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ABSTRACT Channel estimation for hybrid Multiple Input Multiple Output (MIMO) systems at

Millimeter-Waves/sub-THz is a fundamental, despite challenging, prerequisite for an efficient design of

hybrid MIMO precoding/combining. Most works propose sequential search algorithms, e.g., Compressive

Sensing (CS), that are most suited to static channels and consequently cannot apply to highly dynamic

scenarios such as Vehicle-to-Everything (V2X). To address the latter ones, we leverage recurrent

vehicle passages to design a novel Multi Vehicular (MV) hybrid MIMO channel estimation suited for

Vehicle-to-Infrastructure (V2I) and Vehicle-to-Network (V2N) systems. Our approach derives the analog

precoder/combiner through a MV beam alignment procedure. For the digital precoder/combiner, we

adapt the Low-Rank (LR) channel estimation method to learn the position-dependent eigenmodes of

the received digital signal (after beamforming), which is used to estimate the compressed channel in

the communication phase. Extensive numerical simulations, obtained with ray-tracing channel data and

realistic vehicle trajectories, demonstrate the benefits of our solution in terms of both achievable spectral

efficiency and mean square error compared to the unconstrained maximum likelihood estimate of the

compressed digital channel, making it suitable for both 5G and future 6G systems. Most notably, in some

scenarios, we obtain the performance of the optimal fully digital systems.

INDEX TERMS Low-Rank Channel Estimation, Hybrid MIMO systems, Millimeter-Wave, sub-THz,

V2X, 5G New Radio, 6G

I. INTRODUCTION

R
ECENT advances in millimeter-wave (mmW) hard-

ware [1] and the potential availability of spectrum

has encouraged the wireless industry to consider mmW, for

the Fifth Generation of cellular systems (5G) [2] and, in

particular, for Vehicle-to-Everything (V2X) applications [3],

[4]. Following the same trend, sub-THz are envisioned for

6G systems [5]–[7]. Due to the increased carrier frequency,

e.g., 24.25− 52.6 GHz for 5G New Radio (NR) Frequency

Range 2 (FR2) and > 100 GHz for sub-THz, mmW/sub-

THz signals experience an orders-of-magnitude increase in

free-space path loss compared to the current majority of

wireless systems, resulting in highly sparse channels [8],

[9]. Multiple Input Multiple Output (MIMO) systems are a

redeeming solution that can provide a beamforming gain to

overcome the path loss and establish links with a reasonable

Signal-to-Noise Ratio (SNR). Additionally, MIMO systems

enable precoding and combining of multiple data streams

which could significantly improve the achievable data rate

[10], [11].

While the fundamental theory of MIMO precod-

ing/combining is the same regardless of the carrier fre-

quency, the hardware in the mmW/sub-THz band is subject

to a set of non-trivial practical limitations. The processing

in traditional MIMO systems is performed digitally at

baseband, which requires a dedicated Radio Frequency (RF)

chain for each antenna element. Unfortunately, due to the

high number of elements required in mmW (even more at

sub-THz), this implies a high cost and power consumption,

which makes it unpractical [12].

A promising solution to these problems lies in the con-

cept of hybrid arrays, which use a combination of analog

beamforming in the RF domain and digital beamforming

in the baseband, with a reduced number of RF chains.
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Hybrid Beamforming (HBF) was first proposed in [13]. It

is driven by the practical fact that the number of RF chains

is only lower-limited by the number of transmitted data

streams, while the beamforming gain and diversity order is

given by the number of antenna elements if proper precod-

ing/combining is applied. Analog precoding/combining is

often implemented using phase shifters [14], [15], switches

[16], or lenses [17]. A HBF based on phase shifting network

imposes the constraint of constant amplitude on the elements

of the RF precoder. Moreover, there are two main HBF

architectures, as shown in Fig. 1: (i) a Fully-Connected

(FC-HBF) architecture, where each RF chain connects to

all antenna elements of the array; and (ii) a Sub-Connected

(SC-HBF) architecture, where the RF chains connect to

disjoint subarrays. Consequently, deriving the hybrid pre-

coder/combiner is a complex, non-convex problem and

therefore it is mathematically intractable [18].

RELATED WORKS

Most works on hybrid precoding/combining design [18]–

[20] require the knowledge of the full MIMO channel at

both Transmitter (Tx) and Receiver (Rx). The presence

of analog precoders/combiners implies that the digitally-

observed channel is limited to a portion of the full MIMO

one, introducing an equivalent analog compression which

cannot be handled with conventional channel estimation

approaches [21]. From the analytical point of view, the

channel decompression can be achieved by applying the

hybrid echoing method proposed in [22], which consists of

consecutively transmitting and receiving training sequences,

while using all possible analog precoders/combiners (ob-

tained, for example, from a subset of a Fourier basis) and

decompressing the channel after the concatenation of the

received signals for each subset. However, this approach

turns out to be infeasible for practical systems due to (i)

mobility of the terminals and (ii) the low SNR resulting

from mismatched Tx-Rx beams.

The authors in [23] and [24] propose a grid-based method

for FC-HBF architecture, by first estimating the Angles of

Arrival/Departure (AoAs/AoDs) of the channel through a

closed-loop beam training, after which the path gain of each

pair AoA/AoD is derived. In [25], [26], a similar approach is

proposed for SC-HBF architecture under practical hardware

impairments. In both architectures, the performance tends to

be limited by the codebook resolution, while the complexity

increases with the number of users. A different approach is

based on Compressed Sensing (CS) techniques, that impose

a structured sparsity in the channel estimation problem

[27]. In [21], the CS-based open-loop approach is used

to explicitly estimate the full channel, with a dictionary

of quantized AoAs/AoDs. The results show the capability

of CS to capture the full MIMO channel features allow-

ing for the joint optimization of both analog and digital

precoders/combiners. However, the CS algorithm requires

an a-priori knowledge of the number of channel paths, and

its performance is affected by the true sparsity level of the

channel. Moreover, the joint optimization of both analog

and digital precoders/combiners increases the complexity

and the cost of the implementation in practical high-mobility

systems, as the channel is rapidly time-varying. Finally, as

any grid-based technique, CS has a significant drawback

in the high sensitivity to array calibrations [28], which is

critical in hybrid systems [29].

Low-Rank (LR) methods approach the MIMO channel

estimation by exploiting the invariance of Spatial-Temporal

(ST) channel features (i.e, AoA/AoD and delays) across

different MIMO channel realizations, extracting a modal

filtering on the received signal. LR are algebraic-based

methods that leverage on the sparsity of the MIMO channel,

as opposite to CS. Originally proposed in [30]–[33] for

lower-spectrum systems, where the channel is not suffi-

ciently sparse to boost the LR application to practical

systems, the LR has recently been resumed for mmW/sub-

THz systems, for Fully Digital (FD) systems only [28], [34].

In particular, the work in [28] demonstrates that LR methods

attain similar performances to CS with lower sensitivity to

hardware impairments. In [28], the LR channel estimation

is enabled by consecutive transmissions of training blocks,

that limits the application to static or low-mobility scenarios.

