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Abstract—We consider the channel estimation problem and the
channel-based wireless applications in multiple-input multiple-
output orthogonal frequency division multiplexing systems as-
sisted by intelligent reconfigurable surfaces (IRSs). To obtain
the necessary channel parameters, i.e., angles, delays and gains,
for environment mapping and user localization, we propose a
novel twin-IRS structure consisting of two IRS planes with a
relative spatial rotation. We model the training signal from
the user equipment to the base station via IRSs as a third-
order canonical polyadic tensor with a maximal tensor rank
equal to the number of IRS unit cells. We present four designs
of IRS training coefficients, i.e., random, structured, grouping
and sparse patterns, and analyze the corresponding uniqueness
conditions of channel estimation. We extract the cascaded channel
parameters by leveraging array signal processing and atomic
norm denoising techniques. Based on the characteristics of the
twin-IRS structures, we formulate a nonlinear equation system
to exactly recover the multipath parameters by two efficient
decoupling modes. We realize environment mapping and user
localization based on the estimated channel parameters. Simu-
lation results indicate that the proposed twin-IRS structure and
estimation schemes can recover the channel state information
with remarkable accuracy, thereby offering a centimeter-level
resolution of user positioning.

Index Terms—Channel estimation, parameter decoupling, ten-
sor factorization, twin-IRS structure, user localization.

I. INTRODUCTION

Millimeter wave (mmWave) (30–300 GHz) technologies

have been identified as a promising candidate for tackling the

data traffic deluge and frequency resource shortage in the fifth

generation era [1]. Exploiting higher-frequency spectrum, e.g.,

terahertz (0.1–10 THz), has also been regarded as one of the

potential development directions of the future sixth generation

wireless communications [2]. The short signal wavelength en-

ables miniaturized implementation of massive multiple-input

Manuscript received February 5, 2021; revised July 13, 2021; accepted
August 28, 2021. The work of S. Jin was supported in part by the National
Science Foundation of China (NSFC) for Distinguished Young Scholars under
Grant 61625106 and the NSFC under Grant 61941104. The work of M.
Matthaiou was supported by the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant
agreement No.101001331) and by a research grant from the Department for
the Economy Northern Ireland under the US-Ireland Research and Develop-
ment Partnership Programme. The associated editor coordinating the review
of this paper and approving it for publication was Dr. Wei Ni. (Corresponding

authors: Xiaohu You; Shi Jin.)
Y. Lin, S. Jin, and X. You are with the National Mobile Communica-

tions Research Laboratory, Southeast University, Nanjing, P.R. China, email:
yxlin@seu.edu.cn; jinshi@seu.edu.cn; xhyu@seu.edu.cn.

M. Matthaiou is with the Institute of Electronics, Communications and
Information Technology (ECIT), Queen’s University Belfast, Belfast, BT3
9DT, U.K., email: m.matthaiou@qub.ac.uk.

multiple-output (MIMO) arrays, providing considerable direc-

tional beamforming gains [3]. In order to address the limited

coverage and line-of-sight (LoS) obstruction of high-frequency

systems, intelligent reconfigurable surfaces (IRSs) have been

recently investigated to artificially establish controllable non-

line-of-sight (NLoS) links [4].

IRS technologies can contribute to the full coverage and

broadband connectivity of the future wireless networks [5].

An IRS, typically a programmable metasurface, is composed

of a massive number of unit cells independently interacting

with incident waves [6]. The reflection coefficients of IRS

elements can be predefined by digital controllers to perform

real-time manipulation of electromagnetic responses [7]. IRSs

can help realizing a smart wireless propagation environment,

providing additional degrees of freedom for transceiver de-

sign and network optimization [8]. Some works have already

integrated IRSs into wireless applications, e.g., MIMO detec-

tion, non-orthogonal multiple access, radio localization and

mapping, etc. [9]–[11]. Nevertheless, these services require

precise knowledge of the propagation channels and multipath

parameters, thereby entailing fundamental challenges to chan-

nel estimation involving fully passive IRS modules.

We will now delineate the following relevant works: An

efficient scheme that developed parallel and sequential train-

ing designs was proposed in [12]. A compressed sensing

(CS) method that converted the channel estimation into a

sparse recovery problem was proposed in [13]. A tensor-

based approach that factorized the cascaded channel by it-

erative decompositions was presented in [14]. A message-

passing algorithm that solved a dictionary learning problem

was presented in [15]. A two-timescale training protocol that

individually estimated the one-hop channels was developed

in [16]. A matrix-calibration scheme that developed a joint

calibration and estimation algorithm was developed in [17].

Most of these works achieve separated channels from the base

station (BS) or user equipment (UE) to the IRS plane, which,

however, induces inherent estimation ambiguities that hinder

the exact recovery of multipath parameters. These ambigui-

ties limit the integration of IRSs into environment-dependent

applications [11], which can only be removed with strong

or unrealistic assumptions, e.g., normalized power, channel

reciprocity, quasi-static states, a priori long-term information,

etc [14]–[17].

In this paper, we consider the channel estimation of IRS-

assisted MIMO orthogonal frequency division multiplexing

(OFDM) systems. By leveraging the concept of multi-IRS

networks [18], we propose a novel twin-IRS structure com-
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posed of two IRS planes with a relative spatial rotation.

This three-dimensional (3-D) structure can provide channel

information along three orthogonal spatial dimensions, which

enables us to accurately extract the channel parameters in 3-D

propagation spaces. By leveraging the geometric relationship

of cascaded parameters obtained from the twin-IRS structures,

we can precisely recover the channel parameters, i.e., angles

of arrival (AoAs), angles of departure (AoDs) and time de-

lays, by solving systems of nonlinear equations. Unlike some

existing works that rely on strong assumptions, e.g., BS-IRS

LoS components with a priori information [19], [20], our

work is able to exactly decouple the cascaded parameters of

common channels, supporting precise environment mapping

and localization applications. The main contributions of this

paper are summarized as follows:

• We model the training signal as a third-order canonical

polyadic (CP) tensor, transforming the channel estimation

problem into a tensor factorization problem [21], [22].

By leveraging the assignment flexibility and distribution

regularity of IRS unit cells, we apply the MIMO anten-

na designs and array processing techniques to the IRS

configuration. We introduce four training designs, i.e.,

random, structured, grouping and sparse patterns, as well

as, the corresponding uniqueness conditions of channel

estimates. The structural information artificially attached

to IRS coefficients can help to efficiently reduce the

training overhead.

• We combine the concept of sparse/grouping arrays and

atomic norm denoising techniques with the tensor oper-

ations to realize the cascaded parameter recovery [23]–

[26]. Moreover, by leveraging the physical relationship of

the novel twin-IRS structures, i.e., the adjacent position

and relative rotation, we introduce additional information

of channel paths into the phases/amplitudes of the IRS

array response vectors. We further formulate a nonlinear

equation system of cascaded parameters and propose

two efficient decoupling modes to exactly recover the

channel parameters, i.e., AoA/AoDs and time delays.

Note that in most prior works (e.g. [14]–[17], [19],

[20]), these parameters cannot be obtained without strong

assumptions or estimation ambiguities.

• By leveraging the geometric characteristics of mmWave

propagation, we implement a straightforward 3-D prop-

agation environment mapping, including scatterer posi-

tioning of NLoS paths, user localization and orientation

determination, based on the recovered channel path pa-

rameters. Dedicated wideband and narrowband training

schemes with single and multiple twin-IRS structures are

respectively proposed.

Simulation results indicate that the proposed schemes can

achieve considerable channel estimation accuracy with re-

duced training overhead for large-scale IRSs with massive

number of elements. More importantly, the proposed twin-

IRS structure can help decouple the multipath parameters,

leading to accurate environment mapping with a centimeter-

level resolution.

The rest of the paper is organized as follows: Section II

introduces the IRS-assisted MIMO-OFDM system, as well as,

the proposed twin-IRS structure. Section III presents the train-

ing pattern designs of IRS coefficients and the tensor-based

channel estimation schemes. Section IV presents the recovery

and decoupling procedures of cascaded channel parameters.

Section V discusses the application of user localization based

on the estimated channel information. Section VI presents

the numerical results of the channel estimation schemes and

environment mapping applications. Section VI draws the most

important conclusions.

Notations: a, A, A and A denote vectors, matrices, tensors

and element sets, respectively; (·)T , (·)∗, (·)H and (·)† denote

the transpose, conjugate, Hermitian transpose and pseudo-

inverse, respectively; A(N ), A[N ] denote the columns and

rows of A indexed by N , respectively; a•b and a×b denote

the dot and cross products, respectively; ∥a∥, ∥A∥F denote

the 2-norm and Frobenius-norm, respectively; ⊗, ⊙ and ◦
denote the Kronecker, Khatri-Rao and tensor outer products,

respectively; Diag(a) denotes the diagonal matrix formed by

a; Tr(A) denotes the matrix trace; I(n) , {1, . . . , n}; r(A),
k(A) denote the general rank and Kruskal-rank, respectively;

0n, 1n and In denote all-zeros, all-ones vectors and identity

matrices, respectively; Matr(X ; [k1, . . . , kP ], [kP+1, . . . , kN ])

matricizes X ∈ C
I1×···×IN into X ∈ C

∏P
p=1 Ikp×

∏N
q=P+1 Ikq ;

Tens(X; [I1, . . . , IN ], [k1, . . . , kP ], [kP+1, . . . , kN ]) tensorizes X

to X ; X ×n U denotes the mode-n tensor-matrix product

[27]. The symbols of important variables and parameters are

summarized in Table I.

