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Channel Estimation for Frequency-Domain Equalization of
Single Carrier Broadband Wireless Communications

Yahong Rosa Zheng,Member, IEEE,and Chengshan Xiao,Senior Member, IEEE,

Abstract— Frequency-domain equalization (FDE) is an effec-
tive technique for high data rate wireless communication systems
suffering from very long intersymbol interference. Most of
existing FDE algorithms are limited to slow time-varying fading
channels due to lack of accurate channel estimator. In this paper,
we employ interpolation method to propose new algorithms for
frequency-domain channel estimation for both slow and fasttime-
varying fading. We show that least squares-based channel estima-
tion and minimum mean square error-based channel estimation
with interpolations are equivalent under certain conditions. Noise
variance estimation and channel equalization in the frequency
domain are also discussed with fine-tuned formulas. Numerical
examples indicate that the new algorithms perform very wellfor
severe fading channels with long delay spread and high Doppler
spread. It is also shown that our new algorithms outperform
recently developed frequency-domain least mean squares (LMS)
and recursive least squares (RLS) algorithms which are capable
of dealing with moderate fading channels.

I. I NTRODUCTION

Single carrier frequency-domain equalization (SC-FDE) has
been shown to be an attractive equalization scheme for
broadband wireless channels which has very long impulse
response memory. Compared to orthogonal frequency divi-
sion multiplex (OFDM), a single carrier system with FDE
has similar performance and signal processing complexity
but lower peak-to-average power ratio and less sensitivity
to carrier frequency errors [4], and this arises from the use
of single carrier modulation [5], [7]. Moreover, compared
to time-domain equalization, SC-FDE has less computational
complexity and better convergence properties [1] to achieve
the same or better performance in severe frequency-selective
fading channels.

Recent years, SC-FDE has received increasing attention in
the literature [2]-[19]. Among the existing techniques, SC-
FDE is often designed according to one of the following four
channel assumptions: 1) the fading channel coefficients are
assumed to be perfectly known at the receiver [6], [8], [10],
[12], [15], [17], [18], then frequency-domain linear equalizers
or decision feedback equalizers are analyzed and/or designed
accordingly; 2) the fading channel are assumed to be constant
for a frame consisting of one training block and many data
blocks, the fading channel is estimated via the training block
and utilized for equalization for the entire frame [2], [3],[4],

Manuscript received March 6, 2007; revised October 22, 2007and Decem-
ber 31, 2007; accepted March 4, 2008. The editor coordinating the review of
this paper and approving it for publication is A. Ghrayeb. This work was
supported in part by the National Science Foundation under Grant CCF-
0514770 and the Office of Naval Research under Grant N00014-07-1-0219.

The authors are is with the Department of Electrical and Computer
Engineering, Missouri University of Science and Technology, Rolla, MO
65409 USA (e-mail:{zhengyr,xiaoc}@mst.edu).

without adaptive receiver processing; 3) the fading channel
is assumed to be static for at least one block but varying
within a frame, which consists a few training blocks (at the
beginning of the frame) and many data blocks, then adaptive
FDE is developed by employing least mean squares (LMS)
or recursive least squares (RLS) adaptive processing in the
frequency domain [5], [16], [19]; 4) the fading channel is
assumed to be static for one block but varying from one block
to another, then decision directed technique is utilized for
channel estimation and equalization for DS-CDMA systems
[14]. The equalizers developed based on the first two as-
sumptions have demonstrated significant performance gain of
frequency-domain equalization over time-domain equalization,
however, they may not be applicable to practical systems
over time-varying channels with satisfactory performance. The
adaptive equalizers derived from the last two assumptions have
achieved substantial advancement in dealing with slow time-
varying frequency-selective channels compared with these
non-adaptive SC-FDEs. However, as indicated in the examples
of [5], [16], [19], the adaptive SC-FDEs employing LMS
or RLS algorithms can degrade significantly for fast moving
mobiles, which cause large Doppler spread leading to fast
time-varying fading.

In this paper, we employ interpolation method to propose
a new algorithm for frequency-domain channel estimation for
severe time-varying and frequency-selective fading channels.
Our new algorithms are developed by employing a frame
structure which consists of one training block and many data
blocks. The training block is utilized to estimate fading chan-
nel transfer function of the block. The fading channel transfer
functions of the data blocks are estimated by interpolatingthe
channel transfer functions of the training blocks at the current
frame and the next frame. Noise variance is also estimated at
the training blocks. Channel equalization is performed in the
frequency domain by employing the estimated channel transfer
functions and noise variance. This channel estimation method
is similar to the time-domain interpolation method in [26],
[27], but differs in that it is performed in frequency domain
and can deal with both fast time-varying fading and severe
intersymbol interference. Compared with the existing FD LMS
and RLS algorithms, the proposed new method can deal with
much larger Doppler spread fading with the same bit error rate
and data efficiency.

