B to ben-fold Cartesian
products of alphabetsA andB, and a channel to be a sequence
of random transformations{PY n|Xn : An → Bn} indexed
by blocklength [3]. An(M, ǫ) code for{An,Bn, PY n|Xn} is
called an(n, M, ǫ) code. For a chosen channel we define the
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following non-asymptotic fundamental limits:

ǫ∗(n, M)

= inf{ǫ : ∃(n, M, ǫ)-code (maximal probab. of error)}(3)

ǫ∗avg(n, M)

= inf{ǫ : ∃(n, M, ǫ)-code (average probab. of error)} .(4)

For several memoryless channels as well as some channels
with memory it is known that

lim
n→∞

ǫ∗(n, exp{nR}) =

{

0, R < C

1, R > C ,
(5)

whereC is the capacity of the channel. The convergence in (5)
is known to be exponential, but the precise evaluation of this
exponent is generally an open problem even for the simplest
DMCs.

If we replaceexp{nR} with exp{nC − A
√

n} then the
probability of error converges to a number between0 and1,
as follows:1

lim
n→∞

ǫ∗(n, exp{nC − A
√

n}) = Q

(

A√
V

)

, (6)

whereV is the channel dispersion, a fundamental characteris-
tic of a channel, especially valuable in the finite blocklength
analysis; see [2], [4].

Reference [1] raised the question of the best possible
behavior of the probability of error when the coding rate
approaches capacity slower than1/

√
n. If we assume that (6)

holds uniformly inA, then we expect that

ǫ∗(n, exp{nC − nρn}) ∼ Q

(√
nρn√
V

)

∼ e
−nρ2

n
2V . (7)

This argument justifies the following definition:
Definition 1: A channel with capacityC is said to satisfy

the moderate deviation property (MDP) with constantν if for
any sequence of integersMn such that

log Mn = nC − nρn , (8)

whereρn > 0, ρn → 0 andnρ2
n → ∞, we have

lim
n→∞

1

nρ2
n

log ǫ∗(n, Mn)

= lim
n→∞

1

nρ2
n

log ǫ∗avg(n, Mn) (9)

= − log e

2ν
. (10)

1As usual,Q(x) =
R ∞

x
1√
2π

e−t2/2 dt .



The regime of rate slowly converging to capacity as in (8)
falls between the central-limit theorem (CLT) regime (6) and
the large deviations (or error-exponent) regime (5).

In [1] it was shown that MDP holds for a certain subset of
the DMCs (which excludes, for example, the binary erasure
channel (BEC) and the Z-channel). We show how a refinement
of their result can be easily derived using methods developed
in [2]. Namely, we show that a DMC satisfies MDP if and only
if its channel dispersion is positive. Therefore, not only do we
extend the subset of DMCs for which MDP is shown, but we
show that this subset cannot be further extended. Additionally,
we show that the additive white Gaussian noise (AWGN)
channel satisfies MDP. We also show that for any channel (not
necessarily stationary, memoryless, or even non-anticipatory)
the constantν in the MDP and the dispersionV in the central-
limit (6) cannot differ.

One of the main tools in our treatment [2] is the performance
of the optimal binary hypothesis test defined as follows.
Consider aW-valued random variableW which can take
probability measuresP or Q. A randomized test between
those two distributions is defined by a random transformation
PZ|W : W 7→ {0, 1} where0 indicates that the test chooses
Q. The best performance achievable among those randomized
tests is given by2

βα(P, Q) = min
∑

w∈W

Q(w)PZ|W (1|w) , (11)

where the minimum is over all probability distributionsPZ|W

satisfying

PZ|W :
∑

w∈W

P (w)PZ|W (1|w) ≥ α . (12)

The minimum in (11) is guaranteed to be achieved by the
Neyman-Pearson lemma. Thus,βα(P, Q) gives the minimum
probability of error under hypothesisQ if the probability of
error under hypothesisP is not larger than1 − α. It is easy
to show that (e.g. [5]) for anyγ > 0