TABLE I
SYMBOLS OF IMPORTANT VARIABLES AND PARAMETERS

Symbol Definition

NB(U) BS (UE) antennas

MB(U) BS (UE) RF chains

NI reflectors in one IRS plane
Nh(v) horizontal (vertical) IRS reflectors

K OFDM subcarriers
Ktr training subcarriers
Ptr training frames
Ttr training time slots per frame
Mtr BS training streams
LBI(IU),r BS-IRS (IRS-UE) channel paths

αBI(IU),r,ℓ BS-IRS (IRS-UE) path gain

τBI(IU),r,ℓ BS-IRS (IRS-UE) path delay

φB(U),r,ℓ horizontal AoA at BS (AoD at UE)

θB(U),r,ℓ vertical AoA at BS (AoD at UE)

φA(D),r,ℓ horizontal AoA (AoD) at IRS

θA(D),r,ℓ vertical AoA (AoD) at IRS

G grouping pattern: total sub-groups
Ngh(gv) grouping pattern: sub-group size

Nhd(vd) sparse pattern: dense subarray size

Nhs(vs) sparse pattern: sparse subarray size

II. SYSTEM MODEL

We consider an IRS-assisted MIMO-OFDM system as il-

lustrated in Fig. 1(a), where one base station (BS) with NB

antennas and MB radio frequency (RF) chains communicates

with one user equipment (UE) with NU antennas and MU

RF chains. The system occupies K subcarriers with a central
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Fig. 1. An IRS-assisted MIMO-OFDM system. (a) One BS communicates
with one UE via multiple IRSs with reflection coefficients configured by
a controller. (b) A twin-IRS structure composed of two IRS planes with a
relative spatial rotation.

carrier frequency fc and a bandwidth fs, where Ktr subcarriers

are allocated for training. Multiple two-dimensional (2-D)

IRSs with NI elements are employed [5]–[7]. We propose to

arrange every two IRS planes closely together, constructing

R twin-IRS structures as shown in Fig. 1(b). Without loss of

generality, we assume that the primary IRS is configured on the

yz-plane (in the local coordinate system), while the secondary

IRS is rotated with horizontal and vertical angles, i.e., δh and

δv, relative to the primary one. Note that δh, δv can be viewed

as the yaw and pitch angles of the rotation about the z- and

y-axes, respectively. Other definitions of rotation, e.g., Euler

angles or quaternion [28], can also be applied.

We consider an uplink communication scenario, where the

direct BS-UE channel is assumed to be obstructed.1 The

channel estimation procedure occupies Ptr training frames,

each containing Ttr training time slots. The training signal

within the tth time slot of the pth frame at the kth subcarrier

reflected via the primary IRS of the rth twin-IRS structure can

be represented as2

yr,k,p,t =WH
r,kHBI,r,kDiag(ψr,k,p)

×HIU,r,kFr,k,txr,k,t + nr,k,p,t, (1)

where xr,k,t ∈ C
MU and nr,k,p,t ∈ C

MB denote the transmit-

ted pilots and additive noise, respectively; Fr,k,t ∈ C
NU×MU

denotes the precoding beamformer within the tth time slot of

each frame; Wr,k ∈ C
NB×Mtr denotes the combining beam-

former with Mtr ≤ MB data streams processed in parallel;

HBI,r,k ∈ C
NB×NI and HIU,r,k ∈ C

NI×NU denote the one-

hop IRS-BS and UE-IRS channels, respectively; ψr,k,p ∈ C
NI

denotes the dynamic reflection coefficient vector during the pth

training frame, which is sensitive to signal frequencies [30].

1Actually, the BS-UE channel is expected to remain static with a large
coherence time. It can be efficiently removed by considering two received
signals with different IRS training coefficients and mutually subtracting them.
The IRS training pattern designs presented in this work are still applicable.

2The adjacent primary/secondary planes of each twin-IRS structure are
expected to share identical propagation conditions, which can be equivalently
regarded as a 2NI-element 3-D IRS. The proposed training designs can be
directly applied to this 3-D topology. Moreover, multiple twin-IRS structures
are distributed far apart from each other, whose propagation channels tend to
be weakly correlated. By leveraging the spatial orthogonality with directional
beamforming, or applying interference elimination methods with orthogonal
reflection coefficients [29], one can identify the signals via different twin-IRS
structures. For simplicity of notation and illustration, we here only represent
the signal via the primary IRS of one twin-IRS structure.

We consider IRS-assisted systems working at mmWave

frequencies, where the uplink spatially sparse channels HBI,r,k

and HIU,r,k via the rth primary IRS can be expressed as

HBI,r,k =

LBI,r∑

ℓ=1

αBI,r,ℓe
−j 2πkfs

K
τBI,r,ℓF (ϕD,r,ℓ, θD,r,ℓ)︸ ︷︷ ︸
βBI,r,k,ℓ

× aB(ϕB,r,ℓ, θB,r,ℓ)a
H
I (ϕD,r,ℓ, θD,r,ℓ)

= AB,rDiag(βBI,r,k)A
H
D,r, (2a)

HIU,r,k =

LIU,r∑

ℓ=1

αIU,r,ℓe
−j 2πkfs

K
τIU,r,ℓF (ϕA,r,ℓ, θA,r,ℓ)︸ ︷︷ ︸
βIU,r,k,ℓ

× aI(ϕA,r,ℓ, θA,r,ℓ)a
H
U (ϕU,r,ℓ, θU,r,ℓ)

= AA,rDiag(βIU,r,k)A
H
U,r, (2b)

where LBI,r, LIU,r denote the numbers of propagation paths;

αBI,r,ℓ, αIU,r,ℓ denote the random complex gains; τBI,r,ℓ,

τIU,r,ℓ denote the time delays; ϕB(U),r,ℓ, θB(U),r,ℓ denote the

horizontal and vertical AoAs at the BS (AoDs at the UE),

respectively; ϕD(A),r,ℓ, θD(A),r,ℓ denote the horizontal and

vertical AoDs (AoAs) at the primary IRS of the rth twin-IRS

structure, respectively; F (ϕ, θ) denotes the angle-dependent

IRS power radiation pattern defined as [31]

F (ϕ, θ) , (sin θ cosϕ)
q
2 , (3)

where q ≥ 0 is the power radiation coefficient; q = 0 corre-

sponds to omnidirectional IRS elements; AB,r ∈ C
NB×LBI,r ,

AU,r ∈ C
NU×LIU,r concatenate the antenna steering vec-

tors formed by {ϕB,r,ℓ, θB,r,ℓ}, {ϕU,r,ℓ, θU,r,ℓ}, respectively;

AD,r ∈ C
NI×LBI,r , AA,r ∈ C

NI×LIU,r concatenate the IRS

response vectors formed by {ϕD,r,ℓ, θD,r,ℓ}, {ϕA,r,ℓ, θA,r,ℓ},

respectively; βBI,r,k ∈ C
LBI,r , βIU,r,k ∈ C

LIU,r concatenate

the equivalent path gains {βBI,r,k,ℓ}, {βIU,r,k,ℓ}, respectively.

Note that HBI(IU),r,k may contain both the LoS and NLoS

components or only one kind of them, where the Rician K-

factor is denoted by KBI(IU),r. In this paper, we consider only

the first-order NLoS components scattered/reflected once by

the environment objects, as illustrated in Fig. 1(a).3

The reflectors of an IRS plane form an (Nh×Nv)-uniform

planar array (UPA) topology with NI = NhNv. The array

response vector of the primary IRS can be represented in a

form of a Kronecker product aI(ϕ, θ) , ah(ϕ, θ) ⊗ av(ϕ, θ),
where

ah(ϕ, θ) ,
[
1, ej

2πdh
λc

sin θ sinϕ, . . . , ej
2πdh
λc

(Nh−1) sin θ sinϕ
]T

,

(4a)

av(ϕ, θ) ,
[
1, ej

2πdv
λc

cos θ, . . . , ej
2πdv
λc

(Nv−1) cos θ
]T

, (4b)

with dh(v) and λc denoting the azimuth (elevation) inter-

element spacing of IRS arrays and central carrier wavelength,

3It has been shown in [32], [33] that the higher-order rays with more
than two bounces suffer severe path loss and attenuation; as such, their
contribution to the total received energy is about 2%–10% and can be ignored.
Moreover, the second-order rays could have a power degradation of 10–20
dB with respect to the first-order ones, which can be identified and filtered
out along with the diffuse scattering components, to enhance the accuracy of
environment mapping and positioning (see for instance [34]).
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respectively. The BS/UE antennas can form either a UPA or

a uniform linear array (ULA) topology, whose array steering

vectors can be similarly defined as in (4).

Recall now that the secondary IRS is placed close to

the primary one with rotation angles δh, δv. In the far-field

scenario, the radiation pattern of the secondary IRS can be

expressed as

F (ϕ, θ; δh, δv) , (sin θ cos δv cos(ϕ− δh)− cos θ sin δv)
q
2 .
(5)

Similarly, the array response elements of the secondary IRS

can be expressed as

[ah(ϕ, θ; δh, δv)]nh
= ej

2πdh
λc

(nh−1) sin θ sin(ϕ−δh), (6a)

[av(ϕ, θ; δh, δv)]nv
= e

j 2πdv
λc

(nv−1)

(

sin θ sin δv cos(ϕ−δh)
+ cos θ cos δv

)

,
(6b)

where nh(v) ∈ I(Nh(v)). Now, the uplink channel matrices via

the rth secondary IRS can be represented by (2) with the radi-

ation patterns and steering vectors of (3), (4) being replaced by

those of (5), (6), respectively. One can also generate (3), (4) as

F (ϕ, θ; 0, 0) and aI(ϕ, θ; 0, 0) = ah(ϕ, θ; 0, 0)⊗av(ϕ, θ; 0, 0),
respectively. Note that (5), (6) can be derived by multiplying

[sin θ cosϕ, sin θ sinϕ, cos θ]T with the yaw and pitch rotation

matrices defined by δh and δv, respectively [28].

III. TENSOR-BASED CHANNEL ESTIMATION

In this section, we develop channel estimation schemes

to recover the channel matrices, i.e., HBI,r,k, HIU,r,k. The

IRS plane adopts dynamic reflection coefficients {ψr,k,p}Ptr
p=1

across the training frames. We concatenate the received train-

ing signals of (1) across PtrTtr training time slots in total

as Yr,k , [yr,k,1,1,yr,k,1,2, . . . ,yr,k,Ptr,Ttr ] ∈ C
Mtr×PtrTtr .