The rest of the paper is organized as follows. Section II
describes the system models and preliminaries. Section III
presents the frequency-domain channel estimation and noise
variance estimation. Section IV details the frequency-domain
channel equalization. Section V illustrates numerical examples
and Section VI draws the conclusion.
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Fig. 1. The simplified block diagram of a single carrier SIMO wireless system with frequency-domain channel estimation and equalization.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a SIMO system with one transmit antenna andM
receive antennas whose baseband equivalent model is shown
in Fig. 1. At the transmitter, cyclic prefix (CP) is periodically
added to the baseband data sequence{x(n)} and modulated
onto a single carrier frequency for transmission across the
time-varying and frequency-selective fading channel. At the
receiver, the CP is removed at each branch. The fast Fourier
transform (FFT) is utilized to convert the time-domain data
signal to the frequency-domain signal. Then frequency-domain
channel estimation, equalization, and diversity combining are
employed to mitigate inter-symbol interference. Finally an in-
verse FFT (IFFT) is equipped to convert the frequency-domain
signal to time-domain signal for detection and estimation.The
output is the estimated data sequence{x̂(n)}.

To facilitate frequency-domain channel estimation and chan-
nel equalization for broadband wireless systems over time-
varying and frequency-selective fading channels, we employ
a data structure as shown in Fig. 2. The baseband signal
sequence is partitioned into frames with each frame containing
Nb signal blocks. The first block is a training block designed
for channel estimation and noise variance estimation and the
other(Nb−1) blocks are data blocks. Each block containsNc

symbols of CP andN symbols of data (or training) sequence.
The block time duration isTb = (Nc + N)Ts, and frame
duration isTf = Nb(Nc + N)Ts, whereTs is the symbol
period.

Block
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Block
Data

Block
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DataCP
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Fig. 2. The frame structure.

A. Time-Domain System Model

Let xp(n) be then-th transmitted symbol at thep-th block
of the current frame,yp,m(n) be then-th received baseband
signal in thep-th block of the current frame at them-th receive
branch. Then the received baseband signal is given by

yp,m(n) =
L

∑

l=1

hp,m(l, n)xp(n+1−l)+vp,m(n),

n = −Nc+1, · · · , N ; p = 1, 2, · · · , Nb (1)

where vp,m(n) is the additive white Gaussian noise with
average powerσ2, L is the length of the frequency-selective
fading channel,hp,m(l, n) is the baseband equivalent channel
impulse response of the composite fading channel of them-th
branch. The composite channel is the cascade of the transmit
pulse shaping filter, air-link fading channel, and the receive
matched filter [23].

It is a common practice to choose CP of lengthNc such
that Nc ≥ L−1 and

xp(n) = xp(n+N), n =−Nc+1, · · · ,−1, 0. (2)

After the received signals corresponding to the CP
{xp(n)}0

n=−Nc+1 are removed at the receiver, the received
N -point data symbols can be expressed in a matrix form as

yp,m = Tp,mxp + vp,m (3)

where

yp,m =
[

yp,m(1) yp,m(2) · · · yp,m(L) · · · yp,m(N)
]t

(4)

xp =
[

xp(1) xp(2) · · · xp(L) · · · xp(N)
]t

(5)

vp,m =
[

vp,m(1) vp,m(2) · · · vp,m(L) · · · vp,m(N)
]t

(6)

with (·)t being the transpose operation, and the time-domain
channel matrix is given by (7) at the top of next page.

It is worth noting that, for a general time-varying frequency-
selective fading channel, the channel impulse response
hp,m(l, n) is varying at each time instantn, and the time-
domain channel matrices{Tp,m}M

m=1 is not circulant. In
principle, if the receiver has perfect knowledge about the
channel response, then thep-th block transmitted dataxp can
be estimated and detected via the minimum mean square error
(MMSE) criterion. The standard solution is given by

x̂p =

[

M
∑

i=1

Th
p,mTp,m + σ2IN

]−1 [

M
∑

i=1

Th
p,myp,m

]

(8)

where(·)h is the conjugate transpose operation.
However, this time-domain MMSE equalizer requires the

inversion of anN × N Hermitian matrix that needsQ(N2)
operations, whereN is normally chosen to be large to achieve
better data efficiencyN ·(Nb−1)

(N+Nc)Nb
. For a large channel length

L on the order of several tens,N is usually on the order of
hundreds. This can make the time-domain MMSE equalization
prohibitively complex.
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
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
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
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B. Frequency-Domain System Model

Let F be the normalized FFT matrix of sizeN ×N , whose
(k, n)-th element is given by 1√

N
exp

(

−j2π(k−1)(n−1)
N

)

. Tak-
ing the FFT of the transmitted and received signals and
noticing thatFhF = IN , we can obtain the frequency-domain
representation as follows

Yp,m , Fyp,m = FTp,mFhFxp + Fvp,m

= Hp,mXp + Vp,m (9)

whereHp,m = FTp,mFh is the frequency-domain channel
matrix for thep-th block at them-th branch. The frequency-
domain MMSE equalization is given by [18], [19]

X̂p =

[

M
∑

i=1

Hh
p,mHp,m + σ2IN

]−1[
M
∑

i=1

Hh
p,mYp,m

]

. (10)

For general time-varying and frequency-selective fading
channels, the time-domain channel matrixTpi is not circulant
and frequency-domain channel matrixHp,m is not diagonal.
Therefore, the frequency-domain MMSE equalization (10) has
no advantage over its time-domain counterpart in terms of
computational complexity, because the frequency tones of the
received signalYp,m are not orthogonal.

