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ABSTRACT

The increasing demand for high data rate in wireless communication systems gives
rise to broadband communication systems. The radio channel is plagued by multipath
propagation, which causes frequency-selective fading in broadband signals. Orthog-
onal Frequency-Division Multiplexing (OFDM) is a modulation scheme specifically
designed to facilitate high-speed data transmission over frequency-selective fading
channels.

The problem of channel modeling in the frequency domain is first investigated for
the wideband and ultra wideband wireless channels. The channel is converted into an
equivalent discrete channel by uniformly sampling the continuous channel frequency
response (CFR), which results in a discrete CFR. A necessary and sufficient condition
is established for the existence of parametric models for the discrete CFR. Based on
this condition, we provide a justification for the effectiveness of previously reported
autoregressive (AR) models in the frequency domain of wideband and ultra wideband
channels.

Resource allocation based on channel state information (CSI) is known to be a
very powerful method for improving the spectral efficiency of OFDM systems. Bit
and power allocation algorithms have been discussed for both static channels, where
perfect knowledge of CSI is assumed, and time-varying channels, where the knowledge
of CSI is imperfect. In case of static channels, the optimal resource allocation for
multiuser OFDM systems has been investigated. Novel algorithms are proposed for
subcarrier allocation and bit-power allocation with considerably lower complexity
than other schemes in the literature. For time-varying channel, the error in CSI due
to channel variation is recognized as the main obstacle for achieving the full potential
of resource allocation. Channel prediction is proposed to suppress errors in the CSI
and new bit and power allocation schemes incorporating imperfect CSI are presented
and their performance is evaluated through simulations.

Finally, a maximum likelihood (ML) receiver for Multiband Keying (MBK) signals
is discussed, where MBK is a modulation scheme proposed for ultra wideband systems
(UWB). The receiver structure and the associated ML decision rule is derived through
analysis. A suboptimal algorithm based on a depth-first tree search is introduced to
significantly reduce the computational complexity of the receiver.

ix



CHAPTER 1. INTRODUCTION

This dissertation uses the technical paper style approved by the Graduate School. It
contains chapters based on papers that have been published, or are under review, or
are to be submitted to peer-reviewed journals. Therefore, the consistency of notations
are not maintained for all chapters and some essential information may be repeated
for the sake of completeness and independence of each chapter.

1.1 Overview

Since its emergence in late nineteenth century, wireless communication has been evolv-
ing constantly. In the past decade, the wireless communications industry has been
expanding dramatically in part due to great progress in the areas of digital signal
processing, analog and digital circuit manufacturing, and very large-scale integrated
circuits (VLSI), which make the implementation of complex communication systems
more and more affordable. Many new technologies and services based on wireless
communication have been launched, such as the mobile telephone system, global po-
sitioning system (GPS), wireless local area network (WLAN), wireless metropolitan
area network (WMAN), and so on. In recent years, in order to satisfy the increasing
demand for higher data rates, much attention has been devoted to broadband wire-
less communication systems. Unlike the conventional narrowband systems, where
the channel-induced distortion of data symbols can be eliminated using a channel
equalizer with sensible complexity [58], broadband systems generally have a symbol
duration that is much shorter than the channel delay spread resulting in severe inter-
symbol interferences (ISI). At the receiver, a very sophisticated equalizer is needed to
remove the ISI effect of the channel. This has been recognized as a major obstacle for
reliable communication in a broadband system. Several data transmission schemes
have been proposed to cope with this problem.

Orthogonal Frequency-Division Multiplexing (OFDM) is a widely used data trans-
mission technique particularly suitable for broadband systems. It has been success-
fully applied in the physical layers of many wireless communication protocols such as
IEEE802.11a/g (WiFi), IEEE802.16 (WiMax), Digital Audio Broadcasting (DAB),
Digital Video Broadcasting (DVB), and HIPERLAN/2. The OFDM system breaks
up a high-rate data stream into a large number of low-rate data streams. These are
then transmitted in parallel over low bandwidth subchannels or subcarriers and com-
bined into the high-rate stream at the receiver. In OFDM systems, the frequencies
and phases of these “subcarriers” are deliberately selected such that they are orthog-
onal to each other and can share a common radio frequency (RF) circuit without
interference. Since each subcarrier is modulated by a low-rate data stream and there-
fore can be viewed as a narrowband system, then the OFDM system has a property
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of transforming a broadband channel into multiple narrowband subchannels. It can
be shown in the remainder of this chapter that only a very simple channel equalizer is
needed for a properly designed OFDM system. Additional advantages of the OFDM
system include high spectral efficiency, simple transceiver design, flexibility in terms
of link adaptation, and so on.

In the OFDM system, the effect of channel on each OFDM symbol is characterized
by a complex vector known as the channel frequency response (CFR) [52]. The
received complex symbols in all subchannels experience attenuation and phase shift
determined by the CFR. Hence, for the purpose of coherent demodulation, CFR need
to estimated at the receiver. For this reason, channel estimation has received a great
deal of attention in OFDM systems.

In order to facilitate the simulation and/or estimation of channels in OFDM sys-
tems, it is of great interests to investigate statistical models for the CFRs. In this
dissertation, the problem of parametric modeling in the frequency domain for wide-
band and ultra wideband channels will be discussed.

A major drawback of the OFDM system over frequency-selective fading chan-
nels is the high probability of bit error rate (BER) due to the possible existence of
“weak” subcarriers. The signal-to-noise ratio (SNR) of these subcarriers is low re-
sulting in high error probability, which tends to dominate the performance of the
entire system. For the sake of reliable communication, an approach using forward
error-control code and frequency and/or time interleaving may be employed, which
results in the so-called “Coded-OFDM (C-OFDM)” system [1]. However, in this
case, spectral efficiency is sacrificed, and a complicated decoding algorithm is always
needed in the receiver. Another effective method is the adaptive modulation, which
proposes to select for each subcarrier a proper size of modulation signal set and trans-
mit power, according to the instantaneous frequency response of the channel, such
that the desired quality of service (QoS) can be achieved with maximum spectral
efficiency. This method is also referred to as “bit and power allocation” or simply
“resource allocation”. In this dissertation, the problem of bit and power allocation
has been investigated for OFDM systems having perfect or imperfect channel state
information. Simulation studies have also been conducted to show the efficiency and
effectiveness of these methods.

