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Channel Energy Statistics Learning in

Compressive Spectrum Sensing

Haoran Qi , Student Member, IEEE, Xingjian Zhang , Student Member, IEEE,
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Abstract— Spectrum sensing is a proactive way in cognitive
radio systems to achieve dynamic spectrum access; and com-
pressive spectrum sensing (CSS) techniques alleviate the demand
for high-speed sampling in wideband spectrum sensing. Most
existing literature discusses Neyman–Pearson channel energy
detection and threshold adaption schemes to achieve an optimal
performance of detection in a conventional non-compressive
spectrum sensing scenario. However, in the CSS, it is found that
the channel energy statistics and optimal threshold depend not
only on noise energy but also on compression ratio, sparsity of
spectrum, and nature of recovery algorithms. To investigate the
channel energy statistics of recovered spectrum, we postulate
a statistical model of channel energy for CSS and propose a
learning algorithm based on a mixture model and expectation–
maximization techniques. In addition, having verified the validity
of the postulated model, we propose a practical threshold
adaption scheme for CSS aiming to maintain constant false alarm
rates in channel energy detection. In simulations, it is shown that
the postulated channel energy statistic models with parameters
learned by the proposed learning algorithm fit well with empirical
distributions under circumstances of various channel models and
recovery algorithms. Moreover, it is presented that the proposed
threshold adaption scheme maintains the false alarm rate near
the predefined constant, which in turn validates the postulated
model.

Index Terms— Compressive spectrum sensing, energy
detection, mixture model, threshold adaption, constant false
alarm rate.

I. INTRODUCTION

W
ITH the rapidly increasing demands for data rates and

service coverage, spectrum scarcity is one of the sig-

nificant challenges faced by today’s wireless communications.

The fact that the spectrum resource is underutilized in certain

bands [1] has motivated the dynamic spectrum access (DSA)

which enables unlicensed secondary users (SUs) to access the

spectrum without causing significant interference to primary

users (PUs). Spectrum sensing techniques in cognitive radio
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are proactive ways of sensing nodes to acquire the surrounding

spectrum availability information. The traditional way of

spectrum sensing requires analog-to-digital converters (ADCs)

sampling at Nyquist rate. However, for spectrum sensing

in wideband scenarios, Nyquist-rate processing tends to be

unrealistic due to high power consumption and hardware

complexity of ADCs. Compressive sensing (CS) techniques

have been proposed to be applied to spectrum sensing to

achieve reliable spectrum reconstruction on condition that the

spectrum occupancy is sparse [2]–[7].

A real-world example of DSA application is in TV white-

space (TVWS) where opportunistic access to the UHF band for

digital terrestrial TV (DTTV) is allowed to made by low-power

local radio applications, for example, machine-to-machine

communications and wireless personal area networks. In UK’s

practice, it is stated that only up to 6 out of 32 channels over

the 320MHz band are used by PUs at arbitrary location [1].

This low spectrum occupancy over DTTV bands not only

enables potentially large throughput of SUs but also suits the

application of wideband compressive spectrum sensing (CSS).

Detection of occupied channels using spectrum recon-

structed by CS recovery algorithms is a crucial procedure

of CSS. Cyclostationary feature detection (CFD) and channel

energy detection are two major types of detection techniques

applied in CSS appeared in literature. CFD exploits the

cyclic stationary property in modulated radio signals and it

conducts detection in the spectrum of cyclic frequency and

spectral frequency [8], [9]. Compared with energy detection,

CFD has been shown outperforming in lower signal-to-noise

ratio (SNR) region [10], [11]. However, it adds considerable

computational complexity to receivers and CFD-based detec-

tion algorithms only work with specific and known types

of modulation of signals. The simpler yet more commonly

used method is Neyman-Pearson (NP) channel energy detec-

tion of which the objective is to directly differentiate the

present signal from noise in certain channel’s power spectrum

by setting a proper threshold [12]. A common problem of

energy detectors is that statistics of the noise, for example

the variance, are a priori unknown in most cases, because

the noise in the received signal depends on receiver’s noise

figure and gain control, temperature, ambient radio interfer-

ence, etc. Thus, the noise statistics need to be estimated to

achieve optimal detection performance. As in most literature

of conventional spectrum sensing, it is assumed noise level is

Gaussian distributed in NP energy detection method and detec-
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tion performance can be evaluated in various channel models

[13], [14]. Under the assumption of Gaussian noise, it has

been proposed in [13]–[16] that noise variance estimation

and threshold adaption can be achieved in an online fashion.

Other discussions on threshold adaption schemes without prior

assumptions on signal statistics are seen in literature where

supervision in the adaption process is necessary [8], [17].

However, the supervised learning process requires training

radio pilots of which the radio activity information is readily

known to sensing nodes, which is unrealistic in real-world

spectrum sensing applications.

In CSS, the desired spectrum for energy detection is not

directly available from time-domain samples of analog-to-

information converter (AIC) [18], [19]. The spectrum we

interest in needs to be recovered from these sub-Nyquist-rate

samples by sparse recovery algorithms. From both restricted

isotropic property theory of CS [20] and practice of wideband

CSS [3]–[5], [21], [22], the sparse recovery of a noisy signal

results in an inconsistent recovered spectrum compared to the

true spectrum, and such inconsistency depends on spectrum

sparsity, compression ratio and SNR of the sensed signal.

In our past experiments [3], [23], we discovered that in CSS

the energy statistics of recovered spectrum differ from that of

the true spectrum. In order to achieve optimal energy detection

performance, a proper statistical model and unknown statistics

in recovered spectrum need to be learned.

The main contribution of this paper is that, to the best

knowledge of the authors, it is the first work to address and

model the statistics of the recovered signal in the energy

detection problem of CSS. We discovered that the channel

energy statistics in CSS is fundamentally different from that in

conventional non-compressive spectrum sensing. Specifically,

to set NP energy detection hypotheses for recovered signals,

we postulate that the channel energy statistics model of recov-

ered spectrum still conforms to that of the original spectrum,

however, parameters of the model for recovered signals are

treated as unknown. Mixture Model (MM) and Expectation-

Maximization (EM) techniques [24] have been commonly

used to obtain maximal-likelihood estimates the parameters

given analytic distributions of statistics, and the specific use

of Rayleigh-Gaussian MM has been seen in [25] and [26] to

learn the signal statistics in non-compressive spectrum sensing.