However, if the block time durationTb is much smaller than
the channel coherence time,i.e., the fading channel coefficients
remains approximately constant for the entire block, then
Tp,m is circulant andHp,m is diagonal. Consequently, the
frequency tones{Yp,m(k)}N

k=1 of the received signal are
orthogonal and the frequency-domain input-output relationship
and equalization are simplified as

Yp,m(k)=Hp,m(k)Xp(k)+Vp,m(k), k = 1, 2, · · · , N (11)

X̂p(k)=

[

M
∑

i=1

|Hp,m(k)|2+σ2

]−1[
M
∑

i=1

Hh
p,m(k)Yp,m(k)

]

,

k = 1, 2, · · · , N (12)

whereYp,m(k), Xp(k) andVp,m(k) are the normalized DFT

of the corresponding time-domain signals

Yp,m(k) =
1√
N

N
∑

n=1

yp,m(n)exp

(−j2π(n−1)(k−1)

N

)

(13)

Xp(k) =
1√
N

N
∑

n=1

xp(n)exp

(−j2π(n−1)(k−1)

N

)

(14)

Vp,m(k) =
1√
N

N
∑

n=1

vp,m(n)exp

(−j2π(n−1)(k−1)

N

)

(15)

andHp,m(k) is the DFT of the time-domain channel response
at the time instantn = N/2

Hp,m(k) =
L

∑

l=1

hp,m(l,
N

2
) exp

(−j2π(l−1)(k−1)

N

)

. (16)

In this case, frequency-domain channel estimation and
equalization based on (11) can result in great computational
savings over time-domain methods when the channel length
L is larger than 10 and the FFT algorithm is employed [7].
In this paper, new algorithms for frequency-domain channel
estimation and channel equalization will be developed based
on (11). Besides, we will show that our proposed method based
on this approximation also works well for time-varying fading
channels that have high Doppler frequencies due to high-speed
mobile users.

III. F REQUENCY-DOMAIN CHANNEL ESTIMATION

In this section, we employ interpolation method to develop
least-squares (LS)-based channel estimation algorithm and
MMSE-based channel estimation algorithm in the frequency
domain, we show that both algorithms are equivalent. We
further present a simplified algorithm for Rayleigh fading
channels.

A. LS-Based Frequency-Domain Channel Estimation

For the training block,p = 1, both the transmitted training
signal X1(k) and received signalY1,m(k) are known. The
frequency-domain channel transfer functionH1,m(k) at the
training block can be estimated by LS criterion as follows:

H̃1,m(k) =
Y1,m(k)

X1(k)
= H1,m(k) +

V1,m(k)

X1(k)
,

k = 1, 2, · · · , N. (17)

Authorized licensed use limited to: University of Missouri. Downloaded on January 27, 2009 at 13:44 from IEEE Xplore.  Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL.57, NO. X, XXX 2008 4

The estimateH̃1,m(k) can be improved by a frequency-
domain filter to reduce noise. Although various frequency-
domain filters can be employed, a common technique is to
transformH̃1,m(k) into the time domain with an IFFT, and
use anL-size window mask to remove the noise beyond
the channel length, then transform the time-domain channel
coefficients back to the frequency domain with an FFT. This
procedure was originally proposed in OFDM systems in [21].
The noise-reduced channel estimation of the training blockcan
be represented by

Ĥ1,m(k) = H1,m(k) +
V̂1,m(k)

X1(k)
, k = 1, 2, · · · , N. (18)

where V̂1,m(k) is equal to
1√
N

∑L

n=1 v1,m(n) exp
(

−j2π(n−1)(k−1)
N

)

.

Providedv1,m(n) is AWGN with average powerσ2, one
can easily conclude thatV1,m(k) and V̂1,m(k) are zero-mean
Gaussian with average power beingσ2 and σ2L

N
, respectively,

if X1(k) are constant in the frequency domain. Therefore, the
noise average power is reduced by a factorN

L
via the FFT-

based frequency-domain filter.
Apparently, LS-based channel estimation at the training

blocks is straightforward. Although we approximate channel
coefficients within a single block as constants, channel co-
efficients do vary from block to block. Therefore, channel
coefficients at the data blocks need to be estimated from the
channel transfer functions of the training blocks. We employ
interpolation method to develop an algorithm for data block
channel estimation that utilizes the estimated channel transfer
functions of the current-frame training block and the next-
frame training block.

Let ĤNb+1,m(k) be the noise-reduced channel transfer func-
tion estimate of the training block of the next frame, utilizing
XNb+1(k) = X1(k) for the training signals, then we have

ĤNb+1,m(k) = HNb+1,m(k) +
V̂Nb+1,m(k)

X1(k)
k = 1, 2, · · · , N (19)

whereV̂Nb+1,m(k) is defined similarly toV̂1,m(k).
Define a column vector P̂m(k) =

[

Ĥ1,m(k) ĤNb+1,m(k)
]t

. Let Cp,m(k) be the
interpolation row vector for thep-th data block in the
current frame at them-th receive branch. Then the proposed
method estimates the channel transfer function of thep-th
data block in the current frame by

Ĥp,m(k) = Cp,m(k)P̂m(k), p = 1, 2, · · · , Nb (20)

and the estimation error for them-th receive branch is given
by

Ep,m(k) = Hp,m(k) − Ĥp,m(k)

= Hp,m(k) − Cp,m(k)P̂m(k). (21)

The interpolation vector Cp,m(k) can be designed
by minimizing the mean square estimation error

εp,m(k) = E
{

∣

∣

∣
Hp,m(k) − Ĥp,m(k)

∣

∣

∣

2
}

. The optimal

solution forCp,m(k) can be expressed as (22) on the top of
next page.

