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Abstract

In this paper, we address the channel estimation problem for multiple-input multiple-output (MIMO) multi-relay

systems exploiting measurements collected at the destination only. Assuming that the source, relays, and destination

are multiple-antenna devices and considering a three-hop amplify-and-forward (AF)-based training scheme, new

channel estimation algorithms capitalizing on a tensor modeling of the end-to-end communication channel are

proposed. Our approach provides the destination with the instantaneous knowledge of all the channel matrices

involved in the communication. Instead of using separate estimations for each matrix, we are interested in a joint

estimation approach. Two receiver algorithms are formulated to solve the joint channel estimation problem. The first

one is an iterative method based on a trilinear alternating least squares (TALS) algorithm, while the second one is a

closed-form solution based on a Kronecker least squares (KRLS) factorization. A useful lower-bound on the channel

training length is derived from an identifiability study. We also show the proposed tensor-based approach is applicable

to two-way MIMO relaying systems. Simulation results corroborate the effectiveness of the proposed estimators and

provide a comparison with existing methods in terms of channel estimation accuracy and bit error rate (BER).
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1 Introduction
Cooperative communications have been considered as

a promising concept to improve the link performance

in modern wireless communication systems due to spa-

tial diversity gains, enhanced coverage, and increased

capacity [1-4]. In this context, relaying has been com-

monly accepted as a key technique to improve system

performance by overcoming channel impairments, such

as fading, shadowing, and path loss, in wireless fading

channel environments [4-6]. By resorting to relay-assisted

cooperation, multiple wireless links between mobile sta-

tions and base stations are established to create a vir-

tual multiple-input multiple-output (MIMO) system [7].

In the simplest relay processing strategy, the relay sta-

tions amplify and forward the received data towards the

base station. In this work, we adopt amplify-and-forward

(AF) relaying due to its simplicity of implementation [5].

This strategy is preferable when fixed relay stations have
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a limited computation capacity as opposed to the base

station.

The overall link reliability of cooperative diversity

schemes strongly depends on the accuracy of channel

state information (CSI) associated with the multiple hops

involved in the overall communication. Moreover, the use

of common precoding techniques at the source and/or

relays generally requires instantaneous CSI knowledge of

the different channels to optimize transmission [8,9]. In

practice, however, the CSI is unknown and has to be

estimated with the aid of training sequences [10,11]. For

two-hop relaying systems, the associated channel matri-

ces can be estimated in separate LS estimation stages that

operate sequentially at the destination [10]. When the

communication involves additional hops, such a sequen-

tial LS estimation approach still applies by using addi-

tional transmission phases. The main problem is that

channel estimation errors accumulate across the consec-

utive stages. In [11], a closed-form solution was pro-

posed for the joint estimation of the channel matrices

in a two-hop MIMO relaying system, avoiding error

propagation.
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A few recent works have developed efficient receiver

algorithms based on tensor analysis for channel esti-

mation and/or symbol detection in cooperative systems

[12-16]. In [12], a training sequence-based channel esti-

mation algorithm is proposed for two-way relaying sys-

tems with multiple antennas at the relays. Recently [14],

a channel estimation algorithm based on parallel factor

(PARAFAC) model [17,18] was developed for two-hop

MIMO relay systems. The approach allows estimation of

the channel matrices associated with both hops by resort-

ing to training sequences. Other few recent works have

developed tensor-based receivers for one-way two-hop

cooperative systems [13,15,16]. In particular, the approach

of Ximenes et al. [16] assumes a Khatri-Rao space-time

(KRST) coding [19] at the source node, and a semi-blind

receiver is proposed by assuming the existence of a direct

link between the source and the destination.

The approach of Roemer and Haardt and Rong et al.

[12,14] allows a joint estimation of the channel matrices

by resorting to training sequences. With the idea of avoid-

ing the use of training sequences at the users’ and relays’

transmissions, the work [13] proposed a blind receiver

for uplink multiuser cooperative diversity systems based

on a PARAFAC model for the received signal. However,

[13] is limited to a clustered relaying scenario, where

relays belonging to the same cluster have the same spa-

tial signature. The common feature of all these works is

on the assumption of only two hops (source-to-relays and

relays-to-destination). To further extend the coverage area

and combat channel impairments such as path-loss and

shadowing, it may be advantageous to introduce an addi-

tional hop along with an extra communication phase by

means of three-hop relaying [5]. We highlight that the

interest of the proposed work is on the joint channel

estimation problem (i.e., joint channel and symbol estima-

tion is not addressed here). The joint channel estimation

problem was addressed in [12] for a two-way relaying sys-

tem and in [14] for a one-way two-hop system. From a

tensor modeling viewpoint, the common feature of both

works is on the use of the PARAFAC model. Herein, we

focus on a one-way three-hop multi-relay system, while

resorting to a PARATUCK2 model to derive the proposed

algorithms.

In this work, novel channel estimators are proposed for

MIMO multi-relay systems. Assuming that the source,

relays, and destination are multiple-antenna devices and

considering a three-hop AF-based training scheme, new

channel estimation algorithms capitalizing on a multi-

linear structure of the end-to-end communication chan-

nel are proposed. The proposed approach is based on a

PARATUCK2 tensor model [20] of the data collected at

the destination only, which allows the channel matrices

to be jointly estimated at the destination. Two receiver

algorithms are formulated to solve the channel estimation

problem. The first one is an iterative channel estima-

tion method based on a trilinear alternating least squares

(TALS) algorithm derived from a PARATUCK2 tensor

model of the received data, while the second one is a

closed-form solution based on a Kronecker least squares

(KRLS) factorization. The proposed approach provides

an extension of the idea recently proposed in [14] to a

more general scenario with two-tier relaying usingMIMO

AF relays. Identifiability of the channel matrices is also

examined in this work, and a useful lower-bound on the

channel training length is derived. In contrast to con-

ventional pilot-assisted LS channel estimation, where the

channel matrices are estimated separately in consecutive

stages, our proposed algorithms make a more efficient

use of cooperative diversity by providing a joint estima-

tion of all the channel matrices. As will be clear later,

such a joint channel estimation is possible due to the

use of the tensor approach to model the end-to-end

system.

In comparison with conventional (multi-stage) LS chan-

nel estimation [10], the proposed tensor-based estimators

have two distinguishing features: i) they avoid accumu-

lation of channel estimation errors since all the channel

matrices are estimated simultaneously (either iteratively

or in closed-form), and ii) they can operate under less

restrictive (and more flexible) conditions on the required

number of antennas at the relays and/or destination,

as will be clear from our identifiability analysis. Our

approach also includes the PARAFAC-based channel esti-

mator of [14] as a particular case. We also show that the

proposed tensormodeling approach copes with a two-way

MIMO multi-relaying communication system, where the

TALS and KRLS channel estimators can be applied.

