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ABSTRACT Large-scale multiple-antenna systems with large bandwidth are fundamental for future wireless

communications, where the base station employs a large antenna array. In this scenario, one problem faced is

the large energy consumption as the number of receive antennas scales up. Recently, low-resolution analog-

to-digital converters (ADCs) have attracted much attention. Specifically, 1-bit ADCs are suitable for such

systems due to their low cost and low energy consumption. This paper considers uplink large-scale multiple-

antenna systems with 1-bit ADCs on each receive antenna. We investigate the benefits of using oversampling

for channel estimation in terms of the mean square error and symbol error rate performance. In particular,

low-resolution aware channel estimators are developed based on the Bussgang decomposition for 1-bit

oversampled systems and analytical bounds on the mean square error are also investigated. Numerical results

are provided to illustrate the performance of the proposed channel estimation algorithms and the derived

theoretical bounds.

INDEX TERMS Large-scale multiple-antenna systems, 1-bit quantization, oversampling, channel estima-

tion, Cramér-Rao bound.

I. INTRODUCTION
Multi-user (MU) multiple-input multiple-output (MIMO)

is currently being used in many wireless communication

systems like long-term evolution (LTE), which allows for a

small number of antennas at the base station [1]. However,

in the last decade the number of wireless devices likemobiles,

laptops and sensors, has experienced an explosive growth and

currentMU-MIMO systems cannot serve such a large number

of users due to the limited bandwidth and increased multi-

user interference (MUI).With large antenna arrays at the base

station (BS), large-scale (ormassive)MIMOcan significantly

increase the spectral efficiency, mitigate the propagation loss

caused by channel fading, reduce the MUI and have many

other advantages as compared to current systems [2], [3].

As such, large-scale MIMO is a key technique for future

wireless communication systems, in which one favorable

application is the large-scale millimeter-wave (mmWave)

communication system [4]. However, many different
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approving it for publication was Wei Xu .

configurations and deployments need to be reconsidered. For

example, by using current high-resolution (8-12 bits) analog-

to-digital converters (ADCs) for each element of the antenna

arrays at the BS, the hardware cost and the energy con-

sumption may become prohibitively high since the dissipated

power is exponentially scaled by the number of bits [5].

The high cost and energy consumption associated with

high-resolution ADCs has motivated the use of low-cost

and low-resolution ADCs for large-scale MIMO systems.

As one extreme case, 1-bit ADCs can largely reduce the

hardware cost and energy consumption of the receiver. Many

recent works have studied this area. For instance, the works

in [6]–[15] have studied massive MU-MIMO systems with

coarsely quantized signals operating over frequency-flat,

narrowband channels. The works in [6], [7] have investi-

gated the uplink channel capacity by MU-MIMO systems

with 1-bit ADCs at the BS and [8]–[10] have analyzed

different precoding techniques for the downlink. Regard-

ing channel estimation, the studies in [11]–[13] have pro-

posed the Bussgang linear minimum mean squared error

(BLMMSE), expectation-maximization (EM) based iterative
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hard thresholding (IHT) and recursive least squares (RLS)

adaptive channel estimators, respectively. In the context of

the signal detection used in uplink 1-bit massive MU-MIMO

systems, the work in [14] proposes the iterative detec-

tion and decoding (IDD) technique together with regu-

lar LDPC codes and [15] presents a low-complexity near

maximum-likelihood-detection (near-MLD) algorithm called

1-bit sphere decoding.

Moreover, some prior works have investigated 1-bit ADCs

used in wideband communication systems. The works in

[16]–[19] have studied massive MU-MIMO systems with

coarsely quantized signals that deploy orthogonal frequency-

division multiplexing (OFDM) for wideband communica-

tions. Their results show that it is satisfactory to use 1-bit

ADCs in wideband massive MU-MIMO-OFDM systems.

Furthermore, the studies in [20]–[22] have discussed some

key transceiver design challenges, including channel esti-

mation, signal detection, achievable rates and precoding

techniques, in millimeter-Wave (mmWave) massive MIMO

systems, which are promising candidates for 5G cellular

systems.

The previous works have considered quantized systems

with sampling at the Nyquist rate. However, utilizing over-

sampling at the receiver can partially compensate for the

information loss brought by the coarse quantization [23]. The

work in [24] has proposed faster than symbol rate (FTSR)

sampling in an uplink massive MIMO system with coarsely

quantized signals in terms of the symbol error rate (SER).

It shows that the FTSR sampling provides about 5dB signal-

to-noise ratio (SNR) advantage in terms of SER and achiev-

able rate with a linear zero forcing receiver. The work in

[25] has analyzed the achievable rate for 1-bit oversampled

systems over band-limited channels. To reduce the compu-

tational cost caused by the large number of samples due to

oversampling, a sliding window based linear detection has

been proposed in [26]. In addition to the conventional system

models based on matched filtering and correlated noise sam-

ples, alternative receiver assumptions exist in literature such

as in [27], where the authors consider a wideband receiver

whose bandwidth scales proportionally with the oversam-

pling factor and has the drawback of additional received noise

and interference from neighboring frequency bands.

From the channel estimation point of view, the works in

[11], [12] have proposed different channel estimation tech-

niques for systems operating at the Nyquist rate. However,

only few works have considered channel estimation in over-

sampled systems. The study in [28] considers time-of-arrival

estimation for systems with 1-bit quantization and oversam-

pling and proposes corresponding performance bounds. The

study in [29] has proposed carrier phase estimation and given

lower bounds on complex channel parameter estimation for

1-bit oversampled systems based on [30]. In the study in

[24] the BLMMSE channel estimator is applied to the MIMO

channel with 1-bit quantization and oversampling using the

simplifying assumption of uncorrelated noise samples which

then yields performance degradation especially at low SNR

and high oversampling factors.

In this work, low-resolution aware (LRA) channel estima-

tors are developed for 1-bit oversampled large-scale MIMO

systems in the uplink based on the Bussgang decomposi-

tion. Although the received signals are quantized to 1 bit,

the computations after the 1-bit ADCs of all algorithms com-

pared are performed at a higher resolution (8 bits or higher).