Substituting (22) and̂Ph
m(k) into (20), we obtain the LS-

based channel estimatêHp,m(k).
It is noted from (22) that the interpolation vector is deter-

mined by the second-order statistics of the channel coefficients
rather than the instantaneous channel coefficients.

B. MMSE-Based Frequency-Domain Channel Estimation

In this subsection, we present the minimum mean square er-
ror (MMSE)-based channel estimation and prove it is the same
as the LS-based channel estimation under certain conditions.

The frequency-domain channel transfer functionH1,m(k) at
the training block can be estimated by minimum mean square
error (MMSE) criterion as follows:

H̆1,m(k) =
X∗

1 (k)Y1,m(k)

|X1(k)|2 + σ2

=
|X1(k)|2

|X1(k)|2+σ2
H1,m(k)+

X∗
1 (k)V1,m(k)

|X1(k)|2 + σ2
. (23)

Similar to the LS-based frequency-domain channel estima-
tion, we can employ the IFFT and FFT to reduce noise beyond
the channel length and obtain the noise-reduced channel
estimation of the training block given by

Ȟ1,m(k) =
X∗

1 (k)Y1,m(k)

|X1(k)|2 + σ2

=
|X1(k)|2

|X1(k)|2+σ2
H1,m(k)+

X∗
1 (k)V̂1,m(k)

|X1(k)|2 + σ2
. (24)

Let P̌
MMSE

(k) =
[

Ȟ1,m(k) ȞNb+1,m(k)
]t

be the
column vector as the estimated transfer functions at train-
ing blocks of the current frame and next frame, and
C

MMSE
(p, m, k) be the row vector as the corresponding co-

efficients for thep-th block in the current frame. Then the
estimated transfer function of thep-th block of the current
frame is given by

Ȟp,m(k) = C
MMSE

(p, m, k)P̌
MMSE

(k) (25)

and the estimation error is given by

Ěp,m(k) = Hp,m(k) − Ȟp,m(k)

= Hp,m(k) − C
MMSE

(p, m, k)P̌
MMSE

(k). (26)

The optimal solution forC
MMSE

(p, m, k) to minimize the
mean square estimation error is given by (27) at next page.

SubstitutingC
MMSE

(p) into eqn. (25), we obtain (28) given
next page.

Apparently, one can conclude that the MMSE-based channel
estimation Ȟp,m(k) is exactly the same as the LS-based
channel estimationĤp,m(k) given by eqn. (20) along with
(19) and (22).

However, as can be seen from (17) and (23), the LS-
based channel estimation is more computationally efficient
than the MMSE-based algorithm. Therefore, in the sequel,
we will focus on the LS-based channel estimation because
of its simplicity. According to (19), a desired property of
the training sequence is to have constant|X1(k)|2 for all m,
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Cp,m(k)= E
{

Hp,m(k)P̂h
m(k)

}[

E
{

P̂m(k)P̂h
m(k)

}]−1

=
[

E
{

Hp,m(k)H∗
1,m(k)

}

E
{

Hp,m(k)H∗
Nb+1,m(k)

}]





E
{

|H1,m(k)|2
}

+ σ2L

N |X1(k)|2 E
{

H1,m(k)H∗
Nb+1,m(k)

}

E
{

HNb+1,m(k)H∗
1,m(k)

}

E
{

|HNb+1,m(k)|2
}

+ σ2L

N |X1(k)|2





−1

. (22)

C
MMSE

(p, m, k) = E
{

Hp,m(k)P̌
MMSE

(k)
} [

E
{

P̌
MMSE

(k)P̌h
MMSE

(k)
}]−1

=
|X1(k)|2 + σ2

|X1(k)|2
[

E
{

Hp,m(k)H∗
1,m(k)

}

E
{

Hp,m(k)H∗
Nb+1,m(k)

} ]

×





E
{

|H1,m(k)|2
}

+ σ2L

N |X1(k)|2 E
{

H1,m(k)H∗
Nb+1,m(k)

}

E
{

HNb+1,m(k)H∗
1,m(k)

}

E
{

|HNb+1,m(k)|2
}

+ σ2L

N |X1(k)|2





−1

. (27)

Ȟp,m(k) =
[

E
{

Hp,m(k)H∗
1,m(k)

}

E
{

Hp,m(k)H∗
Nb+1,m(k)

} ]

×





E
{

|H1,m(k)|2
}

+ σ2L

N |X1(k)|2 E
{

H1,m(k)H∗
Nb+1,m(k)

}

E
{

HNb+1,m(k)H∗
1,m(k)

}

E
{

|HNb+1,m(k)|2
}

+ σ2L

N |X1(k)|2





−1



H1,m(k)+
V̂1,m(k)
X1(k)

HNb+1,m(k)+
V̂Nb+1,m(k)

X1(k)



. (28)

Cp(k) =

[

J0 [2πfd(p−1)Tb]
J0 [2πfd (Nb+1−p)Tb]

]t
[

1 + σ2L
Nfh(k) J0 (2πfdNbTb)

J0 (2πfdNbTb) 1 + σ2L
Nfh(k)

]−1

(29)

εp(k) = fh(k)−fh(k)

[

J0 [2πfd(p−1)Tb]
J0 [2πfd (Nb+1−p)Tb]

]t
[

1 + σ2L
Nfh(k) J0(2πfdNbTb)

J0(2πfdNbTb) 1 + σ2L
Nfh(k)

]−1
[

J0 [2πfdpTb]
J0 [2πfd (Nb−p)Tb]

]

(30)

so that noise amplification on certain frequency tones can be
avoided. Although many sequences can achieve this property,
a good solution is to adopt Chu sequences [22] as the training
sequence, because Chu sequences have constant magnitude in
both frequency domain and time domain, which avoids the
peak-to-average power ratio problem at the transmitter. Inthis
paper, we choose Chu sequences as the training sequence to
ensure|X1(k)|2 = 1.