CONTRIBUTION

In mobility, AoAs and AoDs describe an algebraic span

of MIMO channel that has a LR, with a set of subspaces,

and for mobile-to-fixed links, both approaches are location

dependent. Differently from [34], we adapt this concept to

Multi-Vehicular (MV) LR and we specialize the channel es-

timation to high-mobility hybrid massive MIMO systems in

mmW/sub-THz bands, e.g., Vehicle-to-Infrastructure (V2I),

considering both FC-HBF and SC-HBF architectures. In

this context, this paper proposes a training process for an

algebraic estimation of the single-user spatial hybrid MIMO

channel in a mobile scenario. In the first stage (Section

III), we determine the optimal analog precoder/combiner at

both Mobile Station (MS) and Base Station (BS) through

a MV codebook-based beam alignment procedure, while in

the second stage (Section IV) the BS learns the algebraic

channel subspace structure (eigenmodes) from the received

training signal, observed at the digital side, used to obtain

the LR-estimated channel and the digital precoders and

combiners. The key novelty of the proposed method is the

exploitation of the position-invariant spatial features of the

MIMO channel, i.e., AoAs/AoDs, leveraging on multiple

repeated vehicle passages. A notable advantage is that, at

the end of the training procedure, the BS stores a dataset

of optimal analog precoders/combiners and digital channel

eigenmodes, which do not require to be updated unless

macroscopic changes in the environment occur. Therefore,

after learning, during the communication phase, the beam

alignment can be avoided, thus reducing the control signal-

ing overhead.

Extensive numerical simulations, based on ray-tracing-

generated channel data [35] and realistic vehicle trajectories
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[36], show that the proposed LR channel estimation method

outperforms the Unconstrained Maximum Likelihood (U-

ML) in terms of Mean Square Error (MSE) on channel

estimation and Spectral Efficiency (SE) for both FC-HBF

and SC-HBF architectures. Furthermore, we prove numer-

ically that the MSE of the LR attains the theoretical MSE

lower bound derived in [28] for structured MIMO channels

as considered here. In particular, for a target SE, both

architectures and LR methods achieve an SNR gain up to 15

dB in single-path and up to 10 dB in multipath scenarios. In

general, the performance of the proposed channel estimation

is proportional to the sparsity degree of the MIMO digital

channel (after analog beamforming), which is high at mmW,

and it is even more prominent at sub-THz [9], making it

suitable for 6G systems.

ORGANIZATION

The paper is organized as follows: Section II introduces

the system and the channel model that are used throughout

the paper. Section III describes the proposed MV analog

beam alignment, while Section IV details the LR approach

for hybrid MIMO systems. Section V reports the numerical

results validating our work. Finally, Section VI draws the

conclusions.

NOTATION

Bold upper- and lower-case letters describe matrices and

column vectors. [A]i,j denotes the (i, j) entry of matrix

A, while A(i) is the i-th column. Matrix transposition

and conjugate transposition is indicated as (·)T and (·)H,

respectively. ‖·‖ denotes the Frobenius norm. tr (A) and

rank (A) extracts trace and rank of matrix A, respectively,

while eigr(A) is the collection of r eigenvectors of A. ⊗,

⋄ and ⊙ denote, respectively, the Kronecker, the Kathri-

Rao and the element-wise product between two matrices.

vec(·) denotes the vectorization by columns and vec−1(·)
its inverse operation for proper dimensions. span(A) de-

notes the subspace spanned by the columns of A. A† is

the Moore-Penrose pseudo-inverse of A. diag(·) denotes

either a diagonal matrix or the extraction of the diagonal

of a matrix. The following properties of the vectorization

are used in the text: vec(ABC) = (CT ⊗ A)vec(B),
vec(AB) = (BT ⊗ I)vec(A). With a ∼ CN (µ,C) we

denote a multi-variate circular-symmetric complex Gaussian

random vector a with mean µ and covariance C. E[·] is

the expectation operator, while R and C stand for the set of

real and complex numbers, respectively. δn is the Kronecker

delta.

II. SYSTEM AND CHANNEL MODEL

We consider the single-user hybrid mmWave MIMO sys-

tem depicted in Fig. 1. The Tx is equipped with NT

antenna elements and NRF
T RF chains, that is communi-

cating NS data streams. The Rx has NR antenna elements

and NRF
R RF chains. The hybrid hardware configuration

consists in NRF
T < NT and NRF

R < NR, while the

number of parallel data streams NS is upper-bounded as

NS ≤ min(NRF
R , NRF

T ). For the sub-connected config-

uration, the Tx and Rx antennas are grouped into sub-

arrays of NB
T and NB

R antennas, respectively, each one

connected to a single RF chain, i.e., NB
T = NT /N

RF
T

and NB
R = NR/N

RF
R . The NS complex symbols to be

transmitted are s ∈ C
NS×1 ∼ CN (0, INS

/NS), and are

precoded using the cascade of FBB ∈ C
NRF

T
×NS , obtaining

the digital signal vector s̃ = FBB s ∈ C
NRF

T
×1, and of

FRF ∈ C
NT×NRF

T in the analog domain. The discrete-time

transmitted signal is therefore given by:

x = FRF s̃, (1)

where x ∈ C
NT×1. For channel estimation, an orthogonal

training sequence v ∈ C
NRF

T
×1, detailed in Section IV, is

transmitted without the digital precoder FBB , i.e., s̃ = v.

Since FRF is implemented using analog phased shifters,

its elements are constrained to have the same norm,

i.e., [F
(i)
RFF

(i),H
RF ]k,k = 1/NT , while the Tx total power

constraint is enforced by designing FBB such that

‖FRFFBB‖2 = NS . In the SC-HBF configuration, the

NB
T N

RF
T × NRF

T analog precoding matrix FRF is block-

diagonal:

FRF =




f
(1)
RF 0 · · · 0

0 f
(2)
RF · · · 0

...
...

...
...

0 · · · 0 f
(NRF

T
)

RF



, (2)

where 0 ∈ C
NB

T
×1 is a vector with zero-elements and f

(n)
RF ∈

C
NB

T
×1, n = 1, . . . , NRF

T is the beamforming vector for the

n-th Tx sub-array.

The transmitted signal is assumed to propagate in a

spatially-sparse channel H ∈ C
NR×NT affected, for sim-

plicity, by block-fading [18]. After the time-frequency syn-

chronization, the received signal is:

y = Hx+ n (3)

where the additive noise n ∼ CN (0,Qn) is assumed to

be zero mean with covariance matrix Qn = E[nnH] that

is generally not white due to the presence of directional

interference. Similarly to the Tx, the Rx applies the cas-

cade of analog and digital combiners, here indicated with

WRF ∈ C
NR×NRF

R and WBB ∈ C
NRF

R
×NS , respectively.

The (compressed) digital signal ỹ ∈ C
NRF

R
×1 after the

analog combiner WRF is:

ỹ = WH
RFHFRF︸ ︷︷ ︸

H̃

s̃+ ñ
(4)

where:

• WRF compressing the analog signal is subject to

the same constraint of FRF , i.e., [W
(j)
RFW

(j),H
RF ]l,l =

1/NR;

• H̃ ∈ C
NRF

R
×NRF

T is the equivalent and compressed

MIMO channel observed at the digital side;
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FIGURE 1: Block scheme of the FC-HBF (1a,1b) and SC-HBF (1c,1d) hybrid MIMO system

• the noise after the analog beamforming is ñ =
WH

RF n ∼ CN (0, Q̃n), with Q̃n = WH
RFQnWRF .

Similarly to FRF , the analog combiner WRF for SC-HBF

architectures is block-diagonal.