In addition to the OFDM system, there exits other signal transmission techniques
proposed for broadband wireless communications. Among them is the emerging Ultra-
Wideband (UWB) technique, which is based on a principle totally different from that
of the OFDM system. It suggests using extremely narrow pulse signals that have a
period of up to several nanoseconds to modulate data symbols. The terminology of
UWB comes from the fact that an extremely narrow pulse in the time domain corre-
sponds to an ultra wide bandwidth in the frequency domain. In the United States,
according to the Federal Communications Commission (FCC), a signal is qualified
to be a UWB signal only when its -10dB bandwidth exceeds 500MHz or 20% of its
center frequency [43]. In UWB systems, multiple versions of the pulse signals are
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Figure 1.1: The architecture of a typical OFDM system

received from various propagation paths, which have differences in delay time greater
than the pulse intervals. Generally speaking, the resulting ISI is negligible in UWB
systems. Meanwhile, the transmit power has been dispersed into multiple (indepen-
dent) components, and a RAKE receiver is needed to collect these components for
better decision [53]. In this dissertation, a UWB system known as “Multiband Key-
ing” is addressed, whose maximum likelihood (ML) receiver over AWGN channel is
investigated.

1.2 OFDM System over Frequency-Selective Fading Chan-
nels

As mentioned in [52], OFDM systems can be realized with low complexity using
the discrete Fourier transform (DFT). The structure of a typical OFDM system is
illustrated in Figure 1.1, where the shadowed blocks correspond to the processing of
OFDM. In this system, the number of subcarriers is denoted by N and the sampling
rate is fixed to be 1/TS, where TS = 1/(N∆f) and where ∆f is the frequency offset
between neighboring subcarriers. In general, a complete OFDM symbol consists of
N data samples and a cyclic prefix (CP) of size L. Thus, TB = (N + L)TS is the
duration of each OFDM symbol.

Let {S0,k, · · · , SN−1,k} denote the complex symbols that are transmitted within
the kth OFDM block. Then the output of the IDFT module in Figure 1.1 can be
represented by

Xm,k =
N−1∑

n=0

Sn,k · ej2π mn
N , m = 0, 1, · · · , N − 1 (1.1)

After cyclic extension, parallel-to-serial operation, and digital-to-analog conversion,
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the transmitted signal can be represented in baseband by the following:

x(t) =
∞∑

k=−∞




N−1∑

u=0

Xu,k · w(t − kTB − uTS) +
N−1∑

v=N−L

Xv,k · w(t − kTB + (N − v)TS)




(1.2)
where w(·) is the pulse shaping function determined by the entire analog system
except the physical channel.

Let c(τ ; t) denote the equivalent lowpass impulse response of a time-varying,
frequency-selective multipath fading channel. According to [59], c(τ ; t) can be written
as follows

c(τ ; t) =
I−1∑

i=0

αie
−j2π{(fc+fd,i)τi−fd,it}δ(τ − τi) (1.3)

where I denotes the number of propagation paths, and τi, αi, and fd,i are, respectively,
the propagation delay, the attenuation factor and the Doppler frequency offset for
the ith path. Moreover, δ(·) is the Dirac delta function, and fc is the center carrier
frequency. Suppose x(t) passes through the channel defined by (1.3), the received
baseband signal is given by

y(t) =
∫ ∞

0
c(τ ; t)x(t − τ)dτ + ζ(t)

=
I−1∑

i=0

ri(t)x(t − τi) + ζ(t) (1.4)

where ri(t) = αie
−j2π{(fc+fd,i)τi−fd,it}t and ζ(t) is the noise process. At the receiver,

y(t) is sampled with a sampling rate of 1/TS to yield N + L samples for each block,
where the first L samples corresponding to CP are dropped. Assuming perfect time
synchronization, the N samples input to the DFT module during block k are denoted
by {Y0,k, · · · , YN−1,k}, where Yn,k is obtained by sampling y(t) at the time t = kTB +
nTS. Equations (1.2) and (1.4) result in

Yn,k =
∞∑

m=−∞

I−1∑

i=0

N−1∑

u=0

ri(kTB + nTS)Xu,l · w ((n − u)TS + (k − m)TB − τi)

+
∞∑

m=−∞

I−1∑

i=0

N−1∑

v=N−L

ri(kTB + nTS)Xv,l · w ((N + n − v)TS + (k − m)TB − τi)

+ ζ(kTB + nTS) (1.5)

It is noted that, w(·) is generally a function with a limited duration TP , i.e., w(τ) = 0
for any τ outside the interval [0, TP ].

Assumptions:

1: Quasi-Stationary Channel : ri(kTB + t) = ri(kTB) for all 0 ≤ t ≤ TB and
arbitrary integer k
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2: ISI-Free Condition: L ≥ ⌈TP +maxi{τi}
TS

⌉

If k 6= m, the following can be verified using the above assumptions:

w((n − u)TS + (k − m)TB − τi) = 0

w((N + n − v)TS + (k − m)TB − τi) = 0

∀n, u = 0, · · · , N − 1; ∀v = N − L, · · · , N − 1; ∀i = 0, · · · , I − 1

In this case, Equation (1.5) can be simplified as the following:

Yn,k =
N−1∑

u=0

Xu,k

{
I−1∑

i=0

ri(kTB)w ((n − u)TS − τi)

}

+
N−1∑

v=N−L

Xv,k

{
I−1∑

i=0

ri(kTB)w ((N + n − v)TS − τi)

}

+ ζ(kTB + nTS) (1.6)

Let

gl,k :=
I−1∑

i=0

ri(kTB)w(lTS − τi). (1.7)

The ISI-Free Condition stated previously imply that gl,k achieves nonzero values only
when l = 0, 1, · · · , L−1. Therefore, (1.6) can be rewritten in a matrix form as follows:




Y0,k

Y1,k

...

YN−1,k




=




X0,k XN−1,k · · · XN−L−1,k

X1,k X0,k · · · XN−L−2,k

...
...

...
...

XN−1,k XN−2,k · · · XN−L,k







g0,k

g1,k

...

gL−1,k




+




ζ0,k

ζ1,k

...