C. Simplified LS-Based Channel Estimation for Rayleigh Fad-
ing Channels

We are now in a position to present simplified formula for
the interpolation vector.

Proposition 1:For frequency-selective Rayleigh fading, the
interpolation row vectorCp,m(k) and the minimum mean
square error of the LS-based channel estimation are indepen-
dent from the branch indexm, they are given by (29) and
(30) at the middle of this page, whereJ0(·) is the zero-order
Bessel function of the first kind,fd is the maximum Doppler
frequency, andfh(k) is given by

fh(k) =

L
∑

l1=1

L
∑

l2=1

Cl1,l2 exp

(−j2π(l1−l2)(k−1)

N

)

(31)

with Cl1,l2 being the inter-tap correlation ofl1-th tap andl2-th
tap of the fading channel, details are given in [23].

Proof: Details are omitted for brevity.
Remark 1: Interpolation-based channel estimation methods

have been previously studied for OFDM systems [25] and
for frequency flat fading channels [26], [27], with different
channel conditions. In this paper, we consider the discrete-
time channel taps have inter-tap correlations, which is the
general case [23]. The algorithm presented in this paper is
to demonstrate that the interpolation-based channel estimation
can deal with much higher Doppler than the existing LMS and
RLS algorithms for single-carrier broadband wireless systems.

Remark 2: It is noted that for Rayleigh fading channels,
once Nb and Tb are chosen,Cp(k) is depending on the
maximum Doppler frequencyfd and the noise average power
σ2. The estimation offd can be done by the algorithm
presented in [24] and the estimation ofσ2 can be done by
using the time-domain signal components beyond the channel
length after performing IFFT when the block length is larger
than the channel length.

Remark 3: It is also noted that if the frequency selective
fading channel has no inter-tap correlations,i.e., Cl1,l2 = 0
for l1 6= l2, thenfh(k) ≡ 1 for all k. In this case, bothCp(k)
andεp(k) will be independent from the frequency tonek.

Remark 4: Intuitively, the proposed interpolation method
computes the channel coefficients of thep-th data block
as a weighted sum of the channel coefficients of the two
neighboring train blocks. When the block indexp is small,
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its correlation with the training block is stronger than its
correlation with ĤNb+1,m(k). Thus the channel coefficients
are mainly determined bŷH1,m(k). When the block index
p is large, on the other hand, its channel is highly correlated
with the training block of the next frame and is less correlated
with the training block of the current frame. Then the channel
coefficients of this data block are dominant by the coefficients
of the training block of the next frame.

IV. FREQUENCY-DOMAIN CHANNEL EQUALIZATION

According to eqn. (11), thep-th block received signals at the
M receive branches are given in frequency domain as follows:










Yp,1(k)
Yp,2(k)

...
Yp,M (k)











=











Hp,1(k)
Hp,2(k)

...
Hp,M (k)











Xp(k)+











Vp,1(k)
Vp,2(k)

...
Vp,M (k)











. (32)

This equation can be written in a compact form as follows:

Yp(k) = Hp(k)Xp(k) + Vp(k). (33)

We are now in a position to state the following result.
Proposition 2:The output of the frequency-domain MMSE

equalizer is given by

X̂p(k) =
[

Ĥh
p(k)Ĥp(k) + εp(k) + σ2

]−1

Ĥh
p(k)Yp(k),

k = 1, 2, · · · , N (34)

where Ĥp(k) =
[

Ĥp,1(k) Ĥp,2(k) · · · Ĥp,n
R
(k)

]t

is
the noise-reduced estimated transfer function vector of thep-th
block.

Proof: From (21) we haveHp(k) = Ĥp(k) + Ep(k) with
Ep(k) =

[

Ep,1(k) Ep,2(k) · · · Ep,n
R
(k)

]t
being the

estimation error vector. ReplacingHp(k) by Ĥp(k) + Ep(k),
(33) yields

Yp(k) = Ĥp(k)Xp(k) + Ep(k)Xp(k) + Vp(k). (35)

Let Wp(k) be the frequency-domain equalizer row vector,
the output of the equalizer is given bŷXp(k) = Wp(k)Yp(k).
The equalization error vector is given by

EXp
(k) = Xp(k) − X̂p(k) = Xp(k) − Wp(k)Yp(k). (36)

Adopting MMSE criterion, we find the equalizer row vector
given by

Wp(k)=E

n

Xp(k)Yh
p (k)

o h

E

n

Yp(k)Yh
p (k)

oi

−1

= E
˘

Xp(k)X∗

p (k)
¯

Ĥ
h(k)

h

E
˘

Xp(k)X∗

p (k)
¯

Ĥ(k)Ĥh(k)

+E
˘

Xp(k)X∗

p (k)
¯

E

n

Ep(k)Eh
p(k)

o

+E

n

Vp(k)Vh
p (k)

oi

−1

= Ĥ
h(k)

h

Ĥ(k)Ĥh(k) + εp(k)In
R

+ σ
2
In

R

i

−1

=
h

Ĥ
h(k)Ĥ(k) + εp(k) + σ

2

i

−1

Ĥ
h(k) (37)

where the last equality is obtained by using the matrix inver-
sion lemma [28]. This completes the proof.