It can be equivalently regarded as a matricization of a third-

order tensor as Yr,k = Matr(Yr,k; 1, [3, 2]), where Yr,k ∈
C

Mtr×Ttr×Ptr fits the CP tensor model as [21], [22]

Yr,k =

NI∑

n=1

WH
r,k[HBI,r,k]:,n ◦ FT

r,k[HIU,r,k]
T
n,: ◦ [Ψr,k]:,n

+N r,k

= I3,NI ×1 H̃BI,r,k ×2 H̃IU,r,k ×3 Ψr,k +N r,k, (7)

where Ψr,k , [ψr,k,1, . . . ,ψr,k,Ptr ]
T ∈ C

Ptr×NI ; Fr,k ,

[Fr,k,1xr,k,1, . . . ,Fr,k,Ttrxr,k,Ttr ] ∈ C
NU×Ttr ; H̃BI,r,k ,

WH
r,kHBI,r,k ∈ C

Mtr×NI and H̃IU,r,k , FT
r,kH

T
IU,r,k ∈

C
Ttr×NI denote the combined and precoded equivalent chan-

nels, respectively; N r,k ∈ C
Mtr×Ttr×Ptr is the equivalent

noise tensor; I3,NI ∈ {0, 1}NI×NI×NI denotes a third-order

identity tensor. Performing the channel estimation is now

equivalent to solving the factorization problem of (7) with a

maximal tensor rank min
(
r(H̃BI,r,k)r(H̃IU,r,k)r(Ψr,k), NI

)
.

Since the wideband training signal {Yr,k}Ktr

k=1 cannot be

modeled as a fourth-order CP tensor with frequency-sensitive

{Ψr,k}Ktr

k=1, we seek to subcarrier-wisely perform the factor-

ization of Yr,k. One can average the estimation results of

frequency-flat channel parameters along multiple subcarriers

to enhance the recovery accuracy.

Obviously, the training IRS coefficients significantly affect

the estimation strategy and performance. First of all, we

consider a training pattern Ψr,k with full column rank, which

requires the number of measurements to exceed the number

of signal components, i.e., Ptr ≥ NI. A cascaded beamformed

channel can be naturally derived by a least squares (LS)

solution as follows:

H̃cas,r,k , H̃BI,r,k ⊙ H̃IU,r,k

= Matr (Yr,k; [2, 1], 3)
(
ΨT

r,k

)†
. (8)

The nth column of (8) can be reshaped into a rank-1 prod-

uct, i.e., h̃BI,r,k,nh̃
T
IU,r,k,n ∈ C

Mtr×Ttr , where h̃BI,r,k,n ,[
H̃BI,r,k

]
:,n

, h̃IU,r,k,n ,
[
H̃IU,r,k

]
:,n

. By performing rank-

1 truncated singular value decomposition (tSVD) λ1u1v
H
1 =

h̃BI,r,k,nh̃
T
IU,r,k,n with the dominant singular value λ1, we can

take
√
λ1u1 ∈ C

Mtr and
√
λ1v

∗
1 ∈ C

Ttr as the estimates of

h̃BI,r,k,n and h̃IU,r,k,n, respectively.

For the case of Ptr < NI or Ψ
†
r,kΨr,k ̸= INI , however, the

LS solution in (8) is invalid, which undermines the integration

of large-scale IRSs with a massive number of unit cells.

To address this critical problem, we present four different

IRS reflection pattern designs, as well as, the corresponding

uniqueness condition analysis.

A. Random Pattern

One of the simplest designs is to assign random reflection

coefficients to the IRS elements [30]. For instance, we employ

a training pattern with unit moduli and random phases, i.e.,∣∣[Ψr,k]p,n
∣∣ = 1, ∀p, n. A uniqueness condition of factorizing

(7) is presented as follows:

Lemma 1 [35, Theorem 1], [36, Lemma 4.3]. Consider a third-

order CP tensor Yr,k ∈ C
Mtr×Ttr×Ptr with H̃BI,r,k, H̃IU,r,k,

Ψr,k being the factor matrices in (7). If

k
(
H̃BI,r,k

)
+ k

(
H̃IU,r,k

)
+ k

(
Ψr,k

)
≥ 2NI + 2, (9)

then, r(Yr,k) = NI, and the factorization of Yr,k is unique

up to column scaling and permutation. Furthermore, if Ψr,k

is known with k
(
Ψr,k

)
= Ptr ≥ 2, and

min
(
k
(
H̃BI,r,k

)
, k
(
H̃IU,r,k

))
+ k

(
Ψr,k

)
≥ NI + 2, (10)

then, H̃BI,r,k, H̃IU,r,k can be found algebraically up to column

scaling ambiguities.

If Fr,k, Wr,k have full column ranks with Mtr ≥ LBI,r,

Ttr ≥ LIU,r, the beamformed channels inherit the sparse

nature, i.e., r
(
H̃BI,r,k

)
≤ r

(
HBI,r,k

)
≤ LBI,r, r

(
H̃IU,r,k

)
≤

r
(
HIU,r,k

)
≤ LIU,r. According to the property of k-rank:

k(A) ≤ r(A) ≤ min(I, J), ∀A ∈ C
I×J [37], in the generic

case, (10) can be relaxed to min
(
LBI,r, LIU,r

)
+Ptr ≥ NI+2.

Hence, to estimate low-rank mmWave channels with usually

3–5 paths [38], the quantity of training frames should be of

the same order of magnitude as the number of IRS elements.

According to [36, Lemma 4.3], the factorization of (7) can be

algebraically implemented by generalized eigenvalue decom-

position. In practice, when Ptr min(Mtr, Ttr) ≥ NI, we can

adopt the bilinear alternating least squares (BALS) method

[14] to iteratively update H̃BI,r,k, HIU,r,k.
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B. Structured Pattern

If additional structural information is embedded into the

IRS coefficients, one can develop a more flexible solution

with a more relaxed uniqueness condition. For instance, we

can design the training coefficients as [Ψr,k]p,n = λp−1
n with

distinct {λn}NI
n=1, which has a column-wise phase rotational-

invariant characteristic. We note that this codebook may be

valid only for a particular subcarrier due to the frequency-

sensitive characteristics of IRS reflectors [30]. As such, this

strategy is more suitable for single-carrier training. In practice,

the IRS is usually implemented by finite-resolution phase

shifters to reduce the hardware complexity. Hence, one can

employ a discrete Fourier transform (DFT) codebook, i.e.,

λn , e−j2π(n−1)/NI . In this way, the training codewords

multiplex NI distinct phases uniformly spaced within [0, 2π],
which can be realized by b = ⌈log2 NI⌉-bit phase shifters. A

corresponding uniqueness condition is presented as follows:

Lemma 2 [39, Theorem III.3]. Consider a third-order CP

tensor Yr,k ∈ C
Mtr×Ttr×Ptr with H̃BI,r,k, H̃IU,r,k, Ψr,k being

the factor matrices in (7). Define {P1, P2} : P1+P2 = Ptr+1.

If [Ψr,k]p,n = λp−1
n , and

r
(
Ψ

[I(P1−1)]
r,k ⊙ H̃BI,r,k

)
= r

(
Ψ

[I(P2)]
r,k ⊙ H̃IU,r,k

)
= NI,

(11)

then, r(Yr,k) = NI, and H̃BI,r,k, H̃IU,r,k can be found

algebraically up to column scaling ambiguities.

According to [35, Lemma 1], A⊙B has full column rank

if k(A) + k(B) ≥ D + 1, ∀A ∈ C
I×D,B ∈ C

J×D, which

implies I + J ≥ D + 1 ⇒ IJ ≥ D with k(A) ≤ I, k(B) ≤
J . In the generic case, (11) can be relaxed to min

(
(P1 −

1)LBI,r, P2LIU,r

)
≥ NI. Compared with the random pattern

case, the necessary number of training frames for estimating

mmWave channels with 3–5 paths is now roughly halved to

about NI/2.

The decomposition of (7) can now be algebraically solved

by the structured CP decomposition (SCPD) method [40],

where the original eigenvalue decomposition for the generator

recovery is replaced by the eigenvector derivation with a priori

eigenvalues. One can adopt a set of valid candidates {P1, P2}
and average the obtained results to enhance the estimation

performance.

C. Grouping Pattern

We can cluster the IRS reflectors into G ≪ NI groups,

where the elements of the gth group are indexed by Ng :
|Ng| = Ng. The reflectors belonging to the same group adopt

identical training coefficients, i.e., [Ψr,k]:,n , ψ
g
r,k, ∀n ∈ Ng.

The training signal (7) can be modified as

Yr,k =

G∑

g=1

∑

n∈Ng

[
H̃BI,r,k

]
:,n

◦
[
H̃IU,r,k

]
:,n

◦ψg
r,k +N r,k

= Cr ×1 H̃BI,r,k ×2 H̃IU,r,k ×3 Ψr,k +N r,k, (12)

where Ψr,k ,

[
ψ1

r,k, . . . ,ψ
G
r,k

]
∈ C

Ptr×G concatenates

the grouping training coefficients; Cr , I3,NI ×3 Γr ∈
{0, 1}NI×NI×G is a core tensor constrained by the grouping

indicator Γr ∈ {0, 1}G×NI with [Γr]g,n = 1, ∀n ∈ Ng. Since

Ψr,k = Ψr,kΓr is rank-deficient, (12) fits a parallel profiles

with linear dependencies (PARALIND) model [41, (41)–(43)].

We propose to divide the IRS reflector array into latticed

(Ngh ×Ngv)-subarrays with Gh , Nh/Ngh, Gv , Nv/Ngv

and G = GhGv, as illustrated in Fig. 2(a). The horizontal and

vertical indices of the IRS entries belonging to the gth group

are defined as

N [g]
h = {Gh(ngh − ⌈g/Gh⌉) + g}Ngh

ngh=1 ,

N [g]
v = {Gv(ngv − 1) + ⌈g/Gh⌉}Ngv

ngv=1 , (13a)

Ng =
{
Nv(n

[g]
h − 1) + n[g]

v

}
,

∀n[g]
h ∈ N [g]

h , n[g]
v ∈ N [g]

v . (13b)

We call a factor matrix partially unique if its columns

can be partitioned into disjoint subsets and each subset is

identified up to its linear span [42, Definition 3.2]. Then, a

partial uniqueness condition is presented as follows:

Lemma 3. Consider a third-order tensor Yr,k ∈ C
Mtr×Ttr×Ptr

with H̃BI,r,k, H̃IU,r,k, Ψr,k being the factor matrices in (7). If

Ψr,k = Ψr,kΓr with r(Ψ
†

r,k) = G and [Γr]g,n = 1, ∀n ∈ Ng ,

then, H̃BI,r,k and H̃IU,r,k are partially unique.