In this paper, we focus on the channel energy in CSS and a

customized EM-based algorithm for a chi-square-MM is pro-

posed to learn the channel energy statistics of recovered signal.

Simulations have shown that the postulated statistical model

for recovered spectrum is a reasonably good fit with parame-

ters learned from sample data set by the proposed algorithm.

An additional contribution is that, furthermore, we propose

a novel and practical threshold adaption scheme based on

the newly-addressed statistic model to achieve the detection

performance of constant false alarm rate (CFAR) for energy

detection in CSS. In simulations, it is showed how differently

the thresholds should be set in various settings of the CSS.

Moreover, the results that the probability of false alarm can

be kept near the predefined constant also validate the good

fitness of our postulated model of channel energy statistics

and learning algorithm.

The rest of this paper is organized as follows. In Section II,

the signal model and the NP energy detection problem in CSS

are illustrated. In Section III, the postulated statistical model

for recovered signal in CSS is presented and an algorithm for

learning the parameters in the postulated statistical model is

proposed. In Section IV, based on the results in Section III,

the threshold adaption scheme based on noise statistics estima-

tion is proposed. Simulation results to prove the effectiveness

of the postulated channel energy statistical model and the

proposed learning algorithm, as well as the performance of the

proposed threshold adaption scheme are shown in Section V.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Compressive Spectrum Sensing

Consider CSS by single sensing node in non-cooperative

scenario. Denote the Nyquist time-domain signal as ststst =

[s
(1)
t s

(2)
t . . . s

(N)
t ]T and its frequency-domain representation

sfsfsf = FFFststst = [s
(1)
f s

(2)
f . . . s

(N)
f ]T where FFFN×N stands for

N -point Discrete Fourier Transform (DFT) matrix. A signal

sparse in frequency domain can be recovered based on M sub-

Nyquist-rate measurements yyy = [y(1) y(2) . . . y(M)]T where

M < N . The sub-Nyquist sampling can be expressed as a

linear system

yyy = AstAstAst + bbb = AFAFAF−1sfsfsf + bbb, (1)

where AAAM×N is the sampling matrix with structured random

entries corresponding to AIC sampler settings, and bbb =
[b(1) b(2) . . . b(M)] is additive noise on measurements.

The recovery of sparse signal sfsfsf can be achieved by solving

the optimization problem, writing

sfsfsf
o = arg min

sfsfsf

||sfsfsf ||l +
µ

2
||AF−1sfsfsf − yyy||22, (2)

where the norm 0 < l ≤ 1 and µ accounts for penalization.

Specifically when l = 1, the optimization problem is convex

and can be solved by Basis Pursuit Denoising algorithm.

Furthermore, when µ = ∞, which is usually adopted as penal-

ization term is often a priori unknown, the recovery algorithm

is called Basis Pursuit (BP). Besides, greedy algorithms are

also an efficient category of sparse recovery solvers, among

which the most commonly used is the Orthogonal Matching

Pursuit (OMP) [27]. Spare Bayesian Learning (SBL) has

been recently brought to attention for solving sparse recovery

problem in a probabilistic setting. By introducing Gaussian

assumption on noise, specifically p(yyy|sfsfsf ) being Gaussian and

assuming parameterized Gaussian priors sfsfsf ∼ CN (000, diag(γγγ))
that induces sparsity in the recovered signal, it aims to find

maximum a posteriori probability of the hyperparameters γγγ
[28], [29]:

sfsfsf
o = arg max

γγγ
p(γγγ|yyy)=argmax

γγγ

Z

p(yyy|sfsfsf )p(sfsfsf ;γγγ)dsfsfsf . (3)

B. Channel Energy Detection in Spectrum Sensing

Consider wideband spectrum sensing in a frequency-

division band where a channel is the unit of spectrum resource.

To detect the channel occupancy, we calculate the average of
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Fig. 1. System architecture of (a)(a)(a) conventional non-compressive compressive
sensing and (b)(b)(b) CSS.

power spectrum density (PSD) bins within each channel for

NP energy detection as

p(c)
c =

X

(c−1)R≤i<cR

1

R
|x(i+1)

f |2, (4)

for c = 1, 2, . . . , C, where C is the total number of channels

and R is the number of PSD bins in each channel. The

system architecture diagrams of non-compressive spectrum

sensing and CSS with channel energy detection are illustrated

in Fig. 1 (a) and (b) respectively.

Next, we will formulate the statistical model of channel

energy for conventional non-compressive spectrum sensing,

and elaborate the differences in the channel energy statistics

for compressive spectrum sensing cases.

For non-compressive spectrum sensing, express the sensed

spectrum as xfxfxf = sfsfsf + nfnfnf = FxtFxtFxt = FFF(ststst + ntntnt),

where ntntntN×1 = [ω
(1)
t ω

(2)
t · · ·ω(N)

t ]T denotes complex

independent-and-identically-distributed (i.i.d.) additive white

Gaussian noise (AWGN) as is widely adopted in literature

[3], [12], [14]. Denote ntntnt ∼ CN (000, σ2III). Note that the

dimension of xfxfxf here is N = C · R. Consider a general mul-

tipath scenario, the expression of x
(n)
t of null hypotheses H0

corresponding to absent radio activity and H1 corresponding

to active radio activity, is modelled by

x
(n)
t =

�

w
(n)
t H0√
Ke

(n)
t +

√
1 − Ke

(n)
t h

(n)
t + w

(n)
t H1

for n = 1, 2, · · · , N , where we consider a commonly-adopted

model hththt = [h
(1)
t h

(2)
t · · ·h(N)

t ]T ∼ CN (000, III) that char-

acterizes the multipath effect of channel. K is the power

ratio of line-of-sight against multipath component. etetet =

[e
(1)
t e

(2)
t · · · e(N)

t ]T represents the deterministic samples in

a time frame of the PUs’ transmitted signal attenuated by

channel gain, and we define efefef = [e
(1)
f e

(2)
f · · · e(N)

f ] := FetFetFet.