Finally, the received data flows z ∈ C
NS×1 after the

digital combiner WBB are:

z = WH
BBỹ = WH

BBH̃ s̃+WH
BBñ. (5)

Derivation of FBB ,FRF ,WBB ,WRF has been investi-

gated in depth in [18]. Here, the analog precoders/combiners

FRF and WRF are derived from a MV codebook-based

beam alignment procedure. After, the digital precoders FBB

and combiners WBB are computed employing the LR

training in the second stage, as detailed in Section IV. The

aforementioned system model refers, for instance, to one

sub-carrier of an OFDM system and temporal processing

over the sub-carriers is not detailed herein.

A. CHANNEL MODEL

As customary in mmW/sub-THz links, we consider the

spatially-sparse clustered MIMO channel model [37], [38].

The channel matrix H can be written as the sum of P paths

as

H =

P∑

p=1

αp aR(ϑp)a
T
T (ψp), (6)

where: (i) αp is the complex gain of the p-th path; (ii)

aT (ψp) ∈ C
NT×1 and aR(ϑp) ∈ C

NR×1 represent, respec-

tively, the Tx and Rx and array response vectors to p-th

path, function of the AoDs ψp = [ψaz,p, ψel,p]
T and the

AoAs ϑp = [ϑaz,p, ϑel,p]
T.

Without loss of generality, we assume the faded channel

to be normalized such that E[‖H‖2] = NTNR. The channel

matrix (6) can be rewritten in compact form as:

H = AR (ϑ)DAT
T (ψ) , (7)

where AT (ψ) = [aT (ψ1), . . . ,aT (ψP )] ∈ C
NT×P and

AR (ϑ) = [aR(ϑ1), . . . ,aR(ϑP )] ∈ C
NR×P are two

matrices identifying the Tx and Rx beam spaces, and di-

agonal matrix D = diag (α1, . . . , αP ) ∈ C
P×P collects all

the channel amplitudes, obeying the Wide-Sense Stationary

Uncorrelated Scattering (WSSUS) model [39]:

E
[
DnD

H
n+m

]
= Pδn−m, (8)

with P = diag (P1, . . . , PP ) containing the paths’ powers,

normalized such that
∑

p Pp = 1, and n, m denoting two

different channel realizations in either time (different fading

blocks) or space (different locations).

Matrices AT (ψ) and AR (ϑ) allow to define the diver-

sity orders of channel H for Tx (rT ) and Rx (rR)

rT = rank(AT (ψ)) ≤ min (NT , P ) , (9)

rR = rank(AR (ϑ)) ≤ min (NR, P ) , (10)

i.e., the number of resolvable spatial paths according to the

number of Tx and Rx antennas.

The analog precoder/combiner pair FRF and WRF modi-

fies the beam spaces and the diversity orders of the digitally-

equivalent channel H̃, whose structure is:

H̃ = WH
RFAR(ϑ)DAT

T (ψ)FRF . (11)
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The diversity orders, namely number of resolvable paths

given the Tx and RX HBF configurations, now become:

r̃T = rank(AT
T (ψ)FRF ) ≤ min (rank(FRF ), rT ) , (12)

r̃R = rank(WH
RFAR(ϑ)) ≤ min (rank(WRF ), rR) ,

(13)

where, in general,

rank(FRF ) ≤ NRF
T , rank(WRF ) ≤ NRF

R . (14)

As will be shown in the following, as the full MIMO channel

cannot be directly estimated, [18], [23], we exploit the al-

gebraic structure of the digitally-observed channel H̃ to im-

prove the channel estimation. As opposite to existing works

[21]–[24], we propose a learning-based approach, tailored

for both static and dynamic scenarios (e.g., V2I/V2N sce-

narios). A MV codebook-based beam alignment procedure

selects the analog precoder/combiner pair FRF , WRF (Sec-

tion III); then, a second MV-LR method learns the algebraic

spatial eigenmodes of the digital compressed channel H̃,

which are used to derive digital precoders/combiners FBB

and WBB from the LR-estimated equivalent compressed

channel (Section IV).

III. MULTI-VEHICULAR CODEBOOK-BASED ANALOG

BEAM ALIGNMENT

The hardware constraint and the low SNR in the

mmW/sub-THz bands makes the derivation of analog pre-

coder/combiner in hybrid systems a complex non-convex

problem [40]. A conventional solution is to use a fixed

codebook and a beam alignment strategy to appropriately

scan the full channel (both AoA and AoD) and to select

the best beam pairs that satisfy some criterion, such as to

maximize the received power, the SNR, or the achievable

rate. The trade-off between complexity and resolution must

be taken into account when designing the codebook [41]. We

elaborate further below from this beam-alignment approach

tailored for vehicular use cases.

In a quasi-static propagation environment, different ve-

hicles crossing the same location in space with slightly

different co-directed trajectories (as commonly happens in

urban scenarios) experience the same angles (AoD/AoA) in

communicating with the BS and different fading amplitudes

made varying by the Doppler [42]. Therefore, by leveraging

this property, we explore a set of MIMO channel snapshots

of recurrent vehicle passages to design a self-learning multi-

vehicular codebook-based analog beam alignment procedure

for dynamic scenarios, characterized by the mobility of

one of the terminals, as in V2I/V2N communications. We

assume the Rx, e.g., a BS, with a fixed position and a

set of collaborative vehicles, both equipped with hybrid

antenna arrays. In particular, all the MSs have the same

array equipment, and their positions pℓ and headings θℓ are

known, with a reasonable accuracy, for each training block

(ℓ-th MS). The way the position and orientation are obtained

is out of the scope but to exemplify one can use (i) a Radio
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FIGURE 2: Graphical representation of the MV codebook-based
beam alignment: the BS assigns different analog beams to different
MSs (2a,2b,2c), collecting a set of position-related power measure-
ments used to progressively filling matrix PR. At the end of the
procedure, the MV beam alignment selects the best analog beam
pairs (i.e., analog precoder/combiner pair) (2d)

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3095121, IEEE Access

Mizmizi et al.: Channel Estimation for 6G V2X Hybrid Systems using Multi-Vehicular Learning

Access Technology (RAT)-based localization and tracking

algorithms [43], or (ii) some signaling from the vehicle’s

onboard sensors (e.g., Global Navigation Satellite System

(GNSS)). The estimated position’s accuracy, regardless of

the technology used, affects the system performance as

discussed in Section V.

The Tx analog codebook is designed from a 2D Fourier

basis that for a N1 × N2 Uniform Rectangular Array

(URA) with half-wavelength spaced antennas configuration

becomes:

B2D (N1, N2) = B (N1)⊗B (N2) , (15)

where B (N) ∈ C
N×N is the DFT matrix with entries

[B (N)]m,n =
1√
N
e−j 2πmn

N , (16)

and dimensions are

N1 = Naz
T , N2 = N el

T for FC-HBF,

N1 = NB,az
T , N2 = NB,el

T for SC-HBF
(17)

in which Naz
T , N el

T denote the number of Tx antennas along

the azimuth (horizontal) and elevation (vertical) direction of

the URA (NT = Naz
T ×N el

T ), and NB,az
T , NB,el

T the same for

each sub-array (NB
T = NB,az

T ×NB,el
T ). The Rx codebook

is analogously obtained.

