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1. Introduction. Let u be the temperature, ip be a stream function, and x and t be,
respectively, the coordinates perpendicular and parallel to the channel walls. Ockendon
[5] described the flow of a viscous fluid in the boundary layer by the following initial-
boundary value problem:

u(x, 0) = 0, ip(x, 0) = ^x2 ^1 — ̂ /3~l^2x^j for x > 0,

u(0, £) = 0, tp(0,t)=0, t/jx(0,t) — 0 — ipt(0,t) for t > 0,

where f3, called the Nahme-GrifRth number, is assumed to be large. For some positive
constant a (< 2/?1/2), let fl = (0, a) x (0,T), and dfl be the parabolic boundary ([0, a] x
{0}) U ({0, a} x (0, T)) of tt, where T < oo. Ockendon found that as x —> oc, u ~ t/x and
tp ~ x2/2. Since (3 is very large, «-»0as2i-> 2 (31^2. Thus, the model of the channel
flow of a fluid with temperature-dependent viscosity in the boundary layer is simplified
to the following degenerate parabolic problem (cf. Lacey [4], Stuart and Floater [6], and
Floater [3]),

uxx - xut — —eu in u = 0 on dfl, (1.1)

where u may blow up at some finite T.
Recently, Floater [3] studied the problem (1.1). He approximated the forcing term eu

by up. Instead of zero initial temperature, he considered the following problem:

uxx - xut = ~up in (0,1) x (0, oo),

u(x,0) = uq(x) >0 for x £ [0,1], u(0, t) = 0 = u(l, t) for t > 0,

where p > 1 and uq is assumed to be in (^([0,1]) with Uo(0) = 0 = uo(l)- He showed
that if 1 < p < 2 and u0 is concave, then u blows up at the boundary x = 0. Numerical
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evidence by Stuart and Floater [6] indicates that blow-up occurs away from the boundary
when p > 2.

Let q be any real number, and

r =
~ dx1 x df

When q = 0, L is the ordinary heat operator. When q ^ 0, the coefficient of d/dt in L
becomes zero or infinity at x = 0, and we say that L is a degenerate parabolic operator.
Floater [3] generalized the problem (1.2) by replacing the equation with

Lu = —up in (0,1) x (0, oo)

for any q > 0, and he found that blow-up at the boundary x — 0 can occur when
1 < p < q + 1.

To study the problem (1.1), we use a different approach. Let

hr(u) « (l - ")

We note that for each fixed r (> 0), eu < hr(u) for u £ (0, r). Also, lim,-^^ hr(u) — eu.
Let us consider the following problem:

Lu = —hr(u) in O, u = 0 on dfl. (1-3)

We see that the problem (1.1) is the limiting case of the problem (1.3) with q = 1 as
r tends to infinity. We also note that for each fixed r, h.r(0) — 1, h'r > 0, ft" > 0,
limu^r- hr(u) = oo, and J0' hr{u) du = oo for r > 1. This motivates us to study the
more general degenerate parabolic quenching problem,

Lu = —f(u) in f2, u = 0 on 3Q (1.4)

for <7^0, where / £ C2([0,c)) for some positive constant c such that /(0) > 0, /' > 0,
/" > o, lim!t^c- f(ti) = oo, and /Qc f(u) du — oo. By quenching phenomena, we mean
the blow-up of ut at some finite T and existence of a unique critical length a* (which
is the length such that for a < a*, u exists for all t (> 0), and for a > a*, u reaches c
somewhere at some finite T (and ut blows up there)).

Chan and Kong [1] showed that the problem (1.4) has a unique classical solution u
such that u and ut are positive in f2, and there exists a unique critical length a*, which
is the same as that for the case q = 0; if f(, /(it) du = M for some positive constant M
and a > a*, then u reaches c somewhere in

[c2/(2Ma),a/2] for q > 0,

[a/2, a — c2/(2Ma)} for q < 0,

and lim.j.f, ut(x,t) = oo if lim.>.(;. .,(Xo.t) u(x,t) = c for some finite T.
In Sec. 2, we show that without assuming J(J f(u) du = M, if a > a*, then u reaches

c somewhere in

[0, a/2] for q > 0,
[a/2, a] for q < 0;

if fj f(u)du = oo, then ut becomes unbounded somewhere when u reaches c at some
finite T.
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2. Blow-up of ut. The following result is given by Chan and Kong [1],

Theorem 1. The problem (1.4) has a unique classical solution u such that u and uf are
positive in SI.

