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Abstract—In this paper, we investigate the benefits of exploiting
the a priori information about the structure of the multipath
channel on the performance of channel estimation for mul-
tiple-input multiple-output–orthogonal frequency-division multi-
plexing (MIMO-OFDM) systems. We first approach this problem
from the point of view of estimation theory by computing a lower
bound on the estimation error and studying its properties. Then,
based on the insight obtained from the analysis, efficient channel
estimators are designed that perform close to the derived limit.
The proposed channel estimators compute the long-term features
of the multipath channel model through a subspace tracking algo-
rithm by identifying the invariant (over multiple OFDM symbols)
space/time modes of the channel (modal analysis). On the other
hand, the fast-varying fading amplitudes are tracked by using
least-squares techniques that exploit temporal correlation of the
fading process (modal filtering). The analytic treatment is comple-
mented by thorough numerical investigation in order to validate
the performance of the proposed techniques. MIMO-OFDM with
bit-interleaved coded modulation and MIMO-turbo equalization
is selected as a benchmark for performance evaluation in terms of
bit-error rate.

Index Terms—Adaptive estimation, communication systems per-
formance, fading channels, frequency-division multiplexing, mul-
tiple-input multiple-output (MIMO) systems.

I. INTRODUCTION

THE COMBINATION of orthogonal frequency-division
multiplexing (OFDM) and multiple-input multiple-output

(MIMO) technologies, referred to as MIMO-OFDM, is cur-
rently under study as one of the most promising candidate
for next-generation communications systems, ranging from
wireless LAN to broadband access. Recent works tackled the
performance assessment (both through simulation and measure-
ments) of MIMO-OFDM systems in the presence of practical
impairments, such as synchronization and channel-estimation
errors [1], [2]. As shown by these references, channel estima-
tion is a critical issue for MIMO-OFDM systems, especially
if multilevel modulation is employed in order to achieve high
spectral efficiencies.
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The scope of this paper is limited to pilot-based channel esti-
mation, whereby channel estimation is performed by exploiting
the transmission of training sequences. Semiblind approaches
that also leverage on the received data symbols could be de-
vised in order to improve the estimation performance [3]. So far,
research on pilot-based channel estimation for MIMO-OFDM
system has mainly focused on least squares (LS) channel esti-
mation. The problem of designing an optimal training sequence
for the LS estimator has been investigated in [4] and [5]. Con-
ventional LS channel estimation does not assume any a priori
information about the channel vector to be estimated, except for
the finite length of the channel impulse response (CIR) in the
time domain that is inherent in the choice of an OFDM modula-
tion [4]–[6]. This assumption simplifies the channel-estimation
process, but leaves room for improvement. For instance, modi-
fications of the LS channel estimator that take into account ad-
ditional information about the channel (i.e., equal power-delay
profile for different transmitting antennas) have been proposed
in [7], and proved to outperform the LS method.

The work presented in this paper is motivated by the fol-
lowing consideration. It is widely acknowledged that the prop-
agation in a wireless scenario can be modeled by a multipath
channel, where each path has some features related to the large-
scale geometry of the environment (such as propagation delay,
angles of departure and arrival, power-delay profile), and some
others related to small-scale (i.e., on the order of a fraction of
the wavelength) variations, namely the fading amplitude [8],
[9]. Accordingly, the first class of features vary over a much
larger time scale than the coherence time of the fading process.
Our purpose is twofold. First, we try to assess analytically to
what extent LS channel estimation can be improved if knowl-
edge about the multipath channel structure is taken into ac-
count in deriving the channel estimator. Toward this goal, the
lower bound on the channel-estimation error proposed in [10]
for MIMO time-domain transmission is extended to multicar-
rier systems, and to a more realistic multipath scenario where
each path may have a different Doppler spectrum (see, e.g., the
standard in [32]). Second, based on the insight obtained from
the aforementioned analysis, practical channel estimators are
designed that perform close to the performance limit set by the
lower bound with affordable computational complexity, even in
presence of channel modeling mismatches.

As stated above, the derivation of the lower bound on the
channel estimation in this paper extends the treatment presented
in [10]. Both this paper and [10] consider asymptotic results for
an observation window large enough. The theoretical founda-
tion of these results is formally provided in [11], where it is
proved, under a specific setting, that the lower bound considered
herein coincides asymptotically with the hybrid Cramer–Rao
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bound (CRB). The latter is a modification of the classical CRB
for the case where the parameters to be estimated are a function
of both deterministic (long-term channel features) and random
variables (fading amplitudes).

The proposed channel estimators perform a separate estima-
tion of the long-term and fast-varying features of the channel. In
particular, the long-term features are computed through a sub-
space tracking algorithm by identifying the invariant (over mul-
tiple OFDM symbols) space/time modes of the channel (modal
analysis). On the other hand, the fast-varying fading amplitudes
are possibly tracked by using LS techniques that exploit tem-
poral (i.e., over multiple OFDM symbols) correlation of the
fading process. In case fading amplitudes are estimated sepa-
rately on each OFDM symbol, the channel estimators reduce
to a projection of the preliminary LS channel estimate over the
space/time modes (modal filtering).

The analytic presentation is complemented by thorough
numerical simulations. The proposed channel estimators are
further tested for a MIMO-OFDM system with bit-interleaved
coded modulation (BICM) [12] and MIMO-turbo equalization
[13], in order to validate their performance for a system that has
been recognized as a promising candidate for next-generation
wireless systems [14].