α ≤ P

[

dP

dQ
≥ γ

]

+ γβα(P, Q). (13)

On the other hand,

βα(P, Q) ≤ 1

γ0
, (14)

for any γ0 that satisfies

P

[

dP

dQ
≥ γ0

]

≥ α . (15)

II. ON THE MDP CONSTANT

For an arbitrary channel, neither (6) implies (10), nor
vice versa. However, if both limits hold, then the respective
constants must be equal:

Theorem 1:Consider an arbitrary channel (i.e. a sequence
of random transformations) with capacityC and suppose that

2We write summations over alphabets for simplicity; however, all of our
general results hold for arbitrary probability spaces.

central-limit (6) holds with dispersionV and MDP holds with
constantν (thus,V > 0 andν > 0). Then

V = ν . (16)

Proof: Define a sequence of cumulative density functions
(CDFs) as follows:

Fn(x)
△
= ǫ∗(n, ⌊exp{nC + x

√
nV }⌋) . (17)

Then, on one hand the central-limit property (6) ensures that

Fn(x) → Φ(x) , (18)

for all x ∈ R, whereΦ is the CDF of the standard Gaussian
N (0, 1):

Φ(x) =

∫ x

−∞

1√
2π

e−
y2

2 dy . (19)

On the other hand, the MDP property, cf. Definition 1, can
be reformulated as follows: For every sequencean > 0 s.t.
1 ≪ an ≪ √

n we have

lim
n→∞

1

a2
n

log Fn(−an) = − log e

2θ
, (20)

whereθ = ν
V . We must show thatθ = 1.

To do so, define the following non-increasing sequence of
numbers:

un
△
= sup

m≥n
sup
x∈R

|Fm(x) − Φ(x)| . (21)

Since the convergence in (18) is necessarily uniform, we have:

un → 0 . (22)

Notice that ifun = 0 for all sufficiently largen, then the result
follows automatically since for any sequencean satisfying
conditions for (20) we have

lim
n→∞

1

a2
n

log Φ(−an) = − log e

2
(23)

and θ = 1. Thus, in the remaining we assume thatun does
not vanish for anyn.

First, suppose that

lim sup
n→∞

1

n
log un < 0 . (24)

Then for someδ > 0 and alln ≥ N1 we should have

un ≤ exp{−nδ} (25)

But then, for any admissible sequencean we have

lim
n→∞

1

a2
n

log Fn(−an) = lim
n→∞

1

a2
n

log Φ(−an) (26)

because
|Fn(−an) − Φ(−an)| ≤ exp{−nδ} (27)

and by the conditions onan, Φ(−an) ≫ exp{−nδ}. Finally,
application of (23) to (26) completes the proof in this case.

Second, suppose that

lim sup
n→∞

1

n
log un = 0 . (28)



Assume, for example, thatθ > 1. Fix any δ > 0 such that

1

2
+ δ >

1

2θ
+ 2δ . (29)

Choose the following sequencean > 0:

an =

√

−
(

1

2θ
+ 2δ

)−1

loge un . (30)

The limit (23) implies that for all sufficiently largen we have

Φ(−an) ≤ e−( 1
2 +δ)a2

n = (un)r1 , (31)

wherer1 > 1 by (29). Condition (28) shows that sequencean

satisfies conditions for (20), from which we find that for all
sufficiently largen we have

Fn(−an) ≥ e−( 1
2θ +δ)a2

n = (un)r2 , (32)

wherer2 < 1. Consider the chain of inequalities:

un ≥ |Fn(−an) − Φ(−an)| (33)

≥ Fn(−an) − Φ(−an) (34)

≥ (un)r2 − (un)r1 (35)

where (33) is by the definition ofun in (21) and (35) is by (31)
and (32). Finally, (35) is a contradiction sincer2 < 1 < r1.
Similarly, one shows thatθ < 1 is also impossible.