ζN−1,k




(1.8)

where ζn,k = ζ(kTB + nTS) for all n and k.
Define gk := [g0,k, · · · , gL−1,k]

T , yk := [Y0,k, · · · , YN−1,k]
T , vk := [ζ0,k, · · · , ζN−1,k]

T ,
and xk = [X0,k, · · · , XN−1,k]

T , where (·)T denotes the matrix transpose operation.
Furthermore, let Ck be an N -by-N Circulant Matrix, whose first column is xk [56]. It
is well known that Ck = F−1diag(Fxk)F, where diag(·) and (·)−1 denote, respectively,
the diagonal matrix and the matrix inversion operation, and where F is the linear
transform matrix for the N -point DFT. Equation (1.1) suggests that xk = F−1sk,
where sk = [S0,k, · · · , SN−1,k]

T . So Ck = F−1diag(sk)F.
Equation (1.8) can be rewritten as the following

yk = Ck




gk

0N−L


+ vk (1.9)
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Figure 1.2: Performance of OFDM systems with uniform bit and power allocation

where 0N−L is a column vector of size (N − L), whose elements are all zero. Using
(1.9), the output of the DFT module in Figure 1.1 can be written as follows:

rk = F




F−1diag(sk)F




gk

0N−L


+ vk





= diag(sk)FLgk + Fvk

= diag(FLgk)sk + Fvk (1.10)

where FL is an N -by-L matrix containing the first L columns of the matrix F. Let
hk = [H0,k, · · · , HN−1,k]

T = FLgk. Equation (1.10) suggests that, using OFDM, the
received complex symbols are given by Rn,k = Hn,kSn,k+Wn,k, ∀k, ∀n = 0, · · · , N−1,
where the noise part Wn,k is the nth element of Fvk. It is clear that, the sequence
hk defined previously represents the discrete CFR of the OFDM system, and it is
obtained by applying N-point DFT to the discrete channel impulse response (CIR)
gk, which is defined in (1.7).

1.3 Motivation of Resource Allocation in OFDM Systems

In conventional OFDM systems, the size of modulation signal sets and the associated
transmit power are the same for all subcarriers. The main drawback of this approach is
its poor performance in terms of bit error probability under frequency-selective (“non-
flat”) fading channels. Figure 1.2 highlights this problem by comparing the system’s
bit error rate (BER) over a given non-flat fading channel with that of a flat fading
channel. In this figure, QPSK modulation has been used for all subcarriers. The plot
on the left hand side provides a snap shot of the channel power gain {|Hn,k|2}N−1

n=0

during block k, and the plot on the right hand side illustrates for both channels the
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system BERs under different SNR. It is observed that the efficiency of this OFDM
system is very low if channel is non-flat fading. This is attributed to the fact that,
under the non-flat fading channel, there exist weak subcarriers, whose power gain is
much less than the average level and result in high error rate. These weak subcarriers
tend to dominate the overall performance of the whole OFDM system such that, in
order to have a low BER, the power of all subcarriers need to be increased resulting
in a very low efficiency.

A technique known as Adaptive Modulation can be used in OFDM systems to
solve the problem mentioned previously. The idea of adaptive modulation can be
traced back to the early studies for the theoretical limit of achievable data rate,
i.e., the capacity, of a general fading channel. Gallager (1968) had shown in [64]
that, a non-uniform power distribution determined by the attenuation profile of the
fading channel is necessary to achieve channel capacity. For an OFDM system with
frequency-selective fading channels, the capacity-achieving power adaptation should
be performed along the subcarriers. Moreover, the data rate of each subcarrier also
need to be adjusted to match the capacity of individual subchannel. This gives rise
to the scheme of bit and power allocation for OFDM systems, which proposes to
select for each subcarrier a proper size of modulation signal set and transmit power
according to the instantaneous channel response such that the desired quality of
service can be achieved with the maximum spectral efficiency. Figure 1.3 illustrates
an example of bit and power allocation scheme 1 designed for the non-flat fading
channel profile shown in Figure 1.2. In this case, the number of bits sent by each
OFDM block is the same as that of Figure 1.2. The performance of this bit and
power allocation scheme is compared with the that of the flat fading channel with
uniform bit and power allocation, and the results are plotted in Figure 1.3. It can be
seen by comparing performance curves in Figure 1.2 and Figure 1.3 that the OFDM
system using resource allocation has a much higher spectral efficiency than the system
without it.

In order to create bit and power allocation schemes for a specific OFDM system, it
is necessary for the transmitter to have some knowledge of the channel state informa-
tion (CSI), such as the CFR. According to Figure 1.1, the OFDM receiver performs
channel estimation and thus has the knowledge of CSI. In practice, the transmitter
is also able to obtain the knowledge of CSI. One option is to transmit CSI from the
receiver to the transmitter through a dedicated reverse channel known as “control
channel”. Another method is to use the Time Division Duplex (TDD) structure,
where each OFDM terminal has both a transmitter and a receiver operating in the
same radio frequency. In order to avoid confliction between transmission and receiv-
ing, the operation mode of the transceiver switches with a time-division fashion. In
this case, both directions have similar radio environment and should result in CSIs
akin to each other. Thus, in this case, the CSI from the receiver is also valid to the
transmitter for bit and power allocation.

1The method of generating this bit and power allocation is discussed in Chapter 3
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Figure 1.3: Example of bit and power allocation for a non-flat fading channel

Generally speaking, in order to exploit the full potential of a resource alloca-
tion scheme in OFDM system, the transmitter should have a complete and perfect
knowledge of the CSI. In wireline communication systems, this condition may be
satisfied since the wireline channel is static or extremely slow-varying, which allows
the receiver to achieve perfect channel estimation and feed back the complete CSI
to the transmitter. However, for most of the wireless communication systems, this
assumption is not realistic because the physical channel is time-varying and achieving
perfect channel estimation is almost impossible. Moreover, in case of time-varying
channels, the extra signalling overhead become overwhelming since the CSI need to
be to transmitted back to the receiver. Therefore, in the scenario of time-varying
wireless channels, imperfect CSI is assumed to be used for resource allocation. In this
dissertation, both resource allocation methods assuming perfect and imperfect CSI
have been addressed.