This paper is organized as follows. In section 2, the

system model and working assumptions are described.

Section 3 formulates the proposed approach. The data

model is recast using tensor analysis, and the two chan-

nel estimation algorithms (TALS and KRLS) are derived.

Identifiability of the channel matrices is also examined in

this section. In section 4, we provide an extension of the

proposed tensor-based signal model to a two-way MIMO

relaying scenario. Numerical results are presented and

discussed in section 5, and the conclusions are drawn in

section 6.

Notation: Scalars are denoted by lowercase letters

(a, b, . . .), vectors as lowercase boldface letters (a, b, . . .),

matrices as uppercase boldface letters (A,B, . . .), and ten-

sors as calligraphic letters (A,B, . . .). AT and A† stand

for transpose and pseudo-inverse of A, respectively. To

retrieve the element (i, j) of A, we use a(i, j). The ith row

of A ∈ C
I×R is denoted as A(i,:) while its rth column is

denoted by A(:,r). The operator Di (A) forms a diagonal

matrix out of the ith row of A. The Khatri-Rao (colum-

nwise Kronecker) product between A ∈ C
I×R and B ∈
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C
J×R, i.e., A ⋄ B =

[
A(:,1) ⊗ B(:,1), . . . ,A(:,R) ⊗ B(:,R)

]
∈

C
IJ×R.

2 Systemmodel
We consider a three-hop MIMO AF communication sys-

tem where the source node transmits information to the

destination node with the aid of R1 relays in the first tier

and R2 relays in the second tier. As shown in Figure 1, the

source and destination nodes are equipped with Ns ≥ 2

and Nd ≥ 2 antennas, respectively, and half-duplex relays

are considered. The qth relay of tier 1, which receives

data from the source node, is equipped with Iq antennas,

q = 1, . . . ,R1, while the pth relay of tier 2, which receives

data from tier 1 relays, is equipped with Jp antennas, p =

1, . . . ,R2. The total number of antennas that transmit in

second and third phases are denoted byN1 = I1+· · ·+IR1
and N2 = J1 + · · · + JR2 , respectively.

Some key assumptions are now given: (i) relays are

synchronized at the symbol level. More specifically, the

timing offset is assumed to be within one symbol period,

so that timing information is acquired only through some

form of (rough) coarse synchronization; (ii) fading is

assumed to be frequency flat, and the data block size is

smaller than the channel coherence time so that the chan-

nel is considered as time invariant; (iii) the direct links

between the source (resp. tier 1 relays) and the destination

node are not availablea. This situation is evidenced in the

current uplink of IEEE 802.16j.

2.1 Data model

The communication between source and destination is

accomplished in three hops. In the first hop, the modu-

lated signal vector us (t) ∈ C
Ns×1 is transmitted to R1

relays. The received signal at the qth relay of tier 1 can be

written as

y
(q)
sr (t) = H

(q)
sr us (t) + v

(q)
sr (t) (1)

where y
(q)
sr (t) ∈ C

Iq×1 is the received signal vector at

the qth relay of tier 1, H
(q)
sr ∈ C

Iq×Ns is the MIMO

channel between the source and the qth tier 1 relay, and

v
(q)
sr (t) ∈ C

Iq×1 is an additive noise vector. Noise samples

are modeled as independent and identically distributed

complex Gaussian random variables with zero mean and

unit variance.

In the second hop, the source stops transmission and

all the R1 relays of tier 1 amplify their received signals

with diagonal AF matrices G(1), . . . ,G(R1) and simultane-

ously forward the resulting signals to the tier 2 relays. The

received signal vector at the pth relay of tier 2 is then given

by

y
(p)
rr (t + 1) =

R1∑

q=1

H
(p,q)
rr G(q)y

(q)
sr (t) + v

(p)
rr (t + 1) (2)

whereH
(p,q)
rr ∈ C

Jp×Iq is the MIMO channel linking the R1

tier 1 relays to R2 tier 2 relays, while v
(p)
rr (t + 1) ∈ C

Ip×1

denotes the corresponding noise vector. In the third hop,

the source and all tier 1 relays are silent, while the tier 2

relays process the received signal vector with the diagonal

AF matrices J(1), . . . , J(R2) and forward their amplified sig-

nals to the destination. The received signal vector at the

destination is then given by

yrd(t + 2) =

R2∑

p=1

H
(p)
rd J(p)y

(p)
rr (t + 1) + vrd(t + 2), (3)

whereH
(p)
rd ∈ C

Nd×Jp is theMIMO channel linking the pth

tier 1 relay to the destination, and vrd(t + 2) ∈ C
Nd×1 the

corresponding additive noise term.

Let us define the multi-relay (block) channel matrices

Hrd
.
=

[
H

(1)
rd , . . . ,H

(R2)
rd

]
∈ C

Nd×N2 , (4)

Hrr
.
=

⎡
⎢⎣

H(1,1)
rr · · · H(1,R1)

rr
...

...
...

H(R2,1)
rr · · · H(R2,R1)

rr

⎤
⎥⎦ ∈ C

N2×N1 , (5)

HT
sr

.
=

[
H(1)T

sr , . . . ,H(R1)T
sr

]
∈ C

Ns×N1 , (6)

Figure 1 Block diagram of the considered MIMOmulti-relay system.
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and let G
.
= bdiag

[
G(1), . . . ,G(R1)

]
∈ C

N1×N1 and J
.
=

bdiag
[
J(1), . . . , J(R2)

]
∈ C

N2×N2 be the two diagonal matri-

ces that collect the AF coefficients of the overall multi-

relay system. Using these definitions, and using (1) and (2),

we can rewrite (3) as follows:

yrd(t + 2) = HrdJHrrGHsrus (t) + vrd (t + 2) , (7)

where vrd (t + 2) = vsr (t) + vrr (t + 1) + vrd (t + 2) is

the total noise at the destination, which contains the fil-

tered noise contributions from the multiple relays, with

vsr (t) = HrdJHrrGvsr, vrr (t + 1) = HrdJvrr (t + 1),

vrr (t + 1)
.
=

[
v
(1)T
rr (t + 1) , . . . , v

(R2)T
rr (t + 1)

]T
∈ C

N2×1,

vsr (t)
.
=

[
v
(1)T
sr (t) , . . . , v

(R1)T
sr (t)

]T
∈ C

N1×1.

Note that, since this work is concerned with channel

estimation, the AF matrices G and J cannot be optimized

at the transmission (source and relays). Therefore, for sim-

plicity, we have assumed that these matrices are diagonal.