The learning stage of the MV codebook-based beam

alignment procedure is depicted in Fig. 2 and it consists

on the following steps, that involve the usage of a low-

frequency signalling link (e.g., 5G NR FR1):

1) the BS commands each collaborative MS entering the

BS’s coverage area to use a certain analog beam fRF

(e.g., codebook index from B2D (N1, N2)) and the

relative training sequence. Additional information, such

as position pℓ and heading θℓ, could be requested to

the MS by the BS;

2) the collaborative ℓ-th MS, while moving in the BS’s

coverage area, transmits training sequences according

to the BS using the fixed analog beam (see Figs. 2a,

2b, 2c). The position and heading, if requested, are

related to the instant in which the training sequence is

transmitted;

3) the meantime the MS moves, the BS continuously

scans all the analog beams wRF of the Rx codebook.

In the event of a match between BS and MSℓ analog

beams, the BS stores: (i) the received power PR, (ii)

the MSℓ analog beam fRF , (iii) the BS analog beam

wRF , and (iv) position pℓ and heading θℓ;
4) the BS, after the training period for multiple MSs, each

with different precoder fRF , groups received powers

in clusters based on positions and headings of the

moving MSs and it generates the position/heading

associated ensemble received power matrix PR

(
p̄, θ̄

)
,

where p̄ and θ̄ are the reference position and heading

respectively. Fig. 3 shows an example of PR

(
p̄, θ̄

)
for

FC-HBF and SC-HBF architectures.

The optimal analog precoders/combiners FRF and WRF

for each position are those maximizing the ensemble re-

ceived power in matrix PR

(
p̄, θ̄

)
, learned from multiple

passages illustrated in Figs. 2a, 2b, 2c. The problem consists

in selecting the maxima of PR

(
p̄, θ̄

)
corresponding to

the true channel paths. In hybrid systems, however, as the

full channel matrix H is unknown and cannot be directly

estimated, it is not possible to approach the maximization

analytically. Furthermore, heuristic approaches are disad-

vantageous, since the ensemble power matrix PR

(
p̄, θ̄

)
has

several local maxima, due to LoS/NLoS spatial components

of the channel (when they match with the selected beams)

and their related grating lobes as can be observed in Fig.3.

Here, we select the set of beam pairs for FRF and WRF by

searching for the first NRF
T and NRF

R maxima over the rows

and the columns of PR

(
p̄, θ̄

)
independently. This ensures

that the analog beams at MS and BS are not repeated.

Therefore, the analog precoder FRF and combiner WRF

matrices are full-rank, maximizing the system performance

by exploiting all the available spatial diversity orders.

Finally, the BS defines a list LF of optimal analog pre-

coders with the associated reference positions and headings,

such that:

[LF ]k =
{
FRF,k,

(
p̄k, θ̄k

)}
(18)

and similarly for the optimal combiners, with list LW .

IV. LOW-RANK ESTIMATION OF DIGITAL COMPRESSED

CHANNELS

In the second stage of channel estimation, the BS has to

learn the eigenmodes of the equivalent compressed channel

H̃. Again, we exploit recurrent vehicle passages. The BS

sends the optimal analog precoders list LF defined in the

first stage to all collaborative MSs entering its coverage

area. The ℓ-th collaborative MS, while moving, transmits

M consecutive training sequences vℓ ∈ C
NRF

T
×1, such

that S̃ℓ = [v1,ℓ,v2,ℓ, . . . ,vM,ℓ] ∈ C
NRF

T
×M . We assume

the training sequences are chosen to be uncorrelated in

both space and time and also mutually uncorrelated among

different MSs, i.e., E[S̃ℓS̃
H
s ] = σ2

sINRF

T

δs−ℓ and E[S̃H
ℓ S̃s] =

IMδs−ℓ, where σ2
s denotes the Tx power [44]. As pointed

out in [44], choosing uncorrelated training sequences in time

and space maximizes the channel estimation performance.

This solution is currently adopted in 5G NR standard [45].

The optimal analog precoder FRF used for transmitting the

training sequences is selected from the received list LF

based on the current MS position pℓ and heading θℓ.
The BS follows the same principle and it selects the

optimal analog combiner WRF from the list LW defined

in the first stage, obtaining:

Ỹℓ = H̃ℓ S̃ℓ + Ñℓ (19)

where the noise is spatially correlated E[ÑℓÑ
H
s ] = Q̃nδs−ℓ

and temporally uncorrelated E[ÑH
ℓ Ñs] = IMδs−ℓ. At the

end of the procedure, the set of received training sequences

{Ỹℓ}ℓ=L
ℓ=1 for each position and heading is used to retrieve
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the compressed channel eigenmodes accounting for the

spatial correlation of the noise Ñℓ and the LR-estimated

channel through algebraic manipulations, detailed in the

following. In particular, two solutions are provided: (i)

optimal LR estimation, i.e., Joint Space (JS), and (ii) sub-

optimal LR estimation, i.e., Disjoint Space (DS). In Section

V, the performance of the two approaches are compared and

discussed.

A. JOINT SPACE LOW RANK (JS-LR) ESTIMATION

The LR-estimated compressed channel ĥℓ ∈ C
NRF

R
NRF

T
×1

can be retrieved from the single received training signal

Ỹℓ as the combination of a training sequence-dependent

matrix Gℓ and another one referred as position-dependent

matrix Π(p̄, θ̄), that follows a derivation similar to [28] (not
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FIGURE 3: Example of PR, with NT = 64, NR = 128 and
NRF

T = 4, NRF

R = 8 hybrid array configuration, for FC-HBF
(3a) and SC-HBF (3b) architecture

repeated here, as adaptation is straightforward):

ĥℓ = Π(p̄, θ̄)Gℓ vec(Ỹℓ) = Π(p̄, θ̄)yℓ, (20)

where yℓ ∈ C
NRF

R
NRF

T
×1 is the pre-processed sequence

by Gℓ. A notable example of pre-processing is the U-ML

channel estimation, here adopted as benchmark, obtained

with Gℓ = (S̃T
ℓ ⊗ INRF

R

)†.

The position-dependent linear processing Π(p̄, θ̄) is esti-

mated from an ensemble of L training sequences {yℓ}ℓ=L
ℓ=1 ,

originated from multiple vehicles passing in the same loca-

tion such that each one has the same propagation structure

with all the others. In the context of (20), matrix Π(p̄, θ̄)
operates a modal filtering on yℓ, projecting it onto the

propagation subspace [31].

The first step to obtain the position-dependent Π(p̄, θ̄) is

to identify the algebraic structure of the compressed channel

h̃ = vec(H̃), which can be shown to be [28], [31]:

h̃ = T (ψ,ϑ) α (21)

where (i) T (ψ,ϑ) =
(
FT

RF ⊗WH
RF

)
A (ψ,ϑ)α ∈

C
NRF

T
NRF

R
×P embeds the spatial features of the compressed

channel, invariant across multiple MSs passing the same

position; (ii) matrix A (ψ,ϑ) = AT (ψ) ⋄ AR (ϑ) ∈
C

NTNR×P , and (iii) α = [α1, . . . , αP ]
T ∈ C

P×1 collects

the channel amplitudes, different from MS to MS but with

the same power profile (8).