1.4 Introduction to the Multiband Keying UWB System

Multiband Keying, which is also known as Spectral Keying 2, is a novel modulation
scheme optimized for UWB systems. It proposes to divide the whole UWB band into
multiple subbands having a bandwidth greater than 500MHz. For each subband, a
specifically designed pulse signal can be used to transmit data through this subband.
Figure 1.4 shows an example of such pulse signal associated with the subband having
a center frequency of 4GHz. In the time domain, a complete Multiband Keying sym-
bol consists of a “pulse time” and a “guard time”, where multiple phase-modulated
pulses like that of Figure 1.4 are transmitted during the pulse time, and where no

2Spectral KeyingTM is a registered trademark of General Atomics
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Figure 1.4: Pulse signal used for the Multiband Keying UWB system

transmission occurs during guard time for the purpose of avoiding ISI. Figure 1.5 illus-
trates in details the structure of a typical Multiband Keying signal. It is noted from
this figure that, the pulse time in each symbol is divided into several non-overlapping
subpulses, within which the modulated signals from different subbands are transmit-
ted. Clearly, the Multiband Keying scheme can be viewed as a special form of fast
frequency hopping (FH).

An important property of the Multiband Keying system is that, for each symbol,
the transmitted subpulses are chosen from different subbands. As a result, pulse
signals from the same subband are separated with at least one guard time, which is
larger than the delay spread of the channel, and this prevents ISI. Although there
exists interference among subpulses from different subbands, they can be eliminated
at the receiver using a bank of bandpass filters (BPF) tuned for different subbands.
In other words, the problem caused by ISI is negligible in Multiband Keying systems.
Moreover, a RAKE receiver without extra hardware can be used in this system to
capture much of the signal power [44, 45].

The main drawback of Multiband Keying systems is the difficulty of achieving
high data rate due to its low duty cycle with the application of zero-padded guard
intervals. For example, when used for a short range indoor UWB system, the duty
cycle of the Mutiband Keying signals are generally limited to be less than 50%. In
order to mitigate this problem, in each symbol, information bits is not only modulated
on to the phases of subpulses but also on to the sequences of subbands associated
with these subpulses. In other words, the sequences of bands during pulse time of
each symbol is also encoded by data, which increases the number of information bits
conveyed by each symbol. However, this approach also increases the complexity of
demodulation, especially when a maximum likelihood (ML) detection is required. The
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Figure 1.5: Basic structure of the Multiband Keying symbols

complexity issue of the ML receiver of Multiband Keying signals will be discussed in
this dissertation.

1.5 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 1, a brief introduction to
the OFDM system is presented with a focus on its properties over quasi-stationary
frequency-selective fading channels. Furthermore, the problem of high bit error in un-
coded OFDM systems has been highlighted as a motivation for resource allocation.
Subsequently, an introduction to the Multiband Keying modulation scheme used for
UWB systems is also covered in this chapter.

Chapter 2 investigates parametric modeling of wideband and ultra wideband wire-
less channels in frequency domain, where, by uniform sampling of the channel fre-
quency response, an equivalent discrete channel can be obtained. It is shown that
the parametric modeling in the frequency domain is possible, if and only if the uni-
formly spaced CFR samples satisfy the wide-sense stationary (WSS) condition that
is equivalent to the uncorrelated scattering (US) condition for the discrete CIR. This
new WSS-US condition is fulfilled if the underlying continuous-time wideband or ul-
tra wideband channel is WSSUS with independent path gains and arrival times. It
is also shown that there exists an analytic relationship between the power spectral
density (PSD) of the uniformly spaced CFR samples and the power profile of the
discrete CIR that satisfies the WSS-US condition. Based on these results, it is shown
from analysis and simulation that the wideband and ultra wideband channels can be
adequately modelled by low order autoregressive (AR) and/or autoregressive moving
average (ARMA) models in the frequency domain.
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In Chapter 3, the problem of resource allocation for multiuser OFDM systems
has been considered assuming perfect knowledge of the CSI. This problem has been
considered by many researchers, and there exist different solutions to this problem in
the literature. The main goal of Chapter 3 is to find a method with nearly optimal
performance and lower complexity than the methods reported previously. In order
to achieve a numerically efficient solution, the problem is divided into two separate
optimization problems: one for subcarrier allocation and one for bit and power allo-
cation. Heuristic algorithms are then developed for each problem. The performance
and the computational complexity of the proposed algorithms are compared with
existing methods from extensive simulation.

In Chapter 4, we extend the scope of resource allocation in OFDM systems to
the time-varying channels, where only imperfect knowledge of the CSI is assumed.
The bit and power allocation scheme proposed in Chapter 3, which assumes perfect
CSI, is shown to experience significant performance loss when the channel is actually
time-varying. The error in CSI caused by the delayed channel estimates has been
recognized as the main reason for this problem. The relationship between channel
variation rate and the accuracy of CSI denoted by normalized mean square error
(NMSE) has been analyzed in this chapter. To solve this problem, we propose to
first reduce errors in CSI using channel prediction, then exploit a bit and power
allocation scheme, which is robust to the imperfect CSI. The channel predictors based
on Wiener filter and adaptive filters have been discussed in Chapter 4. Different
resource allocation schemes based on imperfect CSI are also investigated. Simulation
results have confirmed that, at least for slowly time-varying Rayleigh fading channels,
the spectral efficiency of the proposed system can be very close to that of the system
with perfect CSI knowledge.

In Chapter 5, we concern the Multiband Keying system using M-ary Phase Shift
Keying (MPSK) in the subpulses of each symbol. The optimal receiver for Multiband
Keying signals over AWGN channel and the associated ML decision rule have been
developed in this chapter. The performance of the ML receiver has been evaluated
through analysis and simulation. Then, a computationally efficient suboptimal algo-
rithm based on a depth-first search (DFS) is introduce to simplify the demodulation
of Multiband Keying signals.

Finally, in Chapter 6, we draw conclusions and suggest some prospective topics
for future research.
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CHAPTER 2. PARAMETRIC MODELING OF
WIDEBAND AND ULTRA WIDEBAND CHANNELS IN

FREQUENCY DOMAIN1

2.1 Introduction

It is known that most modern technologies are model based. Due to the randomly
varying nature of the wireless channel with respect to time, it is necessary to develop
statistical models with a minimum number of parameters to regenerate or predict
the measured channel behavior accurately. This is entailed not only by computer
simulations for wireless channels, but also by channel estimation in wireless commu-
nications. For this reason modeling of wireless channels has received considerable
attention. The early work of Bello [3] on randomly time variant channels is rep-
resentative in characterizing the wide-sense stationary (WSS) channel, uncorrelated
scattering (US) channel, and WSSUS channel. Such characterizations are obtained
for the radio propagation gains based on time domain measurements. Since then sta-
tistical modeling of the radio channels has been an important research topic. Indeed
a statistical model is proposed in [20] for urban mobile radio where the measurement
data were collected from a global experiment in a research laboratory. For indoor
multipath propagation, a different statistical model is proposed in [18] that has its
roots in the earlier model in [20]. Specifically, the model in [18] assumes that the
paths arrive in clusters and both paths and clusters form Poisson processes. See also
[9, 15, 16] on channel measurements and modeling.