The use of non-diagonal AF matrices in the proposed

approach is left for a future work. Note also that, once

the channels are estimated, the design of full AF matrices

can be done, e.g., based on the SVD of the channel matri-

ces, following the idea of [9] or on the mean-square error

(MSE) criterion [21]. If simplified AF schemes are used,

where only power allocation is done, G and J are diagonal

matrices, the coefficients of which can be designed as a

function of themean channel and noise powers [5] or opti-

mized from power allocation strategies, as shown recently

in [22].

2.2 Conventional LS estimation method

The simplest approach to estimate the effective channel

Heff = HrdJHrrGHsr (including the amplifying factors)

is based on training sequences. If separate estimations of

the multi-relay channels Hrd, Hrr, and Hsr are required,

for instance, to optimize the source precoding matrix

and the relays’ AF matrices, three separate LS estima-

tion stages should operate sequentially at the destination.

The method would work similarly to that of Kong and

Hua [10]. Denote S0 ∈ C
Ns×L0 as the training sequence

matrix sent by the source node, while S1d ∈ C
N1×L1 and

S2d ∈ C
N2×L2 are the training sequence matrices sent

by the relays at tiers 1 and 2, respectively. Assume that

orthogonal training sequences are used in all stages, which

implies training sequences of length L0 ≥ Ns, L1 ≥ N1 and

L2 ≥ N2 at the source, tier 1 and tier 2 relays, respectively.

In the first stage, S2d is transmitted from all tier 2 relays

to the destination. The LS estimate of Hrd is obtained

as

Ĥrd = Y1S
H
2d, (8)

where Y1 ∈ C
Nd×L2 is the received signal matrix at the

destination during the first training stage. In the second

stage, S1d is transmitted from all tier 1 relays to the des-

tination via AF processing at the tier 1 relays. Defining

Y2 ∈ C
Nd×L1 as the data received from tier 1 relays at

the second training stage, an LS estimate of Hrr can be

obtained as

Ĥrr =
(
ĤrdJ

)†
Y2S

H
1d. (9)

Finally, S0 is transmitted from the source to the destina-

tion via the two tiers of relays. The destination collects the

received data in Y3 ∈ C
Ns×L0 . An estimate of Ĥsr is then

found as

Ĥsr =
(
ĤrdJĤrrG

)†
Y3S

H
0 . (10)

This method requires 6 transmission phases to provide

the destination with all the channel matrices (1 phase

for estimating Hrd, 2 phases for estimating Hrr and 3

phases for estimating Hsr). Note that the channel esti-

mation errors accumulate across the consecutive stages,

due to the dependency between successive channel esti-

mates. Moreover, this method requires Nd ≥ N2 ≥

N1 for the uniqueness of the LS estimates of Ĥrr and

Ĥsr. In the following, we adopt a different path to solve

this problem by capitalizing on tensor analysis. The idea

is to provide the destination with a joint estimate of

all the partial channels Hrd, Hrr, and Hsr by exploit-

ing the tensor structure of the end-to-end signal model.

The proposed approach allows channel estimation to be

performed under less restrictive conditions on the num-

ber Nd of receive antennas at the destination compared

with the conventional LS estimator, while avoiding error

accumulation.

3 Proposed approach
In order to derive the proposed channel estimators, we

first recast the formulation of the system model by resort-

ing to multi-way (tensor) analysis. First, let us divide the

overall training period into K time blocks. In every time

block, the same training sequence matrix S0 ∈ C
Ns×L0

is transmitted by the source node. In the kth time block,

the relays of tiers 1 and 2 use the AF matrices Gk and

Jk , respectively, k = 1, . . . ,K . Let us define E ∈ C
K×N1

and F ∈ C
K×N2 as channel training matrices such that

Dk(E)
.
= Gk and Dk(F)

.
= Jk , where Dk(·) forms a diag-

onal matrix out of the kth row of its matrix argument.

Otherwise stated, the rows of E (resp. F) hold the AF

coefficients of the R1 (resp. R2) relays associated with

the different time blocks. Then, the signal received at

the destination during the kth time block can be written

as:

Yk = HrdDk (F)HrrDk (E)HsrS0 + Vk , (11)

k = 1, . . . ,K ,
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where Vk = HrdDk (F)HrrDk (E)Vsr,k + HrdDk (F)Vrr,k ,

Vsr,k ∈ C
N1×L0 is the noise matrix at the relays during the

kth time block, Vrr,k ∈ C
N2×L0 is the noise matrix at the

second hop relays for the k-th time block, and Vrd , k ∈

C
Nd×L0 is the noise matrix at the destination for the kth

time block.

Regarding the structure of the channel training matri-

ces E ∈ C
K×N1 and F ∈ C

K×N2 , unless otherwise stated,

their columns are chosen as length-K random sequences

following a uniform distribution between [−1, 1]. These

sequences are defined beforehand and known at the des-

tination node. With such a choice, the signals transmitted

by the relays across the K time blocks have random phases

and are subject to limited power fluctuations. Clearly, this

design is not optimal for minimizing the mean square

error of the channel estimation. Determining an optimum

design for these matrices is a difficult problem and is not

pursued in this work. Nevertheless, extensive computer

simulations have demonstrated that this choice yields very

good results. For convenience, we will come back later to

the problem of choosing E and F from a channel iden-

tifiability viewpoint. A more elaborated design of these

matrices will be then proposed.

Upon reception of the data matrix Yk , k = 1, . . . ,K ,

an unstructured estimate of the end-to-end channel dur-

ing the kth time block is first obtained at the destination.

Multiplying both sides of (11) with the known training

sequence matrix SH0 yields

Ĥk = YkS
H
0 ∈ C

Nd×Ns

= HrdDk (F)HrrDk (E)Hsr + VkS
H
0 , (12)

k = 1, · · · ,K . Let us introduce

Ĥk = Hk + VkS
H
0 , (13)

where

Hk = HrdDk (F)HrrDk (E)Hsr, k = 1, . . . ,K , (14)

is the matrix-of-interest that represents the effective end-

to-end channel, Vk is the total noise matrix, and H̃k

is the noisy observation of Hk . We can assemble the

set {H1, · · · ,HK } to form a three-way array, or a third-

order tensor, H ∈ C
Nd×Ns×K , whose dimensions are Nd

(first dimension), Ns (second dimension), and K (third

dimension).

Equation (14) corresponds to a PARATUCK2 model of

the (noiseless) tensor H [23]. The PARATUCK2 model

has first appeared in [20]. A more comprehensive formu-

lation is given in [23], which also details an alternating

least squares procedure for estimating its matrix factors.

Here, we show that this tensor model can be exploited to

derive novel channel estimators for a cooperative MIMO

relaying system.