Finally, applying IFFT on the frequency domain equalized
data sequencêXp(k), k = 1, 2, · · · , N , we obtain thep-th

block estimated data sequencex̂p(n), n = 1, 2, · · · , N in the
time-domain.

Remark 5: It should be noted that our frequency-domain
channel equalizer given by (37) differs from existing ones by
taking into consideration of the mean square errorεp(k) of
the channel interpolation (30). As a matter of fact that most
existing techniques are utilizing LMS and/or RLS algorithms
to track the channel variations, however, the tracking error
statistics are omitted from their equalization algorithms.

Remark 6: In practice,σ2 is replaced by its estimatêσ2

andεp(k) is calculated by (30) with the estimated Dopplerfd

and σ̂2.

V. SIMULATION RESULTS

The performance evaluation of the proposed algorithms
has been carried out by extensive computer simulations with
various system parameters and fading channels. For compar-
ison purpose, we present numerical examples based on three
previously reported wireless systems. The first example is
to show that our algorithm provides very good results for
fading channels having long delay spread and high Doppler
spread. The second and third examples are designed to show
that our new algorithm outperforms two recently developed
RLS and LMS algorithms which are capable of dealing with
moderate time-varying frequency selective fading channels.
We employed the improved Clarke’s model [29] to carry out
all the simulations.

Example 1: we adopt the 60-tap frequency-selective
Rayleigh fading channel, where the average power of the
first 20 taps ramps up linearly and the last 40 taps ramps
down linearly, as described in [5], and the fading channel is
normalized to have total average power as one. We choose
FFT size N = 256, symbol intervalTs = 0.25µs and
QPSK modulation, which are the same as these of [5]. We
further choose frame lengthNf = 10 to have the same data
efficiency as that of [5] for the LMS and RLS adaptations,
which employed10 training blocks at the beginning of every
frame and each frame consisted of100 blocks.
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Fig. 3. BER versus SNR of diversity receivers with our proposed algorithms
at fd = 200 Hz and those of [5] for quasi-static channel.

Fig. 3 shows the BER performance of a two-antenna re-
ceiver and a four-antenna receiver equipped with our proposed
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Fig. 4. BER versus SNR of diversity receivers with various Doppler spreads.

algorithms when the Doppler is200 Hz, which is equivalent to
a mobile speed of114 km/h at carrier frequency of1.9 GHz.
As can be seen, both diversity receivers with our algorithms
have only about1 dB degradation from the ideal receiver with
perfect channel fading information. Moreover, for the four-
antenna receiver, our algorithm with200 Hz Doppler has the
same performance as the LMS and RLS algorithms of [5]
with quasi-static channel, and for the two-antenna receiver,
our algorithm withfd = 200 Hz is slightly better than the
RLS algorithm but slightly worse than the LMS algorithm of
[5] when they are operated with quasi-static channel. The LMS
and RLS algorithms will degrade 3-6 dB at BER =10−4 when
the Doppler is200 Hz, as pointed out by the author of [5].

Fig. 4 depicts the BER performance of single-branch re-
ceiver, two-branch diversity receiver and four-branch diversity
receiver over various Doppler spreads up to400 Hz. From this
figure, it is observed that the BER degradation due to larger
Doppler tends to be smaller when the diversity order increases.

Clearly, our proposed algorithms can effectively cope with
severe fading channels which has very long impulse response
and large Doppler shift.

Example 2: We adopt the same 11-tap frequency-selective
Rayleigh fading channel whosel-th tap has average power
given by1.2257 exp(−0.8l), as described in [19]. We choose
frame lengthNb = 10, FFT size N = 128, CP length
Nc = 10, symbol intervalTs = 0.5µs, receive antenna number
M = 1 and QPSK modulation. Therefore, the data efficiency
is N

N+Nc
× Nb−1

Nb
= 83.5%, which is slightly higher than the

data efficiency of82.8% in [19].
Figure 5 shows the BER results of the single-branch receiver

employing our proposed frequency-domain channel equal-
ization incorporated our proposed noise variance estimation
and channel estimation algorithms with various Doppler fre-
quenciesfd = 20, 50, 100, 200 and 300 Hz. For comparison
purpose, the results of MMSE equalizers based on perfect
channel knowledge and RLS adaptive algorithm [19] with
normalized DopplerfdTs = 1×10−5, i.e., fd = 20 Hz are also
included. As can be seen from the BER results, for Doppler
frequency up to50 Hz, our proposed algorithms is less than1
dB away from the ideal case with perfect channel knowledge
at BER of 10−5. For Doppler up to300 Hz, our algorithms

still provide better results than that of the RLS algorithm
in [19] with Doppler fd = 20 Hz. This indicates that our
algorithm can handle15 times higher Doppler than the RLS
algorithm in [19], and still provides better BER performance
and maintains slightly higher data efficiency. The cost we pay
for the proposed algorithm is using128-point FFT and IFFT
while the RLS algorithm in [19] employs64-point FFT and
IFFT. However, our channel estimation algorithm has lower
computational complexity than the channel tracking algorithm
with RLS adaptation.
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Fig. 5. BER versus SNR of a single-antenna receiver.