After performing a linear transform (i.e. the DFT) on ststst and

some rearrangements, we reach the statistical model of xfxfxf

x
(n)
f =











w
(n)
f ∼ CN (0, Nσ2) H0√
Ke

(n)
f +

√
1 − Ke

(n)
f h

(n)
f + w

(n)
f

∼ CN (
√

Ke
(n)
f , (1 − K)|e(n)

f |2 + Nσ2) H1

(5)

where we can find hfhfhf = [h
(1)
f h

(2)
f · · ·h(N)

f ]T ∼ CN (000, III) and

denote nfnfnf = [ω
(1)
f ω

(2)
f · · ·ω(N)

f ]T := FntFntFnt ∼ CN (000, Nσ2III).

Moreover, from (4), the statistical model of average channel

PSD level p
(c)
c is found characterized by a central and a non-

central chi-square distribution, as a direct result of summing

the squared Gaussian distributions of xfxfxf in (5) with zero means

and non-zero means respectively. Specifically, we write

p(c)
c

=











































X

(c−1)R≤i<cR

|w(i+1)
f |2
R

=
Nσ2

2R
r0, r0 ∼ χ2(2R) H0

X

(c−1)R≤i<cR

1

R
|
√

Ke
(i+1)
f

+
√

1 − Ke
(i+1)
f h(i+1) + w

(i+1)
f |2

= β(c)r1, r1 ∼ χ02(2R, α(c)) H1

(6)

for c = 1, 2, · · · , C, where χ2(k) and χ02(k, λ) represents

central chi-square distribution of degree of freedom (DoF) k
and non-central chi-square distribution of DoF k and non-

centrality parameter λ respectively. In (6), r0 ∼ χ2(2R) and

r1 ∼ χ02(2R, α(c)) are random variables. Parameters α(c) and

β(c) are expressed as

α(c) =
X

(c−1)R≤i<cR

K|e(i+1)
f |2

(1 − K)|e(i+1)
f |2 + Nσ2

, (7)

and

β(c) =

(1 − K)
P

(c−1)R≤i<cR

|e(i+1)
f |2/R + Nσ2

2R
. (8)

As special cases, expressions for Rayleigh channel and

AWGN channel can be obtained by setting K = 0 and

K = 1, respectively. In Rayleigh channel case, noting that

α(c) = 0, the general noncentral chi-square distribution of

H1 degenerates to a central chi-square distribution.

In conventional non-compressive spectrum sensing, it is

generally valid to assume Gaussianity of noise added on the

signal as a prior information. However, in CSS, when we

assume Gaussian noise and certain channel model of original

signal, it is spotted that the two hypotheses’ distributions

in recovered signal do not preserve distributions in original

signal. Specifically, let the sensed spectrum to be xfxfxf =
sfsfsf

o in CSS scenario, and it is found that the distributions

in (6) parameterized by R, (7) and (8) no longer hold.

This finding should not be surprising, as it is a common

conclusion that the recovery performance goes worse with

decreasing compression ratio and spectrum sparsity, as a result

of more occurrences of miss detected falsely detected spectrum

supports. A direct result of this discrepancy is that attempts

in CSS to achieve CFAR in detection using threshold setting

methods [12] for non-compressive spectrum sensing will lead

to varying false alarm probability, which have been appeared

in [3, Figs. 7 and 8], [23, Figs. 6 and 8], and [30, Fig. 4].

To give a direct example of such changes on signal statistics,

comparisons of original and recovered on spectrum, average

channel PSD, and histogram of average channel PSD are given

in Fig. 2. To simplify our problem, from this point, we assume

the hypothesis H1 to have same parameters across all channels,
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Fig. 2. Comparisons of original and recovered signal and their statistics.
(a)(d)(a)(d)(a)(d) PSDs of original and recovered signal, respectively; (b)(e)(b)(e)(b)(e) average
channel PSDs of original and recovered signal, respectively; (c)(f)(c)(f)(c)(f) average
channel PSD distributions of original and recovered signal, respectively.

i.e. α = α(1) = · · · = α(C) and β = β(1) = · · · = β(C).

Hence, we do not differentiate the average channel PSDs p
(c)
c

from different channels. Instead, they are treated as multiple

samples of pc as they are drawn from the same statistic model.

The scales of axis in each subfigure pairs for comparison are

fixed to give a clear view of the differences. It is particularly

noted that the difference in the statistics of pc between original

and recovered signal is obvious in Fig. 2 (c) and (f).

III. MODELING AND LEARNING OF CHANNEL ENERGY

STATISTICS FOR COMPRESSIVE SPECTRUM SENSING

In this section, we formulate the statistic model of channel

energy in the CSS, and present an EM-based algorithm to learn

the unknown parameters in the formulated model.

A. Model and Problem Formulation

To examine the statistics of the recovered signal of compres-

sive spectrum sensing, the concise and direct way is through

mathematical analysis of the probability density function of

the output signal step by step following certain compressive

sensing algorithm. However, commonplace compressive sens-

ing algorithms include optimization sub-routines that have

complex and highly-nonlinear forms [27]–[29], which makes

the PDF derivation rather challenging. Instead, we tentatively

postulate a general statistical model where the hypotheses H0

and H1 of recovered signal still conform to central and non-

central chi-square distribution respectively with parameters

relaxed as unknown. To express this postulated statistic model

on the two hypotheses, we have

pc =







σ2

2R
r0, r0 ∼ χ2(2R) H0

βr1, r1 ∼ χ02(2R, α) H1

(9)

where σ2, R, α and β are no longer defined as in (4),

(7) and (8), and are treated as unknowns which are to be

estimated from the learning dataset. This effectively formulates

an MM learning problem of two components in each channel.