Proof: By removing the grouping codebook Ψr,k from

(12) via the LS method, one can obtain G sets of rank-Ng

products as

Cr ×1 H̃BI,r,k ×2 H̃IU,r,k = Yr,k ×3 Ψ
†

r,k, (14a)
[
Cr ×1 H̃BI,r,k ×2 H̃IU,r,k

]

:,:,g
= H̃

(Ng)
BI,r,k

(
H̃

(Ng)
IU,r,k

)T

,

(14b)

where H̃
(Ng)
BI,r,k ∈ C

Mtr×Ng and H̃
(Ng)
IU,r,k ∈ C

Ttr×Ng contain the

columns of H̃BI,r,k and H̃IU,r,k allocated to the gth group,

respectively. By performing rank-Ng tSVD on the gth slice

of (14), H̃
(Ng)
BI,r,k and H̃

(Ng)
IU,r,k are factorized uniquely up to a

nonsingular transformation.

The partial uniqueness condition is generally satisfied with

Ptr ≥ G training frames, which is generally independent of

the channel ranks. The grouping pattern (13) does not directly

lead to a complete estimate of H̃BI(IU),r,k. By leveraging the

phase shift feature of grouped subarrays, one can formulate an

equivalent (Gh×Gv)-array. As long as min(Gh, Gv) ≥ 2, we

are able to acquire the cascaded channel parameters, which

in turn support a unique channel separation. The detailed

derivations will be provided in the next section.

D. Sparse Pattern

It can be observed from the earlier designs that the required

amount of training frames is generally proportional to the

number of reflectors. By leveraging the concept of sparse

arrays [43], we are able to obtain the parameterized channels

with fewer IRS elements, leading to reduced training overhead.

Specifically, NA ≪ NI reflectors are installed regularly in the

(Nh×Nv)-array aperture, leaving (NI−NA) virtual unit cells
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with no circuits. We denote the index set of selected unit cells

by NA : |NA| = NA, and modify (7) as

Yr,k =
∑

n∈NA

[
H̃BI,r,k

]
:,n

◦
[
H̃IU,r,k

]
:,n

◦ [Ψr,k]:,n +N r,k

= I3,NA ×1 H̃
(NA)
BI,r,k ×2 H̃

(NA)
IU,r,k ×3 Ψ

(NA)
r,k +N r,k,

(15)

where Ψ
(NA)
r,k ∈ C

Ptr×NA contains columns of Ψr,k indexed

by NA; H̃
(NA)
BI,r,k ∈ C

Mtr×NA and H̃
(NA)
IU,r,k ∈ C

Ttr×NA contain

the columns indexed by NA of H̃BI,r,k and H̃IU,r,k, respec-

tively.

One can leverage sparse array topologies for the training

pattern. Since the nested array geometry admits a closed-

form expression for the locations of the antenna elements

and offers a consecutive difference coarray with large degrees

of freedom, we consider a 2-D symmetric nested array [43],

as illustrated in Fig. 2(b). The training pattern consists of

an (Nhd × Nvd)-dense subarray and an (Nhs × Nvs)-sparse

subarray with Nhd, Nhs being odd values [23]. The 2-D

subarray coordinates are defined as4

Chd = {nhd − (Nhd + 1)/2}Nhd

nhd=1 ,

Cvd = {nvd −Nvd}Nvd

nvd=1 , (16a)

Chs = {Nhd(nhs − (Nhs + 1)/2)}Nhs

nhs=1 ,

Cvs = {Nvd(nvs − 1)}Nvs

nvs=1 , (16b)

where Nhd, Nvd, Nhs, Nvs ∈ Z
+ satisfy the geometric con-

straint, i.e., Nhd(Nhs − 1) + 1 ≤ Nh, NvdNvs ≤ Nv. The

total number of activated IRS elements is NA = NhdNvd +
NhsNvs − 1, and the difference coarray size is NhdNhs ×
(2NvdNvs − 1). If r

(
Ψ

(NA)
r,k

)
= NA, one can follow the LS

and tSVD solution as in (8) to factorize H̃
(NA)
BI,r,k and H̃

(NA)
IU,r,k

uniquely up to column scaling. The necessary number of

training frames is hence Ptr ≥ NA, which is independent

of the channel ranks. Generally, the sparsity of IRS arrays

enhances the channel estimation accuracy, but may yield

reduced beamforming gains or system capacity. Similar to the

grouping pattern (13), the sparse pattern (16) can only return a

portion of the subchannel columns. Fortunately, we are able to

recover the cascaded channel parameters and reconstruct the

channel matrices. The detailed derivation will be presented in

the next section.

Remark 1. Note that all the proposed training patterns do

not place any constraint on the specific values of reflection

coefficients. They can be designed as directional beams to

search across the cascaded angular parameters on the IRS

plane, while the BS can select the received signals with

the highest power to implement the channel estimation or

dynamically adjust the searching directions of the subsequent

frames through the controller [19]. Moreover, apart from

the structured pattern, the others can be applied to multi-

subcarriers without being interfered by the frequency-sensitive

4The 2-D coordinates (nhd(hs), nvd(vs)) of the nested array defined by

(14) are uniquely mapped to the 2-D coordinates (nh, nv) of (5) as nh =
⌈Nh/2⌉−nhd(hs), nv = ⌈Nv/2⌉−nvd(vs), which correspond to the indices

(nh − 1)Nv + nv ∈ NA.

2-D Lattice array

4-4

-4

4

0 1-1

1

-1

Ngh

N
g
v

(a) Grouping pattern: 2-D lattice array.

2-D Nested array

0 1-1

1

-3

4

-1

-4

3

Dense subarray Sparse subarray Difference coarray

(b) Sparse pattern: 2-D nested array.

Fig. 2. IRS training reflection patterns. (a) Grouping pattern with a 2-D
lattice array composed of G (Ngh×Ngv)-subarrays, where identical training
reflection coefficients are allocated to the elements in the same color. (b)
Sparse pattern with a 2-D nested array composed of an (Nhd ×Nvd)-dense
subarray and an (Nhs ×Nvs)-sparse subarray.

TABLE II
RECOMMENDED TRAINING SETTINGS FOR IRS PATTERN DESIGNS

IRS Pattern Design Recommended Training Settings

Random min
(
LBI,r, LIU,r

)
+ Ptr ≥ NI + 2.

Structured Ptr = P1 + P2 − 1,

min
(
(P1 − 1)LBI,r, P2LIU,r

)
≥ NI.

Grouping min (Gh, Gv) ≥ 2, Ptr ≥ G = GhGv.
Sparse Nhd(Nhs − 1) + 1 ≤ Nh, NvdNvs ≤ Nv,

Ptr ≥ NA = NhdNvd +NhsNvs − 1.

nature of reflectors. Based on the uniqueness conditions and

other physical constraints, we summarize the recommended

training settings for IRS pattern designs in Table II.

IV. MULTIPATH PARAMETER RECOVERY

We now recall that many wireless applications, e.g., environ-

ment mapping, user positioning, mobility tracking, etc., require

precise information of the propagation paths, i.e., AoAs,

AoDs, and time delays. Moreover, the channel estimates with

missing or partially unique columns, derived from the sparse

or grouping training pattern, can be well calibrated based

on the propagation parameters. Specifically, by leveraging

the characteristics of HBI(IU),r,k in (2), we can equivalently

represent the cascaded beamformed channel H̃cas,r,k in (8) as

H̃cas,r,k =
(
WH

r,kAB,rDiag(βBI,r,k)

⊗ FT
r,kA

∗
U,rDiag(βIU,r,k)

) (
AH

D,r ⊙AT
A,r

)

=
(
WH

r,k ⊗ FT
r,k

) LBI,r∑

ℓ1=1

LIU,r∑

ℓ2=1

ρr,k,ℓ1ℓ2

×
(
aB(ϕB,r,ℓ1 , θB,r,ℓ1)⊗ a∗U(ϕU,r,ℓ2 , θU,r,ℓ2)

)

× aTI (πh,r,ℓ1ℓ2 , πv,r,ℓ1ℓ2), (17)

where H̃cas,r,k =
(
WH

r,k ⊗ FT
r,k

)
Hcas,r,k with Hcas,r,k ,

HBI,r,k⊙HT
IU,r,k. With a little abuse of notation, aI(πh, πv) ,

ah(πh) ⊗ av(πv) denotes the IRS response vector with[
ah(v)(πh(v))

]
n
= ej

2π
λc

dh(v)(n−1)πh(v) . The cascaded channel

parameters via the primary IRS are defined as




πh,r,ℓ1ℓ2 , − sin θD,r,ℓ1 sinϕD,r,ℓ1 + sin θA,r,ℓ2 sinϕA,r,ℓ2 ,

πv,r,ℓ1ℓ2 , − cos θD,r,ℓ1 + cos θA,r,ℓ2 ,

ρr,k,ℓ1ℓ2 , βBI,r,k,ℓ1βIU,r,k,ℓ2 .
(18)
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Based on (17), (18), Hcas,r,k can be reconstructed by the

channel parameters {ϕ(θ)B,ℓ1 , ϕ(θ)U,ℓ2 , πh(v),r,ℓ1ℓ2 , ρr,k,ℓ1ℓ2},

and be further separated into H̃BI,r,k and H̃IU,r,k by the

tSVD. Note that in the noiseless case, the separated estimates

of beamformed channels can be represented as H̃BI,r,kΛr,k

and H̃IU,r,kΛ
−1
r,k with a diagonal matrix Λr,k ∈ C

NI×NI

containing the scaling ambiguities. Clearly, an arbitrary Λr,k

does not change the values of Yr,k or H̃cas,r,k, which cannot

be exactly determined. Also, the row-subspace information

of H̃BI(IU),r,k has been compromised by those uncertain-

ties. Generally, without a priori assumptions or conditions,

one can only determine the cascaded parameters in (18)

but not the exact path parameters via a single IRS plane,

i.e., {ϕD(A),r,ℓ, θD(A),r,ℓ, τBI(IU),r,ℓ}. It can be physically ex-

plained by that the passive IRS cannot sense the environment,

while the receiver can only process signals propagated through

the entire two-hop channel. To address these issues, we pro-

pose the channel parameter recovery schemes, as well as, the

cascaded parameter decoupling strategy in this section.