Let us define the compressed channel correlation R̃ =
E[h̃ h̃H], which can be computed by exploiting the invari-

ance of AoAs/AoDs across multiple vehicles, as:

R̃ = T (ψ,ϑ)PT (ψ,ϑ)
H
=

=
P∑

p=1

Pp

[
FT

RFRT,pF
∗
RF ⊗WH

RFRR,pWRF

] (22)

where RT,p = aT
(
ψp

)
aT

(
ψp

)H ∈ C
NT×NT and RR,p =

aR (ϑp)aR (ϑp)
H ∈ C

NR×NR .

We can re-parameterize the channel h̃ in (21) using the

r̃ leading eigenvectors of R̃, i.e., Ũ = eigr̃(R̃), such that:

span(Ũ) = span(T (ψ,ϑ)), (23)

the orthonormal basis Ũ ∈ C
NRF

T
NRF

R
×r̃ span the joint Tx

and Rx subspace of the compressed channel, of dimension

r̃ = rank(R̃) = rank(T (ψ,ϑ)). The latter represents the

number of compressed channel paths (diversity order) that

can be resolved by the digital system:

r̃ ≤ min (rank(FRF )rank(WRF ), r) , (24)

where r = rank(A (ψ,ϑ)) ≤ min(NTNR, P ) is the num-

ber of resolvable paths of the full channel h = A (ψ,ϑ)α,

obtained by rearranging (6) similarly to (21).

From the LR contraint (24), the position-dependent matrix

Π(p̄, θ̄) is estimated as [28]:

Π̂(p̄, θ̄) = C
H

2 Π̂JS C
−H

2 , (25)
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where:

• C ≈ (INRF

T

/σ2
s) ⊗ Q̃n is the covariance matrix of

yℓ (asymptotic approximation). Matrix C is used to

perform the whitening (and de-whitening) of yℓ to

optimally handle any presence of noise correlation

(e.g., interference);

• Π̂JS = ÛÛH is the JS-LR projection matrix onto the

propagation subspace spanned by Û = eigr̃(R̂), where

R̂ =
1

L

L∑

ℓ=1

yℓy
H
ℓ (26)

is the sample correlation of whitened sequences yℓ =
C−H

2 yℓ, collected from L different MSs passing the

same position.

The performance of the proposed LR channel estimation,

hereafter referred to as Joint-Space LR (JS-LR), provided

by the application of Π(p̄, θ̄) in (25) on signal yℓ, depends

on the sparsity degree of the compressed channel h̃. The

latter is proportional to the ratio between the effective

number of spatially-separable analog beams for MS and

BS, respectively Nbeams
T and Nbeams

R , and the number of

resolvable paths r̃ of the compressed channel.

For FC-HBF systems, the number of separable beams are

Nbeams
T ≤ rank(FRF ) ≤ NRF

T , Nbeams
R ≤ rank(WRF ) ≤

NRF
R as the Tx/Rx terminals can, in general, use arbitrary

angular separated analog beams. For the analog beams

chosen here as selected from orthogonal codebooks and not

repeated (Section III), we have Nbeams
T = rank(FRF ) =

NRF
T and Nbeams

R = rank(WRF ) = NRF
R , and the sparsity

degree of the compressed channel is maximum.

In SC-HBF architectures, the block-diagonal structure

of FRF and WRF leads, in general, to Nbeams
T ≤

rank(FRF ) = NRF
T and Nbeams

R ≤ rank(FRF ) = NRF
R ,

but again the proposed analog beam alignment ensures

that Nbeams
T = rank(FRF ) = NRF

T and Nbeams
R =

rank(FRF ) = NRF
R , as every RF chain employs a different

orthogonal beam, maximizing the channel sparsity.

In this regard, provided that:

r̃ < NRF
T NRF

R , (27)

the LR provides superior performance compared to conven-

tional approaches (e.g., LS/U-ML).

B. DISJOINT SPACE LOW RANK ESTIMATION

To reduce the complexity of the JS-LR implementation,

mainly due to the large-matrix eigendecomposition of R̂ in

(26), we propose a sub-optimal approach, referred herein as

Disjoint-Space LR (DS-LR). This assumes the separability

of Tx and Rx spatial subspaces of the compressed channel as

detailed in [31]. In analogy to (22), we leverage the algebraic

structure of H̃ in (11) and define the Tx and Rx compressed

channel correlations R̃T = E[H̃HH̃] and R̃R = E[H̃H̃H],
respectively equal to:

R̃T = FH
RFA

∗
T (ψ) Γ̃T AT

T (ψ)FRF , (28)

R̃R = WH
RFAR (ϑ) Γ̃R AH

R (ϑ)WRF , (29)

where

Γ̃T = P⊙AH
R (ϑ)WRFW

H
RFAR (ϑ) , (30)

Γ̃R = P⊙AT
T (ψ)FRFF

H
RFA

∗
T (ψ) , (31)

are diagonal matrices of P × P size. Eq. (30)-(31) high-

light how the analog precoder/combiner pair affects the

eigenvalues of the Tx and Rx channel correlation matrices.

The last term in (30), for instance, represents the overall

matching between the steering vectors of the AoAs with

the combiner WRF : for a fixed precoder FRF , the Tx side

experiences different channel gains (sum of eigenvalues) for

different combiners. The same applies for the Rx side, with

an optimum precoder/combiner pair for the best pointing

between Tx and Rx.

From the r̃T and r̃R leading eigenvectors of R̃T and R̃R,

i.e., ŨT = eigr̃T (R̃T ) and ŨR = eigr̃R(R̃R), we have that:

span(ŨT ) = span
(
AT

T (ψ)FRF

)
, (32)

span(ŨR) = span
(
WH

RFAR(ϑ)
)
, (33)

i.e., ŨT ∈ C
NRF

T
×r̃T and ŨR ∈ C

NRF

R
×r̃R span the Tx

and Rx spatial subspaces of the compressed channel H̃, of

dimensions r̃T and r̃R (see (12)-(13) in Section II).

The position-dependent matrix for the DS-LR method is:

Π̂(p̄, θ̄) = C
H

2 Π̂DS C
−H

2 , (34)

where Π̂DS = Û∗
T Û

T
T⊗ÛRÛ

H
R is the DS-LR projector onto

to the propagation subspace, represented by basis Û∗
T ⊗ÛR.

Notice that the Kronecker separability of Tx and Rx sub-

spaces is an approximation, as the Kronecker structure of

the digital channel correlation (22) holds for single paths

only (see [28]). Similarly to JS-LR, ÛT = eigr̃T (R̂T ) and

ÛR = eigr̃R(R̂R) are set from the r̃T and r̃R leading

eigenvectors of the following sample correlations:

R̂T =
1

L

L∑

ℓ=1

Y
H

ℓ Yℓ, (35)

R̂R =
1

L

L∑

ℓ=1

Yℓ Y
H

ℓ , (36)

where we indicate with Yℓ = vec−1(yℓ) ∈ C
NRF

R
×NRF

T the

whitened sequences in matrix form. It can be demonstrated

that, asymptotically (L→ ∞):

span(ÛT ) → span(AT
T (ψ)FRF ), (37)

span(ÛR) → span(Q̃
−H

2

n WH
RFAR(ϑ)). (38)

The DS-LR channel estimation method provides a perfor-

mance gain with respect to conventional approaches when
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the spatial structure of H̃ is sparse, which is equivalent to

state that at least one of the following conditions hold:

r̃T < NRF
T , (39)

r̃R < NRF
R . (40)

Compared to JS-LR, the DS-LR method requires a lower

number of training sequences, L, to estimate the compressed

channel eigenmodes, at the price of a reduced performance

(the sparsity degree of DS-LR is always less than the JS-LR

one).