The outline of the paper is as follows. Section II introduces
the framework and state of the art (LS channel estimation) for
training-based channel estimation in MIMO-OFDM systems.
A simplified analytical derivation of the lower bound on the
channel-estimation error is then derived in Section III. Based
on the insight obtained from the analysis in the previous sec-
tion, practical channel-estimation algorithms are proposed in
Section IV, based on modal filtering/analysis. Finally, the pro-
posed algorithms are validated for a promising MIMO-OFDM
transceiver based on BICM and MIMO-turbo equalization in
Section V.

Notation: In the paper, vectors or matrices are in bold;
uppercase is used for frequency-domain quantities to dis-
tinguish them from the corresponding time-domain quanti-
ties, which are lowercase; denotes transposition;
denotes Hermitian transposition; denotes matrix pseu-
doinverse; represents trace; represents expectation;

is the Kronecker matrix product; is the stacking
operator, and the following property is extensively used:

; is the inverse
stacking operator defined so that is equivalent
to , where is a vector and is a

matrix. is the identity matrix; is a
factorization of such that ; if is a given

vector, is the diagonal matrix with
the entries of on the main diagonal; the th entry of a given
vector is denoted by ; denotes the th entry
of the matrix .

II. MODELS AND PRELIMINARIES

A. System Model

The block diagram of a MIMO-OFDM system is depicted in
Fig. 1. The vector

contains the complex symbols to be trans-
mitted on the subcarriers during the th OFDM symbol from

Fig. 1. Block diagram of a MIMO-OFDM system.

antenna . The MIMO encoder/modulator (e.g., space–time
block or trellis coding, spatial multiplexing, see [15] for an
overview) determines how vectors are generated from the
input bit stream and the pilot symbols (used for channel-esti-
mation purposes). A -point inverse discrete Fourier transform
(IDFT) is performed on , and the cyclic prefix (CP)
of length samples is appended in order to obtain the

vector that, after parallel-to-serial con-
version, is transmitted by the th transmitting antenna.

The signal received by the th receiving antenna
is the sum of the signals from

the transmitting antennas. The contribution of the th
transmitting antenna is given by the convolution of the
transmitted signal , with the -taps discrete-time CIR

, modeling the
propagation between the th transmitting antenna and the

th receiving antenna (further discussion in the next section).
Notice that the channel is assumed to be constant within one
OFDM symbol, and varying over different OFDM symbols.
After removal of the CP from the vector ,
a -point DFT is performed, and the frequency-domain
vector is obtained. If the
temporal support of is for each and

, the received signal by the th receiving antenna at the
th subcarrier on the th OFDM symbol can be written as

(1)

where the channel gains over the subcarriers for the
link, gathered in the vector , are obtained as the

-point DFT of

(2)

is the unitary DFT matrix with elements
, for ,

. Furthermore, the vector
is the additive noise at the th receiving antenna, with

. The channel and the noise
are assumed to be statistically independent.

The channel coefficients in the frequency domain
(or time domain ) depend on four independent vari-
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TABLE I
CHANNEL MATRICES AND VECTORS

ables, namely transmitting/receiving antennas ( and ), fre-
quency bin (or delay-time bin ) and OFDM symbol index
. Throughout the paper, we will be elaborating on the signal

model (1) in order to cast it in a suitable form for different
computations. In doing so, the channel coefficients will be rear-
ranged in matrices of different sizes, whose definitions are listed
for reference in Table I.

For instance, it is useful to write the received signal so as
to separate the measurements on different subcarriers

:

(3)

where is an vector col-
lecting the symbols transmitted simultaneously on the th sub-
carrier by the antennas, and is the channel matrix at
the th subcarrier, as defined in Table I. is the ad-
ditive noise vector with spatial
correlation , . To simplify, noise
will be assumed to be spatially white , unless stated
otherwise.

B. Channel Model

The time-varying fading channel modeling the propagation
on the th link is characterized by a (continuous-time)
CIR given by the combination of paths (let us
consider the th OFDM symbol)

(4)

where for the th path, is the corresponding power, the
delay, is the equivalent transmission filter,

, with and denoting, respectively, the trans-
mitter’s pulse-shaping function and the receiver’s matched-filter
impulse response. Moreover, represents the com-
plex gain relative to the link for the th path, incorpo-
rating fading effects and array responses at both sides, as will be
specified below. According to our notation, is an
matrix that contains the ensemble of gains for the th path rela-
tive to the links.

Let us now sample at a rate ( , where is
the transmission bandwidth) the CIRs on the links. The

discrete-time CIR introduced in the previous
section is then obtained as
for . From (4), it can be shown that the channel
matrix as defined in Table I reads (see Appendix A)

(5)

where is ,
, and

is a matrix collecting the the -spaced samples of the
delayed waveform .

In this paper, antennas at both the transmitting and receiving
sides are assumed to be closely spaced to each other, so that we
can apply the far-field approximation (i.e., assume locally plane
wave). In this case, if the scattering environment is such that
each path (composed of many subpaths) has an angular spread
at the transmitting and receiving sides that is smaller than the
resolution of the corresponding arrays, each path can be char-
acterized by a direction of departure (DOD) and a direc-
tion of arrival (DOA) . Furthermore, it has a propagation
delay and a complex fading amplitude . This model
is widely used for outdoor scenarios, and has been adopted in
standard models (see, e.g., [32]). Therefore, the set of paths is
characterized within the th OFDM symbol by sets of DOAs

, DODs , delays
, and fading amplitudes . Defining the

array response vector at the receiver (and transmitter side) as
(and ) that depends on the DOA (and

DOD), we get that the matrices in (28) can
be expressed as [10]. The

fading is uncorrelated on different paths , but
it is possibly temporally correlated, as detailed below.