A. Beamforming Design

We seek to adopt special beamforming to preserve the

structural information of BS/UE antenna arrays. By leveraging

the concept of beamspace ESPRIT method [44], [45], we

adopt a Kronecker product-formed DFT combining strategy

for the UPA-sized BS antennas as follows

Wr,k , Wh,r,k ⊗Wv,r,k, (19a)

[Wh(v),r,k]n,m = N
− 1

2

B,h(v)e
−j2π(n−1)

ωh(v),m
NB,h(v) , (19b)

where Wh(v),r,k ∈ C
NB,h(v)×Mh(v) denotes the combiner

along the horizontal (vertical) direction with NB = NB,hNB,v,

Mtr = MhMv; {ωh(v),m} are beamspace codewords selected

from the candidate codebook I
(
NB,h(v)

)
. It can be verified

that the DFT beamforming preserves the rotational-invariant

feature of IRS array phases since

Jh1(v1)Wh(v),r,k = Jh2(v2)Wh(v),r,kTh(v), (20a)

Qh(v)[Wh(v),r,k]
H
NB,h(v),:

= Qh(v)Th(v)[Wh(v),r,k]
H
1,:

= 0NB,h(v)×1, (20b)

QTW
H
r,kaB(ϕ, θ) = QWH

r,kaB(ϕ, θ)

× ej
2π
λc

(dB,h sin θ sinϕ+dB,v cos θ),
(20c)

where Jh1(v1),Jh2(v2) ∈ {0, 1}(NB,h(v)−1)×NB,h(v) select the

first and last (NB,h(v) − 1) rows of matrices, respectively;

Th(v) ∈ C
Mh(v)×Mh(v) is calculated as the LS solution

of (20a); Qh(v) ∈ C
NB,h(v)×Mh(v) is derived by forming

a projection corresponding to the orthogonal subspace of{
[Wh(v),r,k]

H
NB,h(v),:

,Th(v)[Wh(v),r,k]
H
1,:

}
; Q , Qh ⊗ Qv,

QT , Q (Th ⊗Tv)
H

. The precoded pilot design at the UE

side can be similarly derived as in (20). As long as the search

region formed by the beamspace codewords covers the channel

path direction formed by {ϕB(U),ℓ, θB(U),ℓ}, we are able to

receive the training signal with a desired power level [44].

Furthermore, before transmitting Yr,k in (7), one can perform

a coarse sensing to find appropriate {ωh(v),m} as in [45].

Remark 2. The beamforming method enables us to recover

{ϕ(θ)B,ℓ} and {ϕ(θ)U,ℓ} directly by exploiting the column-

subspaces of Y
(1)
r,k , Matr(Yr,k; 1, [3, 2]) and Y

(2)
r,k ,

Matr(Yr,k; 2, [3, 1]), respectively. After obtaining the angular

parameters at the BS/UE ends, we can compute a smaller-sized

tensor signal (in the noiseless case) as

Zr,k , Yr,k ×1

(
WH

r,kAB,r

)† ×2

(
FT

r,kA
∗
U,r

)†

= I3,NI ×1 Diag(βBI,r,k)A
H
D,r ×2 Diag(βIU,r,k)A

T
A,r

×3 Ψr,k. (21)

The rank-deficient factor matrices of (7) are transformed

into full-row-rank ones. Performing channel factorization or

parameter recovery of Zr,k ∈ C
LBI,r×LIU,r×Ptr can effectively

reduce the computational complexity.

B. Cascaded Parameter Recovery

For the training design of random or structured IRS reflec-

tion pattern, one can directly compute

Gcas,r,k ,
(
WH

r,kAB,r ⊗ FT
r,kA

∗
U,r

)† (
H̃BI,r,k ⊙ H̃IU,r,k

)

= (Diag(βBI,r,k)⊗Diag(βIU,r,k))
(
AH

D,r ⊙AT
A,r

)
,

(22)

which concatenates LBI,rLIU,r parallel response vectors of

{ρr,k,ℓ1ℓ2aI(πh,r,ℓ1ℓ2 , πv,r,ℓ1ℓ2)} in (17). By leveraging the

2-D uniform array geometry of aI(πh, πv), we can easily

recover the cascaded channel parameters indexed by (ℓ1, ℓ2)
in (18) from the ((ℓ1 − 1)LIU,r + ℓ2) row of Gcas,r,k.

We note that πh(v),r,ℓ1ℓ2 ranges across [−2, 2], which may

cause a spatial aliasing problem, i.e., the extracted phase of

ej
2π
λc

dh(v)πh(v),r,ℓ1ℓ2 may exhibit an uncertain bias of 2iπ, i ∈ Z.

In order to achieve a unique value of πh(v),r,ℓ1ℓ2 , we pro-

pose to configure the inter-element spacing of IRS arrays as

dh = dv = λc/4, yielding a maximal phase range of [−π, π].
Furthermore, by exploiting the rotational-invariant phase fea-

ture of {ρr,k,ℓ1ℓ2}Ktr

k=1 along multiple training subcarriers as

ρ−1
r,k1,ℓ1ℓ2

ρr,k2,ℓ1ℓ2 = ej
2πfs
K

(k1−k2)(τBI,r,ℓ1
+τIU,r,ℓ2

), (23)

with k1, k2 ∈ I(Ktr), we can recover the cascaded time

delays, i.e., τBI,r,ℓ1 + τIU,r,ℓ2 .

Next, we develop two dedicated channel parameter recov-

ery solutions for the grouping and sparse training patterns

respectively, as well as, a generalized solution for an arbitrary

reflection pattern.
1) Grouping Scheme: Recall that the grouping pattern in

Fig. 2(a) employs G distinct training codebooks {ψg
r,k}.

Following (14), we define Gcas,r,k , Zr,k ×3 Ψ
†

r,k, whose

mode-3 slice matrices can be expressed as

[Gcas,r,k]:,:,g = Diag(βBI,r,k)[AD,r]
H
Ng,:

× [AA,r]Ng,:Diag(βIU,r,k). (24)

With the regularly grouped lattice layout, the mode-3 (tube)

fibers of Gcas,r,k ∈ C
LBI,r×LIU,r×G have a phase rotational-

invariant characteristic as

(Jgh2 ⊗ Jgv2)[Gcas,r,k]ℓ1,ℓ2,: =(Jgh1 ⊗ Jgv1)[Gcas,r,k]ℓ1,ℓ2,:

× ej
2π
λc
(dhπh,r,ℓ1ℓ2

+dvπv,r,ℓ1ℓ2),
(25)
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where ℓ1 ∈ I(LBI,r), ℓ2 ∈ I(LIU,r); Jgh1(gv1),Jgh2(gv2) ∈
{0, 1}(Gh(v)−1)×Gh(v) are the selection matrices that select the

first and last (Gh(v) − 1) entries of the fibers, respectively.

Therefore, [Gcas,r,k]ℓ1,ℓ2,: ∈ C
G can be equivalently regarded

as the steering vector of a (Gh × Gv)-UPA topology, from

which we are able to derive the cascaded parameters in (18).

2) Sparse Scheme: Recall that the sparse pattern in Fig.

2(b) activates NA out of NI reflectors. One can derive a sub-

matrix of (22) as G
(NA)
cas,r,k = Matr(Zr,k; [2, 1], 3)

(
Ψ

(NA)
r,k

)†
.

Then, the following steps are performed: (i) Copy and in-

sert data at the overlapped origin of the sparse/dense sub-

arrays, yielding G
(NA)
cas,r,k ∈ C

LBI,rLIU,r×(NA+1) with NA ,

{NA, Nv(⌈Nh/2⌉−1)+⌈Nv/2⌉}; (ii) Compute
(
G

(NA)
cas,r,k

)H⊙
(
G

(NA)
cas,r,k

)T
and sort its rows to fit the 2-D nested array geome-

try; (iii) Remove the repetitive or discontinuous rows, yielding

LBI,rLIU,r response vectors of an (NhdNhs×(2NvdNvs−1))-
difference coarray; (iv) Leverage rank-1 tSVD to recover the

cascaded parameters in (18). Note that these steps leverage

the principle of nested array processing, but do not require

any statistical information of the signal correlation.

3) ANM-SDP/ADMM Scheme: We leverage the atomic

norm denoising technique to develop a general solution of (18)

for arbitrary designs of IRS training patterns [25], [26]. The

(ℓ1, ℓ2)th mode-3 fiber of Zr,k, i.e., [Zr,k]ℓ1,ℓ2,:, is expressed

as zr,k,ℓ1ℓ2 = Ψr,kaI(πh,r,ℓ1ℓ2 , πv,r,ℓ1ℓ2)ρr,k,ℓ1ℓ2 . aI(πh, πv)
can be regarded as a 2-D atom, whilst the 2-D atomic norm

of arbitrary vector x ∈ C
NI with respect to the atomic set

A ,
{
aI(πh, πv)

∣∣πh, πv ∈ [−2, 2]
}

is then defined as

∥x∥A = inf{t : x ∈ tconv(A)}

= inf
πh(v),ℓ,ρℓ

{
∑

ℓ

|ρℓ|
∣∣∣x =

∑

ℓ

ρℓaI(πh,ℓ, πv,ℓ)

}

= inf
u,t

{
t

2
+

1

2NI
Tr(T2(u))

}
,

s.t.

[
T2(u) x

xH t

]
≽ 0, (26)

where conv(A) is the convex hull of A; T2(u) ∈ C
NI×NI

denotes a two-level block Toeplitz matrix defined by u ∈
C

(2Nh−1)(2Nv−1) [25], [26]. We can now individually solve

LBI,rLIU,r atomic norm minimization (ANM) subproblems

of (26) as

min
u,x,t

µt

2
+

µ

2NI
Tr(T2(u)) +

1

2
∥zr,k,ℓ1ℓ2 −Ψr,kx∥2

s.t.

[
T2(u) x

xH t

]
≽ 0, ℓ1 ∈ I(LBI,r), ℓ2 ∈ I(LIU,r), (27)

where µ denotes the regularization parameter; x approximates

ρr,k,ℓ1ℓ2aI(πh,r,ℓ1ℓ2 , πv,r,ℓ1ℓ2). These optimization subprob-

lems can be solved by the semidefinite programming method

(SDP). In order to improve the computational efficiency of

parameter recovery for large-scale IRSs, one can adopt the

alternating direction method of multipliers (ADMM). The

detailed derivations of the Lagrangian function and variable

update are omitted due to space limitations, and the interested

readers are referred to [25], [26] and references therein.

