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Abstract—This paper utilizes a general superimposed training
based transmission scheme that includes superimposed training
and pilot symbol assisted modulation (PSAM) as special cases.
The channel estimator of the scheme is the linear minimum mean
square error (LMMSE) estimator. By taking into account errors
of this method, we derive the closed-form lower bound of the
data throughput under the constraint of limited amplitude for
each symbol. Our study shows that with the constraint of total
amplitude for each symbol, the conventional PSAM performs
better in the high signal-to-noise ratio (SNR) region while at low
SNR, the superimposed scheme performs better.

I. INTRODUCTION

The performance of wireless communication systems is

critically related to the accuracy of channel estimation. For

most cases, the channel estimates are obtained from the pilot

symbols that are multiplexed with the data symbols; this

scheme is called pilot symbol assisted modulation (PSAM)

[1]. An alternative way is to superimpose the pilot symbols

onto each data symbol in the frame, known as superimposed

training [2], [3].

Superimposed training utilizes the first-order statistics to

estimate the channel [3] when the data and the noise are

zero-mean sequences. A frequency-domain estimation method

was suggested in [2] for superimposed training in the cases

when the noise cannot be considered as zero-mean sequences.

Although the estimation performance of superimposed training

falls short of PSAM, the data-dependent superimposed train-

ing (DDST) suggested in [4] improves both estimation and

detection and thus shorten the performance gap.

The performance comparison between superimposed train-

ing and conventional training is discussed in [5] and [6] for

orthogonal frequency division multiplexing (OFDM) systems.

These references show that the superimposed training yields

higher system capacity than PSAM. However, these works

adopt the least square (LS) estimation results and use an

approximate lower bound of channel capacity. Moreover, these

works do not determine the optimal training for either PSAM

or superimposed training scheme, which may limit the validity

of their capacity comparison.

A more general model that includes superimposed training

and conventional training is suggested in [9], and it is found

that superimposed training can offer an increased perfor-

mance over conventional training for fast fading channels.

The general model in [9] considers the constraint of total

transmitted energy. However, for many real applications, it
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Fig. 1. The structure of one data frame.

is more practical to consider the total amplitude constraint

instead of toal energy constraint.

This paper makes the following contributions. First, a uni-

fied model covering both superimposed training and PSAM

over flat-fading channels is utilized. This model take into

account of amplitude constraint for each transmitted sym-

bol. Second, based on linear minimum mean square error

(LMMSE) channel estimation, the closed-form lower bound

of data throughput is derived as a function of the amount of

training and the power allocation between pilot symbols and

data symbols. Third, since there is no analytical expression for

optimal allocation, we utilize the two-dimensional search and

show that the conventional PSAM maximizes the lower bound

at high signal-to-noise ratio (SNR) while at low SNR the

conventional superimposed training yields better performance.

II. SYSTEM MODEL

We consider single-input single-out put (SISO) systems with

a flat-fading channel. Suppose one frame contains T (≥ 1)
symbols. In this frame, K(≤ T ) training symbols are su-

perimposed on K data symbols,1 as shown in Fig. 1. The

remaining (T−K) symbols contain only data information. Let
Tp denote the index set of the superimposed training symbols

while denote Td as the index set of pure data symbols. The

full time index set is then T = Td
⋃
Tp = {n = 1, 2, · · · , T }.

Instead of the total power constraint for the whole data

frame,2 a more practical average power constraint for each

symbol is adopted here, denoted as ρ. For symbols with time

index n ∈ Tp, the data symbol is assigned with the average

power ρd, while the pilot symbol is assigned with the power

ρp. There is

ρ = ρd + ρp. (1)

1The conventional superimposed training overlay pilots on all data symbols.
2In some existing works, e.g., [8], the power constraint for the whole data

frame is adopted which may assign a “too large power” over a certain symbol
period such that the linearity of the power amplifier is violated.
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The received signal can be expressed as

y(n) =

{
h(
√
ρds(n) +

√
ρpp(n)) + w(n), n ∈ Tp

h
√
ρs(n) + w(n), n ∈ Td

(2)

where h is the Rayleigh flat-fading channel with variance

σ2
h, and w(n) is the additive white Gaussian noise with

variance σ2
w. Moreover, the data and pilot symbols satisfy

E{|s(n)|2} = 1 and |p(n)| = 1, respectively.
Remark 1: This model considers the amplitude con-

straint (1), which means the amplitude for each transmitted

symbol is limited. This constraint is different from the total

energy constraint in [9] where the total power for the whole

frame is limited.

III. CHANNEL ESTIMATION AND DATA DETECTION

This section estimates the channel by using the LMMSE

method, derives the expression for channel estimation error

and analyzes data detection in the presence of the channel

estimation error.