Specifically, after performing multiple runs of CS recovery

of the spectrum, suppose we have a series of T recovered

spectrum as the learning dataset. Thus, we can obtain CT
samples of pc[t] (t = 1, 2, · · · , CT ) according to (4). The

expression of likelihood function is formulated as

f(pc; σ
2, R, α, β, πH0 , πH1)

= πH0fH0(pc; σ
2, R) + πH1fH1(pc; R, α, β), (10)

where prior probability is represented as πH0 = Pr(Z =
H0) and πH1 = Pr(Z = H1). The MM learning problem

mentioned above is to find the optimal θθθo of parameters

θθθ = [σ2, R, α, β, πH0 , πH1 ] (11)

to obtain maximal likelihood (ML) estimation of parameters,

expressed by

θθθo = arg max
θθθ

CT
Y

t=1

f(pc[t];θθθ)

= arg max
θθθ

CT
X

t=1

log [f(pc[t];θθθ)]. (12)

Problem (12) can be solved by EM algorithm [31] which sets

a surrogate majorization function

Q(θθθ;θθθ(j))

= EZ|pc;θθθ(j)

n

CT
X

t=1

log [f(pc[t], z[t];θθθ)]
o

=

H1
X

z=H0

CT
X

t=1

Pr(Z = z|pc = pc[t];θθθ
(j)) log

n

πzfz(pc[t];θθθ)
o

(13)

parameterized by θθθ(j) and maximize the surrogate function

over θθθ iteratively. The joint probability density in (13) of pc

and latent variable of hypothesis Z = z in (13) is expressed

as

f(pc, z;θθθ) = πH0δ(z = H0)fH0(pc; σ
2, R)

+ πH1δ(z = H1)fH1(pc; R, α, β), (14)

where δ(a = A) is indicator function which equals to 1 only

if a = A and elsewhere 0. It is proved [31] that by iteratively

decreasing the surrogate function, each EM procedure will not

decrease the objective until convergence to at least a local

optimum.

B. EM Algorithm: Expectation

In expectation step, the probability term conditioned on θθθ(j)

in (13) is called “membership probability” and obtained by the

definition

M (j)
z [t] := Pr(Z = z|pc = pc[t];θθθ

(j))

=
π

(j)
z fz(pc[t];θθθ

(j))

π
(j)
H0

fH0(pc[t];θθθ(j)) + π
(j)
H1

fH1(pc[t];θθθ(j))
, (15)

where z = H0,H1.
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C. EM Algorithm: Maximization

The maximization step of EM procedure finds the next

update of parameters θθθ(j+1) by setting partial derivatives of

Q(θθθ;θθθ(j)) to zero if closed-form partial derivatives are avail-

able. For prior probabilities, considering the normalization

relationship M
(j)
H0

+ M
(j)
H1

= 1, the update, which is irrelevant

to PDF of chi-square distribution, simply follow

∂Q(θθθ;θθθ(j))

∂πH0

=

CT
X

t=1

M
(j)
H0

[t](πH0 )
−1 − M

(j)
H1

[t](1 − πH0)
−1

= 0 ⇒ π
(j+1)
H0

=

CT
X

t=1

M
(j)
H0

CT
(16)

and

π
(j+1)
H1

= 1 − π
(j+1)
H0

. (17)

Regarding updating σ2, it only relates to central chi-square-

like PDF fH0 , which has closed-form expression

fH0(pc; σ
2, R) =











( R

σ2

)

R

· (pc)
R−1

e−
Rpc

σ2

Γ(R)
, pc > 0

0, pc ≤ 0.

(18)

Thus, the partial derivatives of logarithm PDF over σ2 is

not relevant to Gamma function Γ(·), and the update can be

presented by,

∂Q(θθθ;θθθ(j))

∂σ2
=

CT
X

t=1

M
(j)
H0

[t]
�

− R

σ2
+

pc[t]R

σ4

�

= 0 ⇒ (σ2)(j+1) =

PT
t=1 M

(j)
H0

[t]pc[t]
PT

t=1 M
(j)
H0

[t]
. (19)

Exact optimization of the surrogate function over parameters

R, α and β requires differentiating non-central chi-square

PDF fH1 which is known to have a modified Bessel function

term including infinite series of Gamma function [32], so it

is difficult to derive a handy expression of derivatives. The

moment-matching method can be adopted as an alternative

approach of ML to estimate parameters of MMs by directly

matching the moment of mixture’s PDF and moment estima-

tions of samples [24]. In our case, however, the dimension

of parameter vector θθθ to be estimated is so large that we

need to match high-order moments and solve high-order

equations which is impractical. Although it is unfeasible to

directly apply optimization or moment-matching estimation,

we propose to use simpler moment-matching updates on the

above mentioned parameters in EM’s maximization step to

induce increase of the surrogate function. Relating to the

theory of EM algorithm [31], the non-decreasing property

of objective function in (12) can be preserved as long as

Q(θθθ(j+1);θθθ(j)) ≥ Q(θθθ(j);θθθ(j)), thus the maximization step

can be relaxed to an increasing step at a price of possibly

slower convergence rate. To illustrate the moment-matching

method in maximization step, we start by the update of K . The

second-order central moment of hypothesis H0 is expressed as

VarH0;θθθ = E{(pc − σ2)2|Z = H0;θθθ} = σ4/R. (20)

The second-order central moment estimation of samples pc[t]
on condition of H0 and parameters θθθj is expressed as (21).

Note that we treat a prior occurrence probability of samples

Pr(pc = pc[t]) as uniform across all t.

CT
X

t=1

(pc[t] − σ2)2 · Pr(pc = pc[t]|Z = H0;θθθ
(j))

=

CT
P

t=1
Pr(Z = H0|pc = pc[t];θθθ

(j))[pc[t] − (σ2)(j)]2

PT
t=1 Pr(Z = H0|pc = pc[t];θθθ(j))

=

PCT
t=1 M

(j)
H0

[t][pc[t] − (σ2)(j)]2

PCT
t=1 M

(j)
H0

[t]
. (21)

Then we use this second-order central moment estimation (21)

over θθθ(j) to match the parameters given in (20) for next update

θθθ(j+1),

[(σ2)(j+1)]2

R(j+1)
=

PCT
t=1 M

(j)
H0

[t](pc[t] − (σ2)(j))2

PCT
t=1 M

(j)
H0

[t]
, (22)

where R(j+1) is solved with (σ2)(j+1) given in (19). Similarly,

given R(j+1), the moment-matching updates for α and β is

obtained by the first-order moment and second-order central

moment of H1,

µH1;θθθ(j+1) = β(j+1)[2R(j+1) + α(j+1)]

=

PCT
t=1 M

(j)
H1

[t]pc[t]
PCT

t=1 M
(j)
H1

[t]
, (23)

and

VarH1;θθθ(j+1) = 4[β(j+1)]2[R(j+1) + α(j+1)]

=

PCT
t=1 M

(j)
H1

[t]
�

pc[t] − β(j)[2R(j) + α(j)]
�2

PCT
t=1 M

(j)
H1

[t]
.