Finally, one can exploit the rotational-invariant feature of

T2(u) to recover the cascaded parameters.

C. Twin-IRS-Assisted Parameter Decoupling

Given arbitrary pairs of (ϕD,r,ℓ1 , ϕA,r,ℓ2), (θD,r,ℓ1 , θA,r,ℓ2),
(βBI,r,k,ℓ1 , βIU,r,k,ℓ1) that satisfy the constraints of (18), one

can recover the cascaded channel Hcas,r,k as in (17). However,

the information of (18) is not sufficient to support an exact

decoupling of the cascaded parameters. Concretely, there are

2(LBI,r + LIU,r) AoA/AoDs at the IRS to be estimated but

only 2(LBI,r + LIU,r − 1) out of 2LBI,rLIU,r effective phase

equations, whilst the amplitude equations cannot be directly

used due to the unknown path gains. Therefore, with a single

IRS plane, one can only formulate an underdetermined non-

linear equation system of {ϕA(D),r,ℓ, θA(D),r,ℓ}, which does

not have a unique solution. In order to provide sufficient

information for the parameter decoupling, we propose the

twin-IRS structure, enabling the nonlinear solver to converge

to the precise solution with a much higher probability. Based

on (5), (6), we can represent the cascaded parameters via the

secondary IRS as





ϖh,r,ℓ1ℓ2 , − sin θD,r,ℓ1 sin(ϕD,r,ℓ1 − δh)

+ sin θA,r,ℓ2 sin(ϕA,r,ℓ2 − δh),

ϖv,r,ℓ1ℓ2 , − sin δv sin θD,r,ℓ1 cos(ϕD,r,ℓ1 − δh)

+ sin δv sin θA,r,ℓ2 cos(ϕA,r,ℓ2 − δh)

+ (− cos θD,r,ℓ1 + cos θA,r,ℓ2) cos δv,

ϱr,k,ℓ1ℓ2 , βBI,r,k,ℓ1βIU,r,k,ℓ2

F (ϕD,r,ℓ1 , θD,r,ℓ1 ; δh, δv)

F (ϕD,r,ℓ1 , θD,r,ℓ1 ; 0, 0)

× F (ϕA,r,ℓ2 , θA,r,ℓ2 ; δh, δv)

F (ϕA,r,ℓ2 , θA,r,ℓ2 ; 0, 0)
.

(28)

By combining the cascaded parameters in (18), (28) and lever-

aging the trigonometric function theory, extra phase equations

of − sin θD,r,ℓ1 cosϕD,r,ℓ1 + sin θA,r,ℓ2 cosϕA,r,ℓ2 , and mag-

nitude equations of
F (ϕD,r,ℓ1

,θD,r,ℓ1
;δh,δv)F (ϕA,r,ℓ2

,θA,r,ℓ2
;δh,δv)

F (ϕD,r,ℓ1
,θD,r,ℓ1

;0,0)F (ϕA,r,ℓ2
,θA,r,ℓ2

;0,0)

can be introduced by the secondary IRS. These additional

constraints make it possible to realize the parameter decou-

pling. Here, we present two decoupling modes of channel

parameters against different cases of system settings and

channel conditions.

1) “All” decoupling mode: If the IRS reflectors are omni-

directional, i.e., F (ϕ, θ; δh, δv) ≡ 1, the magnitude equations

of (28) become invalid. Hence, the nonlinear solver is able

to converge to the exact azimuth/elevation AoA/AoDs only

when the number of effective phase equations is no less than

the number of angles to be estimated, i.e.,

3(LBI,r + LIU,r − 1) ≥ 2(LBI,r + LIU,r)

⇒ LBI,r + LIU,r ≥ 3. (29)

We jointly solve a nonlinear system of 3(LBI,r + LIU,r − 1)
phase equations in (18), (28) involving geometric information

of sin θ cosϕ, sin θ sinϕ, cos θ along the x, y, z-axes, respec-

tively, to acquire precise estimates of all the 2(LBI,r +LIU,r)
angular parameters {ϕ(θ)D,r,ℓ1 , ϕ(θ)A,r,ℓ2} at once. One can
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directly employ existing nonlinear algorithms, e.g., Gauss-

Newton method, Levenberg-Marquardt method, trust-region

(dogleg) method, etc., to efficiently solve this problem.

2) “Pair” decoupling mode: If there exists only one prop-

agation path in both the BS-IRS and IRS-MS channels, i.e.,

LBI,r + LIU,r = 2, one cannot just rely on three phase

equations to obtain unique estimates of four angles.5 We

need to recover four angular parameters {ϕD(A),1, θD(A),1}
by jointly solving four nonlinear magnitude/phase equations

of (18), (28). Note that this approach can also be applied to

the case (29), returning the angles of a pair of paths at a

time. One needs to average the recovery results of each angle

to obtain 2(LBI,r + LIU,r) distinct parameters from in total

4LBI,rLIU,r estimates.

After obtaining the angles and the cascaded time delays, we

can remove their contributions from the equivalent path gains

in (18) or (28) to derive αBI,r,kαIU,r,k. Due to the randomly

distributed complex gains including both the large-scale fading

and the small-scale fading, it is usually difficult to decouple

the path gains, as well as, the time delays solely based on

the training signals. Fortunately, we can leverage the 3-D

geometric relationship of communication devices to realize

the environment mapping, determining the precise propagation

distances. The detailed derivations are provided in the next

section.

V. CHANNEL PARAMETER-BASED USER LOCALIZATION

After acquiring precise estimates of the channel parameters

via the decoupling mode described in Section IV. C. 1) or

2), we can combine the information of propagation channels

and device physical configurations to realize an application

of user localization. The BS and UE are located at pB,

pU ∈ R
3, respectively, whose orientations, i.e., the normals

to the antenna array planes, are defined as nB, nU ∈ R
3,

respectively. The adjacent primary/secondary IRSs of the rth

twin-IRS structure are assumed to share identical coordinates

pr ∈ R
3, while the normal direction to the primary IRS is

nr ∈ R
3. The scatterers of the ℓ1th NLoS path of HBI,r,k and

the ℓ2th NLoS path of HIU,r,k are located at sBI,r,ℓ1 ∈ R
3

and sIU,r,ℓ2 ∈ R
3, respectively.

A. Preliminary Environment Mapping

The positioning performance depends on the environment

mapping that determines the distribution of scatterers and

propagation paths. Note that the AoA/AoDs at the IRS are

defined relative to the primary IRS on the yz-plane with a

default normal n0 , [1, 0, 0]T , as illustrated in Fig. 1(b).

We parameterize the rotation of an IRS plane with a normal

nr ∈ R
3 from the default orientation by the rotation axis and

rotation angle, which are defined as6

cr =
n0 × nr

∥n0 × nr∥
, ξr = cos−1 (n0 • nr) . (30)

5If there exists a LoS path with a large Rician K-factor, the other
NLoS components are much weaker and may be regarded as environmental
noise. Then, the channel matrix HBI(IU),r,k has approximately rank-1 with
LBI(IU),r ≈ 1.

6If nr , n0 are collinear, cr ∈ R3 can be arbitrary vector orthogonal to
nr(n0), and ξr = 0 or π.

nr

x

y

z
Primary S

prpB

BS (UPA)

sBI,r,

dB,r,

dD,r,

nB

x

y

z

(a) Scatterer mapping: Type I.

nr

x

y

z

prpB

BS (ULA)

dD,r,

nB

sBI,r,

dB,r,

nB,r,
x

y

z

Primary S

(b) Scatterer mapping: Type II.

Fig. 3. Environment mapping of the BS-IRS channels. (a) The scatterer is
approximated as the median point on the common perpendicular of two spatial
lines. (b) The scatterer is approximated as the intersection point of a spatial
line and a spatial plane.

The actual direction of a signal wave parameterized by

azimuth/elevation angles {ϕ, θ}, or equivalently a direction

d0 , [sin θ cosϕ, sin θ sinϕ, cos θ]T , relative to the primary

IRS can be derived by the Rodrigues’ rotation formula as [46]

dr = d0 cos ξr + (cr × d0) sin ξr + cr(cr • d0)(1− cos ξr).
(31)

Given the angular estimates and known device orientations, we

can derive the actual path directions at the BS and IRSs, de-

noted by dB,r,ℓ1 ,dD,r,ℓ1 ,dA,r,ℓ2 ∈ R
3, ∀ℓ1 ∈ I(LBI,r), ℓ2 ∈

I(LIU,r), respectively. For a LoS path, dB,r,ℓ1 ,dD,r,ℓ1 should

be (approximately) collinear.

Recall that only the NLoS paths scattered or reflected once

are considered. The scatterer located at sBI,r,ℓ1 ∈ R
3 is the in-

tersection point of two spatial lines passing through pB and pr

with directions dB,r,ℓ1 and dD,r,ℓ1 , respectively. In the noisy

case, these estimated spatial lines may not exactly intersect.

As illustrated in Fig. 3(a), the scatterer can be approximated

by the median point on the common perpendicular of the two

spatial lines as

min
x∈R2

∥Ax− b∥2,

s.t. sBI,r,ℓ1 =
1

2
(pB + dB,r,ℓ1 [x]1 + pr − dD,r,ℓ1 [x]2),

A = [dB,r,ℓ1 ,dD,r,ℓ1 ],b = pr − pB. (32)

Note that if the BS antennas are ULA-shaped, which are

commonly assumed to be parallel with the xy-plane, only the

azimuth angle can be estimated (elevation angle is π/2 by

default). In this case, as illustrated in Fig. 3(b), the scatterer

can be derived as the intersection point of a spatial line passing

through pr with a direction dD,r,ℓ1 and a spatial plane passing

through pB with a normal nB,r,ℓ1 ⊥ dB,r,ℓ1 as [47]

[sBI,r,ℓ1 ]i =
1

nB,r,ℓ1 • dD,r,ℓ1

×
(
[dD,r,ℓ1 ]i

∑

j ̸=i

[nB,r,ℓ1 ]j([pB]j − [pr]j)

+ [dD,r,ℓ1 ]i[nB,r,ℓ1 ]i[pB]i

+ [pr]i
∑

j ̸=i

[nB,r,ℓ1 ]j [dD,r,ℓ1 ]j

)
, (33)

where i ∈ {1, 2, 3}. Once the scatterer position is determined,

the propagation distance, as well as, the path time delay from
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the IRS to the BS can be directly computed as

τBI,r,ℓ1 =
∥pB − sBI,r,ℓ1∥+ ∥pr − sBI,r,ℓ1∥

vc
, (34)

where vc = 3 × 108 m/s is the light velocity. One can now

easily derive the UE-IRS path distance by combining (34) and

the estimated cascaded time delay, i.e., τBI,r,ℓ1 +τIU,r,ℓ2 , from

(18), (28). Without the information of the user coordinates, it

is difficult to realize a unique environment mapping between

the IRS and UE. Fortunately, after acquiring the UE position

and orientation based on the LoS component of HIU,r,k, we

can finally determine the scattering details.