A. Channel Estimation

Stack y(n), s(n), p(n) and w(n) from the set Tp into K×1
vectors yp, sp, p and wp. We obtain

yp =h
√
ρpp+ h

√
ρdsp +wp

︸ ︷︷ ︸

v

, (3)

where v is defined as the corresponding item.

The way of first-order statistics is a common channel

estimation method for superimposed training [3]. Define y0 =
∑

n∈Tp

y(n)p∗(n)/K , where (·)∗ denotes the conjugate opera-

tion. It can be shown that

y0 =
√
ρph+ v0, (4)

where

v0 =
h
√
ρd

K

∑

n∈Tp

s(n)p∗(n) +
1

K

∑

n∈Tp

w(n)p∗(n), (5)

and the variance of v0 is σ
2
v0

= (σ2
hρd+σ2

w)/K . The LMMSE

channel estimator is selected for its orthogonality property that

will be further exploited in our following throughput analysis.

The estimate of h is obtained as

ĥ =
σ2
h

√
ρpy0

σ2
hρp + σ2

v0

. (6)

Lemma 1: The channel estimator (6) is the same as the

direct LMMSE estimate from (3)

ĥ′ =σ2
h

√
ρpp

H
(
σ2
hρppp

H + (σ2
hρd + σ2

w)IK
)−1

yp. (7)

Proof: From Woodbury’s identity [7, Equation (A.50)]

(
A+ xxH

)−1
=A−1 − A−1xxHA−1

1 + xHA−1x
, (8)

we can rewrite
(
(σ2

hρd + σ2
w)IK + σ2

hρppp
H
)−1

=
1

σ2
hρd + σ2

w

(

IK − σ2
hρp

σ2
hρd + σ2

w +Kσ2
hρp

ppH

)

. (9)

Substituting (9) into (7) and using pHp = K will produce

ĥ′ =
σ2
h

√
ρp

σ2
hρd + σ2

w +Kσ2
hρp

pHyp. (10)

After straight calculation, it can be found that the estimate (6)

is the same with (10), i.e., ĥ′ = ĥ.
The channel estimation error is then ǫ = ĥ − h whose

variance can be expressed as

σ2
ǫ =

(
1

σ2
h

+
√
ρpp

H
(
E(vvH)

)−1 √
ρpp

)−1

=

(
1

σ2
h

+
ρpK

σ2
hρd + σ2

w

)−1

. (11)

Corollary 1: The closed-form expression for channel esti-

mation error is

ǫ =
σ2
h

√
ρp(h

√
ρdp

Hsp + pHwp)− (σ2
hρd + σ2

w)h

Kσ2
hρp + σ2

hρd + σ2
w

. (12)

Proof: Proved with straight calculation from ǫ = ĥ − h.

From corollary 1, it can be readily checked that

E{ǫs∗(n)} = 0 for n ∈ Tp and also E{ǫĥ∗} = 0. Note that
this does not guarantee that the error ǫ is independent from

s(n) or ĥ.

B. Data Detection

This subsection rearranges received signal y(n) suitable for
data detection in the presence of the channel estimation error

and finds the covariance between data and equivalent noise

and the variance of equivalent noise.

Let us collect y(n), s(n), and w(n) from the set Td into

(T−K)×1 vectors yd, sd, andwd respectively. With estimated

channel information ĥ, (2) can be rewritten as

yp =ĥ
√
ρdsp +wp − ǫ(

√
ρdsp +

√
ρpp)

︸ ︷︷ ︸

up

, (13a)

yd =ĥ
√
ρsd +wd − ǫ

√
ρsd

︸ ︷︷ ︸

ud

, (13b)

where up and ud represent the equivalent interference-plus-

noise. From the previous discussion we know E{ǫs∗(n)} = 0
for any n ∈ T . These following cross-correlations vanish

E{sduH
d } = 0T−K , E{spuH

p } = 0K , (14)

where 0K means a K ×K matrix with all zero entries. For

the same reason, the covariance matrix of ud and that of up

can be expressed as

Rup
=NpIK + σ2

ǫρppp
H , Rud

= NdIT−K , (15)

where Np = σ2
w + σ2

ǫ ρd and Nd = σ2
w + σ2

ǫ ρ.

IV. TRANSMISSION OPTIMIZATION

This section finds the expression for data throughput so that

the optimal power allocation and time allocation can be found.
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A. Data Throughput

Let C, I and H denote the data throughput, mutual infor-

mation and entropy respectively. The data throughput is the

achievable average data rate over a communication channel,

which is related to mutual information. From (13), the data

throughput can be computed as

C =
1

T
I(yd, sd|ĥ) +

1

T
I(yp, sp|ĥ). (16)

Based on the definition of mutual information, the first term

in (16) is rewritten as

I(yd, sd|ĥ) =E
ĥ

{

H(sd|ĥ)−H(sd|ĥ,yp)
}

=E
ĥ

{

log det(πeRsd)−H(sd|ĥ,yd)
}

, (17)

where the property that sd is independent from ĥ is used.