Now, let us define

H[1]
.
= [vec (H1) , · · · , vec (HK )] ∈ C

NdNs×K (15)

where H[1] is a matrix ‘unfolding’ for the tensor H

obtained by stacking column-wise its K slices. Define also

Wk = Dk (F)HrrDk (E) ∈ C
N2×N1 . (16)

Substituting (14) into (15), and applying property

vec (ACB) =
(
BT ⊗ A

)
vec(C), we get

H[1] =
(
HT

sr ⊗ Hrd

) [
vec (W1) , · · · , vec (WK )

]

=
(
HT

sr ⊗ Hrd

)
diag (vec (Hrr))

(
ET ⊙ FT

)
(17)

where

ET ⊙ FT =
[
ET

(1,:) ⊗ FT(1,:), · · · ,E
T
(K ,:) ⊗ FT(K ,:)

]
∈ C

N2N1×K ,

(18)

E(k,:) ∈ C
1×N1 (resp. F(k,:) ∈ C

1×N2 ) denote the kth

row of E (resp. F), and ⊙ is the Khatri-Rao (columnwise

Kronecker) product.

Applying property vec
(
Adiag(x)B

)
=

(
BT ⊙ A

)
x, we

get from (17) the following expression:

vec(H[1]) = �1vec (Hrr), (19)

where

�1 =

[(
ET ⊙ FT

)T
⊙

(
HT

sr ⊗ Hrd

)]
∈ C

NDNsK×N1N2 .

(20)

In addition to the matrix unfolding H[1], it is useful

to define two other matrix unfoldings, which collect the

information of tensorH. Therefore, let us now define

H[2]
.
=

⎡
⎢⎣

H1

...

HK

⎤
⎥⎦ ∈ C

NdK×Ns , H[3]
.
=

⎡
⎢⎣
HT

1
...

HT
K

⎤
⎥⎦ ∈ C

NsK×Nd .

(21)

From (14) and (16), it follows that

H[2] =

⎡
⎢⎣

HrdW1

...

HrdWK

⎤
⎥⎦Hsr =

⎡
⎢⎣
Hrd

. . .

Hrd

⎤
⎥⎦

⎡
⎢⎣

W1

...

WK

⎤
⎥⎦Hsr

(22)
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and

H[3] =

⎡
⎢⎣
HT

srW
T
1

...

HT
srW

T
K

⎤
⎥⎦HT

rd =

⎡
⎢⎣
HT

sr

. . .

HT
sr

⎤
⎥⎦

⎡
⎢⎣
WT

1
...

WT
K

⎤
⎥⎦HT

rd

(23)

or, more compactly,

H[2] = (IK ⊗ Hrd)�2Hsr, (24)

H[3] =
(
IK ⊗ HT

sr

)
�3H

T
rd, (25)

where

�2 =

⎡
⎢⎣
W1

...

WK

⎤
⎥⎦ ∈ C

N2K×N1 , �3 =

⎡
⎢⎣
WT

1
...

WT
k

⎤
⎥⎦ ∈ C

N1K×N2 .

(26)

3.1 Identifiability of channel matrices

Identifiability of Hsr, Hrr, and Hrd in the LS sense

from H[1], H[2], and H[3] (see Equations (19), (24), and

(25)), respectively, requires that �1 =
[(
ET ⊙ FT

)T
⊙

(
HT

sr ⊗ Hrd

)]
∈ C

NDNsK×N1N2 , Z[2]
.
= (IK ⊗ Hrd)�2 ∈

C
NdK×N1 and Z[3]

.
=

(
IK ⊗ HT

sr

)
�3 ∈ C

NsK×N2 be full

column-rank. These requirements come from the fact that

�1, Z[2], and Z[3] must be left-invertible, from which the

following necessary conditions are obtained:

NdNsK ≥ N1N2, NdK ≥ N1, NsK ≥ N2. (27)

From the three inequalities and from the fact that we

must have K ≥ 2, the lower bound on the number K of

time blocks necessary for identifiability is given by

K ≥ max

(⌈
N1N2

NdNs

⌉
,

⌈
N1

Nd

⌉
,

⌈
N2

Ns

⌉
, 2

)
, (28)

where ⌈x⌉ is equal to the smallest integer that is greater

than or equal to x.

Note that the identifiability of the channel matrices

Hsr, Hrr, and Hrd from the unstructured channel ten-

sor H will ensure that the compound channel Hc =

HrdHrrHsr ∈ C
Nd×Ns is strictly unique. Note also that

conditions NdNsK ≥ N1N2 and NdK ≥ N1 are clearly

much less restrictive in terms of the required number Nd

of antennas at the destination node, in comparison with

the conventional three-step LS estimator that requires

Nd ≥ N2 ≥ N1. Otherwise stated, estimation of the partial

channels can be done even in situations where the number

of receive antennas is much less than the number of relay

antennas (provided that K satisfies condition (28)). This

situation may arise in scenarios with denser deployments

of relay stations, where the total number of relay anten-

nas exceeds those of source and/or destination antennas.

As shown by these inequalities, the possibility of afford-

ing fewer receive antennas is compensated by an increase

on the number K of training blocks, which represents a

trade-off.

Condition (28), although necessary, is not sufficient for

identifiability. Since Z[2]
.
= (IK ⊗ Hrd) �2 ∈ C

NdK×N1

and Z[3]
.
=

(
IK ⊗ HT

sr

)
�3 ∈ C

NsK×N2 , additionally, must

have rank(�2) = N1 and rank(�3) = N2, i.e., both �2 ∈

C
N2K×N1 and �3 ∈ C

N1k×N2 must be full column-rank.

Otherwise, Z[2] and Z[3] will be rank-deficient, even if (28)

is respected.

Let us assume that the partial channels Hsr, Hrr,

and Hrd are full rank matrices, which is a reason-

able assumption when the wireless links are assumed to

undergo scattering-rich multipath propagation. The fol-

lowing corollaries can then be obtained:

C1 If N1 = N2, identifiability of the partial channels is

guaranteed for N1 ≤ Ns and N2 ≤ Nd ;

C2 If N1 = 1, identifiability of the partial channels is

guaranteed for N2 ≤ Nd and N2 ≤ K ;

C3 If N2 = 1, identifiability of the partial channels is

guaranteed for N1 ≤ Ns and N1 ≤ K .