Example 3: In [16], several channel estimation methods
were proposed. It was shown that when the carrier frequency is
2GHz, mobile speeds are 25, 70 and 140 km/h, symbol interval
Ts = 0.5µs, the LMS structured channel estimation (LMS-
SCE) method had the best performance among the methods
proposed in [16].

We adopt the same 26-tap frequency-selective Rayleigh
fading channel described in [16]. We choose frame length
Nb = 20, FFT sizeN = 128, CP lengthNc = 25, symbol
interval Ts = 0.5µs, receive antenna numberM = 1 and
QPSK modulation. Therefore, the data efficiency isN

N+Nc
×

Nb−1
Nb

= 79.48%, which is the same data efficiency as that of
[16].

Figure 6 shows the BER results versusEb/N0 of the single-
branch receiver employing our proposed frequency-domain
channel equalization incorporated our proposed noise variance
estimation and channel estimation algorithms with mobile
speeds25, 70 and140 km/h and carrier frequency 2GHz. For
comparison purpose, the results of MMSE equalizers based on
perfect channel knowledge and LMS-SCE adaptive algorithm
[16] are also included. As can be seen from the BER results,
for mobile speed 25 km/h, our new algorithm is slightly better
than the LMS-SCE algorithm, for mobile speeds 70 and 140
km/h, our algorithm is 1-5 dB better than the LMS-SCE
method.

It should be pointed out that the LMS-SCE method has
much higher computational complexity than our method. Be-
cause the LMS-SCE method uses2N samples perN data
symbols for FFT, channel estimation and channel equalization,
while our method usesN points samples, and our interpolation
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method is more computationally efficient than the LMS-SCE
adaptation.
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Fig. 6. BER versusEB/N0 of a single-antenna receiver.

VI. CONCLUSION

In this paper, we have presented algorithms for fading chan-
nel estimation, noise variance estimation and fading channel
equalization in the frequency domain for single carrier broad-
band wireless communications. It was shown that the LS-based
channel estimation and MMSE-based channel estimation with
interpolations are equivalent. It has been demonstrated via
examples that the proposed algorithms perform very well for
broadband wireless communication systems which encounter
long impulse response and fast time-varying fading channels.
Numerical results have shown that our algorithms has 3-
6 dB gain over the LMS and/or RLS algorithms in [5] at
200Hz Doppler, and our algorithm can handle 15 times higher
Doppler than the RLS algorithm in [19]. Moreover, our algo-
rithm results in lower bitter error rate and less computational
complexity than those of [16].

REFERENCES

[1] T. Walzman and M. Schwartz, “Automatic equalization using the discrete
frequency domain,”IEEE Trans. Info. Theory, vol.IT-19, pp.57-68, 1973.

[2] H. Sari, G. Karam, and I. Jeanclaude, “Frequency-domainequalization
of mobile radio and terrestrial broadcast channels,” inProc. IEEE Global
Telecommun. Conf., pp.1-5, Nov. 1994.

[3] G. Kadel, “Diversity and equalization in frequency domain–A robust
and flexible receiver technology for broadband mobile communication
systems,” inProc. IEEE Veh. Technol. Conf., pp.894-898, May 1997.

[4] A. Czylwik, “Comparison between adaptive OFDM and single carrier
modulation with frequency domain equalization,” inProc. IEEE Veh.
Technol. Conf., pp.865-869, May 1997.

[5] M. V. Clark, “Adaptive frequency-domain equalization and diversity
combining for broadband wireless communications,”IEEE J. Select.
Areas Commun., vol.16, pp.1385-1395, Oct. 1998.

[6] N. Al-Dhahir, “Single-carrier frequency-domain equalization for space-
time block-coded transmissions over frequency-selectivefading chan-
nels,” IEEE Commun. Lett., vol.5, pp.304-306, July 2001.

[7] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar,and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless
systems,”IEEE Commun. Mag., vol.40, no.4, pp.58-66, Apr. 2002.

[8] A. Gusmao and R. Dinis, “On frequency-domain equalization and di-
versity combining for broadband wireless communications,” IEEE Trans.
Commun., vol.51, pp.1029-1033, July 2003.

[9] X. Zhu and R. D. Murch, “Layered space-frequency equalization in
a single-carrier MIMO system for frequency-selective channels,” IEEE
Trans. Wireless Commun., vol.3, pp.701-708, May 2004.

[10] K. Takeda, T. Itagaki, and F. Adachi, “Application of space-time
transmit diversity to single-carrier transmission with frequency-domain
equalisation and receive antenna diversity in a frequency-selective fading
channel,”IEE Proc.-Commun., vol.151, pp.627-632, Dec. 2004.

[11] Y. Zeng and T. S. Ng, “Pilot cyclic prefixed single carrier commu-
nication: channel estimation and equalization,”IEEE Signal Processing
Letters, pp. 56-59, Jan. 2005.

[12] F. Pancaldi and G. M. Vitetta, “Block channel equalization in the
frequency domain,”IEEE Trans. Commun., vol.53, pp.463-471, March
2005.

