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An analysis is carried out to investigate the peristaltic pumping of a non-Newtonian

Ellis fluid in a planar channel. The coupled nonlinear partial differential equations

governing the problem are simplified under the widely used assumption of long

wavelength and low Reynolds number. A semi- analytical approach is adopted to

obtain the expressions for stream function, longitudinal velocity, pressure gradient

and pressure rise per wavelength. The important characteristics of the peristaltic

motion are explained graphically for several values of the material parameter

of the Ellis fluid. C 2015 Author(s). All article content, except where otherwise

noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4932042]

I. INTRODUCTION

In recent years the peristaltic flow has been widely discussed because of its relevance in in-

dustry and physiology. In physiology, peristalsis is involved in the urine transport from kidney to

the bladder, vasomotion of small blood vessels, movement of chyme and in many processes of

reproduction. In industry the roller and finger pumps operate according to the peristaltic mecha-

nism. The rheology of fluid material driven by peristaltic mechanism in the many flow cases can

be characterized by the Newtonian constitutive equation. For instance the rheology of urine can be

well described by assuming it a Newtonian fluid. However, there are numerous examples where

the choice of Newtonian fluid is not appropriate. Many biological fluids such as blood, chyme,

and spermatic fluid are some examples of non-Newtonian fluids. Undoubtedly the mechanics of

non-Newtonian fluids presents special challenges to engineers, physicists, modellers, numerical

analyst and mathematicians. The flows of non-Newtonian fluids are not only important because of

their technological significance but also due to the interesting mathematical features presented by

their governing equations. The rheological behavior of non-Newtonian fluids is very complex and it

is not possible to find a universal constitutive relation valid for all non-Newtonian fluids. After the

first investigation of Latham1 on peristaltic motion of a Newtonian fluid, numerous attempts have

been made to analyze peristaltic motion of non-Newtonian fluids theoretically. Some interesting

studies on these flows have been carried out by Siddiqui and Schwarz,2,3 Mekheimer, Mekheimer et

al.4 Mekheimer and Elmaboud5–9 Hayat et al.10–13 Hayat and Ali,14–16 Wang et al.,17 Ali et al.,18,19

Srinivas and Kothandapani,20 Tripathi et al.21 and Abbasi et al.22 All the above cited investigations

cover the peristaltic flows of different non-Newtonian fluids. In some of these articles the magnetic

field and heat transfer effects have also been discussed. However, there is no attempt is available

which describe peristaltic motion of Ellis fluid. The Ellis model fall in the category generalized

Newtonian fluid (GNF) models. The well-known GNF models are power law model, Carreau

model, Herschel-Bulkley etc. The peristaltic motion of these models can be found in Refs. 23–25.

The main advantage of Ellis equation is that it predicts the Newtonian behavior at small shear

stresses and the power law behavior at large shear stresses. This advantage of Ellis model enables
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it to correctly reflect the rheological behavior of typical polymeric fluids.26 Motivated by above

facts the main objective of this paper is to analyze the peristaltic motion of Ellis fluid in a planner

channel under long wavelength assumption. The organization of the paper is as follow. The basic

governing laws are described in section II. The problem is formulated in section III. A semi- analyt-

ical solution of the problem formulated in previous section is reported under the long wavelength

assumption in section IV. The effects of pertinent parameters on various characteristic of peristaltic

motion are discussed in detail in section V. The main conclusions are reported in section VI.

II. GOVERNING EQUATIONS

For the flow under consideration the balances of mass and linear momentum in the absence of

body forces are

divV = 0, (1)

ρ
dV

dt
= −∇p + divS, (2)

where V is the velocity, ρ is the density d/dt is the material derivative, p is the hydrostatic pressure

and S is the extra stress tensor. For an Ellis fluid the extra stress S is given by27

S =
µ

1 +

(



s

τ2
0

)α−1
A1 (3)

In the above equation µ is the dynamic viscosity, τ0 and α material constants,


s is second order

invariant of stress tensor and A1 is the first Rivilin-Ericksen tensor. The constant τ0 is commonly

defined as the shear stress corresponding to the half dynamic viscosity. The model (4) reduces to

Newtonian Model for α = 1 and 1/τ2
0
→ 0.