The application of oversampling at the receiver can lead

to significantly better performance. Unlike prior works we

explicitly consider the correlation of the filtered noise, which

is a main property of oversampled systems, and employ the

Bussgang decomposition [31] to reformulate the nonlinear

system into a statistically equivalent linear system. Based on

this linear model, low-resolution aware least-squares (LS),

linear minimummean square error (LMMSE) and least-mean

square (LMS) channel estimation algorithms are proposed for

1-bit oversampled systems and evaluate their computational

costs. Moreover, an adaptive technique is devised to estimate

the statistical quantities resulting from the Bussgang decom-

position, which are required by channel estimators. We also

examine the fundamental estimation limits by deriving a

Bayesian framework and bounds on channel estimation for

both non-oversampled and oversampled systems. In addition

to the Bayesian Cramér-Rao bounds (CRBs), general CRBs is

proposed for biased estimators due to the correlation between

the signal and its quantization error. In summary, ourwork has

the following contributions:
• The LRA-LS, LRA-LMMSE and LRA-LMS channel

estimation algorithms are presented for the 1-bit large-

scale MIMO systems in the uplink with oversampling.

• We obtain analytical expressions associated with the

Bayesian CRBs for the oversampled systems and

observe that the proposed bounds are very close to the

results obtained from simulations at low SNR.

• An adaptive technique is proposed to estimate the auto-

correlation of the channel vector, which is an essential

part for the Bussgang decomposition in 1-bit systems.

Some preliminary results have been shown in [32] and

[33]. However, as compared to [32], [33], this paper extends

and refines the analysis of the correlation property of fil-

tered noise and proposes a more practical adaptive channel

estimator with lower computational cost. In the section of

numerical results, the performance of the proposed LRA-

LMMSE estimator is compared with its simplified version

in [24]. Furthermore, a comparison of the performance of

systems using ADCs with more bits is also shown in this

paper.

The rest of this paper is organized as follows: Section II

illustrates the system model and gives some statistical prop-

erties of 1-bit quantization. Section III derives the proposed

oversampling based channel estimators and analyzes the

computational complexity of the estimators. Section IV gives

the upper bounds of the Bayesian CRBs and the general CRBs

for 1-bit non-oversampled and oversampled MIMO systems.
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FIGURE 1. System model of 1-bit multi-user multiple-antenna system with oversampling at the receiver.

Section V compares the normalized mean square error (MSE)

and SER performance of the proposed and existing channel

estimators. Section VI concludes the paper.

Notation: The following notation is used throughout the

paper. Matrices are in bold capital letters and vectors in bold

lowercase. In denotes the n × n identity matrix and 0n is

the n × 1 all-zero column vector. Additionally, diag(A) is a

diagonal matrix only containing the diagonal elements of A.

The transpose, conjugate transpose and pseudoinverse of A

are represented by AT , AH and A+, respectively. a∗ denotes

the complex conjugate of a and [a]k represents the kth ele-

ment of vector a. (·)R and (·)I get the real and imaginary

part from the corresponding vector or matrix, respectively.

⊗ is the Kronecker product. Finally, vec(A) is the vectorized

form of A obtained by stacking its columns and det(A) is

the determinant function. x ∼ CN (a,B) indicates that x is a

complex Gaussian vector with mean a and covariance matrix

B. The expectation and covariance is denoted as E{·} and

Cov{·}, respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT
In this paper, we consider a single-cell multi-user large-scale

MIMO system with Nt single-antenna terminals and a BS

with Nr receive antennas, where each receive antenna is

equipped with two 1-bit ADCs (one for the in-phase compo-

nent and the other for the quadrature-phase component) and

Nr ≫ Nt . The system model is depicted in Fig. 1. In the

uplink, by assuming perfect synchronization the received

oversampled signal y ∈ C
MNrN×1 can be expressed as

y = Hx + n, (1)

where x ∈ C
NNt×1 contains independent identically dis-

tributed (i.i.d.) transmitted symbols from Nt terminals, each

with block length N . The vector x is arranged as

x = [x1,1 · · · xN ,1 x1,2 · · · xN ,Nt ]
T , (2)

where xi,j corresponds to the transmitted symbol of termi-

nal j at time instant i. Each symbol has unit power so that

E[|xi,j|2] = 1. The vector n represents the filtered oversam-

pled noise expressed by

n = (INr ⊗ G)w (3)

with w ∼ CN (03MNrN , σ 2
n I3MNrN ). Note that the noise sam-

ples are described such that each entry of n has the same

statistical properties. Since in digital domain the receive filter

has a length of 2MN + 1 samples, 3MN unfiltered noise

samples in the noise vector w need to be considered for

the description of an interval of MN samples of the filtered

noise n. The matrix G ∈ R
MN×3MN is a Toeplitz matrix that

contains the coefficients of the matched filter m(t) (operated

in analog domain) at different time instants and is shown

in (4), as shown at the bottom of the next page, where T is

the symbol period andM denotes the oversampling rate. The

equivalent channel matrix H is described as

H = [INr ⊗ Z(IN ⊗ u)](H′ ⊗ IN ), (5)

where H′ ∈ C
Nr×Nt is the channel matrix for non-

oversampled systems and u is an oversampling vector with

length M, which has the form

u = [0 · · · 0 1]T . (6)

The matrix Z ∈ R
MN×MN is a Toeplitz matrix that contains

the coefficients of z(t) at different time instants, where z(t)

is the convolution of the pulse shaping filter p(t) and the

matched filter m(t) given by (7), as shown at the bottom of

the next page.

In particular, M = 1 refers to the non-oversampling case.

Let Q(·) represent the 1-bit quantization function,

the resulting quantized signal yQ is given by

yQ = Q(y) = Q(yR) + jQ(yI ). (8)

The real and imaginary parts of y are quantized element-

wised to {± 1√
2
} based on the sign. The factor 1√

2
is to make

the power of each quantized signal to be one.

Since quantization strongly changes the properties of sig-

nals, some statistical properties of quantization for Gaussian

input signals will be shown. For 1-bit quantization and Gaus-

sian inputs, the cross-correlation between the unquantized

signal s with covariance matrix Cs and its 1-bit quantized

signal sQ is described by [31]

CsQs =
√

2

π
KCs,where K = diag(Cs)

− 1
2 . (9)
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Furthermore, the covariance matrix of the 1-bit quantized

signal sQ can be obtained through the arcsin law [34]

CsQ = 2

π

(

sin−1(KCR
sK) + jsin−1(KCI

sK)
)

. (10)

The problem we are interested in solving in this work is to

cost-effectively estimate the channel parameters in H′.