While the time domain approach for modeling wireless channels is more direct
and has been effective, it requires more parameters to describe the wideband and
ultra wideband channels. A more interesting development in channel modeling is
the low order AR (autoregressive) model in frequency domain as proposed in [12] for
wideband indoor radio propagation. Similar AR models in frequency domain are also
employed more recently to model ultra wideband channels in [10, 11, 19]. Based on
the large amount of experimental measurement data and extensive computer simu-
lations, these papers show that the uniformly spaced samples of the CFR (channel
frequency response) for wideband and ultra wideband channels can be modeled very
accurately by low order AR processes. Recall that uniform sampling of the CFR
results in an equivalent discretized channel with the discrete CIR (channel impulse
response) obtained from the inverse DFT (discrete Fourier transform) of the CFR
samples. Because of the low order, the AR model in the frequency domain requires
many fewer parameters to represent the channel than its time domain counterpart.

1 c©2007 IEEE. Reprinted, with permission, from: G. Gu, X. Gao, J. He, M. Naraghi-Pour,

“Parametric Modeling of Wideband and Ultra Wideband Channels in Frequency Domain”, IEEE

Transactions on Vehicular Technology, 2007
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It has additional advantages in that the frequency domain measurement system pro-
vides coherent measurements and the frequency domain model can be simulated on
the computer considerably more easily. However the channel modeling results in
[11, 12, 19] also raise a natural question: why can the CFR samples of the wide-
band and ultra wideband channels be described by low order AR models? Such a
question is fundamental but difficult to answer through the experimental method and
deserves further investigation. Our goals in this chapter are to present a theoretical
justification for the low order AR modeling and to derive an equivalent condition on
the feasibility of low order parametric modeling in frequency domain. An important
contribution of this chapter is the development of periodic random processes which
help to deepen our understanding of the wireless channels and enable us to derive
new results in modeling of wideband and ultra wideband channels in the frequency
domain. It is shown that the parametric modeling in the frequency domain is pos-
sible, if and only if the discretized wireless channel fulfills the WSS-US (wide-sense
stationary and uncorrelated scattering) condition. It is also shown that there exists
an analytic relation between the PSD (power spectral density) of the CFR samples
and the power delay profile of the discrete CIR for wireless channels that satisfy the
WSS-US condition. The results in this chapter provide new insights in channel mod-
eling and answer the question of why low order AR models are adequate in modeling
wideband and ultra wideband channels in the frequency domain.

2.2 Preliminaries on Channel Modeling

Nearly all radio channels of interest are more or less time-variant and time dispersive
in nature. For wideband channels, they are characterized by multipath propagation
where a number of reflected or scattered radio rays arrive at the receiver end. A
widely used channel model is the following continuous-time CIR:

c(t; τ) =
L−1∑

k=0

ck(t)δ (τ − τk(t)) (2.1)

where δ(·) is the Dirac delta function and time t is real valued. The finite delay
sequence {τk(t)}L−1

k=0 is strictly increasing with respect to k for all time t and is given
by

τk(t) = τp(t) + τdk
(t), 0 ≤ k < L, (2.2)

with τp(t) the propagation delay and τdk
(t) the instantaneous differential delay [57].

The early work on radio channels indicates that the kth path gain ck(t) is a WSS
random process for each integer k, and {ck(t)}L−1

k=0 are uncorrelated or US at all time
t [3]. This gives rise to WSSUS channels.

While the CIR in (2.1) is only an approximation to the continuous-time radio chan-
nel due to the use of Dirac delta functions, it encompasses many practical channel
models including (a) Rayleigh fading (wideband) channels [59] of which the amplitude
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|ck(t)| has Rayleigh distribution and the phase 6 ck(t) is uniformly distributed over
[0, 2π), and (b) ultra wideband channels [18] in which the power gain for each ray
is log-normal distributed and paths arrive in clusters: the arrival times of clusters
and path delays within each cluster form two independent Poisson processes. Both
channel models will be the focus of this chapter. Channel modeling in the time do-
main notwithstanding, more parameters are required in describing the wideband and
ultra wideband channels. A more interesting development is the frequency domain
approach in [11, 12, 19] where the uniformly spaced CFR samples are shown to sat-
isfy some low order AR models based on large amounts of experimental measurement
data for wideband and ultra wideband channels that is contrast to the time domain
approach. In this section we give a preliminary analysis on the uniformly spaced CFR
samples before proceeding to our main results on low order parametric modeling in
the frequency domain.

For wideband and ultra wideband wireless channels, both {ck(t)}L−1
k=0 and {τk(t)}L−1

k=0

of the continuous-time CIR in (2.1) normally change very slowly. This holds true es-
pecially for indoor channels. For this reason, we assume that ck(t) = ck and τk(t) = τk

through the duration of interest for 0 ≤ k < L. Applying the continuous-time Fourier
transform to the CIR in (2.1) yields the following CFR:

C(f) =
L−1∑

k=0

cke
−j2πτkf , j =

√
−1. (2.3)

Taking uniformly spaced samples over the channel bandwidth as fi = fL + ifBW/N
for 0 ≤ i < N where fL is the low frequency edge and fBW is the bandwidth. Then
we obtain the uniformly spaced N -point CFR samples as follows:

HN(i) = C(fi) =
∑L−1

k=0 cke
−j2πτk(fL+ifBW/N)

=
∑L−1

k=0

[
cke

−j2πτkfL

]
e−j2πiτkfBW/N .