III. D ISCRETE MEMORYLESS CHANNELS

In the sequel we use the notation of [2, Section IV.A]. In
particular, the DMC has finite input alphabetA, finite output
alphabetB, and conditional probabilities

PY n|Xn(yn|xn) =

n
∏

i=1

W (yi|xi) , (36)

whereW (·|x) is a conditional probability mass function onB
for all x ∈ A, which is abbreviated asWx when notationally
convenient. We denote the simplex of probability distributions
on A by P . It is useful to partitionP into n-types:

Pn = {P ∈ P : nP (x) ∈ Z+ ∀x ∈ A} . (37)

We use the following notation and terminology:

• output distributionPW

PW (y)
△
=
∑

x∈A

P (x)W (y|x) . (38)

• information density

i(x; y) = log
W (y|x)

PW (y)
. (39)

• mutual information

I(P, W ) = E [i(X ; Y )] (40)

=
∑

x∈A

∑

y∈B

P (x)W (y|x) log
W (y|x)

PW (y)
.(41)

• conditional information variance

V (P, W )

= E [Var(i(X ; Y ) |X)] (42)

=
∑

x∈A

P (x)

{

∑

y∈B

W (y|x) log2 W (y|x)

PW (y)

− [D(Wx||PW )]2

}

(43)

• third absolute moment of the information density

T (P, W ) =
∑

x∈A

∑

y∈B

P (x)W (y|x)

∣

∣

∣

∣

∣

log
W (y|x)

PW (y)

− D(Wx||PW )

∣

∣

∣

∣

∣

3

. (44)

Note thatI(P, W ), V (P, W ) andT (P, W ) are continu-
ous functions ofP ∈ P ; see [2, Lemma 62].

• the compact subset ofcapacity-achieving distributionsΠ

Π
△
= {P ∈ P : I(P, W ) = C} . (45)

where

C = max
P∈P

I(P, W ). (46)

• channel dispersion, which according to [2, Theorem 49]
is equal to

V = min
P∈Π

V (P, W ) . (47)

Apart from analyzing the limit ofǫ∗avg the result of [1] can
be stated as follows:

Theorem 2 ([1]): Consider a DMCW . If W (y|x) > 0 for
all x ∈ A, y ∈ B and V > 0 then DMC W satisfies MDP
with the constantV .

The main result of this section is:
Theorem 3:The DMCW satisfies MDP if and only ifV >

0, in which caseV is the MDP constant of the DMC.
Theorem 3 follows from Theorems 4 and 6 below.
Theorem 4:Consider a DMCW and a sequenceρn such

that ρn > 0, ρn → 0 and ρ2
nn → ∞. If V > 0 then there

exists a sequence of(n, exp{nC −nρn}, ǫn) codes (maximal
probability of error) with

lim sup
n→∞

1

nρ2
n

log ǫn ≤ − 1

2V
. (48)

On the other hand, whenV = 0 there exists a sequence of
(n, exp{nC − nρn}, ǫn) codes (maximal probability of error)
with

ǫn ≤ 2 exp{−nρn} , (49)

so that the channel cannot satisfy MDP.
Proof: Denote byP the capacity achieving distribution

that also achievesV in (47). According to the DT bound [2,
Theorem 17], there exist an(n, 2 exp{nC − nρn}, ǫ′n) code
(average probability of error) such that

ǫ′n ≤ E

[

exp
{

− |i(Xn, Y n) − nC + nρn|+
}]

, (50)



where

i(xn, yn)
△
=

n
∑

j=1

log
W (yj |xj)

PW (yj)
. (51)

And therefore, by a standard “purging” method, there also
exists an(n, exp{nC − nρn}, ǫn) code (maximal probability
of error) with ǫn = 2ǫ′n, or

ǫn ≤ 2E

[

exp
{

− |i(Xn, Y n) − nC + nρn|+
}]