III. CHANNEL ESTIMATION FOR UPLINK 1-BIT
OVERSAMPLED MIMO
In a standard uplink implementation, the channel state infor-

mation (CSI) is estimated at the BS and then used to detect

the data symbols transmitted from the Nt users. Each trans-

mission block is divided into two sub-blocks: one for pilots

and another for the data symbols. Pilots are either located

at the beginning of each block or spread according to a

desired pattern [35]. During the training phase, each terminal

simultaneously transmits τ pilot symbols to the BS, which

yields

yp = Hxp + np. (11)

Vectorizing (11) we get

yp = (xTp ⊗ INr )vec(H) + np

= [xTp ⊗ INr ⊗ Z(Iτ ⊗ u)]vec(H′ ⊗ Iτ ) + np

= 8ph
′ + np, (12)

where h′ = vec(H′) and the equivalent pilot matrix

8p = [xTp ⊗ INr ⊗ Z(Iτ ⊗ u)]

[INt ⊗ (e1 ⊗ INr ⊗ e1 + · · · + eτ ⊗ INr ⊗ eτ )]. (13)

The vector xp ∈ C
τNt×1 contains the transmitted pilots and

en ∈ R
τ×1 represents a column vector with a one in the

nth element and zeros elsewhere. After processing by 1-bit

ADCs, the quantized signal can be expressed as

yQp
= Q(8ph

′ + np) = 8̃ph
′ + ñp, (14)

where 8̃p = Ap8p ∈ C
MτNr×NtNr and ñp = Apnp +

nq ∈ C
MτNr×1. The vector nq is the statistically equivalent

quantization noise1 with covariance matrix Cnq = CyQp
−

ApCypA
H
p . The matrix Ap ∈ R

MτNr×MτNr is the Bussgang-

based linear operator chosen independently from yp and is

given by

Ap = CH
ypyQp

C−1
yp

=
√

2

π
K, (15)

where CypyQp
denotes the cross-correlation matrix between

the received signal yp and its quantized signal yQp

CypyQp
=
√

2

π
KCyp , with K = diag(Cyp )

− 1
2 . (16)

The formulas of (15) and (16) involve the auto-correlation

matrix Cyp :

Cyp = 8pRh′8H
p + Cnp , (17)

where Rh′ = E{h′h′H }.

A. NOISE COVARIANCE MATRIX Cnp

With (3) the auto-correlation matrix Cnp in (17) is calculated

as

Cnp = σ 2
n (INr ⊗ GGH ). (18)

For non-oversampled system (M = 1), (18) is reduced to

Cnp = σ 2
n IτNr . (19)

However, for oversampled system (M ≥ 2) (18) cannot

be further simplified due to the correlation of oversampled

samples. The off-diagonal elements will appear in the matrix

of GGH . One example is shown in Fig. 2, where m(t) is

assumed to be a normalized root-raised cosine (RRC) filter

with different roll-off factors, M = 2 and τ = 10. It

can be seen that the lower the roll-off factors the more off-

diagonal elements appear in GGH , which means that for

systems with low roll-off factors it is important to consider

Cnp as a full matrix rather than a simplified diagonal matrix as

assumed in [24].

1In this paper, we assume the quantization noise nq is Gaussian distributed
with zero mean and covariance Cnq .

G =











m(−NT ) m(−NT + 1
M
T ) . . . m(NT ) 0 . . . 0

0 m(−NT ) . . . m(NT − 1
M
T ) m(NT ) . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . m(−NT ) m(−NT + 1
M
T ) . . . m(NT )











(4)

Z =



















z(0) z(
T

M
) . . . z(NT − 1

M
T )

z(− T

M
) z(0) . . . z(NT − 2

M
T )

...
...

. . .
...

z(−NT + 1

M
T ) z(−NT + 2

M
T ) . . . z(0)



















. (7)
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FIGURE 2. Matrix representation of GGH .

B. STANDARD LS CHANNEL ESTIMATOR
The work in [36] has proposed the standard LS estimator for

1-bit non-oversampled systems. Similar to this, this estimator

is extended to oversampled systems, which can be computed

according to

ĥ′
Standard LS = argmin

h̄′
||yQp

− 8ph̄′||2

= (8H
p 8p)

−18H
p yQp

. (20)

The advantage of this estimator is that no a priori informa-

tion is needed at the receiver. However, the issue with this

estimator, when applied with 1-bit quantization, is that the

channel estimate ĥ′ scales with the amplitude associated with

the quantizer, which then corresponds to a biased estimation.

C. LRA-LS CHANNEL ESTIMATOR
Based on the Bussgang decomposition, the LS estimate is

proposed for the linear equivalent system model in (14).

The LRA-LS channel estimator is obtained by solving the

following optimization problem:
ĥ′

LRA-LS = argmin
h̄′

||yQp
− 8̃ph̄′||2

= (8̃H
p 8̃p)

−18̃H
p yQp

. (21)

Compared to the standard LS channel estimator, the proposed

estimator has taken Rh′ into consideration in order to obtain

the linear operator Ap.

D. LRA-LMMSE CHANNEL ESTIMATOR
The LMMSE channel estimator has the advantage of supe-

rior MSE performance to that of the LS channel estimator.

Based on the statistically equivalent linear model in (14),

the oversampling based LRA-LMMSE channel estimator is

proposed. The optimal filter is given by

WLMMSE = argmin
W

E{||h′ − WyQp
||2}

= Rh′8̃HC−1
yQp

, (22)

where

CyQp
= 2

π

(

sin−1(KCR
yp
K) + jsin−1(KCI

yp
K)
)

. (23)

The resulting LRA-LMMSE channel estimator is then

ĥ′
LRA-LMMSE = Rh′8̃HC−1

yQp
yQp

. (24)

FIGURE 3. Illustration of the sliding window at each receive antenna
when lwin = 3 and M = 2, where lwin is the window length representing
the number of symbols sampled at the Nyquist (symbol) rate.

Proof: See Appendix A.

Note that when M = 1, (24) reduces to the same as that of

the BLMMSE channel estimator in [11].

E. LRA-LMS CHANNEL ESTIMATOR
LMS is the most widely used adaptive algorithm and has been

adopted in various applications like system identification and

channel equalization. In addition, LMS has robust perfor-

mance and a low cost of implementation. Based on the linear

equivalent model in (14), an LRA-LMS channel estimator for

1-bit oversampled systems is devised.