(2.4)

Suppose that N >> L so that {⌊τkfBW⌋}L−1
k=0 are all distinct and strictly bounded

by N where ⌊x⌋ takes the integer part of x. Let

hℓk
=





cke
−j2πτkfL , if τkfBW = ℓk + εℓk

,

0, elsewhere
(2.5)

where 0 ≤ εℓk
< 1, ℓk = ⌊τkfBW⌋, and 0 ≤ ℓk < N . Let WN = e−j2π/N . Then we have

a new expression for the N -point uniformly spaced CFR samples:

HN(n) =
∑N−1

ℓk=0 hℓk
W nℓk

N W
nεℓk

N

=
∑N−1

ℓk=0 hℓk
W

n(ℓk+εℓk
)

N , 0 ≤ n < N.
(2.6)
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The above discretizes the continuous-time channel in the frequency domain. Com-
puting N -point inverse DFT for {HN(n)}N−1

n=0 gives

hN(m) = 1
N

∑N−1
n=0 HN(n)W−mn

N

=
∑N−1

ℓk=0 hℓk

[
1
N

∑N−1
n=0 W

−n(m−ℓk−εℓk
)

N

]
,

0 ≤ m < N.

(2.7)

Hence {hN(m)}N−1
m=0 can be regarded as an equivalently discretized CIR. Note that

hN(m) 6= hm in general and more importantly {hN(m)} are uniformly spaced in the
time domain but {hℓk

} are not.
It is noted that the discrete samples of the CFR such as in (2.6) can be exper-

imentally determined. Indeed in [11, 12, 19], the uniformly spaced CFR samples
are measured for wideband channels and ultra wideband channels and are treated as
random processes with respect to the frequency index. Moreover these reports show
that the uniformly spaced CFR samples satisfy low order (1st order or 2nd order) AR
models. That is, there exists some constant α or (α1, α2) such that

HN(n) = αHN(n − 1) + VN(n) or (2.8)

HN(n) = α1HN(n − 1) + α2HN(n − 2) + VN(n) (2.9)

for some AWGN (additive white Gaussian noise) process {VN(n)}N−1
n=0 . A natural

question is: why can uniformly spaced CFR samples for wideband and ultra wideband
channels be described by low order AR models? Let f1 and f2 be two samples of the
CFR such that (f1 − f2) = (n1 − n2)fBW/N = nfBW/N with n = (n1 − n2) integer.
Denote E{·} as the operation of expectation and · as complex conjugate. By assuming
independence of {ck} and {τk}, it is easy to verify that

E
{
C(f1)C̄(f2)

}
=

L−1∑

k=0

σ2
ck

E
{
e−j2π(f1−f2)τk

}

=
L−1∑

k=0

σ2
ck

E
{
W

n(ℓk+εℓk
)

N

}

=
N−1∑

ℓk=0

σ2
hℓk

E
{
W

n(ℓk+εℓk
)

N

}

=: RH(n). (2.10)

Therefore CFR samples are WSS processes that can be modeled as output of some
linear time-invariant system driven by some WSS white noises. However being WSS
processes alone does not imply that the CFR samples {HN(n)} are low order AR
processes. A theoretical proof is entailed to justify the low order AR modeling for
uniformly spaced CFR samples.
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We are motivated by the channel modeling results in [11, 12, 19] to investigate
why and under what condition the low order parametric modeling is possible for
wideband and ultra wideband channels. To accomplish this goal we note that the
CFR samples in (2.6) have finite length N . With the use of DFT and inverse DFT, it
is possible to extend the uniformly spaced CFR samples in (2.6) and the discretized
CIR samples in (2.7) to periodic sequences with period N . Hence both become
periodic random processes. We will first investigate the periodic random processes in
the next section and then apply the results on periodic random processes to model the
uniformly spaced CFR samples. Our results on channel modeling in the frequency
domain shed some new light on the results reported in [11, 12, 19] and provide a
theoretical justification for low order parametric modeling of wideband and ultra
wideband channels in the frequency domain.

2.3 Periodic Random Processes

In this section, we will first introduce periodic random processes, and then study
dynamic systems whose inputs and outputs are periodic sequences. A periodic random
process, with period M and denoted by {vM(k)}, is the periodic extension of the
random variables {vM(k)}M−1

k=0 . For convenience, in the sequel we assume that all
random processes and random variables are zero-mean. The process {vM(k)} is said
to be periodic uncorrelated, if

E{vM(k)vM(i)∗} = E{|vM(k)|2}δM(k − i), (2.11)

where superscript ∗ denotes complex conjugate and transpose, and δM(k) is the peri-
odic Kronekar delta function, i.e.,

δM(n) =





1, if n = ℓM,

0, if n 6= ℓM,
(2.12)

for any integer ℓ. The periodic random sequence {vM(k)} is called periodic WSS, if

R
(v)
M (n) = E{vM(k)vM(k − n)∗} (2.13)

is independent of k. A periodic WSS sequence {vM(k)} is said to be periodic uncor-
related if

R
(v)
M (n) = E{vM(k)vM(k − n)∗} = RvδM(n), (2.14)

for some Rv > 0. Suppose that the transfer function G(z) is given by

G(z) =
∞∑

k=0

g(k)z−k,
∞∑

k=0

|g(k)| < ∞. (2.15)
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Then G(z) represents a causal and stable dynamic system. For a periodic random
process {vM(k)} as input, its output {yM(k)} is also periodic, and there holds

yM(k) =
∞∑

s=0

g(s)vM(k − s)

=
∞∑

ℓ=0

M−1∑

i=0

g(ℓM + i)vM(k − i − ℓM)

=
M−1∑

i=0

(
∞∑

ℓ=0

g(ℓM + i)

)
vM(k − i)

=
M−1∑

i=0

gM(i)vM(k − i)

= : gM(k) ⊙∗ vM(k) (2.16)

which is the periodic convolution of the input, and the periodic impulse response,
given by

gM(i) =
∞∑

k=0

g(kM + i), i = 0, 1, · · · ,M − 1. (2.17)

Because of the stability assumption, gM(i)’s are bounded for each i. Furthermore it
can be shown that {gM(k)}M−1

k=0 is the M -point inverse DFT of {G(W−i
M )}M−1

i=0 . That
is, {gM(k)}M−1

k=0 and {G(W−i
M )}M−1

i=0 form a DFT pair. Applying the M -point DFT on
both sides of (2.16) yields

YM(i) = G(W−i
M )VM(i), i = 0, 1, · · · ,M − 1, (2.18)

where {VM(i)}M−1
i=0 and {YM(i)}M−1

i=0 are the M -point DFT’s of the input and output,
respectively. We have the following theorem.