1) Long-Term Features of the Channel: So far, we have de-
noted the time variability of the channel parameters by using the
subscript . However, the quantities in (5) are known to vary over
different time scales. In fact, the geometry and the characteris-
tics of the scatterers are supposed to vary slowly, as compared
with the coherence time of the fading processes. As a conse-
quence, delays , DOAs , DODs , and powers can
be considered as constant over multiple OFDM symbols, thus
losing (as a first-order approximation) their dependence on the
subscript over the interval of stationarity. On the other hand,
the vector accounts for the fast-fading variations of the path
amplitudes and, as such, is variable on a much smaller time
scale, typically on the order of the time it takes for a mobile
to travel a fraction of the wavelength.

According to this assumption, the time-varying model in (5)
becomes

(6)

where has now been factorized into two parts,

and , separating the terms that depend on
the (slow-varying) angles , from the (fast-varying)
fading coefficients .

To clearly isolate the slow-varying terms from the
fast-varying fading amplitudes, we stack the elements of
the MIMO channel impulse response into the
vector (see Table I), obtaining

(7)
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The matrix (we drop the functional depen-
dence for simplicity of notation) collects the space–time signa-
tures of the paths, its th column being given by

.
Notice that the assumption of constant angles/delays/powers

over multiple OFDM symbols will be relaxed when deriving the
channel estimator (see Section IV-A).

2) Fast-Varying Fading Amplitudes (Doppler Spectrum):
The vector in (7) models time-varying uncorrelated
Rayleigh fading amplitudes. More specifically, is a cir-
cularly symmetric Gaussian process with correlation matrix

,
where is the temporal correlation of
the fading coefficient relative to the th path. The Doppler
spectrum of each path, , is obtained by taking the
Fourier transform of the corresponding correlation function,

. Notice that different paths may have
different Doppler spectra. For instance, in a typical scenario, a
path with a smaller delay corresponds to a narrower Doppler
spectrum [34]. Moreover, in the standard model [32],
is a delta function centered on the Doppler frequency of the
specific path.

3) Channel Normalization: Considering the powers
normalized to have , it can be easily shown that

(8)

As a consequence, it is convenient to define the signal-to-noise
ratio (SNR) per frequency bin as

SNR (9)

where is the total power transmitted on a
given subcarrier by all the transmitting antennas, assumed
to be independent on (i.e., for nonadaptive power allocation).

C. Unconstrained (or LS) MIMO Channel Estimation

In training-based OFDM systems, channel estimation is
based on the transmission of constellation points known at
the receiver on predetermined subcarriers (referred to as pilot
subcarriers), selected according to some periodic pattern in
the time–frequency grid. OFDM symbols containing pilot
subcarriers will be referred to here as training OFDM symbols.
Denoting by the number of pilot subcarriers per training
OFDM symbol, divided by the number of transmitting an-
tennas, condition is necessary to get an
estimate immune to aliasing for an estimator that is based on
the observation of a single OFDM symbol1 [4], [5].

Conventional unconstrained (or LS) channel estimation is
carried out independently for each element of the array at
receiver side, and for each training OFDM symbol. Recalling
(2), it is easy to show that the signal received from the th

1Notice that if the channel can be considered costant over several OFDM
symbols, theK pilot subcarriers can be distributed in different OFDM symbols
(we will not consider this case here).

receiving antenna over the pilot subcarriers, collected in the
vector can be stated as (see also [4])

(10)

where is the of additive noise;
is a

matrix, that contains the vectors collecting the
pilot symbols transmitted on the th pilot subcarrier by the
transmitting antenna; is composed by the rows of
corresponding to the pilot subcarriers; and is the
vector defined in Table I.

Since we are interested in channel estimation, throughout the
rest of the paper, index will be intended to run over the training
OFDM symbols. The LS estimate of is

(11)

The LS is known to be unbiased, and its variance can be mini-
mized by appropriate design of the training sequences across the
transmitting antennas and pilot subcarriers in order to guarantee
the optimality condition .
This result can be obtained by letting the transmitting an-
tennas share the pilot subcarriers with equipowered, eq-
uispaced, and phase-shift orthogonal sequences [4], [5].

In the following, we will consider optimally designed training
sequences.

III. LOWER BOUND ON CHANNEL-ESTIMATION ERROR

FOR RAYLEIGH MIMO CHANNELS

As discussed in Section II-B, the channel vector (7) can be
parametrized so as to separate the slow-varying channel param-
eters (collected in matrix ) from the fast-varying fading am-
plitudes . The conventional LS channel estimator, recalled in
Section II-C, does not take into any account the structure of the
channel vector (7). In this section, we try to assess to what extent
channel-estimation accuracy can be improved if the knowledge
of the structure of the channel vector is exploited in designing a
channel-estimation algorithm.

Toward this goal, following the treatment in [10], here we
derive a lower bound on the mean-square error (MSE) MSE

(recall that the average is taken with respect
to both noise and fading amplitudes) of any unbiased estimator

by considering the performance of a channel-estimation algo-
rithm that fully exploits the knowledge about the structure of the
multipath channel. In particular, we consider an estimator that:

• performs a consistent estimate of the long-term features of
the channel;

• tracks the fading amplitudes according to the minimum
MSE (MMSE) criterion.