III. MATHEMATICAL FORMULATION

Let us consider the flow of an incompressible Ellis fluid due to the propagation of infinite wave

train traveling along the walls of the channel. We introduce a Cartesian Coordinates system (X,Y )

in which X-axis is along the direction of flow and Y -axis normal to it. The wall of the channel is

mathematically defined by the following equation

h(X, t) = a + b sin


2π

λ
(X − ct)


, (4)

where a is half width of the channel, b, λ and c are amplitude, wavelength, and wave speed,

respectively and t is the time. The flow under consideration can be modeled unsteady and two-

dimensional. Therefore, we define

V = [U (X,Y, t) ,V (X,Y, t) ,0] , (5)

with U and V as velocity components in X and Y directions, respectively. In view of Eq. (5),

Eqs. (1)-(3) yield the following scalar equations:

∂U

∂X
+

∂V

∂Y
= 0, (6)

ρ

(

∂

∂t
+U

∂

∂X
+ V

∂

∂Y

)

U = −
∂p

∂X
+
∂SXX

∂X
+
∂SXY

∂Y
, (7)

ρ

(

∂

∂t
+U

∂

∂X
+ V

∂

∂Y

)

V = −
∂p

∂Y
+
∂SXY

∂X
+
∂SYY

∂Y
. (8)

Inherently the flow is unsteady in the laboratory frame (X,Y ). However, it can be treated as steady in

a frame moving with the speed of wave. Such a frame is known as wave frame. The transformations

between the two frames are:
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x = X − ct, y = Y,u = U − c, v = V, (9)

where u and ν are components of velocity in x and y directions, respectively. Employing the

transformation defined by Eq.(9) and introducing the dimensionless variables given by

x =
λx∗

2π
, y = ay∗, u = cu∗, v = cv∗, S =

µc

a
S
∗ p =

λµcp∗

2πa2
h = ah, (10)

Eqs. (6) – (8) after dropping the asterisks take the following form

δ
∂u

∂x
+
∂v

∂ y
= 0, (11)

Re

(
δu

∂

∂x
+ v

∂

∂ y

)

u


= −

∂p

∂x
+ δ

∂Sxx

∂x
+
∂Sxy

∂ y
, (12)

δRe

(
δu

∂

∂x
+ v

∂

∂x

)

v


= −

∂p

∂ y
+ δ2

∂Sxy

∂x
+ δ

∂Syy

∂ y
, (13)

Sxx =
2δ ∂u

∂x

1 + (β χ)α−1
, (14)

Sxy =

(

∂u
∂y
+ δ ∂v

∂x

)

1 + (β χ)α−1
, (15)

Syy =
2 ∂v
∂y

1 + (β χ)α−1
, (16)

where

χ =

(

1

2

(

(Sxx)
2
+ 2

�
Sxy

�2
+
�
Syy

�2)
)

1
2

, (17)

Re = ρca/µ is the Reynolds number, β = c/aτ2
0

is the dimensionless material parameter and

δ = 2πa/λ is the wave number. Defining the stream function ψ(x, y) by the relations u = ∂ψ/∂ y ,

v = −δ∂ψ/∂x the continuity equation (11) is satisfied identically and Eqs. (12)–(16) become

Reδ

(
∂ψ

∂ y

∂

∂x
−
∂ψ

∂x

∂

∂ y

)

∂ψ

∂ y


= −

∂p

∂x
+ δ

∂Sxx

∂x
+
∂Sxy

∂ y
, (18)

δ3Re

(
∂ψ

∂ y

∂

∂x
−
∂ψ

∂x

∂

∂x

)

∂ψ

∂x


= −

∂p

∂ y
+ δ2

∂Sxy

∂x
+ δ

∂Syy

∂ y
, (19)