Remark: For the first corollary, we can note that if N1 ≤

Ns and N2 ≤ Nd, then HT
sr ⊗ Hrd is full column-rank,

which ensures that �1 ∈ C
NDNsK×N2 is full column-rank

due to its Khatri-Rao product structure [24]. Likewise,

�2 ∈ C
N2K×N1 and �3 ∈ C

N1k×N2 are also full column-

rank in this case, guaranteeing the identifiability of the

channel matrices. Regarding the second corollary, it cor-

responds to a special case of our system model where the

first relay tier reduces to a single-antenna relay. In this

case, satisfyingN2 ≤ Nd andN2 ≤ K ensures that�1,Z[2],

and Z[3] are all full column-rank, so that the three par-

tial channels are identifiable. The same reasoning is valid

for the third corollary, which is analogous to the second

one.

3.2 Essential uniqueness

Let
{
Ĥsr, Ĥrr, Ĥrd

}
be an alternative set of matrices yield-

ing the same unstructured channel tensor H satisfying

the PARATUCK2 model (14). If Hsr, Hrr, and Hrd are

full rank and the identifiability conditions (27) are sat-

isfied, then Ĥsr, Ĥrr, and Ĥrd are essentially unique.

In this case, we have Ĥsr = �srHsr, Ĥrd = Hrd�rd
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and Ĥrr = �
(2)
rr Hrr�

(1)
rr , where the following relation

holds:

(
�sr�

(1)
rr

)
⊗

(
�rd�

(2)
rr

)
= IN1N2 . (29)

Note that permutation ambiguity does not exist due

to the knowledge of the training matrices E and F. The

relation (29) can be obtained by replacing the alternative

solutions ̂̄Hsr, Ĥrd, and Ĥrr into (14) and then applying

some basic manipulations using properties of the Kro-

necker product. Equation (29) turns into the following

relations: �rd�
(2)
rr = αIN2 and �sr�

(1)
rr = (1/α)IN1 , where

α is an arbitrary scalar factor. These two relations come

from the fact that the Kronecker product between any two

diagonal matrices is equal to the identity matrix if and

only if these diagonal matrices are (scaled) identity matri-

ces that compensate each other. Consequently, Hsr, Hrr,

andHrd can be recovered in an essentially unique manner

up to scaling factors. The scaling ambiguity can be elim-

inated by normalizing the first column of Hsr or the first

row of Hrd to one. Since these ambiguities compensate

each other, the compound channel is strictly unique and

we have Ĥc = ĤrdĤrrĤsr = HrdHrrHsr = Hc.

3.3 Trilinear alternating least squares algorithm

The TALS algorithm is an iterative estimation method

that alternates among the LS estimations of the chan-

nel matrices Hsr, Hrr, and Hrd by fitting a PARATUCK2

model from the noisy matrices H̃[i] = H[i] + V[i], i =

1, 2, 3. Note that the noise term V[i] is constructed in a

way analogous toH[i], i = 1, 2, 3, following Equations (15)

and (21), respectively. The AF training matrices E and F

are assumed to be known at the destination and are fixed

during the estimation process. From (19), (24), and (25),

we respectively obtain the following linear optimization

problems:

argmin
vec(Hrr)

∥∥vec
(
H̃[1]

)
− �1vec(Hrr)

∥∥2
F
, (30)

argmin
Hsr

∥∥H̃[2] − (IK ⊗ Hrd)�2Hsr

∥∥2
F
, (31)

argmin
Hrd

∥∥∥H̃[3] −
(
IK ⊗ HT

sr

)
�3H

T
rd

∥∥∥
2

F
. (32)

These LS estimation problems can be solved alternately

by estimating one channel matrix at each time, while fix-

ing the other matrices to their values obtained in previous

estimation steps. Therefore, each iteration of the algo-

rithm has three estimation steps. The algorithm starts by

randomly initializing two out of the three channel matri-

ces and proceeds until convergence. In the following, a

summary of the TALS algorithm is provided.

TALS algorithm (direct estimation ofHsr,Hrr, andHrd)

1. Set n = 0;

Initialize randomly Ĥrr (n = 0) and Ĥrd (n = 0) ;

Using (16) and (26), construct �̂2(n = 0) and
�̂3(n = 0), respectively;

2. n ← n + 1;

3. Find an estimate of Hsr using (22), by solving the LS
problem

argmin
Hsr

∥∥H̃[2] −
(
IK ⊗ Hrd

)
�2Hsr

∥∥2
F

the solution of which at the nth iteration is given by

Ĥsr (n) =
[(
IK ⊗ Ĥrd (n−1)

)
�̂2 (n−1)

]†
H̃[2]

4. Find an estimate of Hrd using (23), by solving the LS
problem

argmin
Hrd

∥∥∥H̃[3] −
(
IK ⊗ HT

sr

)
�3H

T
rd

∥∥∥
2

F

the solution of which at the nth iteration is given by

Ĥ
T
rd (n) =

[(
IK ⊗ Ĥ

T
sr (n)

)
�̂3 (n−1)

]†

H̃[3]

5. Find an estimate of hrr
.
= vec (Hrr) using (17), by

solving the LS problem

argmin
hrr

∥∥∥∥vec
(
H̃[1]

)
−

[(
ET ⊙ FT

)T
⊙

(
HT

sr ⊗ Hrd

)]

× hrr
∥∥2
F

the solution of which at the nth iteration is given by

ĥrr(n) =

[(
ET ⊙ FT

)T
⊙

(
Ĥ

T
sr (n) ⊗ Ĥrd (n)

)]†

× vec
(
H̃[1]

)

6. Rebuild �̂2(n) and �̂3(n) and repeat Steps 2 to 5 until
convergence.

Define e(n) = vec
(
H̃[1]

)
−

[(
ET ⊙ FT

)T
⊙

(
Ĥ

T
sr(n)⊗

Ĥrd(n)
) ]

ĥrr(n). The sum of squared residuals (SSR) at

the end of the nth iteration is defined as SSR(n) =

eH(n)e(n). We declare the convergence of the algorithm

when |SSR(n) − SSR(n − 1)| ≤ 10−6, meaning that the

model reconstruction error does not significantly change

between two successive iterations.

Generally, the ALS algorithm is sensitive to the initial-

ization, and convergence to the global minimum can be

slowwhen all thematrix factors of themodel are unknown

[25]. However, in our case, we have observed that

convergence to the global minimum is always achieved

(e.g., within 10 to 30 iterations for medium-to-high SNRs)
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due to the knowledge of the AF training matrices E

and F.