Reference [11] formally proves that such an estimator
achieves the hybrid CRB for an observation window large
enough. This result can be easily justified, by noticing that once
the long-term matrix is known (which is increasingly true
for a consistent estimator as the number of observed OFDM
symbols increases), the received signal (10) is linear in the
unknown fading amplitudes.
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In order to compute the performance of an estimator char-
acterized as discussed above, and therefore, obtain the lower
bound, a further observation has to be made on the model
(7). The space–time signatures of different paths (i.e., the
columns of ) are generally linearly dependent, or equiv-
alently, rank . Condition

holds whenever different paths have at
least one parameter among angles (DOA and DOD) and delay
that is not resolvable at the receiver (given the resolution of the
arrays and the bandwidth of the system). As a consequence,
matrix is not directly identifiable. Appendix B shows how to
overcome this problem in the computation of the lower bound,
and the result is discussed below. As a final remark, notice that
while parametric channel estimators (see, e.g., [8]) suffer from
this lack of identifiability, the modal analysis/filtering estima-
tors discussed in Section IV take advantage of this property by
reducing the number of parameters to be estimated (see also
[29] for previous work on the subject).

The lower bound reads (the frequency is, by
definition, normalized with respect to the time interval be-
tween two successive training OFDM symbols , where

is the duration of an OFDM symbol)
(see Appendix B)

MSE

(12)

where is the unitary basis of the subspace
spanned by the columns of matrix that can be obtained from
the left eigenvectors of the singular value decomposition
(SVD) of (notice that only nonzero singular
values are considered in the SVD). Moreover, it is

(13)

the diagonal matrix col-
lecting the power spectral densities of the fading variations for
the paths . Finally, the matrix

is defined as .
The columns of matrix define the space–time modes of

the channel. This definition stems from the fact that the sub-
space spanned by the columns of is a stationary feature of the
channel vector, varying at the same rate as .

A. Analytical Simplifications of the Bound (12)

The bound (12) needs to be evaluated numerically, given the
Doppler spectra of different paths. However, further analytical
insight of (12) can be obtained by dividing the integration range

into nonoverlapping subbands of support
, so that and out of paths have

the related spectrum nonzero for ranging over
(see Fig. 2). This operation allows the application of the matrix
inversion lemma to (12). In fact, the latter cannot be directly

Fig. 2. Illustration of the procedure employed for evaluation of the lower bound
(12).

applied to (12), since, in general, is not invertible for
every . Accordingly, the bound (12) can be written
as

MSE

(14)

where the matrix is the unitary basis of the
subspace spanned by the columns of the ma-
trix , that contains the colums of corresponding to the
paths of the th subband (accordingly, ). More-
over, it is where the
diagonal matrix contains the spectra of the paths of
the th subband. Furthermore, since we restrict the analysis to
optimally designed training sequences, the lower bound reduces
to

MSE SNR

(15)
with the SNR defined as in (9).

To gain further insight on the bound (15), herein we consider
the following simplifications.

Low SNR: For low SNR, the lower bound (15) becomes

MSE (16)

that equals the energy of the channel (see Section II-B). This is
consistent with the typical behavior of MMSE estimators.

High SNR: For high SNR, we have

MSE
SNR

(17)

that is independent of the particular shape of the power spectral
densities in . In fact, it only depends on the Doppler spectrum
bandwidths of the different paths.

Uniform Doppler Spectra: Let us assume that all paths have
equal uniform Doppler spectrum

for ( is usually referred to as
Doppler spread, and ), in this case
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, and we easily get from (15), by setting in
(17)

MSE
SNR

(18)

that for high SNR becomes

MSE
SNR

(19)

B. Numerical Results

Let us first start by describing the MIMO-OFDM system that
will be used throughout the paper for performance evaluations.

transmitting antennas and receiving an-
tennas (half-wavelength-spaced linear antenna arrays at both
sides) communicate over a multicarrier link with sub-
carriers (recall that we consider optimally designed training se-
quences, , and and spatially white noise,

). The time-varying channel is generated according
to the model presented in Section II-B with temporal support

. The number of pilot tones for each transmitting an-
tenna is and, as a consequence, a total of

subcarriers are used for training. It follows
that in such a system, preliminary pilot OFDM symbols (i.e.,
training OFDM symbols containing only pilot subcarriers and
no data) are sent before transmission of data OFDM symbols.
This is the situation encountered in many wireless communica-
tion standards, such as IEEE 802.11 and IEEE 802.16. For sim-
plicity, we will consider the case where a pilot OFDM symbol
is inserted periodically every data OFDM symbols. Further-
more, where not stated otherwise, the channel is characterized
by paths with uniform power delay profile (PDP), delays

, DODs and DOAs equally spaced in the angular
support ( 60,60) . With these choices, all the paths are resolv-
able in both temporal and spatial domains, and therefore, the
number of modes equals the number of paths, i.e., . No-
tice that this simplified channel scenario is only to avoid the in-
troduction of inessential complications in the analysis. We refer
the reader to [33] for related simulation results with the standard
channel model [32].

The lower bound (15) is evaluated numerically in order
to show the impact of Doppler spectra and PDPs on the
channel-estimation performance. The results in Fig. 3 show
the lower bound MSE versus SNR for four cases: uniform
Doppler spectra equal for all paths with (see previous
section) and uniform/nonuniform PDP [see boxes (a)–(b)];
uniform Doppler spectra with different shapes for different
paths [see box (c)], and uniform/nonuniform PDP. The solid
curves represent results for uniform PDP for the four paths [as
in box (a)], while dashed curves are derived when 80% of the
power is associated with the path with the smallest Doppler
bandwidth [as in box (b)].

By comparing the lower bounds with the reference per-
formance of the LS estimate, it is clear that exploiting the
knowledge about the channel structure yields very relevant
benefits (around 15 dB in this example). Moreover, we notice
that smaller estimation error can be achieved when some paths

Fig. 3. MSE lower bound MSE versus SNR for paths with same/different
Doppler spectra and uniform/nonuniform PDP. As a reference, the MSE of the
LS channel estimate is shown.