Sxx =
2δ

∂2ψ

∂y2

1 + (β χ)α−1
, (20)

Sxy =

(

∂2ψ

∂y2 − δ
2 ∂

2ψ

∂x2

)

1 + (β χ)α−1
, (21)

Syy =
−δ

∂2ψ

∂y∂x

1 + (β χ)α−1
. (22)

Eqs. (18) and (19) are subject to the symmetry condition at the centerline and no slip condition at

the channel wall. These conditions are mathematically expressed in term of stream function as

∂2ψ

∂y2
== 0 at y = 0 and

∂ψ

∂ y
= −1, at at h = 1 + φCosx. (23)

where φ = b/a is the amplitude ratio.
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FIG. 1. Plots of pressure rise per wavelength (∆Pλ) versus flow rate Θ for various values of material parameter α when

F =−0.8, β = 20 and φ= 0.4.

IV. SOLUTION OF THE PROBLEM

The set of Eqs. (18)-(22) comprises of higher-order nonlinear partial differential equations. It

is difficult to obtain a closed from solution of these equations. However, in many practical physical

problems related to peristalsis the wavelength is large as compare to the width (radius) of the chan-

nel.28 The parameter δ in our problem represents the ratio of the channel width to the wavelength of

the wave. Thus assuming δ to be small, Eqs. (18)-(22) reduce to

∂p

∂x
=
∂Sxy

∂ y
, (24)

FIG. 2. Plots of pressure rise per wavelength (∆Pλ) versus flow rate Θ for various values β of when F =−0.8, α= 1.5 and

φ= 0.4.
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FIG. 3. Plots of longitudinal velocity (u) for various values of β when F =−0.8, α = 2 and φ= 0.4.

∂p

∂ y
= 0, (25)

Sxx = Syy = 0, (26)

Sxy =

∂2ψ

∂y2

1 + (βSxy)α−1
. (27)

Eq. (25) dictates that p is not a function of y . Thus the only possibility is that p is a function

of x.This implies that dp/dx is only a function of x and therefore can be treated as a constant

while integrating Eq. (24). Integrating Eq. (24) with respect to y and using the boundary condition

∂2ψ/∂ y2 = 0, we get

FIG. 4. Plots of longitudinal velocity (u) for various values of α when F =−0.8, φ = 0.4 and β = 2.
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Sxy =
dp

dx
y. (28)

Substituting Eq. (28) into Eq. (27) and integrating twice one finds

ψ =
y3

6

dp

dx
+

βα−1
(

dp

dx

)α

(α + 1) (α + 2)
yα+2 + C3y + C4, (29)

where C3 and C4 are integration constants. Since dp/dx is unknown, therefore the expression (29)

involves three unknowns. The boundary condition ∂ψ/∂ y = −1 at y = h is not sufficient to calcu-

late uniquely the value of all these unknowns. The additional boundary condition on stream function

can be imposed by prescribing the flow rate at each cross-section as a constant. This assumption

yields the following additional boundary conditions2,7

ψ = 0 at y = 0 and ψ = F at y = h, (30)

where F is the prescribed flow rate in the wave frame. In view of no-slip condition and first

condition in (30) the following expression of the stream function can be obtained.

ψ =
y3

6

dp

dx
−

βα−1
(

dp

dx

)α

(α + 1) (α + 2)
yα+2 +


−1 −

h2

2

dp

dx
−

βα−1
(

dp

dx

)α

(α + 1)
hα+1


y. (31)

FIG. 5. Plots of streamlines for (a) β = 0 (b) β = 2 (c) β = 10 when F =−0.25, α = 2 and φ= 0.4.
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FIG. 6. Plots of streamlines for (a) α= 1 (b) α= 2 (c) α = 3 when F =−0.25, β = 0.5 and φ= 0.4.