3.4 Kronecker least squares algorithm

We now derive a closed-form solution to our channel

estimation problem by exploiting the mixed Kronecker/

Khatri-Rao factorization structure of the matrix unfolding

H[1] defined in (17). Starting from (13), the noisy version

of (15) is given by:

Ĥ[1] = H[1] +
(
SH0 ⊗ INd

)
V[1], (33)

where V[1] = [vec(V1), . . . , vec(VK )]∈ C
NdNs×K . Let Z =

ET ⊙ FT ∈ C
N1N2×K denote the combined AF training

matrix and assume that ZZH = IN1N2 . Multiplying both

sides of (33) by ZH , we have:

X̂[1]
.
= Ĥ[1]Z

H +
(
SH0 ⊗ INd

)
V[1]Z

H (34)

where X̂[1] = X[1] +
(
SH0 ⊗ INd

)
V[1]Z

H . From (17), we

have:

X[1] =
(
HT

sr ⊗ Hrd

)
diag (vec (Hrr)) . (35)

Our goal is to directly identify the channel matrices

from (35). However, let us first address the determin-

istic design of the AF training matrices E and F such

that ZZH .
=

(
ET ⊙ FT

) (
ET ⊙ FT

)H
= IN1N2 . Assuming

K ≥ N1N2, this condition is satisfied by designing Z, for

instance, as a discrete Fourier transform (DFT) matrix.

Having fixed the structure of Z, we are left with the prob-

lem of factorizing this matrix as the Khatri-Rao product

between ET and FT . This problem can easily be solved by

means of K rank-one matrix factorizations, which admit

unique solutions. Note that the kth column of Z can be

written as

Z(:, k) = (E(k, :) ⊗ F(k, :))T ∈ C
N1N2×1, k = 1, . . . ,K .

Defining a rank-one matrix Z̃k
.
= unvec(Z(:, k)) ∈

C
N2×N1 , it follows that

Z̃k = (F(k, :))T E(k, :),

from which E(k, :) and F(k, :) can be determined as the

unique right and left singular vectors of Z̃k , k = 1, . . . ,K .

Note that the proposed design, although not optimized

to minimize the mean square error of the channel esti-

mation, ensures that the noise characteristics in (33) will

not be changed when Ĥ[1] is post-multiplied by ZH (i.e.,

inverse DFT transformation).

Coming back to the channel estimation problem, from

(35), let us define xn1,n2 ∈ C
NsNd×1 as the [ (n1 − 1)N2 +

n2]-th column ofX[1] ∈ C
NsNd×N1N2 , n1 = 1, . . . ,N1, n2 =

1, . . . ,N2. Note that

xn1,n2 =
(
HT

sr(:, n1) ⊗ Hrd(:, n2)
)
hrr(n2, n1) (36)

Defining X̃n1,n2
.
= unvec(xn1,n2) ∈ C

Nd×Ns as a rank-one

matrix obtaining by reshaping, we have

X̃n1,n2 = hrr (n2, n1)Hrd(:, n2)Hsr(n1, :) (37)

Consider the singular value decomposition (SVD) of

X̃n1,n2 :

X̃n1,n2 = Un1,n2�n1,n2V
H
n1,n2

(38)

n1 = 1, . . . ,N1, n2 = 1, . . . ,N2. (39)

From the rank-one property of X̃n1,n2 , we have:

Ĥ
(n2)
rd (:, n2) = Un1,n2(:, 1), n1 = 1, . . . ,N1, (40)

Ĥ
(n1)
sr (n1, :) = (Vn1,n2(:, 1))

T , n2 = 1, . . . ,N2, (41)

ĥrr(n2, n1) = λn1,n2(1, 1). (42)

Final estimates ofHrd(:, n2) andHsr(:, n1) can be obtained

by averaging over the N1 and N2 independent estimates,

respectively:

Ĥrd(:, n2) =
1

N1

N1∑

n1=1

Ĥ
(n1)
rd (:, n2), (43)

Ĥsr(n1, :) =
1

N2

N2∑

n2=1

Ĥ
(n2)
sr (n1, :), (44)

with

Ĥrd =
[
Ĥrd(:, 1), . . . , Ĥrd(:,N2)

]
, (45)

Ĥsr =
[
Ĥsr(:, 1), . . . , Ĥsr(:,N1)

]T
, (46)

Ĥrr =

⎡
⎢⎣

λ1,1(1, 1) · · · λN1,1(1, 1)
...

...
...

λ1,N2(1, 1) · · · λN1,N2(1, 1)

⎤
⎥⎦ . (47)

Note that the columns of the estimated Ĥsr and Ĥrd have

unit energy while each entry of Ĥrr concentrates all the

energy of the wireless link connecting the source node to

the destination node via a given tier 1-tier 2 relay pair.

Such an interpretation is useful for designing transmit and

receive spatial filters for system optimization as well as for

power allocation purposes.

Discussion: The KRLS algorithm involves the computa-

tion of N1N2 SVDs to provide rank-one approximations

for the matrices X̂1,1, . . . , X̂N1,N2 , of dimensions Nd × Ns,

which are constructed from the N1N2 columns X̂[1]. The

distinguishing feature of the KRLS-based estimator is on

the closed-form solution to the problem, as opposed to the

TALS algorithm that consists of iterative LS estimation

steps, which implies a higher computational complexity.

However, note that the KRLS algorithm is only applica-

ble under the condition K ≥ N1N2, which is necessary

for Z = ET ⊙ FT to have orthogonal rows, leading to

(35). In contrast, the TALS algorithm can operate under a
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much lower bound on K, as discussed in Section 3.1. This

is clearly a trade-off between both estimators in terms of

identifiability conditions and computational complexity.

As will be shown in the next section, both estimators pro-

vide satisfactory performances, and the choice of the best

estimator is rather dependent on the design constraints of

the system. For instance, we can say that the TALS estima-

tor is preferable if processing power at the receiver is not

too limited, as is often the case with base station recep-

tion in outdoor micro- or macro-cells. The KRLS solution

would be more likely chosen in indoor scenarios, where

channel coherence time is long enough to allow for higher

values of K.

4 Extension to two-wayMIMO relaying systems
In the previous sections, we have focused on a multi-relay

cooperative scheme, where transmission is directed in one

direction, i.e., from a specific source to a specific desti-

nation via two tiers of multiple relays. In this section, we

show that the same modeling approach can be extended

to a two-way MIMO relaying scenario, where pilot/data

transmission takes place in both directions. In the first

phase, two sources simultaneously transmit their data to

the multiple relays. Note that, in the two-way case, the

relays of each tier receive a superposition of Ns1 + Ns2

signals coming from sources 1 and 2. In the second and

third phases, inter-relay communication takes place.More

specifically, in phase two, tier 1 relays transmit signals

towards tier 2 relays, while tier 1 relays stay silent. In phase

three, the opposite happens. Finally, in the fourth commu-

nication phase, all the relays transmit to the two sources,

and each one of them receives a superposition of N1 +N2

signals.