(24)

It should be noted that the updates using moment-matching

method do not necessarily decrease Q(θθθ;θθθ(j)). In order to

guarantee an explicit non-decreasing step, we propose an

additional step where the moment-matching method only

updates the corresponding parameter if the value of the surro-

gate function is not decreased by moment-maching method.

This is accomplished by calculating the surrogate function

Q(θθθ(j+1);θθθ(j)) and Q(θθθ(j);θθθ(j)) where the value of central

and non-central chi-square PDFs can be well approximated

by numerical methods. Moreover, as (23) and (24) consist of

a quadratic equation set, it is noted that there will exist two sets

of solutions [α
(j+1)
1 , β

(j+1)
1 ] and [α

(j+1)
2 , β

(j+1)
2 ]. For each

update, we choose the set of solution leading to the greater

increase, if there is any, of the surrogate function.

To finalize this section, the proposed EM-based learning

algorithm above is summarized as in Algorithm 1.

IV. THRESHOLD ADAPTION VIA NOISE STATISTICS

ESTIMATION IN COMPRESSIVE SPECTRUM SENSING

Although in Section III we have presented that our

postulated statistical model (6), it is noted that Algorithm 1
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Algorithm 1 EM-Based Learning of Channel Energy Statistics

in Compressive Spectrum Sensing

Input: CT average channel PSD samples of pc[t], t =
1, 2, · · · , CT .

Output: Parameters θθθ(j) of two hypotheses’ PDF in (6) opti-

mized by (12).

1: initialize (σ2)(0) > 0, R(0) > 0, α(0) > 0, β(0) => 0,

1 > π
(0)
H0

= 1 − π
(0)
H1

> 0, j = 0.

2: repeat

3: for each hypothesis z = H0 and H1 and each sample

t = 0 to CT do

4: update membership probability M
(j+1)
z [t] as in (15)

5: end for

6: update (σ2)(j+1) as in (19)

7: update R(j+1) as in (22)

8: θθθtemp0 ← θθθ(j) with element R(j) replaced by R(j+1)

9: if Q(θθθtemp0;θθθ
(j)) < Q(θθθ(j);θθθ(j)) then

10: R(j+1) ← R(j)

11: end if

12: update π
(j+1)
H0

and π
(j+1)
H1

as in (16) and (17)

13: solve (23) (24) to get two sets of solutions

[α
(j+1)
1 , β

(j+1)
1 ] and [α

(j+1)
2 , β

(j+1)
2 ]

14: θθθtemp1 ← θθθ(j) with elements α(j) and β(j) replaced by

α
(j+1)
1 and β

(j+1)
1

15: θθθtemp2 ← θθθ(j) with elements α(j) and β(j) replaced by

α
(j+1)
2 and β

(j+1)
2

16: if Q(θθθtemp1;θθθ
(j)) > Q(θθθtemp2;θθθ

(j)) then

17: α(j+1) ← α
(j+1)
1 , β(j+1) ← β

(j+1)
1

18: else

19: α(j+1) ← α
(j+1)
2 , β(j+1) ← β

(j+1)
2

20: end if

21: if Q(θθθtemp1;θθθ
(j)) < Q(θθθ(j);θθθ(j)) and Q(θθθtemp2;θθθ

(j)) <
Q(θθθ(j);θθθ(j)) then

22: α(j+1) ← α(j), β(j+1) ← β(j)

23: end if

24: j ← j + 1
25: until ||Q(θθθ(j);θθθ(j)) − Q(θθθ(j−1);θθθ(j)||2 < �

is impractical in CSS applications due to the following

reasons:

1. Algorithm 1 involves multiple calculations of the surro-

gate function in each iteration, which requires considerable

computational effort;

2. As a common drawback of EM algorithms, Algorithm 1

can converge to one of many local maxima. Setting initial

values θθθ(0) close to the real maxima helps the algorithm

converge to the global maximum [33]. In order to find the

global maximum, a common practice is that the algorithm

should run multiple times with θθθ(0) randomly valued, which

adds more computational complexity. Alternatively, human

involvement to choose the proper θθθ(0) or other initial value

selection scheme should be applied;

3. In real-world applications, the sensed channel

energy or channel model of each channel is hardly likely to

be the same. Hence the samples from active channels would

be drawn from differently parameterized hypothesis H1,

which may lead to failure to fit with the postulated statistical

model (6).

Due to these impracticalities, in this section, we propose

a robust and practical threshold adaption scheme via noise

statistics estimation based on the verified statistical model

of hypothesis H0 in (6). However, these drawbacks do not

decrease the necessity of Algorithm 1. The purpose of Algo-

rithm 1 is not for practice after all - it is proposed to verify

the postulated statistical model (9) and for the general interest

of the parameters θθθ with various CSS settings.

A. The Proposed Threshold Adaption Scheme

In this subsection, a threshold adaption scheme which

specifically aims to achieve CFAR in detection phase is pre-

sented. According to NP detection theory, CFAR only relates

to hypothesis H0, which means that only parameter learning

of H0 is required. In the following, procedures of the proposed

threshold adaption scheme are detailed.

1) Identification of Vacant Channels in the Learning

Dataset: Given learning dataset being T 0 samples of spectrum

recovered by CS algorithm, prior to estimating the parameters

relating to H0, the first step of the proposed threshold adap-

tion is to initially identify these samples of hypothesis H0.

Specifically, given t = 0, 1, · · · , T 0 observations of recovered

spectrum and consequently p
(c)
c [t]’s, we try to identify these

channels that are free throughout these observations. Due

to sparse spectrum usage and rapid observation acquisition,

it is a reasonable assumption that the channel occupancy

is static with at least one occupied and multiple vacant

channels during the acquisition process. This identification

problem falls into the category of clustering [34]. The average

channel PSD level p
(c)
c of these vacant channels conforms to

the same distribution; however, other channels have different

statistics (usually larger mean and standard deviation) from

these of vacant channels. We exploit this feature and k-means

clustering algorithm to identify these vacant channels. In this

specific problem, k-means clustering are conducted in two

dimensions - sample means and sample standard deviation - to

produce two clusters. K-means is a basic model of clustering

which aims to find the clustering solution with minimum intra-

cluster distance. In this particular case, it aims to solve the

following optimization problem to obtain the vacant channel

set C, which writes

C = argmin
X

X

X=S,S\X

X

k∈X

�

�

�

�

�

ωωω(k) −
X

v∈X

ωωω(v)/|X |
�

�

�

�

�

2

, (25)

where S = 1, 2, · · · , C is the set of all channels and

ωωω(c) =













PT ′

t=1 p
(c)
c [t]

T 0
,

v

u

u

u

t

PT ′

t=1

�

p
(c)
c [t] −

�
T ′

τ=1 p
(c)
c [τ ]

T ′

�2

T 0 − 1













.