B. User Localization Implementation

We present two dedicated user localization schemes for the

single-carrier and multi-carrier training strategies, respectively.

When the UE-IRS channel contains a LoS path with a relative-

ly large Rician K-factor, it can be detected and distinguished

by its dominant complex gains.7

1) Single-carrier Strategy: In the single-carrier strategy,

the system activates a single subcarrier to perform channel

estimation. With only one estimate of βBI,r,k,ℓ1βIU,r,k,ℓ2 , we

cannot recover the cascaded time delays τBI,r,ℓ1 + τIU,r,ℓ2 ,

as well as, the LoS path distance of HIU,r,k. We propose to

localize the UE by an AoA-based positioning scheme with

R = 2 distributed twin-IRS structures. The user position

can be derived as the intersection point of two spatial lines

passing through p1 and p2 with directions dA,1,1 and dA,2,1,

respectively, which can be approximated by following (32) as

min
x∈R2

∥Ax− b∥2,

s.t. A = [dA,1,1,dA,2,1],b = p2 − p1,

pU =
1

2
(p1 + dA,1,1[x]1 + p2 − dA,2,1[x]2). (35)

2) Multi-carrier Strategy: In the multi-carrier strategy, we

are able to precisely determine the LoS path distance of

HIU,r,k by realizing the scatterer mapping. We propose to

localize the UE by a hybrid AoA-delay positioning scheme

with R = 1 twin-IRS structure. The user position can be

easily derived as the point, vcτIU,r,1 meters away from pr,

on a spatial line passing through p1 with the direction dA,1,1

as

pU = pr + dA,r,1vcτIU,r,1. (36)

3) Orientation Determination: We can further derive the

device orientation. The default direction of a LoS path param-

eterized by {ϕU,r,1, θU,r,1} at the UE is defined as dU,r,1 ,

[sin θU,r,1 cosϕU,r,1, sin θU,r,1 sinϕU,r,1, cos θU,r,1]
T , and the

actual direction of this path is −dA,r,1 ≈ pr − pU. The

relative rotation is identical to that of the UE orientation from

7Note that the proposed twin-IRS structure also provides precise informa-
tion required by NLoS-based positioning schemes, e.g., [48], [49]. Due to
space limitations, we consider only the case of LoS-based positioning here.

Algorithm 1 Channel Estimation and User Localization

Require: observation Yr,k, IRS pattern Ψr,k, beamformers

Fr,k,Wr,k, channel ranks LBI,r, LIU,r.

1: procedure CH-EST

2: Derive Y
(1)
r,k , Y

(2)
r,k by unfolding Yr,k as in Remark 2.

3: Derive AoA/AoDs {ϕ(θ)B,ℓ1} and {ϕ(θ)U,ℓ2} from

the subspaces of Y
(1)
r,k and Y

(2)
r,k , respectively, by (20).

4: Compute the compressed tensor Zr,k by (21).

5: Derive {πh(v),r,ℓ1ℓ2 , ρr,k,ℓ1ℓ2} from Zr,k with specific

training pattern as in Section IV. B.

6: Reconstruct Hcas,r,k with the recovered (cascaded)

channel parameters by (17).

7: end procedure

8: procedure CAS-DEC

9: Derive {πh(v),r,ℓ1ℓ2 , ρr,k,ℓ1ℓ2}, {ϖh(v),r,ℓ1ℓ2 , ϱr,k,ℓ1ℓ2}
by running CH-EST with the primary and secondary IRS

planes, respectively.

10: Decouple {ϕ(θ)D,r,ℓ1 , ϕ(θ)A,r,ℓ2} by solving the non-

linear system of equations formulated by (18), (28) as in

Section IV. C.

11: end procedure

12: procedure UE-LOC

13: Determine the actual signal directions by (30), (31).

14: Derive the scatterer positions by (32), (33).

15: Derive the UE position and orientation by (34)–(37).

16: end procedure

n0 = [1, 0, 0]T to nU ∈ R
3, which can be derived by the

Rodrigues’ rotation theory as

cIU,r,1 =
dU,r,1 × (−dA,r,1)

∥dU,r,1 × (−dA,r,1)∥
,

ξIU,r,1 = cos−1 (dU,r,1 • (−dA,r,1)) , (37a)

nU = n0 cos ξIU,r,1 + (cIU,r,1 × n0) sin ξIU,r,1

+ cIU,r,1(cIU,r,1 • n0)(1− cos ξIU,r,1). (37b)

Finally, we summarize the channel estimation and user

localization schemes as Algorithm 1, where the terms “CH-

EST”, “CAS-DEC” and “UE-LOC” are abbreviations for

channel estimation, cascaded parameter decoupling and UE

localization, respectively.

VI. NUMERICAL RESULTS

Typical simulation settings are listed here: NB = NU = 24
(ULA), Mtr = Ttr = 12, K = 128, Ktr = 6, fs = 0.32 GHz,

fc = 28 GHz; LBI,r = LIU,r = 3, ϕB(U),r,ℓ follows a uniform

distribution U
(
− π

2 ,
π
2

)
, ϕD(A),r,ℓ follows U

(
− π

3 ,
π
3

)
, θD(A),r,ℓ

follows U
(
π
6 ,

5π
6

)
, αBI(IU),r,ℓ follows a normal distribution

CN (0, 1).8 The received signal-to-noise ratio (SNR) is defined

as ∥Yr,k − N r,k∥2F/∥N r,k∥2F. The simulation of channel

estimation and parameter recovery considers a full-NLoS

propagation; the simulation of environment mapping and user

localization assumes that HIU,r,k contains a LoS path, while

8One can leverage the principal component analysis or minimum length
description to estimate the number of paths [40]. For simplifying the evalua-
tion of the parameter recovery performance, we assume that LBI(IU),r is a

priori known or perfectly estimated.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3111176, IEEE

Transactions on Wireless Communications

11

0 10 20 30

SNR (dB)

10
-2

10
-1

R
M

S
E

0 10 20 30

SNR (dB)

10
-2

10
-1

R
M

S
E

0 10 20 30

SNR (dB)

10
-2

10
-1

10
0

R
M

S
E

0 10 20 30

SNR (dB)

10
-4

10
-2

10
0

N
M

S
E

OMP [13] BALS [14] SCPD [40] Grouping

Sparse ANM-ADMM ANM-SDP

(c) (d)

(b)(a)

Fig. 4. RMSE/NMSE of the cascaded parameters/channel vs. SNR, Nh =
Nv = 4, Ptr = 14, q = 1.5.

HBI,r,k consists of only NLoS components. Apart from the

narrowband positioning that requires two twin-IRS structures,

most simulations are realized with a single twin-IRS structure.

The two twin-IRS pairs are located at p1 = [0, 0, 0]T ,p2 =
[8, 0, 0]T with orientations n1 = [1, 0, 0]T ,n2 = [−1, 0, 0]T ,

respectively. We leverage the first one to perform the channel

estimation and parameter recovery by default. The proposed

channel estimation schemes, i.e., the sparse, grouping and

ANM-SDP/ADMM schemes described in Section IV. B. 1), 2)

and 3), respectively, are compared with the OMP [13], BALS

[14] and SCPD [40] schemes.9

Table III tabulates the estimation performance of BS/UE

angular parameters and normalized signal power with random

training pattern for different beamforming schemes, where

Nh = Nv = 4 and q = 1.5.10 It shows that the beamspace

beamforming (19) achieves the best recovery accuracy and

highest received signal strength when the search regions

generally cover the AoA/AoDs at the BS/UE. The baseline

scheme achieves slightly better performance than the uniform

DFT scheme but yields much lower effective signal power

than the optimized DFT scheme, leading to higher transmitted

9The maximum iterations of BALS is 20; the angular resolution of OMP is
2π
4Nh

× 2π
4Nv

; the maximum iterations and penalty parameter of ANM-ADMM

are 20 and 0.1, respectively; the ANM-SDP is handled by the CVX toolbox
[50].

10“acc” is defined as the rooted mean square error (RMSE) (degrees):(∑LBI(IU),r

ℓ=1 (φ̂B(U),r,ℓ−φB(U),r,ℓ)
2/LBI(IU),r

)1/2
; “pow” is defined as

the normalized signal power: ∥Yr,k−N r,k∥F/
√
MtrTtrPtr; the resolution

of OMP is 2π/4NB(U); “Coarse” applies the coarse estimation scheme [45]
within a single frame; “Baseline” applies the coarse estimation scheme [45]
across (Ptr +1) frames; “Uniform DFT” applies the DFT beamforming (19)
across (Ptr+1) frames with uniformly-spaced {ωh(v),m}; “Optimized DFT”

applies the DFT beamforming (19) across Ptr frames with {ωh(v),m} closest
to the coarse estimates.
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Fig. 5. RMSE/NMSE of the cascaded parameters/channel vs. SNR, Nh =
Nv = 8, Ptr = 48, q = 1.5.

power for a desired received SNR. Hereinafter, we introduce

a coarse estimation scheme with one extra frame, and use the

obtained estimates to construct the beamformers Fr,k,Wr,k,

as well as, the training signal tensor Yr,k.