Since for large-scale MIMO with Nr ≫ Nt , in order to

reduce the computational complexity the multiplications and

divisions involving large matrices, whose dimensions contain

Nr elements, need to be avoided. For this reason, we concen-

trate on the channel fromNt users to only one receive antenna

nr and the received quantized signal is modelled as

y
nr
Qp

= 8̃nr
p h′nr + ñnrp , (25)

where y
nr
Qp

= [y
nr
Qp

(1), y
nr
Qp

(2), . . . , y
nr
Qp

(Mτ )]T and h′nr ∈
C
Nt×1 is the nr th row of H′. Different from 8̃p in (14),

8̃
nr
p ∈ C

Mτ×Nt is an equivalent pilot matrix to the nr th

receive antenna. The sliding window based technique [26]

(shown in Fig. 3) is applied, which combines the adjacent

symbol-rate-sampled symbols together to estimate the instan-

taneous channel parameters, since in oversampled systems

the interference from adjacent symbol-rate-sampled symbols

should be considered. The first window contains the first

Mlwin oversampled samples and the second contains the next

Mlwin samples until the last window. Note that only one

symbol-rate-sampled symbol (orM oversampled samples) is

shifted for the subsequent window.

Based on (25), the received signal at the nth window can

be expressed as

y
nr
Qp

(n) = 8̃nr
p (n)h′nr + ñnrp (n), (26)

where y
nr
Qp

(n) = [y
nr
Qp

(M (n − 1) + 1), . . . , y
nr
Qp

(M (n − 1) +
Mlwin)]

T and 8̃
nr
p (n) = A

nr
p (n)8

nr
p (n) ∈ C

Mlwin×Nt contains
the transmit pilot sequences in the nth window.
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The optimization problem that leads to the proposed LRA-

LMS channel estimation algorithm can be stated as

ĥ′nr
LRA-LMS(n) = argmin

h̄′nr (n)

τ−lwin+1
∑

n=1

||ynr
Qp

(n) − 8̃nr
p (n)h̄′nr (n)||2,

(27)

where h̄′nr (n) is the instantaneous estimate of h′nr in the nth

window.

Taking the partial derivative of the objective function

in (27) with respect to h̄′nr (n)H , we obtain

∂
∑τ−lwin+1

n=1 ||ynr
Qp

(n) − 8̃
nr
p (n)h̄′nr (n)||2

∂h̄′nr (n)H

=
τ−lwin+1
∑

n=1

−8̃nr
p (n)H (y

nr
Qp

(n) − 8̃nr
p (n)h̄′nr (n))

=
τ−lwin+1
∑

n=1

−8̃nr
p (n)Henr (n). (28)

The recursion of the proposed LRA-LMS algorithm is

h̄′nr (n+ 1) = h̄′nr (n) + µ8̃nr
p (n)Henr (n),

n = 1, . . . , τ − lwin + 1, (29)

where the constant step size µ fulfills

0 < µ <
2

γmax
. (30)

γmax is the largest eigenvalue of C8̃
nr
p (n), which is

E{8̃nr
p (n)8̃

nr
p (n)H }. Proof: See Appendix B.

The proposed adaptive channel estimator is summarized

in Algorithm 1, where xp(n) ∈ C
lwinNt×1 contains the pilot

symbols in the nth window. Both e′
n ∈ R

lwin×1 and e′′
n ∈

R
Nr×1 represent all-zero column vectors except that the nth

elements are ones. Fig. 4 shows the convergence performance

of the proposed LRA-LMS channel estimator for each receive

antenna. The proposed estimator achieves its steady state

after τ = 40.

FIGURE 4. Convergence of the LRA-LMS channel estimator with Nt = 8
and Nr = 64 at SNR = 20dB.

Algorithm 1 Proposed LRA-LMS Channel Estimator

1: Parameters:

µ: forgetting factor

2: Initialization:

h′nr (1) = 0Nt×1

3: Iteration:

4: for nr = 1 : Nr do
5: for n = 1 : τ − lwin + 1 do

6:

8nr
p (n) = [xTp (n) ⊗ Z(Ilwin ⊗ u)]

[INt ⊗ (e′
1 ⊗ e′

1 + · · · + e′
lwin

⊗ e′
lwin

)];

7: C
nr
yp (n) = 8

nr
p (n)8

nr
p (n)H + σ 2

nGGH ;

8: A
nr
p (n) =

√

2
π
diag(C

nr
yp (n))

− 1
2 ;

9: 8̃
nr
p (n) = A

nr
p (n)8

nr
p (n);

10: enr (n) = y
nr
Qp

(n) − 8̃
nr
p (n)h′nr (n);

11: h′nr (n+ 1) = h′nr (n) + µ8̃
nr
p (n)Henr (n);

12: end for

13: end for

F. COMPLEXITY ANALYSIS
The computational complexities of the proposed channel

estimators are compared in this subsection. For the sake

of simplification and a fair comparison among the estima-

tors, we assume Rh′ is an identity matrix. Table 1 shows

the total required complex additions/subtractions and mul-

tiplications/divisions for obtaining the channel estimate ĥ′.
More intuitively, Fig. 5 shows the total number of complex

operations, which is a sum of complex additions and multi-

plications, as a function of the number of receive antennas

Nr . Compared to other channel estimators, the LRA-LMS

channel estimator consumes the lowest computational cost

since there are no matrix inversions or large matrix multipli-

cations in the algorithm. The comparisons in terms of MSE

performance are shown in the simulations section.

FIGURE 5. Computational complexity comparison between different
channel estimators in an oversampled system M = 3 with τ = 20,
lwin = 3 and Nt = 8.
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TABLE 1. Computational complexity of different channel estimators.

G. ESTIMATION OF Rh′

In practical environments, there is no prior information about

Rh′ at the receiver. In this subsection, an adaptive technique

is proposed to recursively estimate Rh′ as

R̂h′ (n+1) = λR̂h′ (n)+(1 − λ)ĥ′(n)ĥ′(n)H , n = 1, . . . , τ,

(31)

where λ is the forgetting factor and ĥ′(n) is the channel

estimate at the Nyquist time instant n. Consider the system

model

yQ(n) = Q(Hx(n) + n(n))

= Q((x′T
p (n) ⊗ INr ⊗ Z′u)h′ + n(n)), (32)

where yQ(n) and n(n) are column vectors with sizeMNr × 1.