(26)

Details of k-means clustering algorithm are not to be elabo-

rated in this paper and readers are referred to [34] and [35].
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2) ML Estimation of Parameters in H0: After these vacant

channels being identified, the samples of these channels are

used to estimate the parameters R and σ2 of chi-square-like

distribution in (18). Denote the number of identified vacant

channels as C0 = |C|. ML estimator which maximizes the joint

probability of each sample in the dataset for estimation [36]

is adopted, expressed by

(Ro, (σ2)o) = argmax
R,σ2

L(σ2, R)

= argmax
R,σ2

T ′

Y

t=1

Y

c∈C

fH0(p
(c)
c [t]; σ2, R). (27)

The maximization1 is achieved by solving the stationary point

of the log likelihood function, where

∂ log [L(σ2, R)]

∂σ2
=

C0T 0R

σ2
− R

PT ′

t=1

P

c∈C p
(c)
c [t]

σ4
= 0

⇒ (σ2)o =

PT ′

t=1

P

c∈C p
(c)
c [t]

C0T 0
(28)

and

∂ log [L(σ2, R)]

∂R

= C0T 0[log R + 1 − log σ2 − Γ0(R)

Γ(R)
]

+
T ′

X

t=1

X

c∈C

log p(c)
c [t] −

PT ′

t=1

P

c∈C p
(c)
c [t]

σ2
= 0. (29)

(σ2)o can be easily solved in (28). However, Ro is not easy to

solve analytically but can be solved numerically. Use Stirling’s

expansion [37] of digamma function when R is relatively large

Γ0(R)

Γ(R)
= log(R) − 1

2R
− 1

12R2
+

1

120R4

− 1

252R6
+ O

�

1

R8

 

, (30)

and adopt a partial cut-off sum of the series to insert into (29).

Thus the equation (29) can be solved by Newton-Ralphson

method which implements the iteration

R(j+1) ← R(j) − ∂ log [L(σ2, R)]/∂R

∂2 log [L(σ2, R)]/∂R2

!

!

!

!

R=R(j)

, (31)

where the first and second partial derivatives are easy to obtain

as it only relates to polynomial of R. The initial value of

iteration should be near the root to ensure fast convergence

and it can be obtained by moment-matching. Recall (20), and

the initial value is obtained by

R(0) =
C0T 0[(σ2)o]2

PT ′

t=1

P

c∈C[p
(c)
c [t] − (σ2)o]2

. (32)

1Examine the equations (28) and (29). It is noted that partial derivatives
of log

�
L(σ2, R)

�
with regards to R > 0 and σ2 both have only one zero

point. Hence global optimality is guaranteed.

3) Threshold Adaption: NP tests on channel energy is

deployed based on the threshold δ

p(c)
c

H1

≷
H0

δ, (33)

where the threshold can be determined by CFAR strategy.

Probability of false alarm are found to satisfy the constant

complementary cumulative probability density (CCPD) of H0,

Pf = Pr(p(c)
c > δ|H0) =

Γ(R, Rδ
σ2 )

Γ(R)
, (34)

where Γ(a, b) is the incomplete Gamma function. For given Pf

in CFAR, the corresponding threshold δ can be easily found

numerically, for example, by binary search method, as CCPD

values can be computed2 and is monotonically decreasing.

B. Asymptotic Performance of the Proposed Threshold

Adaption Scheme

Here we analyze the asymptotic performance of the noise

energy statistics estimation and threshold adaption. As a direct

conclusion from central limit theorem (CLT), the ML estima-

tor (27) has the property of asymptotic minimum-variance and

unbiased estimator [36], specifically,
(

Ro, (σ2)o
) C′T ′

∼ N
(

(R, σ2), III−1(R, σ2)
)

, (35)

where Fisher information matrix is

III(R, σ2)

=









−E

�

∂2 log [L(σ2, R)]

∂R2

�

−E

�

∂2 log [L(σ2, R)]

∂R∂σ2

�

−E

�

∂2 log [L(σ2, R)]

∂σ2∂R

�

−E

�

∂2 log [L(σ2, R)]

∂(σ2)2

�









=







C0T 0

�

1

R
− Γ00(R)

Γ0(R)

 

0

0
C0T 0R

σ4






. (36)

The variance of estimated parameters
(

Ro, (σ2)o
)

asymptoti-

cally approaches Cramer-Rao lower bound,

Var(Ro)
C′T ′

∼ 1

C0T 0

�

1

R
− Γ00(R)

Γ0(R)

 −1

, (37)

and

Var
(

(σ2)o
) C′T ′

∼ σ4

C0T 0R
. (38)

With the increasing and sufficiently large number of sam-

ples C0T 0, these lower bounds (37) and (38) can be approached

asymptotically and well approximates the real variance, which

represents the analytic performance of the ML estimation (27).

Moreover, the variance of the real Pf is another interested

parameter, as it indicates how well the proposed noise statistics

estimation and threshold adaption can determine a threshold to

keep a constant Pf . To quantify the variance of Pf , the asymp-

totic variance bounds (37) and (38) are used. To obtain the

closed-form expression of the variance of Pf , the variance of

Pf with regards to random variables Ro and (σ2)o should

2Note R in (34), as an output of the proposed ML estimation, can be
arbitrary positive value. In simulations we use Matlab functions chi2cdf

to calculate CCPD.
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Fig. 3. Asymptotic variance lower bound (logarithm scale) of Pf which
is determined by proposed ML estimation and threshold adaption against the
two parameters.

be derived using the relationship (34). As the expression (34)

has complex formulation which contains incomplete Gamma

function, the derivation of the variance of Pf is not a triv-

ial task. Alternatively, Monte-Carlo simulations are used to

inspect this variance, where T 0 = 34 (the same value used

in Section V) is adopted and sample variance is used as the

approximation to the real variance. The legitimacy behind this

Monte-Carlo simulation is the law of large numbers - for the

simulation times large enough, the sample variance of multiple

independent observations of Pf converges to the variance of

the random variable Pf . Fig. 3 gives the numerical results

of variance lower bound of Pf against R and σ2 given T 0

value of 50, 200 and 500 respectively. It is noted that the

variance of Pf is irrelevant of parameter σ2, as a result of

the fact that σ2 is a factor only accounting for the dilation of

the channel energy statistics in (9). However, Pf has shown

increasing variance with R evidently. With the interested range

of R ∈ (0, 32] in Fig. 3, the variance of Pf compared with

the target value can be kept small, by selecting a proper value

of T 0.