[13] Y. Zhu and K. B. Letaief, “Single-carrier frequency-domain equalization
with decision-feedback processing for time-reversal space-time block-
coded systems,”IEEE Trans. Commun., vol.53, pp.1127-1131, Jul. 2005.

[14] K. Takeda and F. Adachi, “SNR estimation for pilot-assisted frequency-
domain MMSE channel estimation,”Proc. IEEE VTS APWCS, Japan,
Aug. 2005.

[15] J. Tan and G. L. Stuber, “Frequency-domain equalization for continuous
phase modulation,”IEEE Trans. Wireless Commun., vol.4, pp.2479-2490,
Sept. 2005.

[16] M. Morelli, L. Sanguinetti, and U. Mengali, “Channel estimation for
adaptive frequency-domain equalization,”IEEE Trans. Wireless Commun.,
vol.4, pp.2508-2518, Sept. 2005.

[17] N. Benvenuto and S. Tomasin, “Iterative design and detection of a DFE
in the frequency domain,”IEEE Trans. Commun., vol.53, pp.1867-1875,
Nov. 2005.

[18] S. Ahmed, M. Sellathurai, S. Lambotharan, and J. A. Chambers, “Low-
complexity iterative method of equalization for single carrier with cyclic
prefix in doubly selective channels,”IEEE Sig. Proc. Lett., vol.13, pp.5-8,
Jan. 2006.

[19] J. Coon, M. Sandell, M. Beach, and J. McGeehan, “Channeland noise
variance estimation and traking algorithms for unique-word based single-
carrier systems,”IEEE Trans. Wireless Commun., vol.5, pp.1488-1496,
June 2006.

[20] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-time signal
processing, 2nd Ed., Prentice Hall, 1999.

[21] A. Chini, “Multicarrier modulation in frequency selective fading chan-
nels,” Ph.D. disserttion, Carleton University, Ottawa, Canada, 1994.

[22] D. C. Chu, “Polyphase codes with good periodic correlation properties,”
IEEE Trans. Inform. Theory, vol.IT-18, pp.531-532, July 1972.

[23] C. Xiao, J. Wu, S.Y. Leong, Y.R. Zheng, and K.B. Letaief,“A discrete-
time model for triply selective MIMO Rayleigh fading channels,” IEEE
Trans. Wireless Commun., vol.3, pp.1678-1688, Sept. 2004.

[24] Y. R. Zheng and C. Xiao, “Mobile speed estimation for broadband
wireless communications,” inProc. IEEE WCNC’07, Hong Kong, China,
11-15 March 2007.

[25] Y. Li, L.J. Cimini, and N.R. Sollenberger, “Robust channel estimation
for OFDM systems with rapid dispersive fading channels,”IEEE Trans.
Commun., vol.46, pp.902-915, July 1998.

[26] J.K. Cavers, “An analysis of pilot symbol assisted modulation for
Rayleigh fading channels,”IEEE Trans. Veh. Technol., vol.40, pp.686-
693, Nov. 1991.

[27] C. Xiao and J.C. Olivier, “Nonselective fading channelesimation with
non-uniformly spaced pilot symbols,”Int. J. Wireless Inform. Netowrks,
vol.7, pp.177-185, July 2000.

[28] R. A. Horn and C. R. Johnson,Matrix Analysis, Cambridge University
Press, 1985.

[29] C. Xiao, Y.R. Zheng, and N.C. Beaulieu, “Novel sum-of-sinusoids
simulation models for Rayleigh and Rician fading channels,” IEEE Trans.
Wireless Commun., vol.5, pp.3667-3679, Dec. 2006.

Authorized licensed use limited to: University of Missouri. Downloaded on January 27, 2009 at 13:44 from IEEE Xplore.  Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL.57, NO. X, XXX 2008 9

PLACE
PHOTO
HERE

Yahong Rosa Zheng(S’99-M’03-SM’07) received
the B.S. degree from the University of Electronic
Science and Technology of China, Chengdu, China,
in 1987, the M.S. degree from Tsinghua University,
Beijing, China, in 1989, both in electrical engi-
neering. She received the Ph.D. degree from the
Department of Systems and Computer Engineering,
Carleton University, Ottawa, ON, Canada, in 2002.

From 1989 to 1997, she held Engineer positions
in several companies. From 2003 to 2005, she was a
Natural Science and Engineering Research Council

of Canada (NSERC) Postdoctoral Fellow at the University of Missouri,
Columbia, MO. Currently, she is an Assistant Professor withthe Department
of Electrical and Computer Engineering at Missouri University of Science and
Technology, Rolla, MO. Her research interests include array signal processing,
wireless communications, and wireless sensor networks.

Dr. Zheng is an Editor for the IEEE TRANSACTIONS ONWIRELESSCOM-
MUNICATIONS. She has served as a Technical Program Committee member
for a number of IEEE international conferences including SensorsCon, ICC,
Globecom and WCNC in the last several years.

Authorized licensed use limited to: University of Missouri. Downloaded on January 27, 2009 at 13:44 from IEEE Xplore.  Restrictions apply.


	Channel Estimation for Frequency-Domain Equalization of Single Carrier Broadband Wireless Communications
	Recommended Citation

	Channel estimation for frequency-domain equalization of  single carrier broadband wireless communications IEEE Transactions on Vehicular Technology