In the first transmission phase, we assume that training

symbol matrices S1 ∈ C
Ns1×L and S2 ∈ C

Ns2×L are trans-

mitted from sources 1 and 2, respectively. We omit the

additive noise terms for convenience of presentation. The

signal received at the ith relay tier is given by:

X(i) = Hs1riS1 + Hs2riS2 = H(i)S, i = 1, 2, (48)

where H(i) .
=

[
Hs1ri Hs2ri

]
∈ C

Ni×(Ns1+Ns2 ), and S
.
=

[ ST1 ST2 ]
T ∈ C

(Ns1+N2)×L. The training sequence Si cho-

sen by source i, is designed to satisfy the following

conditions:

(i) SiS
H
i = INi , i = 1, 2,

(ii) S1S
H
2 = 0N1×N2 .

A possible construction satisfying these two conditions

is based on the normalized DFT matrix of size L× (Ns1 +

Ns2), with L ≥ Ns1 + Ns2 . This design allows the sources

to eliminate the self-interference generated by their own

transmission, when receiving the signal back from the

relays.

In the second and third phases, where inter-relay com-

munications happen, the signal received at the relays of

tier i from the relays of tier j, (i, j) = {(1, 2), (2, 1)}, can be

written as:

Z
(i)
k

= HrjriDk(Ej)X
(j)

= HrjriDk(Ej)H
(j)S, (49)

k = 1, . . . ,K , where Hrjri ∈ C
Ni×Nj is the MIMO channel

linking the relays of tier j at transmission to the relays of

tier i at reception, (i, j) = {(1, 2), (2, 1)}. Note that chan-

nel reciprocity in the inter-relay communications is not

a necessary assumption which means that we may have

Hr1r2 �= Hr2r1 .

Finally, in the fourth transmission phase, the signals

received at sources 1 and 2 are post-multiplied by SH2 and

SH1 , respectively, to accomplish self-interference elimina-

tion, yielding

Y
(1)
k

=
(
Hr1s1Dk(F1)Z

(1)
k

)
SH2 +

(
Hr2s1Dk(F2)Z

(2)
k

)
SH2

= Hr1s1Dk(F1)Hr2r1Dk(E2)Hs2r2︸ ︷︷ ︸
tier 2 → tier 1 relay path

+ Hr2s1Dk(F2)Hr1r2Dk(E1)Hs2r1︸ ︷︷ ︸
tier 1 → tier 2 relay path

= H̄(1,1)Dk(F̄1,2)G
(1)
rr Dk(Ē2,1)H̄

(1,2), k = 1, . . . ,K ,

(50)

and

Y
(2)
k

=
(
Hr1s2Dk(F1)Z

(1)
k

)
SH1 +

(
Hr2s2Dk(F2)Z

(2)
k

)
SH1

= Hr2s2Dk(F2)Hr1r2Dk(E1)Hs1r1︸ ︷︷ ︸
tier 1 → tier 2 relay path

+ Hr1s2Dk(F1)Hr2r1Dk(E2)Hs1r2︸ ︷︷ ︸
tier 2 → tier 1 relay path

= H̄(2,1)Dk(F̄2,1)G
(2)
rr Dk(Ē1,2)H̄

(2,2), k = 1, . . . ,K ,

(51)

where

H̄(1,1) .
= [Hr1s1 Hr2s1 ]∈ C

Ns1×(N1+N2) (52)

H̄(1,2) .
= [HT

s2r2
HT

s2r1
]T ∈ C

(N1+N2)×Ns2 (53)

H̄(2,1) .
= [Hr2s2 Hr1s2 ]∈ C

Ns2×(N1+N2) (54)

H̄(2,2) .
= [HT

s1r1
HT

s1r2
]T ∈ C

(N1+N2)×Ns1 (55)

G(1)
rr

.
= blockdiag

(
Hr2r1 Hr1r2

)
∈ C

(N1+N2)×(N1+N2) (56)

G(2)
rr

.
= blockdiag

(
Hr1r2 Hr2r1

)
∈ C

(N1+N2)×(N1+N2) (57)

F̄i,j
.
= [Fi Fj] , Ēi,j

.
= [Ei Ej] , (i, j) = {(1, 2), (2, 1)}. (58)

Therefore, we can conclude that the signals received at

sources 1 and 2 in the considered two-wayMIMO relaying

scenario (Equations (50) and (51)) follows a PARATUCK2

model. By analogy with the noiseless part of the one-way
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signal model (14), we have the following correspondences

between the factor matrices:

(Hrd,Hsr,Hrr) ←→
(
H̄(1,1), H̄(1,2),G(1)

rr

)

(E,F) ←→
(
F̄1,2, Ē2,1

)
(source 1) (59)

(Hrd,Hsr,Hrr) ←→
(
H̄(2,1), H̄(2,2),G(2)

rr

)

(E,F) ←→
(
F̄2,1, Ē1,2

)
(source 2) (60)

Consequently, the tensor-based channel estimation

algorithms proposed in the previous section can be

equally applied at each source to estimate the channels

H̄(i,1), H̄(i,2) and G
(i)
rr , i = 1, 2, from Equations (50) and

(51), respectively. If reciprocity is assumed in the two-way

relay channels, we have:

Hrisi = HT
siri

, i = 1, 2 (61)

Hrisj = HT
sjri

, (i, j) = {(1, 2), (2, 1)}, (62)

Hrirj = HT
rjri

, (i, j) = {(1, 2), (2, 1)}, (63)

which in turn implies H̄(1,1) =
(
H̄(2,2)

)T
= Hs1 , H̄

(1,2) =
(
H̄(2,1)

)T
= Hs2 , and G

(1)
rr =

(
G

(2)
rr

)T
= G. In this parti-

cular case, the PARATUCK2models (50) and (51) become

essentially equal, i.e., they depend on the same unknown

channel matrices Hs1 , Hs2 , and G to be estimated. Note,

however, that such a reciprocity is not a necessary

assumption of our modeling approach, which can be used

in the general case of non-symmetrical two-way MIMO

relay channels.

5 Numerical results
We now present computer simulation results for assess-

ing the performance of the proposed channel estima-

tor in selected system configurations. The estimator’s

performance is evaluated in terms of the normalized

mean square error (NMSE) of the estimated chan-

nel matrices. From the estimated channels, the per-

formance in terms of bit error rate (BER) is calcu-

lated by assuming a linear receive filter. The BER and

NMSE curves are plotted as a function of the over-

all signal-to-noise ratio (SNR) at the destination. This

SNR is given by the ratio between the powers of the

useful signal component and the noise component in

Equation (11). For each simulated SNR value, the results

represent an average over L = 5, 000 Monte Carlo

runs. At each run, the channel coefficients are drawn

from a circularly symmetric complex-valued Gaussian

distribution with zero-mean and unit variance, while the

transmitted symbols are drawn from a BPSK sequence.