V. NUMERICAL ANALYSIS

In this section, simulation results of the proposed signal

energy statistics algorithm and threshold adaption via noise

statistics estimation are presented. We generate time-domain

signals as in (39) to emulate signal with continuous support

in frequency domain,

st
(n) =

K
X

i=1

p

EiBsinc[B(n − ni)]e
j2πfit, (39)

where K is the number of active channels; B is channel

bandwidth; Ei, ni, fi stands for total energy, time offset and

central frequency of the ith active channel. To simulate the

band of TVWS in UK (470-790MHz), we choose the inter-

ested spectrum bandwidth to be 320MHz and set N = 1280,

B = 8MHz, K = 6, and Ei = 1280/6. For each combination

of recovery algorithm, SNR and compression ratio, learn-

ing dataset is generated by the channel occupancy patterns

as [f1, · · · , f6] = [36, 44, 164, 172, 244, 252](MHz). SNR is

defined as SNR = ||ststst||22/(Nσ2) where σ2 is the power of

complex zero-mean additive noise w
(n)
t ∼ CN (0, σ2).

Fig. 4. (a)(c) Histogram and learned distributions of BP recovery,
SNR = 0dB, compression ratio of 0.2, in AWGN and Rayleigh channel
respectively; (b)(d) Likelihood function over first 25 iterations of learning
process in (a)(c), respectively.

A. The Effectiveness of Channel Energy Statistics Learning

for Compressive Spectrum Sensing

In this subsection, we focus on and implement the pro-

posed channel energy statistics learning algorithm using

the samples pc[t] from channel set whose central fre-

quencies are [f1, · · · , f6] and [f7, · · · , f12] = [60, 68, 188,
196, 268, 276](MHz) so that this set of C = 12 channels has

channel occupancy rate of 0.5. The dimension of the dataset

is T = 300.

We experiment the proposed learning algorithm over recov-

ered signals by three major sparse recovery algorithms - BP,

OMP and SBL, and two propagation scenarios - AWGN and

Rayleigh channel. Fig. 4 (a) and (c) exemplify the distri-

butions of average channel PSD level p
(c)
c conditioned on

hypotheses H0 and H1 and unconditional distribution whose

parameters are learned from the proposed algorithm, using BP,

compression ratio of 0.2 and SNR of 0dB, over AWGN and

Rayleigh channel respectively. It can be seen that the learned

distributions align well with the histogram of learning dataset

in both cases. Fig. 4 (b) and (d) correspond to (a) and (c)

respectively and show the increasing and convergent results

of likelihood functions which the proposed learning algorithm

aims to maximize. Fig. 5 (a) and (b) show the learning results

of signals recovered by OMP and SBL algorithm respectively.

Again, we set SNR to 0dB in AWGN channel and compression

ratio of 0.5 and 0.25 in (a) and (b) respectively. The examples

in Fig. 5 indicate that the learning results may also describe

the empirical distribution of learning dataset with OMP and

SBL recovery algorithms.

To further characterize how well the empirical distribution

from simulation matches our postulated model in (9), we adopt

the Kullback-Leibler divergence (KLD) as a measure of the

similarity of the two distribution [38]. KLD may be any

non-negative value. KLD of 0 reveals two identical distrib-

utions, and a smaller KLD near 0 indicates more similarity.

From simulations, the learning dataset forms a histogram

of empirical distribution, instead of a continuous probability
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Fig. 5. Histogram and learned distributions, SNR = 0dB in AWGN channel,
using (a) OMP with compression ratio of 0.5 and (b) SBL with compression
ratio of 0.25.

density function. Therefore, we adopt the discrete probability

form of KLD definition,

DKL(PempiricalkPmodel) =

I
X

i=1

Pempirical(i) log

�

Pempirical(i)

Pmodel(i)

 

,

(40)

where Pempirical(i) is the histogram value of empirical distrib-

ution, normalized by

I
X

i=1

Pempirical(i) = 1; (41)

Pmodel(i) is the normalized probability in the ith interval of

the postulated model, expressed by

Pmodel(i) =

R

ith interval
fz(pc;θθθ

o)dpc
R

all intervals in I fz(pc;θθθo)dpc

, z = H0,H1. (42)

The range of interested intervals is determined as

[a, b] =
h

min {pc [t] |t = 1, 2, · · · , T 0} ,

max {pc [t] |t = 1, 2, · · · , T 0}
i

. (43)

Then the interval is evenly divided into I (in simulations

I = 250 is used) smaller ones such that the ith interval

corresponds to
,

a + (i − 1) b−a
I

, a + i b−a
I

-

. Fig. 6 plots the

KLD values from empirical data to our postulated model,

for three kinds of interested algorithms, against compression

ratio and SNR respectively. In all cases of our simulations,

KLD values turn out to be low, within the range from 10−2

to 5 × 10−2. This result verified that the proposed learning

algorithm fits well with our postulated model.

Next, we change the compression ratio and focus on the

parameter changes learned by the proposed algorithm. Fig. 7

gives these results of three recovery algorithms in AWGN

channel under the condition SNR = 0dB. Moreover, each

parameter value of the average channel PSD level distribution

of the original signal is drawn as a reference. As a general

and intuitive trend, most parameters from signals recovered

by three algorithms approach to the orignal signal’s reference

with increasing compression ratio. An interesting exception

is R of SBL which fluctuates slightly near 32. This can be

explained by SBL’s assumption of Gaussian prior distribution

Fig. 6. KLD from empirical data to postulated models versus compression
ratio and SNR. (a)(b) BP; (c)(d) OMP; (e)(f) SBL.