Fig. 4. Lower bound MSE versus Doppler spread f for uniform (a) and
truncated Gaussian (b) Doppler profiles, and for different SNR.

have limited Doppler support, and that the improvement is more
significant when a greater fraction of power is associated with
these paths. This conclusion is consistent with the analytical
result in (17) derived for high SNR, and here supported by
simulation for SNR dB. Further discussion on the behavior
of the bound versus SNR can be found in Section IV-D.

Fig. 4 shows the dependence of the lower bound MSE on
the Doppler spread in the case where the spectra of the
four paths are identical. We remark that since is normal-
ized with respect to the time interval between two successive
training OFDM symbols, the results shown here and in the fol-
lowing are independent of the number of data OFDM symbols in
between. Uniform (a) and truncated Gaussian (b) spectra have
been considered (in the latter case, is the 3-dB cutoff fre-
quency). The spectra are scaled so that they correspond to equal
received power. We notice that the truncated Gaussian spectrum
yields a larger error, as it is defined over a larger support. More-
over, as expected for , the lower bound is zero, showing
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that in case the channel is static (no Doppler variations), it can
be asymptotically estimated with accuracy.

IV. CHANNEL ESTIMATION BY MODAL ANALYSIS/FILTERING

As discussed in the previous section, the accuracy of channel
estimation can be greatly improved if the structure of the
channel vector (7) is taken into account when designing the
channel-estimation algorithm. In particular, the derivation
of the lower bound (12) suggested the following guidelines:
1) long- and short-term channel parameters have to be esti-
mated separately; 2) long-term parameters have to be estimated
consistently; 3) short-term parameters (i.e., fast-varying am-
plitudes) have to be tracked according to the MMSE criterion.
Notice that many known estimators proposed in the literature
under simplified settings have (at least one of) the aforemen-
tioned properties [8], [30].

A. Estimation of the Long-Term Features of the Channel

The long-term part of the MIMO channel can be obtained by
following either a structured or an unstructured approach. The
structured approaches are parametric methods that directly es-
timate angles and delays. Such techniques have been developed
for single-input multiple-output (SIMO) systems to exploit the
stationarity of angles/delays in [9]. The extension to MIMO
systems is conceptually trivial, and it is just a matter of increased
complexity. Even if these parametric methods guarantee a con-
sistent estimate of the long-term features of the channel (but
only for well-resolved paths), there are several drawbacks that
prevent their practical use, such as high computational com-
plexity and the requirement of regular spatial and temporal man-
ifolds that imposes strict constraints on array calibration errors
and modeling mismatches. Furthermore, angle and delay esti-
mation suffers from threshold effects at low SNRs typical for
nonlinear estimators.

1) Multipath Modal Analysis (M MA): Instead of estimating
angles and delays in , it is possible to directly evaluate the
space–time modes (unstructured approach [22], [29]). This
choice not only poses less stringent requirements on array cali-
bration and modeling accuracy (the relationship between and
angles/delays is not of concern), but also avoids the impairments
of nonlinear estimation, since it reduces to a quadratic optimiza-
tion problem.

Since and span span , the es-
timate of the modes [i.e., modal analysis (MA)] can be
obtained from the leading eigenvectors of the sample corre-
lation matrix computed from the set of

LS estimates (method of moments estimator [27]). The
estimate is consistent ( if ) if the fading is
asymptotically uncorrelated (i.e., for ) [22].

An adaptive computation of the space–time modes that
alleviates the computational burden of the eigenvalue decom-
position, and allows for continuous (but still slow) variations of
the channel space–time modes, can be obtained through a sub-
space tracking algorithm. Here we selected the subspace tracker
proposed by [23] for its good tradeoff between complexity and
accuracy. Table II summarizes the subspace tracking algorithm
with adaptive rank estimation (for this application, ,

TABLE II
SUBSPACE TRACKING ALGORITHM WITH ADAPTIVE RANK ESTIMATION

). Notice that an upper bound on the
number of the space–time modes has to be predetermined,
which may be derived from a priori knowledge about the
channel. The coefficient rules the memory of the algorithm,
and can be adjusted to accommodate temporal variations of
the channel modes. Moreover, the coefficient is a threshold
used for rank-estimation purposes. Its value can be adjusted
as a function of system parameters and SNR, as thoroughly
explained in [24]. The estimate of the modal matrix for the th
OFDM training symbol is obtained by taking the first
columns of .

We refer to the (adaptive) approach described in this section
for computing the long-term modes of the channel as M MA,
where M stands for multipath.

2) Space–Time MA (S/T MA): The estimation of the long-
term modes of the channel as detailed above suffers from
high computational complexity and slow convergence, due to
the size of the space–time modal matrix . A suboptimal ap-
proach is preferred here, as in [22], which considers separately
the stationarity of angles and delays. The idea is the following:
decouple the space–time modes into spatial and tem-
poral modes, to be estimated separately. The advantage is
that the corresponding modal matrices ( and ) have re-
duced dimensions, as compared with the space–time modal .
The key to obtain this result is designing the channel estimator
from parametrization (6) instead of (7). In fact, the channel ma-
trix in (6) can be written as

(20)

that can be derived from the SVD
, , and by definition of

. Notice that is
and , where the number of spatial and temporal
modes are rank (upper bounded by

) and rank rank (upper
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bounded by ), that are determined by the number of resolv-
able paths in the separate angular and temporal domains.