Different from xp(n) in Algorithm 1, x′
p(n) ∈ C

Nt×1 contains

pilot symbols fromNt terminals at time instant n.Z′ ∈ R
M×M

is a simplified version of Z with N = 1. The instantaneous

estimate of h′ is calculated as

ĥ′(n) = (x′T
p (n) ⊗ INr ⊗ Z′u)+yQ(n), (33)

where the initial guess of R̂h′ (1) is an identity matrix by

assuming channel parameters are uncorrelated and each has

unit power.

IV. CRAMÉR-RAO BOUNDS
Unlike the works in [29], [30], which have proposed the

CRBs for the unbiased estimators, the existing CRBs are

extended suitable for the biased estimators. Two different

types of CRBs are proposed depending on whether the prior

information Rh′ is known at the receiver, namely Bayesian

CRB with known Rh′ and general CRB with estimated Rh′ .

A. BAYESIAN CRAMÉR-RAO BOUNDS
Bayesian bounds on the fundamental limits of estimation

are derived for non-oversampled and oversampled systems.

Without loss of generality, we extend (12) considering the

whole system and not just the pilots, and rewrite the complex-

valued model in the following real-valued form
[

yR

yI

]

=
[

8R −8I

8I 8R

]

[

h′R

h′I

]

+
[

nR

nI

]

. (34)

Let h̃′ = [h′R;h′I ] be the unknown parameter vector, since

the real and imaginary parts are independent, the Bayesian

information matrix (BIM) [37] for the quantized signal is

defined as

JyQ (h̃′) = JyR
Q
(h̃′) + JyI

Q
(h̃′), (35)

where

[J
y
R/I
Q

(h̃′)]ij,EyR/I
Q

,h̃′

{

∂ ln p(y
R/I

Q
, h̃′)

∂[h̃′]i

∂ ln p(y
R/I

Q
, h̃′)

∂[h̃′]j

}

(36)

with [h̃′]i and [h̃′]j being the elements of h̃′. The expression
in (36) can be divided into two parts:

[J
y
R/I
Q

(h̃′)]ij = [JD
y
R/I
Q

(h̃′)]ij + [JP
y
R/I
Q

(h̃′)]ij, (37)

where

[JD
y
R/I
Q

(h̃′)]ij , E
y
R/I
Q

|h̃′

{

∂ ln p(y
R/I

Q
| h̃′)

∂[h̃′]i

∂ ln p(y
R/I

Q
| h̃′)

∂[h̃′]j

}

(38)

[JP
y
R/I
Q

(h̃′)]ij , E
h̃′

{

∂ ln p(h̃′)

∂[h̃′]i

∂ ln p(h̃′)

∂[h̃′]j

}

. (39)

To transform the real-valued JyQ (h̃′) back to the com-

plex domain JyQ (h′), JyQ (h̃′) is defined with the following

structure:

JyQ (h̃′) =
[

JRRyQ (h̃′) JRIyQ (h̃′)

JIRyQ (h̃′) JIIyQ (h̃′)

]

(40)

and apply the chain rule to get:

JyQ (h′) = 1

4
(JRRyQ (h̃′) + JIIyQ (h̃′)) + j

4
(JRIyQ (h̃′) − JIRyQ (h̃′)),

(41)

where JRRyQ (h̃′), JRIyQ (h̃′), JIRyQ (h̃′) and JIIyQ (h̃′) have the same

dimensions NrNt × NrNt . The variance of the estimator

ĥ′(yQ) is lower bounded by

Var{ĥ′
i(yQ)} ≥ [J−1

yQ
(h′)]ii. (42)
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1) BIM FOR NON-OVERSAMPLED SYSTEMS

For non-oversampled systems, i.e, M = 1, the covariance

matrix of the equivalent noise vector n is Cn = σ 2
n INNr . With

the independence of the real and imaginary parts, the log-

likelihood function can be expressed as

ln p(yQ | h̃′)=
NNr
∑

k=1

[ln p([yRQ]k | h̃′)+ln p([yIQ]k | h̃′)] (43)

with

p([yRQ]k = ± 1√
2

| h̃′) = Q

(

∓ [8Rh′R − 8Ih′I ]k

σn/
√
2

)

(44)

p([yIQ]k = ± 1√
2

| h̃′) = Q

(

∓ [8Ih′R + 8Rh′I ]k

σn/
√
2

)

(45)

where Q(x) = 1√
2π

∫∞
x exp(− u2

2
)du. Inserting (43) into (38),

we obtain

[JDyQ (h̃′)]ij = −E
{

∂2 ln p(yQ | h̃′)

∂[h̃′]i∂[h̃′]j

}

= [JD
yR
Q

(h̃′)]ij + [JD
yI
Q

(h̃′)]ij. (46)

With the derivative of the Q(x) function, the real part in (38)

[JD
yR
Q

(h̃′)]ijis given by

[JD
yR
Q

(h̃′)]ij

=
NNr
∑

k=1

−E
{

∂2 ln p([yR
Q
]k | h̃′)

∂[h̃′]i∂[h̃′]j

}

= 1

πσ 2
n

×
NNr
∑

k=1

exp(−[8Rh′R−8Ih′I ]2k
σ 2
n /2

) ∂[8Rh′R−8Ih′I ]k
∂[h̃′]i

∂[8Rh′R−8Ih′I ]k
∂[h̃′]j

Q
(

[8Rh′R−8Ih′I ]k
σn/

√
2

)

Q
(

− [8Rh′R−8Ih′I ]k
σn/

√
2

) .

(47)

The derivation for the imaginary part [JD
yI
Q

(h̃′)]ij is analogous.

By assuming that h̃′ is Gaussian distributed with zero mean

and covariance matrix C
h̃′ = 1

2
I2 ⊗ Ch′ , ln p(h̃′) yields

ln p(h̃′) = −1

2
NrNt ln[(2π )

2NrNt det(C
h̃′ )] − 1

2
h̃′TC−1

h̃′ h̃
′.

(48)

Substituting (48) into (39), we obtain

JPyQ (h̃′) = 2JP
y
R/I
Q

(h̃′) = 2C−1

h̃′ . (49)

Finally, the resulting BIM is the summation of (46)

and (49) as described by

JyQ (h̃′) = JDyQ (h̃′) + JPyQ (h̃′). (50)

2) BIM FOR OVERSAMPLED SYSTEMS

WhenM ≥ 2 the equivalent noise vector n consists of colored

Gaussian noise samples. Computing p(y
R/I

Q
| h̃′) requires the

orthant probabilities, which are not available or too difficult

to compute. The authors in [28], [30] have introduced a

lower bounding technique on the Fisher information for real-

valued system. To employ this lower bounding technique in

the complex-valued system, the work of [29] has come out.