Remark. Without interference (Qn = σ2
nINR

) and with an

orthogonal codebook for WRF as here, it follows that Q̃n ≈
Nσ2

nINRF

R

, where σ2
n is the noise power and N accounts

for analog beamforming (N = NR for FC-HBF, N = NB
R

for SC-HBF). In this setting, for L→ ∞ we have:

span(Û) → span(Ũ), (41)

span(ÛT ) → span(ŨT ), (42)

span(ÛR) → span(ŨR). (43)

Therefore, the whitening/de-whitening in (26) reduces the

position-dependent matrix Π(p̄, θ̄) to the projection matrix

associated to the sample estimates of (22) (JS-LR) and (28)-

(29) (DS-LR).

C. LOSSY VS. LOSSLESS CHANNEL COMPRESSION

FOR FC-HBF ARCHITECTURES

By exploiting (12), (13) and (14) we can observe that if

both the following conditions hold

NRF
T ≥ rT , (44)

NRF
R ≥ rR, (45)

this implies that there exist an analog precoder/combiner

FRF /WRF with rank(FRF ) ≥ rT and rank(WRF ) ≥ rR,

such that FC-HBF performance, in terms of Spectral Ef-

ficiency (SE), attains the Full-Digital (FD) one. The first

condition, (44), asserts that the overall number of RF chains

at Tx must be larger than the number of Tx-resolvable

paths of the full channel H. This is derived from (12)

by noticing that, if (44) does not hold, r̃T < rT would

mean that the HBF system cannot explore the full channel

diversity for insufficient number of available beams at Tx,

regardless the choice of FRF /WRF . This is equivalent to

a lossy compression of the channel. Condition (45) can be

analogously derived from (13). When both (44) and (45)

apply, r̃T ≤ rT and r̃R ≤ rR, i.e., the number of resolvable

paths at Tx and Rx before and after the analog compression

can be equal when a suitable combination of FRF /WRF

is employed (lossless compression of the channel).

Remark 1: In practical FC-HBF systems, where the analog

precoder/combiner are defined by a codebook, the perfor-

mances can deteriorate if the resolution is poor, i.e., low

angular sampling interval.

Remark 2: The previous consideration does not apply to

SC-HBF systems, unless a proper Tx power augmentation

is considered. Indeed, for a fixed Tx power, the reduced

beamforming gain of SC-HBF compared to FC-HBF does

not allow to reach the performance of FD systems.

D. DIGITAL PRECODERS/COMBINERS DESIGN

The digital precoders/combiners are retrieved from the LR

estimated compressed channel matrix Ĥ = vec−1(ĥ), which

must be known at the Tx side through a feedback from Rx.

The optimal digital precoder FBB is [46]:

FBB = eigNS

(
ĤHĤ

)
, (46)

while the digital combiner WH
BB is derived using the opti-

mal unconstrained Minimum Mean Squared Error (MMSE)

as [47]

WH
BB =

(
ĤHFH

BBQ̃
−1
n FBBĤ+

INS

NS

)−1

ĤHFH
BBQ̃

−1
n .

(47)

These are the precoders/decoders used in the numerical

results below.

BS
S1

S2

FIGURE 4: Urban scenario used in simulations: the solid yellow
line represents the reference vehicle trajectory, the blue triangle the
mmW BS (located at 6 m height from ground) while red and green
circles the S1 and S2 locations used for testing the proposed LR
channel estimation. The inset illustrates the gridding used by the
ray-tracing to emulate the multiple vehicle passages by SUMO.
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V. NUMERICAL RESULTS

To demonstrate the effectiveness of the proposed channel

estimation methods, we present the results obtained through

numerical simulations using ray-tracing channel data and

a set of realistic vehicle trajectories. The latter are aimed

at simulating multiple vehicle passages, in a typical urban

scenario (Fig. 4). Two locations are selected for testing:

the first (red circle in Fig. 4) relatively far from the BS,

≈ 60 m, and the second (green circle) at ≈ 8 m (close

to the BS). To ease the reader in analyzing the results, we

will refer to these locations as S1 (far from the BS) and

S2 (close to the BS). Fig. 5 shows the number of channel

paths as function of the MS-to-BS distance. The blue curve

represents the number of paths provided by the ray-tracer,

while the red curve is the number of meaningful paths, i.e.,

those with cumulative power within the 99.9 percentile. Red

(a) (b)

FIGURE 6: Hybrid arrays configuration for MS (6a) and BS (6b)

TABLE 1: Simulation Parameters

Parameter Symbol Value(s)

Carrier frequency fc 28 GHz
Number of channel paths P 1− 7

Number of data streams NS 1
Number of MS antennas NT 64 (8× 8)

Number of MS RF chains NRF

T
4

Number of MS sub-array antennas NB

T
16

Number of BS antennas NR 128 (16× 8)

Number of BS RF chains NRF

R
8

Number of BS sub-array antennas NB

R
16

BS height from ground - 6 m
MV region radius ρ 2 m (S1), 0.5 m (S2)

and green ellipses in Fig. 5 identify the S1 and S2 locations

used in simulation. More specifically, the meaningful paths

are selected as follows: (i) we set a threshold on the whole

Rx power for a fixed MS position (0.999); (ii) we order all

the paths provided by the ray-tracer by descending power;

(iii) we select the meaningful ones as the subset whose

cumulative power is within the threshold.

We consider an interference-free MS-to-BS (UL) commu-

nication in the 5G NR FR2 band (28 GHz carrier frequency)

[45]. The hybrid MIMO setting is such that the BS is

equipped with NR = 128 (16× 8) antennas and NRF
R = 8

RF chains, while the MS (i.e., each vehicle) with NT = 64
(8 × 8) antennas and NRF

T = 4 RF chains. We make use

of Altair WinProp ray-tracing software [35] to generate the

required channel data (power, AoDs, AoAs and scattering

amplitude for each ray), whereas the MIMO channel (6) is

obtained by post-processing in far-field (i.e., AoDs/AoAs

equal for each Tx/Rx antennas). The required trajectories

(i.e., position, velocity and direction over time) are instead

generated by means of SUMO [36]. In both MV beam align-

ment (Section III) and LR training (Section IV) procedures,

we consider the assignment of MSs’ positions according to

the spatial granularity of the experiment. In other words,

we exploit multiple vehicle passages in a spatial region of

radius ρ, where AoAs/AoDs are invariant. We set ρ = 2
m for S1 and ρ = 0.5 m for S2, determined with ray-

tracing. The size of the MV region plays an important role

in the proposed method: if excessive, a performance penalty

is experienced by the system as the channel subspaces

decorrelate (Section V-B). It is worth underlining that the

performance of the proposed LR channel estimation method

is position-dependent, regardless of the vehicles’ speed

along their trajectory within the radio cell, provided that

their position information is continuously signaled to the BS.

Unless otherwise specified, the parameters given in Table 1

are used to generate the results, while the MS and BS array

configurations are in Fig. 6. Most of the results we present

in this section are related to the multipath scenario S1, while

the single-path S2 is used for comparison.