In above expression dp/dx is still unknown. On employing the second boundary condition in (30)

the following non- linear algebraic equation in dp/dx can be obtained.

h3

6

dp

dx
+

βα−1
(

dp

dx

)α

(α + 1) (α + 2)
hα+2 +


−1 −

h2

2
−

βα−1
(

dp

dx

)α

(α + 1)
hα+1


h = F. (32)

The above equation can be solved for dp/dx using any computational software at each cross-section

x for a given set of parameter. Once dp/dx is known, the solution is complete. The integration of

dp/dx over one wavelength gives the pressure rise across one wavelength. Employing the formula

∆pλ =

2π

0

dp

dx
dx, (33)

we have obtained the pressure rise per wavelength to illustrate the pumping characteristics in next

section.

V. RESULTS AND DISCUSSION

This section displays the graphical illustrations of pressure rise per wavelength (∆Pλ), longitu-

dinal velocity and streamlines for various value of material constants of the Ellis model. Fig. 1 illus-

trates the effects of material constant α on pressure rise per wavelength. three distinct regions can
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be identified from this figure. The region where Θ > 0 ∆Pλ > 0 is known as peristaltic pumping re-

gion. In this region the peristalsis has to work against the pressure rise to propel the fluid. The region

where Θ > 0 ∆Pλ = 0 is called free pumping region. The corresponding value of Θ for ∆Pλ = 0 is

called free pumping flux. Since ∆Pλ = 0, the free pumping flux is solely due to peristaltic waves.

The last region where Θ > 0 ∆Pλ < 0 is known as augmented pumping region. In this region the

pressure assists the flow due to peristalsis. It is noted that for a fixed value of prescribed flow rate

an increase in α decreases the pressure rise per wavelength in the peristaltic pumping region. The

free pumping flux is nearly found to be independent of α. However, in augmented pumping region

the assistance provided by the pressure decreases with increasing α for a fixed value of mean flow

rate Θ. The second material constant which characterizes the Ellis model is β. It is found that the

effects of β on the ∆Pλ are similar to the effects of α. Fig. 2 also shows that ∆Pλ decreases in going

from Newtonian to Ellis fluid. The longitudinal velocity at a cross-section x = −π is shown for

different value of α and β in Figs. 3 and 4, respectively. These figures do illustrate that longitudinal

velocity is significantly affected by the material constants of Ellis fluid. Figs. 3 and 4 indicate that

the magnitude of longitudinal velocity near the channel center decreases with increasing either of

α or β. On the contrary, near the vicinity of channel wall it follows converse trend. It is important

to mention that a flattening trend in velocity is observed near channel center for larger values of α.

This is perhaps due to enhanced shear-thinning in viscosity for larger values of α. It is further noted

from Fig. 4 that magnitude of longitudinal velocity at the center of the channel decreases going to

Newtonian to Ellis fluid.

The streamline patterns for different value of α and β are shown in Figs. 5 and 6. Again it is

observed that the streamlines of the flow are affected in a similar manner by increasing either α or

β. In fact it is observed that the strength of recirculating zone (trapped bolus) appearing in the wider

part of the channel decreases by increasing α or β. However, it is observed that such a decrease is

faster by increasing β.

VI. CONCLUSIONS

A semi-analytical approach is adopted to address the problem of peristaltic motion of an Ellis

fluid under long wavelength assumption. The expressions of stream function reported here involve

the unknown pressure gradient which is found by solving a nonlinear algebraic equation at each

cross-section for given set of parameters. The flow velocity, pumping characteristics and trapping

phenomena are analyzed for various values of material parameter of the Ellis fluid. The main

observations of the present study are summarized as follows.

• An enhanced shear thinning in viscosity is observed for larger values of α and β. As a result of

this shear-thinning in viscosity, a flattening trend in the longitudinal velocity is observed at the

channel center.

• The pressure rise per wavelength in pumping region decreases with increasing either α or β

for a fixed value of prescribed flow rate Θ.

• The value of prescribed flow rate Θ for which ∆Pλ = 0 is unaffected by increasing either α or

β.

• The strength of recirculating zone appearing in wider past of the channel decreases by increas-

ing either α or β.
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