The lower bound of JD
y
R/I
Q

(h̃′) is calculated based on the first

and second order moments as

JD
y
R/I
Q

(h̃′) ≥
(

∂µ
y
R/I
Q

∂h̃′

)T

C−1

y
R/I
Q

(

∂µ
y
R/I
Q

∂h̃′

)

= J̃D
y
R/I
Q

(h̃′). (51)

Since the lower-bounding technique is identical for the real

and the imaginary parts, only the derivation of J̃D
yR
Q

(h̃′) is

presented. The mean value of the kth received symbol is

[µyR
Q
]k = 1√

2
p([yQ]k = +1 | h̃′)− 1√

2
p([yQ]k = −1 | h̃′)

= 1√
2

[

1 − 2Q

(

[8Rh′R − 8Ih′I ]k√
[Cn]kk/2

)]

. (52)

The partial derivative of (52) with respect to [h̃′]i is

∂[µyR
Q
]k

∂[h̃′]i
=

2exp

(

− [8Rh′R−8Ih′I ]2k
[Cn]kk

)

∂[8Rh′R−8Ih′I ]k
∂[h̃′]i√

2π [Cn]kk
. (53)

The diagonal elements of the covariance matrix are given by

[CyR
Q
]kk = 1

2
− [µyR

Q
]2k , (54)

while the off-diagonal elements are calculated as

[CyR
Q
]kn = p(zk > 0, zn > 0) + p(zk ≤ 0, zn ≤ 0)

−1

2
− [µyR

Q
]k [µyR

Q
]n, (55)

where [zk , zn]
T is a bi-variate Gaussian random vector

[

zk
zn

]

∼ N

([

[8Rh′R − 8Ih′I ]k
[8Rh′R − 8Ih′I ]n

]

,
1

2

[

[Cn]kk [Cn]kn
[Cn]nk [Cn]nn

]

)

.

The lower bound for the imaginary part is derived in the same

way. With the calculations above the lower bound of the BIM

is obtained as

JyQ (h̃′) ≥ J̃DyQ (h̃′) + JPyQ (h̃′), (56)

where the equality holds forM = 1, as shown in [30] for the

real valued CRB and in [29] for the complex valued CRB.

Based on (42), the inverse of this BIM lower bound will

result in an upper bound of the actual Bayesian CRB for

oversampled systems.
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B. GENERAL CRAMÉR-RAO BOUNDS
When Rh′ is unknown and needs to be estimated at the

receiver, the Bayesian CRBs will not be applicable. The

general CRBs are derived for the proposed channel estimators

with estimated Rh′ .

Lemma 1: The proposed LRA channel estimators with

combination of estimated R̂h′ are biased channel estimators.

Proof: See Appendix C.

Since the proposed LRA channel estimators are biased,

while calculating the CRBs, they should apply as

Cov{ĥ′R
bias} ≥ ∂E{ĥ′R

bias}
∂h′R

(

JD
RR

yQ
(h′R)

−1 ∂E{ĥ′R
bias}

∂h′R

)T

(57)

Cov{ĥ′I
bias} ≥ ∂E{ĥ′I

bias}
∂h′I

(

JD
II

yQ
(h′I )−1 ∂E{ĥ′I

bias}
∂h′I

)T

, (58)

where JD
RR

yQ
(h′R) and JD

II

yQ
(h′I ) are defined by

[JD
RR

yQ
(h′R)]ij , E

{

∂ ln p(yQ | h′R)

∂[h′R]i

∂ ln p(yQ | h′R)

∂[h′R]j

}

(59)

[JD
II

yQ
(h′I )]ij , E

{

∂ ln p(yQ | h′I )

∂[h′I ]i

∂ ln p(yQ | h′I )

∂[h′I ]j

}

, (60)

which are the upper left and lower right part of the JDyQ (h̃′)
(similar as (40)), respectively.

V. NUMERICAL RESULTS
The simulation results presented here consider an uplink

single-cell 1-bit large-scale MIMO system with Nt = 8

and Nr = 64. The modulation scheme is quadrature phase-

shift keying (QPSK). The m(t) and p(t) filters are normal-

ized RRC filters with a roll-off factor of 0.8. The channel

is assumed to experience block fading and the pilots are

column-wise orthogonal with length 20. The SNR is defined

as 10 log( Nt
σ 2
n
). The normalized MSE and SER performance

plots are obtained by taking the average of 300 channel

matrices, noise and symbol vectors.

For the LRA-LMS channel estimator, the window length

lwin is chosen as three to ensure low computational com-

plexity. The step size µ is optimized according to the

oversampling factor and SNR. In the simulation, µ varies

between 0.05 and 0.3. While recovering the transmitted

symbols from the received quantized signal, the sliding-

window based LMMSE detector [26] with window length

equal to three (lwin = 3) and the estimate of the channel

obtained by the proposed algorithms is applied in the sys-

tem for obtaining both high accuracy and low computational

cost.

The performance of the channel estimators is evaluated

based on the channel model simulated in [38]. The channel

for user nt is assumed Rayleigh distributed

h′
nt = R

1
2
r,nth

′
w,nt

, (61)

where Rr,nt denotes the receive correlation matrix with the

following form

Rr,nt =













1 ρnt . . . ρ
(Nr−1)
nt

ρ∗
nt

1 . . . ρ
(Nr−2)
nt

...
...

. . .
...

ρ
∗(Nr−1)
nt ρ

∗(Nr−2)
nt . . . 1













. (62)

ρnt is the correlation index of neighboring antennas. (|ρnt | =
0 represents an uncorrelated scenario and |ρnt | = 1 implies

a fully correlated scenario.) The elements of h′
w,nt

are i.i.d.

complex Gaussian random variables with zero mean and unit

variance. All users are assumed to experience the same value

of |ρnt | = |ρ| but different phases uniformly distributed over

2π . The overall channel model is summarized as

H′ = [h′
1,h

′
2, · · · ,h′

nt ] (63)

and Rh′ is calculated as

Rh′ =











Rr,1 0 . . . 0

0 Rr,2 . . . 0
...

...
. . .

...