. (52)

If V = 0 then i(Xn, Y n) = nC and (49) readily follows.
AssumeV > 0, fix arbitraryλ < 1 and consider a chain of

elementary inequalities:

exp
{

− |i(Xn, Y n) − nC + nρn|+
}

(53)

≤ 1{i(Xn, Y n) ≤ nC − λnρn} (54)

+ exp
{

− |i(Xn, Y n) − nC + nρn|+
}

× 1{i(Xn, Y n) > nC − λnρn} (55)

≤ 1{i(Xn, Y n) ≤ nC − λnρn}
+ exp{−(1 − λ)nρn} . (56)

By [6, Theorem 3.7.1] we have

lim sup
n→∞

1

nρ2
n

log P[i(Xn, Y n) ≤ nC − λnρn]

≤ −λ2 log e

2V
. (57)

Therefore, by taking the expectation in (56) and by conditions
on ρn the second term is asymptotically dominated by the first
and we obtain:

lim sup
n→∞

1

nρ2
n

log E

[

exp
{

− |i(Xn, Y n) − nC + nρn|+
}]

≤ −λ2 log e

2V
. (58)

Sinceλ < 1 was arbitrary we can takeλ → 1 to obtain (48).

The main analytic tool required in proving the converse
bound in this section is a tight non-asymptotic lower bound
for the probability of a large deviation of a random variable
from its mean. This question has been addressed by many
authors working in probability and statistics, starting from
Kolmogorov [7]. Currently, one of the most general such
results belongs to Rozovsky [8], [9]. The following is a
weakening of [8, Theorem 1] which plays the same role as
Berry-Esseen inequality in the analysis of (6); see [2].3

Theorem 5 (Rozovsky):There exist universal constants
A1 > 0 and A2 > 0 with the following property. LetXk,
k = 1, . . . , n be independent with finite third moments:

µk = E [Xk] , σ2
k = Var[Xk] , and tk = E [|Xk − µk|3] .

(59)

3Similar to well-known extensions of the Berry-Esseen inequality to the
case of random variables without a third absolute moment, Rozovsky does
not require thatE |Xk|

3 be bounded. However, we only will need this weaker
result.

DenoteS =
∑n

k=1 σ2
k and T =

∑n
k=1 tk. Wheneverx ≥ 1

we have

P

[

n
∑

k=1

(Xk − µk) > x
√

S

]

≥ Q(x)e
−

A1T

S3/2
x3
(

1 − A2T

S3/2
x

)

.

(60)
Theorem 6:Consider a DMC W and a sequence of

(n, Mn, ǫn) codes (average probability of error) with

log Mn ≥ nC − nρn , (61)

whereρn > 0, ρn → 0 and ρ2
nn → ∞. If V > 0 then we

have
lim inf
n→∞

1

nρ2
n

log ǫn ≥ − log e

2V
. (62)

Proof: Replacing the encoder with an optimal determin-
istic one, we can only reduce the average probability of error.
Next, if we have an(n, Mn, ǫn) code (average probability of
error) with a deterministic encoder, then a standard argument
shows that there exists an(n, 1

2Mn, 2ǫn) subcode (maximal
probability of error). ReplacingMn → 1

2Mn and ǫn → 2ǫn,
without loss of generality we may assume the code to have a
deterministic encoder and a maximal probability of errorǫn.

Now for eachn denote byPn ∈ Pn the n-type containing
the largest number of codewords. A standard type-counting
argument shows that then there exists an(n, M ′

n, ǫn) constant
compositionPn subcode with

log M ′
n ≥ nC − nρn − |A| log(n + 1) . (63)

By compactness ofP the sequencePn has an accumulation
point P ∗. Without loss of generality, we may assumePn →
P ∗.