Theorem 2.1 Suppose that {yM(k)} is a periodic random process with zero mean.
Then

1. The process {yM(k)} is periodic WSS if and only if its M-point DFT {YM(i)}
is periodic uncorrelated.

2. Let ACS (autocorrelation sequence) and PSD (power spectral density) of {yM(k)}
be defined by

R
(y)
M (n) = E{yM(k)yM(k − n)∗}, and (2.19)

Φ
(y)
M (i) =

M−1∑

n=0

R
(y)
M (n)W ni

M , (2.20)

respectively. Then

Φ
(y)
M (i) =

1

M
E{|YM(i)|2}, i = 0, 1, · · · ,M − 1. (2.21)
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3. If the ACS and PSD are estimated via

R̂
(y)
M (n) =

1

M

M−1∑

k=0

yM(k)yM(k − n)∗, and (2.22)

Φ̂
(y)
M (i) =

M−1∑

n=0

R̂
(y)
M (n)W ni

M , (2.23)

respectively, then

Φ̂
(y)
M (i) =

1

M
|YM(i)|2, i = 0, 1, · · · ,M − 1. (2.24)

Proof: We prove the three statements in the theorem as follows.

1. If the periodic random process {yM(k)} is periodic WSS, then we have

E{YM(i)YM(i − k)∗}

=
M−1∑

s=0

M−1∑

ℓ=0

E{yM(s)yM(ℓ)∗}W is
MW

−ℓ(i−k)
M

=
M−1∑

s=0

M−1∑

ℓ=0

R
(y)
M (s − ℓ)W

(s−ℓ)i
M W ℓk

M .

Setting n = s − ℓ and using the periodicity property we get

E{YM(i)YM(i − k)∗}
=

∑M−1
n=0 R

(y)
M (n)W in

M

∑M−1
ℓ=0 W ℓk

M

=
(
M
∑M−1

n=0 R
(y)
M (n)W in

M

)
δM(k),

(2.25)

where we have used the identity

1

M

M−1∑

ℓ=0

W ℓk
M = δM(k). (2.26)

It follows from (2.25) that the DFT of any periodic WSS process is periodic
uncorrelated. Conversely suppose {YM(i)} has zero mean and is periodic un-
correlated. Then direct calculation yields

E{yM(k)yM(k − n)∗}

=
1

M2

M−1∑

i=0

M−1∑

ℓ=0

E{YM(i)YM(ℓ)∗}W−ik
M W

ℓ(k−n)
M

=
1

M

M−1∑

i=0

(
1

M
E{|YM(i)|2}

)
W−in

M = R
(y)
M (n),

which is indeed periodic WSS.
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2. The above and (2.25) also show that for i = 0, 1, · · · ,M − 1,

Φ
(y)
M (i) =

M−1∑

n=0

R
(y)
M (n)W in

M =
1

M
E{|YM(i)|2},

which establishes (2.20). By the inverse DFT of {Φy(i)} at k = 0, we have

R
(y)
M (0) = E{|yM(n)|2} =

1

M

M−1∑

i=0

Φ
(y)
M (i).

Therefore {Φ(y)
M (i)} is indeed the PSD of {yM(k)} distributed over M spectral

samples.

3. For the estimated ACS and PSD in (2.24), by direct calculation we have,

Φ̂
(y)
M (i) =

M−1∑

n=0

R̂
(y)
M (n)W ni

M

=
1

M

M−1∑

n=0

M−1∑

k=0

yM(k)yM(k − n)∗W ni
M

=
1

M

M−1∑

k=0

yM(k)W ki
M ×

(
1

M

M−1∑

n=0

yM(k − n)W
(k−n)i
M

)∗

=
1

M
|YM(i)|2, i = 0, 1, · · · ,M − 1,

which establishes (2.24).

It is important to learn that for a zero-mean periodic random process to be periodic
WSS, it is both necessary and sufficient for its DFT to be periodic uncorrelated. This
fact impacts the channel modeling in the next section, and reveals the reason why
low order parametric modeling is possible for uniformly spaced CFR samples in the
case of wideband and ultra wideband channels [11, 12, 19]. The next result is also
important in that it shows that any periodic zero-mean Gaussian WSS process can be
generated by filtering a periodic zero-mean and unit-variance independent identically-
distributed (i.i.d.) Gaussian process. By convention, q−1 is used to denote the delay
operator.

Theorem 2.2 Suppose that {yM(k)} is a periodic WSS Gaussian process with zero
mean. Then there exists a stable ARMA model G(q) such that {yM(k)} is the output
of the ARMA model G(q) for some input {vM(k)}, which is a periodic i.i.d. Gaussian
process with zero mean and unit variance.
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Proof: We note that if {yM(k)} is a periodic WSS Gaussian process with zero
mean, then its PSD is given by (2.20), and there exists a continuous PSD function of
bounded variation

Ψ(ej2πφ) =
∞∑

k=−∞

Rke
−j2kπφ ≥ 0 ∀ φ ∈ [0, 2π],

such that Ψ(W−i
M ) = Φ

(y)
M (i) for i = 0, 1, · · · ,M − 1 in light of the well-known Weier-

strass Theorem in approximation theory. In fact the degree of Ψ(z) can be made
finite. Performing spectral factorization on Ψ(z) yields Ψ(z) = G(z)[G(z∗

−1
)]∗ where

G(z) has all its poles strictly inside the unit circle and avoids zeros outside the unit

circle. It follows that G(q) is a stable ARMA model, satisfying |G(W−i
M )|2 = Φ

(y)
M (i)

for i = 0, 1, · · · ,M − 1. Let {vM(k)} be a periodic i.i.d. Gaussian random process
with zero mean and unit variance. It follows that for k = 0, 1, · · · ,M − 1,

ŷM(k) = gM(k) ⊙∗ vM(k) =
M−1∑

i=0

gM(i)vM(k − i)

is a periodic WSS Gaussian process with zero mean, whose first and second order
statistics are identical to those of {yM(k)} since |G(W−i

M )|2 = Φ
(y)
M (i) for each i. Thus

the process {yM(k)} can be generated by passing {vM(k)} through a stable ARMA
filter.