Moreover,

H(sd|ĥ,yd) =H(sd − f(ĥ,yd)|ĥ,yd)

≤ log det(πecov(sd − f(ĥ,yd)), (18)

where f(ĥ,yd) is any function, cov(·) denotes the covari-

ance matrix, and the inequality is obtained by replacing

sd − f(ĥ,yd) with another Gaussian random vectors of the

same covariance. Therefore, the lower bound of I(yd, sd|ĥ)
is

I(yd, sd|ĥ) ≥E
ĥ

{
log det(πeRsd)

− log det(πecov(sd − f(ĥ,yd))
}
, (19)

for any function f(ĥ,yd). In order to obtain the tightest lower
bound, we would like to find a function f(ĥ,yd) such that

det(cov(sd − f(ĥ,yd)) is as small as possible. Since optimal
function f(ĥ,yd) cannot be computed in closed form, we can
simply choose the LMMSE estimate of sd that minimizes the

tr(cov(sd − f(ĥ,yd)) as a good candidate, which could be

specifically expressed as

f(ĥ,yd) = ĥ
√
ρ(|ĥ|2ρRsd +Rud

)−1 =
ĥ
√
ρ

|ĥ|2ρ+Nd

I, (20)

and the corresponding covariance is

cov(sd − f(ĥ,yd) =
(

Rsd + |ĥ|2ρR−1
ud

)−1

=
1

1 + |ĥ|2ρ/Nd

I. (21)

Note that, the property (14) is utilized when computing the

LMMSE estimator (20). We then obtain

I(yd, sd|ĥ) ≥ (T −K)E
ĥ
{log(1 + γd)} , (22)

where γd = |ĥ|2ρ/Nd.

Following the similar derivation and using the property

E{ĥs∗(n)} = E{ǫs∗(n)} + E{hs∗(n)} = 0 for n ∈ Tp,
we can compute the lower bound of the second term in (16)

as

I(yp, sp|ĥ) ≥E
ĥ

{

log det
(

IK + |ĥ|2ρdR−1
up

)}

. (23)

By using Woodbury’s identity [7, Equation (A.50)] forR−1
up
,

we can further express (23) as

I(yp, sp|ĥ) ≥E
ĥ

{

log det
(

IK + γpIK − cppp
H
)}

=E
ĥ

{

log

(

(1 + γp)
K det(1− cp

1 + γp
pHp)

)}

=E
ĥ
{(K − 1) log(1 + γp) + log(1 + φ)} ,

(24)

where γp = |ĥ|2ρd

Np
, cp =

|ĥ|2ρdσ
2

ǫρp

(Np+Kσ2
ǫρp)Np

, and

φ = γp − cpK =
|ĥ|2ρd

Np +Kσ2
ǫρp

. (25)

Finally, the lower bound of data throughput (16) can be

computed as

CL =
1

T
E

ĥ

{
(T −K) log(1 + γd)

+ (K − 1) log(1 + γp) + log(1 + φ)
}
. (26)

B. Optimization over Power and Time

Define h̄ = ĥ
σ
ĥ

, β = ρp/ρ and ρy = σ2
hρ + σ2

w. We can

rewrite the variance of channel estimation error (11) as

σ2
ǫ =

(σ2
w + σ2

hρd)σ
2
h

σ2
w + σ2

hρd +Kσ2
hρp

=
(ρy − βρσ2

h)σ
2
h

ρy + (K − 1)σ2
hβρ

. (27)

By the orthogonality principle of LMMSE estimate [8], the

variance of channel estimate can be written as

σ2
ĥ
=σ2

h − σ2
ǫ =

Kσ4
hβρ

ρy + (K − 1)σ2
hβρ

. (28)

We can thus obtain

γd =
|ĥ|2ρ

σ2
w + σ2

ǫρ
=

Kβσ4
hρ

2|h̄|2
ρ2y + σ2

hβρ(Kσ2
w − ρy)

, (29)

γp =
|ĥ|2ρd

σ2
w + σ2

ǫρd
=

Kβ(1− β)σ4
hρ

2|h̄|2
ρ2y + σ2

hβρ(Kσ2
w − 2ρy + βρσ2

h)
, (30)

φ =
|ĥ|2ρd

σ2
w + σ2

ǫρd +Kσ2
ǫρp

=
Kβ(1− β)σ4

hρ
2|h̄|2

ρ2y + σ2
hβρ(Kσ2

w + (K − 2)ρy − (K − 1)βρσ2
h)

. (31)

The final expression for CL can be found by substituting (29),

(30) and (31) into (26).