The performance of both JS-LR and DS-LR channel

estimation methods are compared to the U-ML one in terms

of Spectral Efficiency (SE) and MSE on compressed channel
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estimation. The SE is defined as [48]:

R = log2

∣∣∣∣INS
+

1

NS

Q−1
eff HeffH

H
eff

∣∣∣∣ (48)

where Qeff = WH
BBQ̃nWBB is the covariance of the noise

at the decision variable, and Heff = WH
BBH̃FBB is the

effective end-to-end channel between MS and BS. The MSE

is computed as:

MSE = E

[∥∥∥ĥ− h̃

∥∥∥
2
]
, (49)

and for U-ML method it is compared to the theoretical

Cramer-Rao Lower Bound (CRLB), while for LR it is

asymptotically lower-bounded by [28]:

MSEb = tr
(
Π{r̂}CΠH{r̂}

)
+

+ tr
(
∆Π{r̂} R̃∆ΠH{r̂}

) (50)

where: (i) Π{r̂} is the asymptotic (L→ ∞) (true) position-

dependent matrix Π(p̄, θ̄) evaluated for the estimated rank,

either r̂ (for JS-LR) or r̂T and r̂R (for DS-LR); (ii)

∆Π{r̂} = Π{r̃} − Π{r̂} is the difference between the

asymptotic position-dependent matrix computed for the true

channel rank (r̃ for JS-LR or r̃T and r̃R for DS-LR) and

for the estimated one. Therefore, the first term accounts

for the residual noise contribution, while the second for

misparameterization (errors in the estimated diversity orders

of the channel). Here, we estimate the channel rank from

the correlations’ eigenvalues, in descending order, according

to the 99.9 percentile of their cumulative sum.

A. S1 (MULTIPATH SCENARIO FAR FROM THE BS)

Fig. 7 shows the achievable SE in (48) varying the SNR per

antenna, i.e., before analog beamforming, for FC-HBF vs.

SC-HBF architectures (Fig. 7a) and FC-HBF vs. FD (Fig.

7b). The SE is evaluated with four different degrees of chan-

nel knowledge: (i) perfect Channel State Information (CSI)

(black lines); (ii) optimal JS-LR channel estimation (blue

lines); (iii) sub-optimal DS-LR channel estimation (green

lines); (iv) U-ML channel estimation (red lines). The FD

performance are computed as benchmark, with precoders

and combiners obtained with (46) and (47), respectively, by

using the U-ML-, JS-LR- and DS-LR-estimated full channel

Ĥ. In all the LR implementations, the number of training

vehicle passages is L = 1000. As expected, the SC-HBF

architectures provides worst performance compared to FC-

HBF, as a consequence of the reduced analog beamforming

gain. In both FC-HBF and SC-HBF configurations, however,

we notice the remarkable performance gain compared to U-

ML provided by DS-LR and especially JS-LR. For FC-HBF,

at a reference SNR of −10 dB, the SE gap amounts to 0.8

bits/s/Hz for DS-LR and to 2.6 bits/s/Hz for JS-LR (Fig.

7a). It can be appreciated that, for FC-HBF system, the use

of JS-LR channel estimation method allows to practically

approach the perfect CSI case (R ≈ 8 bits/s/Hz) with 5 dB

less of SNR compared to U-ML. For SC-HBF, instead, the

DS-LR provides a SE gain of 0.7 bits/s/Hz and JS-LR 1.9

bits/s/Hz, while the SNR gain is even higher, up to ≈ 10 dB

for R ≈ 3 bits/s/Hz, while the perfect CSI case is attained

for SNR ≥ 10 dB. As can be observed from Fig. 7b, the FC-

HBF (dashed lines) performance practically matches the FD

one (solid lines), apart from a negligible SE penalty due to

the fixed spatial sampling provided by the use of analog

codebooks. According to Subsection IV-C, this result is

expected, as NRF
T = 4 > rT = 3 and NRF

R = 8 > rR = 3.

Figs. 8 and 9 depict, respectively, the behavior of the

SE and of the MSE of both FC-HBF and SC-HBF systems

with respect to the number of vehicle passages L, for SNR

= −10 dB. The DS-LR method requires a lower number

of passages, approximately L = 50 for HBF, to converge

to its asymptotic MSE bound, whereas for JS-LR method

the convergence is guaranteed for L = 500 blocks (HBF).
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FIGURE 7: Spectral efficiency of FC-HBF vs. SC-HBF (7a) and
FC-HBF vs. FD (7b), with U-ML, JS-LR, and DS-LR channel
estimation methods and perfect CSI; L = 1000 training blocks
(vehicle passages)
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FIGURE 8: Spectral efficiency of FC-HBF and SC-HBF systems
varying the number of vehicle passages L

It is important to emphasize that, at the cost of approxi-

mately 1.5 bits/s/Hz in SE (Fig. 8), we have a remarkable

gain in complexity, which is approximately ruled by the

computation of the eigenvectors of correlation matrices in

(26) and (35)-(36), since the computational cost of eig(R̂) is

O((NRF
T NRF

R )3) ≥ O((NRF
T )3)+O((NRF

R )3), as required

for eig(R̂T ) and eig(R̂R). In general, the results show a

significant performance gain with LR compared to U-ML

on whole SNR range.

The last results on S1 are related to the SE and MSE

performance of HBF varying the number of RF chains

NRF
R × NRF

T , summarized in Figs. 10 and 11, fixing

L = 1000 vehicle passages and SNR per antenna of −5 dB.

For FC-HBF systems, the SE gap between LR and U-ML

goes proportionally to the number of RF chains. The MSE in

Fig. 11a explains the SE performance: by increasing NRF
R

and NRF
T , the MSE of LR decreases with the increasing

sparsity of the compressed channel; conversely, the MSE of

U-ML does not change. For SC-HBF architectures, instead,

Fig. 10 shows an interesting trade-off between having a

high analog resolution (few RF chains) or having a high

digital resolution (i.e., approach the FD system, for 16×32
RF chains). A high analog resolution implies a comparably

low LR gain with respect to U-ML, as the compressed

channel sparsity decreases; a high digital resolution leads

to a significant sparsity of H̃ and thus to a huge LR gain.

For any HBF configuration in between, the performance

decreases. The MSE in 11b exhibits a similar trend with

respect to Fig. 11a, again explaining the SE gain of LR

compared to U-ML.

B. S2 (SINGLE-PATH SCENARIO CLOSE TO THE BS)

The last set of results are related to the single-path scenario

S2 (Fig. 4). Similarly to S1, we report in Fig. 12 the SE

varying the SNR before beamforming for FC-HBF vs. SC-

HBF architectures (Fig. 12a) and FC-HBF vs. FD (Fig.
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FIGURE 9: MSE on compressed channel estimation varying the
number of vehicle passages L for FC-HBF (9a) and SC-HBF (9b)
systems, with U-ML, JS-LR, and DS-LR methods and correspond-
ing theoretical bounds; SNR (per antenna) = −10 dB

12b). Again, we consider U-ML, JS-LR and DS-LR channel

estimation methods, and the perfect CSI case as upper

bound, with L = 1000 vehicle passages. Compared to the

multipath scenario S1, JS-LR and DS-LR channel estimation

methods approach the perfect CSI case, for both FC-HBF

and SC-HBF. This can be explained by considering that

for a single-path channel, the sparsity degrees in (27) and

(39)-(40) are maximum, and the residual error on the LR-

estimated channel does not remarkably impact on the SE.