A suboptimal MA can now be defined as the estimation of the
spatial and temporal modes and through computation
of the principal (and ) eigenvectors of the spatial (and
temporal) sample covariance matrices

(and ). Again, the estimate is consistent,
and coincides with the solution given by the method of moments
[27].

As explained above, an adaptive and low-complexity alter-
native to the computation of eigenvalue decomposition is the
implementation of a subspace tracking algorithm. With refer-
ence to the subspace tracker in Table II, the input of the algo-
rithm to track the spatial (or temporal) modes are
(or ) and (or ), whereas the
output is , equal to the first columns of (and
similarly, for .

We denote this (adaptive) technique for computing the long-
terms modes of the channel as S/T MA, in order to recall that
spatial and temporal modes are computed separately.

Remark: The proposed MA technique is applicable for LS
estimates affected by uncorrelated estimation error. Thus, some
modifications are to be introduced to the S/T technique in order
to cope with correlated estimation error. This arises for spa-
tially correlated noise at the receiver or for suboptimal training
sequences (e.g., for decision-directed estimation). In this case,
whitening of the LS estimate has to be performed before MA
[22]. A detailed discussion on this topic is outside the scope of
this paper.

3) M MA versus S/T MA: It is interesting to investigate
the reasons why parametrization (20) will eventually lead to a
(asymptotically with respect to ) suboptimum estimator. By
stacking (20), we get , where

. Recalling the channel vector parametrization
(7) [see also (29)], it is clear that we are here parametrizing
the space–time modes as the Kronecker product of the
spatial modal matrix and the temporal modal matrix .
In other terms, we are assuming that the space–time modes are
separable into spatial and temporal modes, or equivalently, that
the number of space–time modes can be written as .
This condition only arises in very special situations, such as in
the example sketched in Fig. 5. In this particular case (tailored
for simplicity of representation of systems with or

, so that there is only one angle to be concerned with),
there is a well-resolved path for each couple angle/delay. In
other terms, we could say that the geometry of the paths in the
angle/delay domain is separable over the two dimensions (and

, where ). In any other case, it is
, and this condition implies a degraded performance

of the estimator based on (20) for , as explained in
Section IV-C.

B. Estimation of the Fast-Varying Fading Amplitudes

From the guidelines recalled at the beginning of this section,
fading amplitudes should be tracked according to the MMSE
criterion. In the context of MIMO systems, Kalman filtering has
been recently proposed to track the fading amplitudes by as-

Fig. 5. Path geometry in the angle/delay domain that guarantees the optimality
of the S/T MA approach.

suming an autoregressive model for Doppler spectra and known
sample-spaced delays [30]. On the other hand, the estimator pro-
posed in [28] for the case estimates the basis or

by following the suboptimum nonparametric approach de-
scribed above, and tracks the fading variations by least mean
square (LMS) or recursive least square (RLS) algorithms.

Tracking of the fading amplitudes vector has to be performed
after estimation of the long-term features of the channel and, as
such, its design depends on the approach selected for MA (see
previous section). Since we are interested in ending up with a
practical channel estimator, for presentation herein, we select
the S/T MA method. Moreover, we propose two suboptimal
ways (with respect to Kalman or MMSE) of tracking the fading
amplitudes. The corresponding techniques related to M MA are
conceptually identical, and can be straightforwardly derived.

1) LMS Tracking: Since for S/T MA, we have that
, the estimate of the amplitudes

can be updated according to the LMS algorithm [31] as follows
( in order to guarantee stability; can be initialized
as ):

(21a)

(21b)

(21c)

where notation denotes the minor matrix of its
argument. The channel estimate is then obtained as

(22)

2) No Tracking [Modal Filtering (MF)]: In this case, no ef-
fort is made to estimate the fading amplitudes, and the estimator
results in

(23)

which is simply the projection of the LS estimate onto the space
and time modal subspaces. We define this operation as MF, so
that the channel estimator complete with S/T MA will be re-
ferred to as S/T MA-MF. In [22], it is proved that this esti-
mator is the maximum-likelihood solution for the case where
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Fig. 6. Block diagram of the S/T MA channel estimator with MF or amplitude
tracking.

the amplitudes are modeled as deterministic variables. More-
over, in [21], a similar estimator that only performs spatial MA
for a MIMO (not OFDM) system is proposed, whereas [20]
presents an analogous technique based on temporal MA. The
S/T MA-MF estimator is expected to perform (asymptotically)
according to the bound derived in Section III, in case the fading
amplitudes are uncorrelated across different OFDM symbols (so
that tracking of the fading variations would be ineffective). This
conjecture will be proved in Section IV-D.

In Fig. 6, the block diagram of a channel estimator based on
S/T MA with or without tracking of the fading amplitudes is
depicted.

C. Asymptotic MSE Performance Analysis

In this section, the asymptotic MSE of the S/T MA-MF
channel estimator (23) is computed and compared with the
MSE of the conventional LS estimate and with the lower bound
derived in Section IV-C. The assessment of the performance of
the S/T MA with LMS tracking is more complicated and will be
omitted here. According to the model used for derivation of the
lower bound, the long-term features of the channel are assumed
to be constant over an infinite temporal horizon. Moreover, it
will be assumed that the number of modes and are ac-
curately estimated, which is only possible for sufficiently high
SNR, as it will be shown by simulations in Section IV-D. The
definition “asymptotic” in this section has thus to be interpreted
both as a function of the number of training OFDM symbols

and of SNR (SNR ).
The MSE for the LS channel estimate reads [4]

MSE
SNR

(24)

Recalling (23) and the consistency of the S/T MA estimate of
the modal matrices (i.e., and for

), it is easy to show that the MSE of the S/T MA-MF
approaches

MSE
SNR

SNR
(25)