0 0 . . . Rr,nt











. (64)

A. Rh′ IS KNOWN AT THE RECEIVER
In this subsection, we evaluate the performance of the

proposed LRA channel estimators with known Rh′ at the

receiver. Fig. 6a and Fig. 6b compare the normalized MSE

of the various channel estimators as a function of SNR in

uncorrelated (|ρ| = 0) and correlated channel (|ρ| = 0.75),

respectively. There is a 2dB performance gain of the oversam-

pled systems as compared to the non-oversampled systems

for the LRA-LMMSE channel estimator at low SNR, whereas

a much larger gain at high SNR. In both channels the LRA-

LMMSE achieves the best MSE performance at the cost of

high computational cost.

In contrast, the LRA-LMS estimates the channel matrix

H′ row by row. This approach can largely reduce the com-

putational cost (shown in Fig. 5). Note that this separation

into several rows may overlook the correlation of receive

antennas. More specifically, the proposed LRA-LMS treats

Rr,nt as an identity matrix. As an amendment, the resulting

estimated channel matrix ĥ′
LRA-LMS needs to be multiplied

with the square root of the receive correlation matrix R
1
2
rnt
,

which can be derived fromRh′ in (64). From the results, it can

be seen that in both channels the LRA-LMS approaches the

performance of the LRA-LMMSE at low SNR (≤ 5 dB),

whereas at high SNR this performance gap becomes large.

The Bayesian CRBs illustrated in Section IV-A are also

depicted in Fig. 6. Note that for the oversampled systems

(M ≥ 2) the upper bounds of Bayesian CRBs are higher

than the actual Bayesian CRBs, since they are derived from

the lower bounds of Bayesian information. The black lines

represent the standard LMMSE performance for the systems

with unquantized signals, which can be treated as lower

bounds for the systems with 1-bit quantized signals.
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FIGURE 6. Normalized MSE comparisons of different channel estimators
with known Rh′ .

FIGURE 7. SER comparisons of different oversampling factors for the
LRA-LMMSE channel estimator with known Rh′ .

The LMMSE detector with sliding-window based SER

performance of the system with the LRA-LMMSE esti-

mated and perfect channel matrix are illustrated in Fig. 7,

where the oversampled systems obviously outperform the

FIGURE 8. Normalized MSE comparisons between LRA-LMMSE and
simplified LMMSE [24].

non-oversampled systems. As described in III-A, Fig. 8

shows the MSE comparisons between LRA-LMMSE and

simplified LMMSE [24] channel estimator in the systemwith

τ = 10 and roll-off factor 0.1. We emphasize again that

in our work, the correlation of filtered noise is taken into

account, and hence Cnp is not a diagonal matrix in over-

sampled systems. It can be seen that at low SNR (≤ 10 dB)

the performance of simplified LMMSE [24] is worse than

the proposed LRA-LMMSE, although they converge together

at high SNR (> 10 dB). Another observation is that at low

SNR the simplified LMMSE estimator withM = 3 performs

worse than that withM = 2, which shows that the assumption

in [24] is inaccurate.

B. Rh′ IS UNKNOWN AT THE RECEIVER
Practically, Rh′ is not known at the receiver. Fig. 9 shows the

MSE performance of the LRA channel estimators by using

the proposed adaptive recursion to estimate Rh′ , where λ is

set to 0.99. It can be seen that the performance remains almost

the same as Fig. 6a, which shows that the proposed estimation

of Rh′ works well under uncorrelated channel.

While analyzing the general CRBs proposed in (57)

and (58), instead of directly calculating the gradient of the

expected value with respect to the channel vector
∂E{ĥ′R/I

bias}
∂h′R/I ,

this gradient is numerically evaluated, since there is an adap-

tive estimation technique inside the channel estimator, which

makes the calculation more difficult. As one example, Fig. 10

shows the normalized MSE performance of the LRA-LS

channel estimator with estimated R̂h′ in (31) for estimating

the first Nr elements2 of h′R and its corresponding numer-

ically calculated general CRBs under uncorrelated channels

(|ρ| = 0). More specifically, each element of the gradient

vector
∂E{ĥ′R/I

bias}
∂h′R/I is calculated with the following steps:

2For the sake of simplicity, only first Nr elements are considered, since

for the large-scale MIMO there are NtNr elements in h′R, which will cost
much time for calculating the general CRBs.
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FIGURE 9. Normalized MSE comparisons of different channel estimators

with adaptively estimated R̂h′ .

FIGURE 10. Normalized MSE comparisons of different oversampling

factors for the LRA-LS channel estimator with estimated R̂h′ .

• increasing a small value δ (e.g. 0.1) in the corresponding

element of h′R/I

• estimating the channel ĥ′R/I

bias with different transmit sym-

bols and noises (e.g. 1000 different realizations)

• calculating the mean value of all estimates E{ĥ′R/I

bias},
which will be divided by δ.

These steps are repeated until all the elements in
∂E{ĥ′R/I

bias}
∂h′R/I are

obtained.

C. 1-BIT OR B-Bit ADC?
In this subsection, the channel estimation performance of the

1-bit oversampled system is compared with the b-bit non-

oversampled systems. In Fig. 11 the LRA-LMMSE channel

estimator for a system with 2 or 3 bits is based on the work in

[6]. It can be seen that a systemwith 2 or 3 bits has betterMSE

performance than the 1-bit system especially at high SNR.

However, the advantages of 1-bit ADCs is that they do not

require automatic gain control (AGC) and linear amplifiers,

and hence the corresponding radio frequency chains can be

implemented with very low cost and power consumption

FIGURE 11. Normalized MSE comparisons of LRA-LMMSE channel
estimator with known Rh′ under uncorrelated channel (|ρ| = 0).

FIGURE 12. Receiver power consumption as a function of the
quantization bits b.

(a few milliwatts) [7], [11], [39]. As one example, Fig. 12

shows the total receiver power consumption as a function

of the quantization bits b. The calculation of receiver power

consumption is based on the work in [40]

Ptotal = PBB + PLO + Nr (PLNA + PH + 2PM)

+2Nr (cPAGC + PADC), (65)

where PBB, PLO, PLNA, PH, PM and PAGC denote the power

consumption in the baseband processor, local oscillator (LO),

low noise amplifier (LNA), π
2
hybrid and LO buffer, Mixer

and AGC, respectively. c is chosen as 0 for the 1-bit system

and 1 for b-bit systems. The power consumption of different

hardware components is given as PBB = 200 mW, PLO =
22.5 mW, PLNA = 5.4 mW, PH = 3 mW, PAGC = 2 mW

and PM = 0.3 mW. The PADC is calculated as

PADC = FOMw ×Mfn × 2b, (66)

where FOMw is 200 fJ/conversion-step at 50MHz bandwidth

and fn is 100 MHz. From the results, it can be seen that

the 1-bit system consumes much less power than the 2-bit

and 3-bit systems in both non-oversampled and oversam-

pled systems. Indeed, the 1-bit oversampled systems have

largely improved the estimation performance and allows the
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estimator to approach the performance of the 2-bit system at

low SNR.