Now for eachn define the following probability distribution
QY n on Bn:

QY n(yn) =

n
∏

j=1

PnW (yj) . (64)

According to [2, Theorem 31] we have

β1−ǫn(PXnY n , PXnQY n) ≤ 1

M ′
n

, (65)

where here and belowPXn is the distribution induced by the
encoder onAn.

Applying (13) we get that for anyγ we have:

ǫn ≥ P

[

log
W (Y n|Xn)

QY n(Y n)
< γ

]

− exp{γ − log M ′
n} . (66)

We now fix arbitraryλ > 1 and takeγ = nC − λnρn to
obtain:

ǫn ≥ P

[

log
W (Y n|Xn)

QY n(Y n)
< nC − λnρn

]

− exp{−nρn(λ − 1) + |A| log(n + 1)} . (67)

Notice that since the code has constant compositionPn, the
distribution of log W (Y n|Xn)

QY n (Y n) given Xn = xn is the same for
all xn. Therefore, assuming such conditioning we have

log
W (Y n|Xn)

QY n(Y n)
∼

n
∑

j=1

Zj , (68)



whereZj are independent and
n
∑

j=1

E [Zj ] = nI(Pn, W ) , (69)

n
∑

j=1

Var[Zj ] = nV (Pn, W ) , (70)

n
∑

j=1

E
[

|Zj − E [Zj ]|3
]

= nT (Pn, W ) . (71)

In terms ofZj the bound in (67) asserts

ǫn ≥ P





n
∑

j=1

Zj < nC − λnρn





− exp{−nρn(λ − 1) + |A| log(n + 1)} . (72)

First, suppose thatI(P ∗, W ) < C. Then a simple Chernoff
bound implies that the right-hand side of (67) converges to 1
and (62) holds.

Next, assumeI(P ∗, W ) = C. Since I(Pn, W ) ≤ C we
have from (72):

ǫn ≥ P





n
∑

j=1

Zj − nI(Pn, W ) < −λnρn





− exp{−nρn(λ − 1) + |A| log(n + 1)} . (73)

Note that by continuity ofV (P, W ) we have

V (Pn, W ) → V (P ∗, W ) ≥ V > 0 , (74)

whereV (P ∗, W ) ≥ V sinceP ∗ is capacity-achieving. There-
fore, by Theorem 5 we obtain:

P





n
∑

j=1

Zj − nI(Pn, W ) < −λnρn





≥ Q

(

λ
√

V (Pn, W )

√

nρ2
n

)

e
−

λ3A1T (Pn,W )

V 3(Pn,W )
nρ3

n

×
(

1 − λA2T (Pn, W )

V 2(Pn, W )
ρn

)

, (75)

sinceT (Pn, W ) is continuous and, thus, bounded onP , we
see that the term in parentheses is1 + o(1) because of the
conditions onρn. Therefore,

lim inf
n→∞

1

nρ2
n

log P





n
∑

j=1

Zj − nI(Pn, W ) < −λnρn





≥ lim
n→∞

1

nρ2
n

log Q

(

λ
√

V (Pn, W )

√

nρ2
n

)

+ lim
n→∞

1

nρ2
n

(

−λ3A1T (Pn, W )

V 3(Pn, W )
nρ3

n

)

(76)

= − λ2 log e

2V (P∗, W )
(77)

≥ −λ2 log e

2V
. (78)

Finally, it is easy to see that the second term in (73) is
asymptotically dominated by the first term according to (78)
andnρn ≫ nρ2

n. Thus, from (78) we conclude that

lim inf
n→∞

1

nρ2
n

log ǫn ≥ − log e

2V
. (79)

IV. T HE AWGN CHANNEL

The AWGN channel with signal-to-noise ratio (SNR) equal
to P is defined for each blocklengthn as follows: the input
space is a subset of vectors ofR

n satisfying

||xn||2 ≤ nP , (80)

the output space isRn and the channel acts by adding a white
Gaussian noise of variance1:

Y n = Xn + Zn , (81)

whereZn ∼ N (0, In).
The channel dispersion of the AWGN channel is given by [2,

Theorem 54]

V (P ) =
log2 e

2

(

1 − 1

(1 + P )2

)

. (82)

Theorem 7:The AWGN channel with SNRP satisfies
MDP with constantV (P ).