Unfortunately, given the closed-form expression for CL, it
still remains a challenge to obtain optimal value for training

number K and power allocation ratio β. Therefore, we resort
to the two-dimensional search to find the optimal values.3

Note that, the parameters design is not related with instant

channel knowledge so the proposed two dimensional search

can be conducted in an off-line manner, whose complexity is

acceptable.

3With average power constraint, the optimization can only be carried out
with searching in other existing works, e.g., [8], too.
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Fig. 2. Lower bound of channel capacity CL at low SNR: ρ = 1 and
T = 1000

V. SIMULATIONS

We define SNR as ρ/σ2
w and set σ2

h = 1, σ2
w = 1. Firstly,

we fix the total number of symbols T = 1000 and ρ = 1, and
change training number K from 1 to T and power allocation

β from 0 to 1. For each K and β value, we generate the

normalized channel estimate h̄ and find γd, γp and φ according

to (29), (30) and (31) respectively. Then the lower bound of

data throughput CL can be obtained from (26). This process

is repeated for 10000 times and then the average CL is found.

Fig. 2 shows the average CL versus K and β in the case of

ρ = 1 and T = 1000.
Next we increase SNR from 0 dB to 30 dB, and total

number of symbols T from 1 to 1000. For each SNR and T ,
we generate h̄ for 10000 times, and in each time we search

the maximum CL (26) by changingK from 1 to T and β from

0 to 1. We record the maximum CL and the corresponding β
and K values. Thus averaging value of β and K over 10000

times can be regarded as the optimal value for optimal power

allocation and number of trainings for the current SNR and

the current total number of symbols T .
The optimal value for power allocation ratio β versus SNR

and total number of symbols T is plotted in Fig. 3. It shows

that at high SNR, the optimal value for power allocation ratio

β is 1; that is, the conventional training method, PSAM, will

maximize the lower bound of data throughput CL. However,
at low SNR, the optimal value for power allocation ratio β
varies. This suggests that superimposed pilots can outperform

conventional trainings in low SNR.

The optimal value for training number K versus SNR and

total number of symbols T is plotted in Fig. 4. It shows that

at high SNR, less training is required to maximize the lower

bound of data throughput CL, while at low SNR more training

is needed. This agrees with our intuition. Furthermore, we

notice that the optimal training number K is less than the

current total number of symbols T , which suggests that the

conventional superimposed training schemes, i.e. K = T , is
not optimal.

VI. CONCLUSIONS

In this paper, the closed-form throughput lower bound

taking into consideration the channel estimation error was
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Fig. 3. Optimal value for power allocation ratio β
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Fig. 4. Optimal value for training number K

derived based on a generalized superimposed training scheme.

Our study shows that conventional PSAM performs better in

the high SNR region while the superimposed training scheme

performs better in the low SNR region.

REFERENCES

[1] J. Cavers, “An analysis of training symbol assisted modulation for
Rayleigh fading channels [mobile radio],” IEEE Trans. Veh. Technol.,
vol. 40, no. 4, pp. 686–693, Nov. 1991.

[2] J. Tugnait and W. Luo, “On channel estimation using superimposed
training and first-order statistics,” IEEE Commun. Lett., vol. 7, no. 9,
pp. 413–415, Sept. 2003.

[3] G. T. Zhou, M. Viberg, and T. McKelvey, “First-order statistical method
for channel estimation,” IEEE Signal Processing Lett., vol. 10, no. 3,
pp. 57–60, Mar. 2003.

[4] M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami,
“Channel estimation and symbol detection for block transmission using
data-dependent superimposed training,” IEEE Signal Processing Lett.,
vol. 12, no. 3, pp. 226–229, Mar. 2005.

[5] A. Goljahani, N. Benvenuto, S. Tomasin, and L. Vangelista, “Super-
imposed Sequence Versus Pilot Aided Channel Estimations for Next
Generation DVB-T Systems,” IEEE Trans. Broadcasting, vol. 55, no.
1, pp. 140–144, March 2009.

[6] W. Huang, C. Li, and H. Li , “On the power allocation and system
capacity of OFDM systems using superimposed training schemes,”
IEEE Trans. Veh. Technol., vol. 58, no. 4, pp.1731–1740, May 2009.

[7] H. L. Van Trees, Optimum Array Processing Part IV: Detection and
Estimation Theory. New York: Wiley, 2002.

[8] B. Hassibi and B. Hochwald, “How much training is needed in
multiple-antenna wireless links,” IEEE Trans. Inform. Theory, vol. 49,
no. 4, pp. 951–963, Apr. 2003.

[9] M. Coldrey and P. Bohlin, “Training-based MIMO systems – Part I:
performance comparison,” IEEE Trans. on Signal Processing, vol. 55,
no. 11, pp.5464–5476, Nov. 2006.

193