Table IV tabulates the RMSEs of cascaded phase/amplitude

parameters (18) and normalized mean square error (NMSE)

of the cascaded channel with different configurations of the

sparse and grouping patterns.11 It shows that when the quantity

of training frames is sufficient, the estimation accuracy is

mainly determined by the degrees of freedom of the difference

coarray and equivalent array of the sparse and grouping

patterns, respectively. Hereinafter, we adopt the best pattern

designs marked in bold in Table IV to evaluate the channel

estimation performance.

Figs. 4 and 5 plot the RMSEs of cascaded phase/amplitude

parameters (18) and normalized mean square error (NMSE) of

the cascaded channel versus the received SNR with NI = 16
and 64, respectively. It shows that the OMP returns SNR-

insensitive results due to its fixed angular resolution. The

grouping scheme has relatively worse performance with the

lowest complexity. The BALS and SCPD yield deteriorated

performance when the quantity of training frames fails to keep

pace with the increasing number of IRS unit cells. Moreover,

the ANM-SPD achieves the best estimation accuracy with the

highest complexity. The sparse scheme and ANM-ADMM can

effectively acquire RMSE/NMSEs close to those of ANM-

SDP with reduced computational burden, especially in the case

of small-scale IRSs with sufficient training measurements.

11The RMSE of a parameter xℓ1ℓ2 is defined as
(∑

ℓ1,ℓ2
(x̂ℓ1ℓ2 −

xℓ1ℓ2 )
2/LBI,rLIU,r

)1/2
; the NMSE of the cascaded channel is defined as

∥Ĥcas,r,k −Hcas,r,k∥2F/∥Hcas,r,k∥2F.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT BEAMFORMING SCHEMES

Approaches OMP [13] Coarse [45] Baseline Uniform DFT Optimized DFT

Ptr SNR (dB) acc pow acc pow acc pow acc pow acc pow

8
15 1.862 6.082 8.229 5.931 0.210 6.173 0.281 6.261 0.201 11.533
30 1.732 6.077 0.904 5.929 0.034 6.182 0.043 6.264 0.024 11.588

14
15 1.797 6.203 8.153 6.015 0.148 6.280 0.201 6.373 0.139 11.918
30 1.702 6.221 0.879 5.999 0.025 6.267 0.032 6.360 0.017 12.103

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT TRAINING PATTERN CONFIGURATIONS

System
Settings

Nh = Nv = 4, Ptr = 14, SNR = 30 dB Nh = Nv = 8, Ptr = 48, SNR = 30 dB

Training
Patterns

Sparse Grouping Sparse Grouping
Nhs, Nvs, Nhd, Nvd;NA Ngh, Ngv;G Nhs, Nvs, Nhd, Nvd;NA Ngh, Ngv;G

3,1,1,2;4 1,1,3,2;6 1,2,3,2;7 2,2;4 1,2,3,3;10 3,2,3,2;11 3,2,3,3;14 4,4;4 2,2;16

πh,r,k,ℓ1ℓ2 5.72e-3 5.42e-3 4.85e-3 1.65e-2 2.10e-3 9.00e-4 9.24e-4 1.47e-2 4.37e-3
πv,r,k,ℓ1ℓ2 8.32e-3 8.90e-3 3.64e-3 1.73e-3 1.14e-3 1.37e-3 9.17e-4 1.57e-2 4.27e-3
ρr,k,ℓ1ℓ2 1.57e-2 1.30e-2 9.29e-3 8.56e-2 3.91e-3 2.97e-3 2.85e-3 1.58e-1 3.18e-2
Hcas,r,k 3.28e-4 3.12e-4 1.37e-4 3.39e-3 4.33e-5 2.42e-5 2.02e-5 1.03e-2 6.17e-4
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Fig. 6. RMSE/NMSE of the cascaded parameters/channel vs. training frames,
Nh = Nv = 4, SNR = 30 dB, q = 1.5.

Figs. 6 and 7 plot the estimation performance curves of

the cascaded parameters and channels versus the number

of training frames with NI = 16 and 64, respectively. It

shows that as Ptr increases, the recovery accuracy of the

BALS rapidly improves, while the SCPD is working when the

uniqueness condition (10) holds. Moreover, the performance

of the ANM-ADMM gradually approximates to that of ANM-

SDP. By contrast, the results of the sparse, grouping and

ANM-SDP schemes are relatively less sensitive to the quantity

of measurements, which originates from the robustness of

LS and SDP operations. One can observe from Figs. 4–7

that the sparse scheme and ANM-SDP can achieve better

performance than other counterparts. This can be attributed
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Fig. 7. RMSE/NMSE of the cascaded parameters/channel vs. training frames,
Nh = Nv = 8, SNR = 30 dB, q = 1.5.

to the fact that the former effectively reduces the number of

subchannels to be decomposed and reconstructed, while the

latter leverages the optimization approaches with dominant

computational complexity. Hereinafter, we combine these two

methods with the proposed twin-IRS structure to implement

the decoupling of channel multipath parameters.

Figs. 8 and 9 plot the RMSEs of the decoupled angular

parameters versus the relative rotation angle and the power

radiation coefficient of twin-IRS structures, respectively. The

ANM-SDP and sparse schemes work with NI = 16, Ptr = 14
and NI = 64, Ptr = 48, respectively. The figures indicate

that the proposed twin-IRS structure enables us to precisely

recover the angular parameters at the IRS end with a reso-
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Fig. 8. RMSE of the decoupled angular parameters vs. IRS relative rotation
angles, SNR = 30 dB, q = 3.

lution less than 0.1◦. Concretely, it can be observed that as

δh, δv increase from 5◦ to 30◦, the RMSEs firstly decrease

and then increase. This can be explained as follows: too

small rotation angles cannot yield significant amplitude/phase

variations along the IRS array aperture, whilst too large ones

will lead to a disappearance of some weak paths with near-

zero AoA/AoDs relative to the IRS planes due to the non-

ideal power radiation pattern. Furthermore, as q increases

from 0 to 3, the performance of the “All” decoupling mode

gradually deteriorates, while that of the “Pair” counterpart

first improves and then worsens. The former does not rely on

amplitude equations derived by the power radiation pattern,

while the latter depends on effective amplitude equations with

an appropriate value of q. In conclusion, the optimal values of

δh, δv and q are shown to be about 15◦ and 1.5, respectively.

Figs. 10 and 11 plot the RMSEs of the environment mapping

and user localization with the sparse scheme, where the pro-

posed multi-carrier (MC) and single-carrier (SC) strategies are

implemented with the aid of one and two twin-IRS structures,

respectively.12 The simulation results show that even with no

LoS path between the BS and IRSs, the proposed twin-IRS

structure and the corresponding channel estimation schemes

can achieve centimeter-level and degree-level resolution of the

scatterer/user locations and orientations, respectively. The MC

strategy consistently outperforms the SC counterpart, which

benefits from more training subcarriers and less error accu-

mulation of twin-IRS structures. More specifically, the “All”

decoupling mode returns more accurate results of scatterer

mapping, whilst the “Pair” counterpart generally performs

12The BS and UE are randomly located at pB = [2 ∼ 6,−6 ∼
−2,−2 ∼ 2]T ,pU = [2 ∼ 6, 2 ∼ 6,−2 ∼ 2]T with orientations
nB = [cos ηB, sin ηB, 0]

T ,nU = [cos ηU, sin ηU, 0]T with ηB = 30◦ ∼
150◦, ηU = −150◦ ∼ −30◦, respectively.
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Fig. 9. RMSE of the decoupled angular parameters vs. IRS power radiation
coefficient, SNR = 30 dB, δh = δv = 15◦.

better at user positioning. The former can more robustly

recover the parameters of multiple NLoS paths, while the latter

is more suitable for solving the AoA/AoDs of a specific pair

of paths involving the LoS component. Furthermore, one can

observe that an increasing Rician K-factor leads to enhanced

performance of environment mapping and user localization

except that of IRS-UE scatterer positioning. This is due to

the fact that higher power of a LoS path can improve its

probability of being correctly detected, but will dominate the

NLoS components and make them more likely be treated as

environmental noise.

Finally, we analyze the computational complexity of the

involved channel estimation algorithms, as tabulated in Table

V. Our analysis indicates that the complexity of the BALS

and SCPD is proportional to the number of reflectors NI. The

algebraic grouping and sparse schemes efficiently reduce the

complexity by activating fewer reflection unit cells and formu-

lating smaller-scale equivalent arrays, respectively. Moreover,

the optimization-based ANM-SDP/ADMM can handle arbi-

trary designs of the IRS training coefficients at the expense of

relatively higher complexity.

VII. CONCLUSIONS

We considered the channel estimation, as well as, the user

localization problems of an IRS-assisted mmWave MIMO-

OFDM system. We proposed a novel twin-IRS structure

consisting of two IRS planes with a relative spatial rotation

to extract the 3-D propagation channel. By leveraging the

techniques of tensor factorization, sparse array processing and

atomic norm denoising, we presented four IRS training pattern

designs and the corresponding parameter recovery schemes.

By concatenating the cascaded phase/amplitude parameters
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TABLE V
COMPUTATIONAL COMPLEXITY OF CHANNEL ESTIMATION APPROACHES

Training IRS Pattern Channel Estimation Method Computational Complexity

Random BALS [14] O(MtrTtrPtrNI) per iteration
Structured SCPD [40] O(MtrTtrP1P2NI)
Grouping LS + ESPRIT O(MtrTtrPtrG)

Sparse LS + ESPRIT O(MtrTtrPtrNA)
Arbitrary ANM-SDP/ADMM O(LBI,rLIU,rN

3.5
I )/O(LBI,rLIU,rN

2
I ) per iteration
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Fig. 10. RMSE of the environment mapping and user localization vs. SNR,
Ktr = 6, δh = δv = 15◦, q = 1.5, KIU,r = 20 dB.

recovered from the twin-IRS structure and leveraging the

geometric relationship of devices, we achieved the decoupling

of the exact channel angular and temporal parameters. We

also proposed wideband and narrowband training strategies

with single and multiple twin-IRS structures for the scatterer

mapping and user positioning. Numerical results showed that

the proposed strategy can precisely extract the channel parame-

ters, and, therefore, can support a centimeter-level positioning

resolution. In our future work, we are going to exploit the

potential of conformal array topologies for the IRS designs

alongside the corresponding channel estimation strategies and

parameter recovery schemes.
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