Fig. 7. Learned parameters against compression ratio using three major
recovery algorithms, compared with original signal parameters. SNR = 0dB,
AWGN channel.

of the signal to be recovered [28]. Given this assumption and

by the definition of chi-square distribution, the distribution of

average channel PSD level has a definite DoF which equals

twice of the number of PSD bins in each channel, considering

complex Gaussian noise over each PSD bin. Fig. 8 gives

similar results in Rayleigh channel situation with the same

settings as in Fig. 7. It is noted that the SBL’s parameter α
is negligible and approximates the original signal’s reference

of 0. In Rayleigh channel scenario, not only the elements in sfsfsf

corresponding to the hypothesis H0 but also H1 have Gaussian
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Fig. 8. Learned parameters against compression ratio using three major
recovery algorithms, compared with original signal parameters. SNR = 0dB,
Rayleigh channel.

distribution. This prior distribution of original signals matches

the SBL’s Gaussian assumption. As a result, SBL induces the

Gaussainity of the original signal set, which leads to central

chi-square statistics in H1 in the recovered signal.

B. Performance of Noise Energy Estimation and

Threshold Adaption

In this section, we evaluated the performance of the pro-

posed noise energy estimation and threshold adaption in

Section III. As the first step, k-means clustering is performed

for several learning datasets with different SNRs and dataset

dimensions. Qualitatively, it is obvious from CLT that the

larger dataset dimension is, the more concentrated the sta-

tistics ωωω(c) within one cluster (for either vacant or incumbent

channels) tend to be. Thus, it means that the global maximum

of clustering objective (25) is more likely to correspond to the

true channel occupancy pattern. On the other hand, in lower

SNR cases, the statistics ωωω(c) from vacant and incumbent

channel clusters are less seperated. To investigate the effective-

ness of the proposed k-means clustering step, we illustrate the

clustering results with a small dataset (T 0 = 20) and low SNR

(−10dB), accompanied by other three clustering results with

larger dataset T 0 = 200 and higher SNR of −8dB. Although

the clustering performance tends to be deteriorated by decreas-

ing SNR and sample size T 0, the results in Fig. 9 show that

the proposed k-means clustering suffices to identify the vacant

channels in a worst case with SNR = −10dB and small

dataset size T 0 = 20. Here, the SNR of −10dB is a level

where compressive spectrum recovery becomes unreliable so

that the detection performance is not usable.

Next, we extract the samples of p
(c)
c from identified

vacant channels, perform ML estimation based on T 0 = 200
spectrum samples and obtain threshold δ given Pf = 0.01.

In Fig. 10 and Fig. 11, the adapted thresholds are plotted

Fig. 9. K-means clustering for identifying the vacant channels from incum-
bent ones. It is shown that the clustering algorithm successfully identifies the
vacant channels with low SNR (−10dB) and small dataset (T ′ = 20).

Fig. 10. Threshold adapted from our proposed scheme against compres-
sion ratio of three major recovery algorithms, given target Pf = 0.01.
SNR = 0dB.

Fig. 11. Threshold adapted from our proposed scheme against SNR of three
major recovery algorithms, given target Pf = 0.01. Compression ratio is 0.4.

for three major recovery algorithms, against compression

ratio and SNR respectively. To stress the necessity of the

proposed threshold adaption scheme, again, thresholds for

non-compressive cases are calculated based on original

signals ststst and drawn for reference. These two figures are

direct illustrations of how evidently discrepant the thresholds

should be valued among varying SNRs, compression ratios

and different choices of recovery algorithms, and especially

between non-compressive and compressive cases. Moreover,

as an intuitive rule, thresholds of all three CS algorithms
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Fig. 12. CFR detection performance of three major recovery algorithms
against compression ratio using proposed noise energy statistics estimation
and threshold adaption. SNR = 0dB.

Fig. 13. CFR detection performance of three major recovery algorithms
against SNR using proposed noise energy statistics estimation and threshold
adaption. Compression ratio is 0.4.

approach these of non-compressive cases with compression

ratio and SNR increasing.

Using the thresholds adapted, we perform Monte-Carlo

test of the detection performance by using these thresholds

for detection over a new sample set of recovered spectrum.

Note that the dataset we used here for detection perfor-

mance simulation is other than the learning dataset we used

for threshold adaption. Fig. 12 illustrates the probability of

detection and false alarm against compression ratio using

the proposed threshold adaption scheme for the three major

recovery algorithms with SNR = 0dB. It is discovered

that our proposed threshold adaption scheme can maintain

a close approximate of predefined Pf of 0.01. Similarly,

Fig. 13 gives CFAR detection performance against SNR for the

three selected recovery algorithms while keeping compression

ratio 0.4. Again, the actual Pf tends to maintain constant with

minor variance. Moreover, the results of Pf which are kept

near constant from Fig. 12 and Fig. 13 in turn verify the rea-

sonableness of our postulated model (9) and the effectiveness

of our proposed threshold adaption scheme via noise energy

statistics estimation.

VI. CONCLUSION

In this paper, we for the first time addressed the inconsis-

tency of channel energy statistics and hence optimal threshold

between CSS and conventional non-compressive spectrum

sensing. Then a channel energy statistics model was postulated

for CSS and an algorithm used for learning the parameters

of the postulated model was proposed. We postulated that

the two hypotheses of channel energy of absent and active

radio activity conform to central and noncentral chi-square

distributions, respectively, both with unknown parameters.

Given the proposed statistics model being validated, a robust

and practical scheme of threshold adaption achieved by chan-

nel noise statistics estimation was proposed. The asymp-

totic performance of the scheme was analyzed by presenting

the variance lower bound of actual false alarm probability.

By numerical simulations, it was shown that our postulated

model provided good fit to the empirical distributions, in the

sense of data-to-model KLD. Next, out of interest of the trend

of these parameters in different CS settings, we experimented

our learning algorithm in various compression ratio settings

and presented the trend of each parameter versus compression

ratio. Furthermore, the adapted thresholds given target false

alarm probability were plotted against SNR and compression

ratio, where the discrepancies in thresholds between com-

pressive and non-compressive spectrum sensing are directly

illustrated. Moreover, the actual false alarm probability using

the thresholds adapted by our proposed scheme was shown to

be near the target value, which inversely verified the validity

of our postulated model.
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