We remark that if quenching does not occur, then Theorem 1 gives the existence result
for all t > 0.

Let lo- = (0, a/2) x (0,T) and lu+ = (a/2, a) x (0,T). Since ut > 0 in J7, we use the
strong maximum principle to prove the following lemma.

Lemma 2. For the problem (1.4), (i) if q > 0, then ux(x,t) < 0 in w+; (ii) if q < 0, then
ux(x, t) > 0 in u>_.

Proof, (i) Let a be a positive number less than or equal to a/2, Qa = (a — 2a,
a — a) x (0, T), and y(x, t) = u(x, t) - u{2a — 2a — x,t). For x G (a — 2a, a —a), we have
2a — 2a — x > x. It follows from q > 0 and ut > 0 in that

(L + f{Q)y <0 in ntt,

where £(x,t) is between u(x,t) and u(2a — 2a — x,t). Since u = 0 on the parabolic
boundary <90, we have y(a - 2a, t) > 0, and y(x, 0) = 0. Also, y(a — a,t) — 0. Hence,
y > 0 in Qa by the strong maximum principle. In particular, for any e such that
0 < e < a,

u(a — a — e,t) > u(a — a + e, t).

Thus, ux(a — a,t) < 0. From this,

ux{x,t) < 0 for £ € .

We note that
(ux)xx - xq(ux)t + f'(u)ux = qxq~lut.

Since q > 0 and ut > 0, we have

(L + f'(u))ux> 0 inw+.

If ux attains its maximum 0 at some point (say, (x*,o)) in lj+, then by the strong
maximum principle, ux(x,t) = 0 in (a/2, a) x (0, <r], and hence (L + f'(u))ux = 0 there.
This contradiction shows that ux(x,t) < 0 in w+.

(ii) The proof is similar to that for (i).
From the proofs of Theorems 5 and 6 of Chan and Kong [1], the problem (1.4) has

a unique critical length a*. When a > a*, it follows from Lemma 2 that u reaches c
somewhere in [0, a/2] for q > 0, and in [a/2, a] for q < 0.

We modify the idea in the proof of Theorem 1 of Chan and Kwong [2] to prove the
following result.

Theorem 3. For the problem (1.4), suppose /Qc f(u) du = oo. As t —> T~, if u(x, t) —> c~
at some x E [0, a], then ut(x,t) —> oo at (at least) one of such x.

Proof. Suppose ut is bounded on Q. Let us choose a positive number K such that
ut < K on Q and K > 8c/a2.
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We first consider the case q > 0. Since limu_,c- f(u) = oo, there exists a constant
(3\ (> 3c/4) such that

f(u) > (l+a")K for u G [/3i, c). (2.1)

It follows from Lemma 2(i) and Jjj f(u) du = oo that we can choose a constant T\ close
to T such that u(x,t\) attains a local maximum at some point x* G (0,a/2] with the
properties u(x*,ti) > (3\ and

ru{

hi
u(i'Ti).mj 1 + a? / 4/?i Ka}+i\2f(s) ds > —— — + —— . (2.2)

When u > /?i, uxx < aqI\ — f{u). By (2.1), uxx < —K < 0. Hence, there exists X\ such
that x* < x\ < a, u(x\,ti) — (3\, and ux(x,t\) < 0 in (x*,x\). For x G {x*,x\), we have
u(x,T\) > (3\. It follows from q > 0, ut < K, and (2.1) that

uxx{x,TX) < aqK - f{u(x,Ti))

< — f(u(x, T] )).
1 + a"

Since ux(x,T\) < 0 in (x*,x\), we have

(X,Ti)uxx{x,Ti) > - 1 f(u(x,Ti))ux(x,Ti)1 + aq+

Upon integrating from x* to xi, we obtain

,2 (i.. T.\ 1 ru(x* ,Ti

'pi

By (2.2),

rU(X ,Ti)