The SNR level at the tier 1 and tier 2 relays are assumed to

be 30 dB above the SNR level at the destination.

For purposes of performance evaluation, the scaling

ambiguities affecting the estimates of the channel matri-

ces are removed by assuming the first column of Hsr

and first row of Hrd contain all one elements, simi-

larly to [11,14]. These scaling ambiguities can be deter-

mined as follows. First, we find �sr = D1

(
ĤT

sr

)
and

�rd = D1

(
Ĥrd

)
. Then, applying property (AB) ⊗ (CD) =

(A ⊗ C) (B ⊗ D) yields (�sr ⊗ �rd)
(
�

(1)
rr ⊗ �

(2)
rr

)
=

IN1N2 , from which we obtain �
(1)
rr ⊗ �

(2)
rr = �

−1
sr ⊗

�
−1
rd . A solution to this relation is then found as �

(1)
rr =[

D1

(
ĤT

sr

)]−1
and �

(2)
rr =

[
D1

(
Ĥrd

)]−1
.

In Figure 2, we depict the NMSE performance for the

compound channel of our proposed estimators in compar-

ison with the conventional LS estimator. The parameters

are Ns = 2, N1 = 4, N2 = 4, Nd = 6, K = 16,

L0 = 30, and the number of transmitted data symbols

is N = 1000. We can see that TALS and KRLS have

similar performances, which are considerably better than

the conventional (three-stage) LS estimator. The worst

performance of the LS estimator comes from the error

accumulation across successive channel estimation stages,

which degrades its overall NMSE performance.

Figure 3 shows the NMSE performance of our proposed

estimators in comparison with the two-hop bilinear alter-

nating least squares (BALS) estimator of Rong et al. [14].

This estimator is a special case of the proposed one, where

only one tier of relays is used. In this case, model (11)

reduces to

Yk = HrdDk (E)HsrS0 + Vk , (64)

k = 1, . . . ,K ,

and the channel matrices Hsr and Hrd are estimated

by means of a BALS algorithm. The parameter setting

is the same as that of Figure 2. It can be seen the

proposed estimator operates satisfactorily, being able to

effectively estimate the three channel matrices. Figure 3

also indicates the proposed estimator performs close

to the BALS estimator operating in a two-hop system.

A small performance degradation is observed, which

is due to the presence of an additional AF transmis-

sion phase of our three-hop system, resulting in a

higher overall noise contribution at the destination. Note

also that the TALS estimator involves three estimation

steps while the BALS one has two estimation steps

only.

Figure 4 shows the BER performance of a linear zero

forcing (ZF) receiver designed from the estimated chan-

nel matrices, which are obtained from the TALS, KRLS,

or the conventional LS estimators. The ZF receiver oper-

ates on data block collected in the received data matrix

Y ∈ C
KNd×N . The length of the data block is N = 100

symbols, and the remaining system parameters are the
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Figure 2 NMSE of estimated compound channel Hc. Proposed estimators (TALS and KRLS) vs. conventional LS estimator.

same as those of the previous experiment. The ZF filter

output is given by:

ŜZF =

⎡
⎢⎣

HrdD1 (F)HrrD1 (E)Hsr

...

HrdDK (F)HrrDK (E)Hsr

⎤
⎥⎦

†

Y. (65)

This figure shows similar BER performances for TALS

and KRLS, which are better than that of the conventional

LS algorithm. This result corroborates the effectiveness of

our channel estimators when used with linear receiver for

symbol detection. In Figure 5, we evaluate the impact of

the number of relay antennas on the BER performance of a

linear ZF detector using the proposed TALS channel esti-

mator. The fixed system parameters are Ns = 2, Nd = 6,

L0 = 30, and K = 10. It can be seen that the BER per-

formance is considerably improved as the number of relay

antennas is increased, corroborating the expected gains of

cooperative diversity. Although not plotted in this figure,

the BER curves of the KRLS estimator are similar to those

obtained with the TALS one.

Figure 3 NMSE of estimatedHsr and Hrd. Proposed estimators (TALS and KRLS) vs. conventional LS estimator.
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Figure 4 BER performance of linear ZF detector (TALS and KRLS). BER performance of a linear ZF detector at the destination designed from the

estimated channel matrices (TALS and KRLS).

Figure 6 depicts the performance of the ZF receiver

designed from the perfect CSI for all channel matrices.

Two parameter settings are considered, where Nd = 2

and 4, respectively. The other system parameters are fixed

to Ns = 2, N1 = N2 = 3, L0 = 6, and K = 9.

First, it can be seen that the BER performances are con-

siderably improved as the number of antennas at the

destination is increased, owing to the higher spatial diver-

sity, as expected. From these results, we also find that the

TALS and KRLS estimators provide similar results and,

more interestingly, their performances are close to that of

the perfect CSI case. For instance, for a target BER of 10−1,

the SNR gap with respect to the perfect CSI case is less

than 2 dB.

6 Conclusions
We have proposed channel estimation algorithms for

MIMO AF multi-relay systems. The proposed estimators

Figure 5 BER performance of linear ZF detector (TALS) versus the number of relay antennas.
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Figure 6 BER performance of linear ZF detector versus the number of antennas at the destination. BER performance of a linear ZF detector

as a function of the number of antennas at the destination (TALS and KRLS).

are designed to provide the destination (base station) with

the instantaneous CSI of all the channels involved in the

communication. In contrast to conventional pilot-assisted

channel estimation, the proposed algorithmsmake a more

efficient use of cooperative diversity by providing a joint

estimation of all the channel matrices thanks to the use of

a tensor modeling of the end-to-end system. Such a joint

estimation can be accomplished either iteratively (using

TALS) or in closed-form (using KRLS). Our numerical

results corroborate the effectiveness of the proposed algo-

rithms. The TALS estimator has a higher computational

complexity than the KRLS one due to its iterative nature.

On the other hand, the minimum condition for operation

of KRLS (K ≥ N1N2) is more restrictive than the identi-

fiability conditions of TALS, which implies more training

(i.e., higher number of time blocks) to carry out the joint

channel estimation. Both algorithms are suitable to the

joint channel estimation problem, and a particular choice

is mostly dictated by practical system requirements. We

have also provided an extension of the proposed approach

to two-way MIMO multi-relay system and verified that

such an extension results in the same tensor model as the

one-way scenario. Consequently, the proposed algorithms

can be applied to one- and two-way multi-relay MIMO

schemes.

Endnote
aSince our focus is on the relay channel, direct links are

not considered for simplicity. However, the idea proposed

in this work can be easily extended to include direct links.
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