For reference, recall that the lower bound for high SNR and
uncorrelated fading amplitudes over different OFDM symbols
(i.e., (17) with , , ) reads

MSE
SNR

(26)

Comparing (25) with (24), we can conclude that MA/fil-
tering allows a reduction in the MSE equal with respect to the
LS method equal to the ratio , that can be
interpreted as the product of a spatial gain and a
temporal gain . These gains quantify the reduction in the
number of parameters to be estimated due to the exploitation
of the structure of the channel vector. On the other hand,
comparing (25) with (26), we get that suboptimality of S/T
MA-MF for temporally uncorrelated fading amplitudes can
be quantified as the ratio , that equals one only for
special channel geometries, as explained in Section IV-A.2.
As a final remark, we notice that the bound (26) could be
attained (for high SNR) by M MA and corresponding filtering
(M MA-MF, see Section IV-B). In fact, following the same
computations that led to (25), it is easy to show that the MSE
of the M MA-MF technique tends to

MSE
SNR

MSE (27)

D. Numerical Results

The performance of the proposed channel-estimation method
is evaluated through simulations for the MIMO-OFDM system
described in Section III-B. Notice that the spatial and temporal
modal dimensions read and . Doppler spectra of
different paths are equal and uniform with normalized Doppler
spread . Validation of the proposed channel-esti-
mation algorithms for the channel model standardized by the
3GPP/3GPP2 spatial channel modeling (SCM) adhoc group
[32] can be found in [33].

Figs. 7 and 8 compare the performance of the S/T MA-MF
channel estimator in terms of MSE versus SNR with the LS
channel estimate, the M MA-MF channel estimate, and the
lower bound MSE . For the S/T MA-MF, both the asymptotic
results derived in Section IV-C and the MSE obtained after

training OFDM symbols are shown (performance as
a function of is considered next). On the other hand, the
performance of M MA-MF is plotted only as the asymptotic
results (27) for reference, given its prohibitive complexity and
rate of convergence (see below). The lower bound MSE is
shown for the case , in order to confirm the analytical
consideration presented in Section IV-C. Toward the goal of in-
vestigating the effect of an error in the estimation of the modal
dimensions, Fig. 7 shows the performance of S/T MA-MF
for a fixed and correctly estimated spatial modal dimension,

, and a varying temporal modal dimension,
. On the other hand, Fig. 8 considers the

performance of S/T MA-MF with the adaptive rank estimation
described in Table II. The upper part of the figure shows the
estimated number of spatial and temporal modes after
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Fig. 7. MSE of the S/T MA-MF technique versus SNR for L = 50, compared
with the limit performance given by the lower bound MSE for different fixed
temporal modal dimensions r̂ = 1; . . . ; 4 (r = 4, r̂ = r = 4).

Fig. 8. MSE of the S/T MA-MF technique versus SNR for L = 50, compared
with the limit performance given by the lower bound MSE . The upper part of
the figure shows the estimated number of spatial and temporal modes.

training symbols (with , , , and
).

Observing Figs. 7 and 8 from the upper curve (MSE ), we
can make the following considerations: 1) the S/T MA-MF esti-
mator outperforms (asymptotically) the LS channel estimate by
a factor 9 dB, as expected from the anal-
ysis in Section IV-C. 2) For training symbols, the S/T
MA-MF essentially converges to the asymptotic performance
if the modal dimensions are correctly estimated. Moreover, for
small SNR (SNR dB), it is convenient to underestimate the
number of modes, since this has the effect of lowering the MSE
as compared with the asymptotic result (valid for large SNR).
This phenomenon can be explained by noticing that reducing
the number of modes implies trading a bias in the estimate (due
to the underparametrization) for a reduced variance [22]. 3) The
adaptive rank algorithm described in Table II is able to esti-
mate correctly the modal dimensions for large SNR, whereas

Fig. 9. MSE of the S/T MA-MF technique versus L for SNR = 5 dB, com-
pared with the limit performance given by the lower bound. As a reference,
performance of an RLS estimator is given.

for small SNR, it tends to underparametrize the model. As dis-
cussed above, this has a beneficial effect on the channel-esti-
mation performance. 4) The asymptotic MSE of the M MA-MF
technique coincides with the lower bound for large SNR, as an-
ticipated in Section IV-C. 5) The S/T MA-MF technique has an
asymptotic degradation of 6 dB. 6) The qualita-
tive behavior of the bound MSE for small SNR is analogous
to that discussed above of S/T MA-MF. In this case, the un-
derparametrization of the channel (and consequent tradeoff be-
tween bias and variance) is automatically performed by MMSE
filtering. Accordingly, for very small SNR, the bound MSE
tends to the channel norm (16).

The MSE as a function of the number of processed sym-
bols for SNR = 5 dB is shown in Fig. 9 for M MA and S/T
MA with and without amplitude tracking. Moreover, as a fur-
ther term of comparison, the performance of an RLS algorithm
with optimized learning factor is considered [31]. It can be seen
that LMS amplitude tracking (with ) allows a gain of ap-
proximately 2 dB with respect to MF. Moreover, convergence of
the performance of S/T MA-MF to the asymptotic value (25) is
obtained (by a fraction of a decibel) for . On the other
hand, M MA-MF has a very slow convergence, and becomes
advantageous with respect to S/T MA-MF only for .
MA clearly outperforms RLS for large enough. Finally, sub-
optimality of S/T MA with LMS tracking can be quantified by
approximately 5 dB through comparison with the lower bound.