   / f(s)ds.1 + a' Jg, W

. '4A Ka1+V
-C(X1,T!) > — +  ^ 

Since ux(xi,t\) < 0, we have

(4/?! Kal+q \ux(x\,ti) < — {——h—-—J. (2.3)

We claim that a—Xi > a/4. ForxG (x*,xi), we have u(x, T\) > (3\. Thus, uxx(x, ti) <
—K, and we have

/•Xi /-X rX i ex

/ / (£, 7"i) d£ dx < —K / / dt^dx,
J x* J x* J x* J X*

which gives

Pi -u(x*,Ti) < -y(®i -x*)2.

Since u < c, > 3c/4, and A" > 8c/a2, we have Xi — x* < a/4. It follows from
x* G (0,a/2] that a — X\ = a — x* — (x\ — x*) > a/4.
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gives

Since ut < K and f(u) > 0, we have uxx(x,ti) < aqK. By (2.3),

/•Xi + f rx px 1 + f j-x
/ / u^{^,T\)d^dx < aqK / d^dx

Jx i «/a;i «/rri

( a \ O (Ka1+q\ (a\ Kaq (a\2u(n + -,T1)<nt-\K- + — jy + _y =o.

This contradicts u > 0 in fi.
Now, we consider the case q < 0. By Lemma 2(ii), u(x,t) < c for x £ (0,a/2).

Thus, there exists a positive constant b (< c) such that u(a/8,t) < b for t > 0. Since
limu^c- f(u) = oo, there exists a constant /32 such that (32 > max{3c/4,6} and

f{u) > 1 + K for u e [/?2,c). (2.4)

It follows from Lemma 2(ii) and f(u) du — oo that we can choose a constant t2 close
to T such that u(x,T2) attains a local maximum at some point x* £ [a/2, a) with the
properties m(x*,T2) > /32 and

Lu(-x"T2) _ , lr. /a\<n r8/32 A" /ax^2^ w ^ 1 l"i -L faV 1 8^2 J- A (mi» j .1 + UJ. v + T ( 5/102

When u > fo, we have x > a/8. It follows from g < 0 and (2.4) that

'a\i

(2.5)

Mxx C (^) K - f(u) < —K < 0.

Hence, there exists x<i such that a/8 < x-i < x*, u{x2,t-2) = @2, and ux(x, r2) > 0 in
(x2,x»). Then, it follows from ut < K and (2.4) that for x € (x2,x„),

uxi(x,t2)< (J) K - f{u{x,T2))

<"l + (»/8)./Wl'Ti))-

Since ux(x,t2) > 0 in (x2,x*), we have

iX^) < - j + ^8ylf(u(x,T2))ux{x,T2).

Integrating from X2 to x», we have

 i_ r^f{s)ds.2 1 4- (a/8)' 4

By (2.5),
2

ux(x2, r2) >
8p2 K /a\1+(?
~a~ + ~2 \8/
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Since mx(x2,t2) > 0, we have

, . 8/?2 A' /a\1+<?M^,r2)>— + T(-) . (2.6)

We claim that X2 > a/4. For x € (x2,x*), we have u(x,t2) > /?2- By (2.4),
uxx(x,t2) < -K. Then,

/ / u^(^,r2) d^dx <—K / / d£dx,
J X2 J X J X2 J X

which gives
K

02 - u(x*,r2) < -y^* - z2)2.

Since u < c, (32 > 3c/4, and K > 8c/a'2, we have x* — x2 < a/4. It follows from
x* € [a/2, a) that x2 = x* — (x* — x2) > a/4.

Since ut < K and /(w) > 0, we have uxx(x,t2) < (a/8)qI\ for x > a/8. Thus,

/•z2 /-a:2 / d \ Q fX2 rx2
/ / u#(£,T2)d£dx < (oj A/ / d£dx

«/ X2 — X"2 — g " X

gives

U (x2 - |,r2) < /?2 - | ux(x2,t2) - ®

By (2.6), w(x2 — a/8, T2) < 0. This contradicts u > 0 in O. Hence, the theorem is proved.
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