Proof: We rely heavily on the notation and results of [2,
Section III.J].

Converse:Consider a sequence of(n, Mn, ǫn) codes (aver-
age probability of error) with

Mn = exp{nC − nρn} , (83)

whereρn > 0, ρn → 0 andρ2
nn → ∞. Following the method

of [10] and [2, Lemma 39] we can assume without loss of
generality that every codewordCj ∈ R

n, j = 1, . . . , Mn lies
on a power-sphere:

||Cj ||2 = nP . (84)

We apply the meta-converse bound [2, Theorem 27] withQY n

chosen as

QY n =
n
∏

j=1

N (0, 1 + P ) , (85)

to obtain

β1−ǫn(PXnY n , PXnQY n) ≤ exp{−nC + nρn} , (86)

wherePXn is the distribution induced by the encoder onR
n.

As explained in [2, Section III.J] we have the equality

β1−ǫn(PXnY n , PXnQY n) = β1−ǫn(PY n|Xn=x, QY n) , (87)

where x = [
√

P , . . . ,
√

P ]T . Now applying (13)
β1−ǫn(PY n|Xn=x, QY n) with γ = nC − λnρn, where
λ > 1 is arbitrary we obtain

ǫn ≥ P

[

log e

2(1 + P )

n
∑

i=1

P (1 − Z2
i ) + 2

√
PZi < −λnρn

]

− exp{−nρn(λ − 1)} , (88)



where we have written the distribution oflog
PY n|Xn=x

QY n
ex-

plicitly in terms of the i.i.d. random variablesZj ∼ N (0, 1);
see [2, (205)]. According to [6, Theorem 3.7.1], the first term
in the right-hand side of (88) dominates the second one and
we have

lim inf
n→∞

1

nρ2
n

log ǫn ≥ − λ2

2V (P )
, (89)

and takingλ ց 1 we obtain

lim inf
n→∞

1

nρ2
n

log ǫn ≥ − 1

2V (P )
. (90)

Achievability:Similar to [2, Section III.J] we apply theκβ
bound [2, Theorem 25], withF chosen to be the power sphere

F = {xn ∈ R
n : ||xn||2 = nP} (91)

and QY n as in (85). Using the identity (87) and the lower
bound onκτ (F, QY n) given by [2, Lemma 61] we show that
for all 0 < ǫ < 1 and 0 < τ < ǫ there exists an(n, M, ǫ)
code (maximal probability of error) with

M ≥ 1

C1

τ − e−C2n

β1−ǫ+τ (PY n|Xn=x, QY n)
, (92)

wherex = [
√

P , . . . ,
√

P ]n ∈ R
n is a vector on the the power

sphere, andC1 andC2 are some positive constants. We now
take τ = ǫ

2 and apply the upper bound onβ from (14) to
obtain the statement: For anyγ there exists and(n, M, ǫ) code
(maximal probability of error) with

M ≥ ǫ − 2e−C2n

2C1
exp{γ} (93)

and

ǫ = 2P

[

log
dPY n|Xn=x

QY n

≤ γ

]

. (94)

Now takeγn = nC−λnρn, whereλ < 1 is arbitrary. By [6,
Theorem 3.7.1] we obtain a sequence of codes with

log Mn ≥ nC − nρn (95)

for all n sufficiently large and

lim sup
n→∞

1

nρ2
n

log ǫn ≤ − λ2

2V (P )
. (96)

In particular,

lim sup
n→∞

1

nρ2
n

log ǫ∗(n, exp{nC − nρn}) ≤
−λ2

2V (P )
, (97)

and sinceλ < 1 is arbitrary we can takeλ ր 1 to finish the
proof.
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