In S2, the proposed system performance is more sensitive

to the MV region size compared to S1. Fig. 13 shows the

SE of FC-HBF and SC-HBF for all the channel estimation

methods varying ρ (MV region radius) from 0.5 m to 4

m (the latter basically considering the whole area of the

crossing in Fig. 4), for a fixed SNR = −5 dB. We notice that

the JS-LR and DS-LR performance drastically decrease with
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FIGURE 10: Spectral efficiency of FC-HBF and SC-HBF systems
varying the number of RF chains (NRF

T × NRF

R ), with U-ML,
JS-LR, and DS-LR channel estimation methods and perfect CSI;
L = 1000 vehicle passages, SNR = −10 dB (FD as upper bound)

ρ, especially for FC-HBF, and can be even worse than the

U-ML one. This is a direct consequence of the AoDs/AoAs

variation within the selected MV region, which exceeds the

system resolution (spatial selectivity of BS array) and leads

to subspace decorrelation. In other words, the ensemble of

received sequences {y}Lℓ=1 (Subsection IV) do not have the

same propagation subspace. As the spatial resolution of FC-

HBF systems is higher of SC-HBF one, the effect for the

former is stronger. This is further confirmed by the MSE

of JS-LR varying the SNR before beamforming (Fig. 14),

where we notice a progressive deviation from the asymptotic

MSE bound (black, dashed line), proportional to ρ and

to the SNR. For low SNRs, the imperfect modal filtering

provided by an excessive cluster size ρ is negligible for low

SNRs, where the noise is dominant, while is relevant for

higher SNR values. Furthermore, FC-HBF systems provide

superior performance, attaining FD one, but require a very

accurate positioning, while SC-HBF allows to relax this

constraint.

This last result shows that, considering practical HBF set-

tings of both MS and BS, the required tolerable positioning

accuracy is in the order of few meters (< 2), allowing a con-

sistent estimation of position-dependent analog beams and

digital MIMO channel eigenmodes. Such positioning accu-

racy is compatible with the performance of a GPS system

without urban canyon effects or severe multipath phenomena

and can be possibly improved by advanced RAT-based

or multi-sensor localization techniques, (see for instance

[49]). Notice that also the heading accuracy plays a role

in the proposed channel estimation method. The required

heading accuracy is ruled by the horizontal (azimuth) spatial

selectivity of the MS antenna equipment. For a fixed position

in space, it is sufficient that the MS heading is known with

an error that does not lead to the selection of a wrong

optimal analog beam (or a wrong channel eigenmode). For
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FIGURE 11: MSE on compressed channel estimation varying
the number of RF chains (NRF

T × NRF

R ) for FC-HBF (11a)
and SC-HBF (11b) systems, with U-ML, JS-LR, and DS-LR
channel estimation methods and corresponding theoretical bounds;
L = 1000 vehicle passages, SNR = −10 dB

the considered settings, where NRF
T ≪ NT , the MS spatial

selectivity is practically ruled by the analog beamwidth

(≈ 15 deg) which is compatible with typical GPS accuracy

and can be reduced again by multi-sensor fusion techniques

[50]. Thus, a trade-off between the performance of the HBF

system and the available resolution in MS position accuracy

and heading allows to set up the MV regions.

VI. CONCLUSION

In this paper, we propose a training-based multi-stage chan-

nel estimation method for hybrid mmWave/sub-THz MIMO

systems, based on terminals in mobility (e.g., in V2I or V2N

scenarios), in the future 6G context. The first training stage

relies on a novel multi-vehicular codebook-based beam

alignment procedure to obtain the optimal analog precoder

and combiner. In the second training stage, we adapt the
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FIGURE 12: Spectral efficiency of FC-HBF vs. SC-HBF (12a) and
FC-HBF vs. FD (12b), with U-ML, JS-LR, and DS-LR channel
estimation methods and perfect CSI; L = 1000 training blocks
(vehicle passages)

Low-Rank (LR) channel estimation to hybrid systems, and

we propose two LR methods, namely Joint-Space Low-

Rank (JS-LR) and Disjoint-Space Low-Rank (DS-LR), for

deriving the hybrid channel eigenmodes. Finally, in the

last stage, i.e., communications phase, we derive the dig-

ital precoders/combiners based on both the optimal analog

precoder/combiner pair from the first stage and the hybrid

channel eigenmodes from the second stage.

The proposed LR methods are analyzed numerically, but

realistically, considering a V2I/V2N urban scenario based

on OpenStreetMap for roads/buildings topology and SUMO

for the vehicular mobility. The channel is generated by

ray-tracing and the performances are compared in terms of

Spectral Efficiency (SE) and Mean Squared Error (MSE) on

channel estimation. The metrics on Full Digital (FD) system

are reported as benchmark, as well as the performance of
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FIGURE 13: Spectral efficiency of FC-HBF vs. SC-HBF varying
the MV region radius ρ, with U-ML, JS-LR, and DS-LR channel
estimation methods and perfect CSI; L = 1000 training blocks
(vehicle passages), SNR = −5 dB
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SC-HBF, varying the SNR, function of the MV region radius ρ;
L = 1000 training blocks (vehicle passages), SNR = −5 dB

the Unconstrained Maximum Likelihood (U-ML). The two

proposed solutions, i.e., optimal (JS-LR) and sub-optimal

(DS-LR), are examined for both Fully Connected (FC-HBF)

and Sub-Connected (SC-HBF) architectures varying SNR,

training vehicles’ number, RF chains configuration, and

channel configurations, i.e., multipath (S1) and single-path

(S2).

The achieved results proved the great advantage of our

solution. In particular, we observed that in the single-

path scenario (S2), both JS-LR and DS-LR solutions attain

the SE of the perfect CSI results. Moreover, the FC-HBF

architecture exhibits similar performance to the benchmark

(FD). In the multipath scenario (S1), both solutions show

better performance compared to the U-ML estimator and

attain the perfect CSI for an SNR > −5 dB for FC-HBF
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and SNR > 10 dB for SC-HBF. In general, we can conclude

that, under the same conditions, the FC-HBF architectures

perform better than SC-HBF in terms of SE and present

the same MSE. However, the SC-HBF architectures are less

sensitive to positioning errors, which impacts on the size of

the multi-vehicular region used for training.

Another aspect of interest is that, as the number of

RF chains increases, the performance gap (LR-U-ML) of

the FC-HBF architectures increases, while for SC-HBF

architecture, we observe that pursuing a trade-off between

digital and analog resolution is detrimental, and it is more

appropriate to consider a system with high digital resolution

(higher number of RF chains), or high analog resolution

(low number of RF chains), with the former being prefer-

able. Concerning the comparison between JS-LR and DS-

LR, we found that, under the same conditions, the former

shows a better SE and MSE. Moreover, the SE gap is greater

especially in the multipath and/or low SNR scenario, and it

reduces in the single-path and/or high SNR scenario. Conse-

quently, in these cases, the DS-LR method is recommended

as it is significantly less complex, requiring less training

vehicles for convergence to the theoretical bound. In real

cases, the presence of neighbouring vehicles (even parked)

is expected to make the estimates to be time-varying, but

nevertheless the BS can always command the MSs to repeat

some MV learning steps for refinement of the position-based

estimate. Beyond the apparent algebraic complexity of the

method, the implementation complexity is comparable with

other advanced methods but the advantage is that learning

stage remarkably reduces the later analog beam-alignment

signalling.
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