V. MIMO-OFDM SYSTEM WITH BICM
AND TURBO EQUALIZATION

In order to show the effectiveness of the proposed channel-es-
timation technique in terms of probability of error of a prac-
tical system, here we consider a MIMO-OFDM system based
on BICM [12] and turbo equalization [13]. This combination has
been recently recognized as a promising candidate for next-gen-
eration wireless LAN [14].

With reference to Fig. 1, the block diagram of the MIMO
encoder/modulator for the considered system is shown in
Fig. 10(a). The information bit stream is passed through



2072 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 11, NOVEMBER 2006

Fig. 10. Block diagram of the transmitter (a) and receiver (b) of a MIMO-
OFDM system, based on BICM and turbo equalization.

a convolutional encoder producing the encoded bits , then
interleaved (interleaved bits are denoted as ), and finally
modulated into a -ary quadrature amplitude modulation
(QAM) constellation and blocked into vectors

, to be transmitted by different transmitting
antennas (according to the model in Section II-A). No attempt
of optimizing the interleaving operation over different trans-
mitting antennas and frequencies is made here.

The receiver is depicted in Fig. 10(b). Channel estimation
is not included in the block diagram for simplicity. The re-
ceived signals on each frequency [see
(3)] are processed separately by a soft-input soft-output (SISO)
BLAST decoder [13]. This performs MMSE linear filtering of
the input signals and, based on the Gaussian approximation of
the residual interference, computes the a posteriori log-likeli-
hood ratios (LLRs) of the encoded and interleaved bits

. The vector represents
the encoded and modulated bits that are mapped onto the sym-
bols collected in the vector transmitted on the

th subcarrier. After subtraction of the a priori LLR
(obtained from the SISO decoder, as explained below, and ini-
tialized to zero for the first iteration), the so-obtained extrinsic
LLR (where are deinterleaved,
producing the a priori LLR for the SISO decoder ( is
the vector obtained by deinterleaving of ).
In a similar way, from the a posteriori LLR produced by
the decoder, the a priori LLRs are subtracted, yielding
the extrinsic LLR that, interleaved, provide the a priori
LLR for the SISO BLAST equalizer.

A. Simulation Results

The proposed MIMO-OFDM system with the following spe-
cific features is tested: the convolutional encoder has rate

Fig. 11. BER for a MIMO-OFDM system based on BICM and turbo equaliza-
tion with channel-estimation error.

and generators [7,5], the interleaver is random, the modu-
lation is 4-QAM , and the SISO decoder is log-max-
imum a posteriori (MAP) [26]. The bit-error rate (BER) of such
a system is plotted in Fig. 11 for the ideal case of perfect knowl-
edge of the channel, for an LS channel estimate, and for an
S/T MA-MF estimator (with , as in Fig. 8) as a func-
tion of the equalization-decoding iteration (after the third, only
minor improvements are obtained). For a BER equal to ,
S/T MA-MF guarantees approximately 7 dB gain as compared
with the LS channel estimate, and is only 3 dB away from the
case of ideal channel knowledge.

VI. CONCLUSION

A lower bound for the channel-estimation error for MIMO-
OFDM systems has been derived, in order to assess to what ex-
tent LS channel estimation can be improved if knowledge about
the multipath channel structure is taken into account in deriving
the channel estimator. Moreover, based on the insight obtained
from the aforementioned analysis, practical channel estimators
have been designed that perform close to the performance limit.
The proposed channel estimators compute the long-term fea-
tures through a subspace tracking algorithm by identifying the
invariant (over multiple OFDM symbols) space–time modes of
the channel. On the other hand, the fast-varying fading ampli-
tudes are possibly tracked by using LS techniques that exploit
temporal (i.e., over multiple OFDM symbols) correlation of the
fading process.

Thorough numerical investigation has validated the perfor-
mance of the proposed techniques. In particular, MIMO-OFDM
with BICM and MIMO-turbo equalization has been selected as
a benchmark for performance evaluation in terms of BER.

APPENDIX A
DERIVATION OF CHANNEL MODEL (5)

Let us define the MIMO CIR matrix as
, where the matrix is the th

“MIMO tap” collecting the samples over the
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links, i.e., . Using the model (4), we
get

(28)

where is the vector containing the -spaced sam-
ples of the delayed waveform .

The channel model (28) can be recast in the
matrix by stacking the MIMO taps as

. Model (5) easily follows.

APPENDIX B
DERIVATION OF THE ASYMPTOTIC CRB

Here we derive the lower bound on the channel-estimation
error discussed in Section III. In order to obtain an identifiable
parametrization of the channel vector, we consider the SVD of
the stationary matrix and rewrite the channel
model (7) as

(29)

where the matrix contains the (long-term)
modes of the channel, i.e., the signatures of the resolvable
paths (out of ) of the multipath channel. The vector

contains the amplitudes of the modes. Notice
that

(30)

The signal model for the MIMO channel can be written from
(10) as

(31)

where and
collect, respectively, the received signals and the additive noise
at the receiving antennas. Notice that matrix

is asymptotically known by the estimator, since this is as-
sumed to perform a consistent estimate of the long-term features
of the channel . MMSE estimation of the amplitudes can be
carried out by the Wiener filter in the frequency domain

(32)

with and , and
and , the operator

denoting the Fourier transformation. Estimation error de-
pends only on the error in estimating the amplitudes , as the
modes are supposed to be (asymptotically) known. The error-

correlation matrix on the estimate of is
and

MSE (33)

that depends only on the correlation matrix on the estimate of
the amplitudes , . By using
Parsival’s theorem, we get

MSE (34)

where
. By using the equalities

and ,
the MSE of the estimate can be written as

MSE

that coincides with (12), and can be expressed as (13).
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