VI. CONCLUSION
In this work, oversampling based low-resolution aware chan-

nel estimators have been proposed for uplink single-cell

large-scale MIMO systems with 1-bit ADCs employed at the

receiver. The Bussgang decomposition is used to derive linear

channel estimators based on different criteria. With oversam-

pling in such systems, it is observed that we can achieve

obvious advantage compared to the non-oversampled system

in terms of the normalizedMSE.Moreover, the LMS adaptive

technique used for channel estimation can largely reduce

the computational cost and has almost the same accuracy as

the LRA-LMMSE channel estimator at low SNR, which is

important to ensure low computational complexity and for

hardware implementation. In addition, we have also derived

Bayesian and general CRBs on MSE, which give theoretical

limits on the performance of the channel estimators. Further-

more, we have proposed an adaptive technique to estimate

the auto-correlation of channel vector, which is important for

practical use. In general, the 1-bit ADCs have the advantage

of energy saving. Our proposed oversampling based channel

estimation, especially the LRA-LMS estimator, increases the

accuracy of estimation while maintaining low computational

cost, which is important for future low cost and low latency

wireless systems.

APPENDIX A
PROOF OF (23)
Recall the optimization problem

WLMMSE = argmin
W

E{||h′ − WyQp
||2}. (67)

Taking the partial derivative with respect toWH , we obtain

∂E{||h′ − WyQp
||2}

∂WH
= −E{h′yHQp

} + WE{yQp
yHQp

}. (68)

Inserting (14) into (68), the LMMSE filter is

WLMMSE = E{h′yHQp
}E{yQp

yHQp
}−1

= (E{h′h′H }8̃H
p + E{h′ñHp })C−1

yQp
. (69)

Since h′ is uncorrelated with np and nq [11], we have

E{h′ñHp } = E{h′(Apnp + nq)
H } = 0. (70)

The resulting LRA-LMMSE channel estimator is

ĥ′
LRA-LMMSE = Rh′8̃H

p C
−1
yQp

yQp
. (71)

APPENDIX B
PROOF OF (29)
Defining ǫ(n) = h̄′nr (n) − h′nr and inserting it into (29),

we obtain

ǫ(n+ 1) = ǫ(n) + µ8̃nr
p (n)H (y

nr
Qp

(n) − 8̃nr
p (n)h̄′nr (n))

= ǫ(n) + µ8̃nr
p (n)Hy

nr
Qp

(n)

−µ8̃nr
p (n)H 8̃nr

p (n)(ǫ(n) + h′nr )

= (I − µ8̃nr
p (n)H 8̃nr

p (n))ǫ(n)

+µ8̃nr
p (n)H (y

nr
Qp

(n) − 8̃nr
p (n)h′nr ). (72)

Taking the expected value from ǫ(n+ 1), we have

E{ǫ(n+ 1)} = (I − µE{8̃nr
p (n)H 8̃nr

p (n)})E{ǫ(n)}. (73)

With the eigenvalue decomposition E{8̃nr
p (n)H 8̃

nr
p (n)} =

QŴQH , (73) can be written as

QHE{ǫ(n+ 1)} = QH (I − µQŴQH )E{ǫ(n)}
= (I − µŴ)QHE{ǫ(n)}, (74)

where Q is an unitary matrix and Ŵ is a diagonal

matrix, whose diagonal entries are the eigenvalues of

E{8̃nr
p (n)H 8̃

nr
p (n)}. With u(n) = QHE{ǫ(n)}, (74) is then

u(n+ 1) = (I − µŴ)u(n). (75)

Decoupling the matrix form into individual elements we get

unt (n+ 1) = (1 − µγnt )unt (n)

= (1 − µγnt )
τ−lwin+1unt (1), nt = 1, . . . ,Nt .

(76)

In order for the LRA-LMS to converge, we must have

|1 − µγnt | < 1. (77)

The stability condition is then given by

0 < µ <
2

γmax
, (78)

where γmax is the largest eigenvalue of E{8̃nr
p (n)H 8̃

nr
p (n)}.

APPENDIX C
PROOF OF LEMMA 1
The biasness of the adaptive estimator R̂h′ is firstly examined.

The expected value of ĥ′(n) in (33) is

E{ĥ′(n)} = E{(x′T
p (n) ⊗ INr ⊗ Z′u)+yQ(n)}. (79)

From the Bussgang theorem (32) can be decomposed as

yQ(n) = Q
(

(x′T
p (n) ⊗ INr ⊗ Z′u)h′ + n(n)

)

= A′
p(n)((x

′T
p (n) ⊗ INr ⊗ Z′u)h′ + n(n)) + nq(n),

(80)

where A′
p(n) is the linear operator and nq(n) is the statisti-

cally equivalent quantizer noise. Substituting (80) into (79)

and with 8′(n) = (xT (n) ⊗ INr ⊗ Z′u), we obtain

E{ĥ′(n)} = E{8′(n)+(A′
p(n)(8

′(n)h′ + n(n)) + nq(n))}
= E{8′(n)+A′

p(n)8
′(n)h′}

+E{8′(n)+A′
p(n)n(n)} + E{8′(n)+nq(n)}. (81)

Since 8′(n) and n(n) are uncorrelated and E{n(n)} = 0,

we have

E{8′(n)+A′
p(n)n(n)} = 0. (82)
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Similarly,

E{8′(n)+nq(n)} = 0. (83)

Equation (81) can be further simplified as

E{ĥ′(n)} = E{8′(n)+A′
p(n)8

′(n)}h′. (84)

The matrix A′
p(n) depends on Rh′ such that the expectation

in (84) can be different from the identity matrix especially for

channels without normalization, which verifies that (33) has

an unknown bias [37].With the analysis above, it is concluded

that the adaptive estimator R̂h′ is also biased, which shows

that the estimation procedures together with the proposed

LRA channel estimators are biased.
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