The results on periodic random processes developed in this section are closely
parallel to those of aperiodic random processes. However, not every result in this
section has its correspondence in the conventional theory of random processes.

2.4 Channel Modeling in Frequency Domain

We are now ready to answer the question raised earlier in the chapter: why can
wideband and ultra wideband channels be described by low order AR models in the
frequency domain? The following is the main result of this section.

Theorem 2.3 Let {HN(n)}N−1
n=0 be the N -point uniformly spaced CFR samples as

in (2.6) and its N -point inverse DFT be {hN(m)}N−1
m=0 that is the discretized CIR as

given in (2.7). Then {HN(n)}N−1
n=0 and {hN(m)}N−1

m=0 form a DFT pair and can be
extended into periodic sequences. Suppose that {HN(n)}N−1

n=0 is a zero-mean periodic
WSS process. Define its discrete ACS and PSD by

RH(k) = E{HN(n)HN(n − k)∗}, and (2.27)

ΦH(W−m
N ) =

M−1∑

k=0

RH(k)W km
N , (2.28)
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respectively. Then

ΦH(W−m
N ) = NE{|hN(N − m)|2}, m = 1, 2, · · · , N. (2.29)

Furthermore, if the ACS and PSD of {HN(n)} are estimated by

R̂H(k) =
1

N

N−1∑

n=0

{HN(n)HN(n − k)∗}, and (2.30)

Φ̂H(W−m
N ) =

N−1∑

k=0

R̂H(k)W−mk
N , (2.31)

respectively, then

Φ̂H(W−m
H ) = N |hN(N − m)|2, m = 1, 2, · · · , N. (2.32)

Proof: The zero-mean periodic WSS assumption on {HN(n)}N−1
n=0 implies that

{hN(m)}N−1
m=0, its inverse DFT, is periodic uncorrelated in light of Theorem 2.1. The

expressions of ACS {RH(n)} and PSD {ΦH(W−i
N )} as in (2.27) lead to

ΦH(W−m
N )

=
N−1∑

n=0

E {HN(n)HN(n − k)∗}W km
N

= E

{
HN(n)

N−1∑

k=0

HN(n − k)∗W km
N

}

= E



HN(n)Wmn

N

(
N−1∑

n=0

HN(n − k)W
m(n−k)
N

)∗




= E



HN(n)Wmn

N

(
N−1∑

k=0

HN(k)Wmk
N

)∗




= E



NHN(n)Wmn

N

(
1

N

N−1∑

k=0

HN(k)W
−(N−m)k
N

)∗




= NE {HN(n)hN(N − m)∗}Wmn
N

= N
N−1∑

k=0

E {hN(k)hN(N − m)∗}W
n(k+m)
N

= NE{|hN(N − m)|2}

for m = 1, 2, · · · , N by the periodic uncorrelated property of {hN(k)} which estab-
lishes (2.29). Similarly we have that the estimated PSD at λm = W−m

N is given
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by

Φ̂H(λm)

=
1

N

N−1∑

k=0

N−1∑

n=0

HN(n)HN(n − k)∗W km
N

=
1

N

N−1∑

n=0

HN(n)Wmn
N ×

N−1∑

k=0

(
HN(n − k)W

m(n−k)
N

)∗

= N
N−1∑

n=0

HN(n)Wmn
N

(
1

N

N−1∑

k=0

HN(k)W km
N

)∗

= N

(
1

N

N−1∑

n=0

HN(n)W
−n(N−m)
N

)
×

(
1

N

N−1∑

k=0

HN(k)W
−k(N−m)
N

)∗

= N |hN(N − m)|2,

which establishes (2.32).

Theorem 2.3 characterizes the PSD of the uniformly spaced CFR samples in terms
of the power delay profile of the discretized CIR given in (2.7). By assuming inde-
pendence of the path gains {ck} and the arrival times {τk} in the continuous-time
CIR, the uniformly spaced CFR samples are periodic WSS as shown in (2.10) which
is equivalent to that the discrete channel CIR coefficients {hN(m)} are US. This
new WSS-US condition is the very reason why the uniformly spaced CFR samples
can be modeled by low order AR models for wideband and ultra wideband channels
[11, 12, 19]. Specifically assume that the sequence of the uniformly spaced CFR sam-
ples {HN(k)} is periodic WSS and Gaussian. Then it can be generated by passing a
periodic i.i.d. Gaussian process through some ARMA model with transfer function
T (λ) of finite order in light of Theorem 2.2. Here we have used λ, instead of z, in
the transfer function to emphasize that the CFR samples, not the time domain data,
are the output. In this case E{|hN(m)|2}, the power delay profile of the discretized
channel, corresponds to the sampling of some smooth function |T (λ)|2 at λm = W−m

N

for 0 ≤ m < N . That is, the power delay profile of the discretized channel can
be regarded as the “spectrum” of the uniformly spaced CFR samples that justifies
the parametric modeling for wideband and ultra wideband channels in the frequency
domain. It remains to show that the transfer function T (λ) can be taken as an AR
model and its order can be as low as one or two.
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In light of the expression in (2.7), the power delay profile of the discrete channel
is given by

E{|hN(m)|2}

= E





∣∣∣∣∣∣

N−1∑

ℓk=0

hℓk

[
1

N

N−1∑

n=0

W
−n(m−ℓk−εk)
N

]∣∣∣∣∣∣

2




(2.33)

=
N−1∑

ℓk=0

σ2
hℓk

E





∣∣∣∣∣
1

N

N−1∑

n=0

W
−n(m−ℓk−εk)
N

∣∣∣∣∣

2


 (2.34)

=
L−1∑

k=0

σ2
ck

E





∣∣∣∣∣
1

N

N−1∑

n=0

W
−n(m−ℓk−εk)
N

∣∣∣∣∣

2




which is an interpolation of {σ2
ck
}, namely the power delay profile of the continuous-

time channel. For the indoor environment, the variability of the arrival times is
relatively small and the propagation delays are dependent more on the distance from
the transmitter to the receiver than on the locations of the receiver. Hence the power
delay profile of the discrete channel {E[|hN(m)|2]} exhibits similar peaks and valleys
to those of typical wideband and ultra wideband channels versus integer index m.
Let τm = max{τk} be the maximum excess delay and N = ⌊τmaxfBW⌋ ≥ L. Then for
some wideband channels, it is very likely that the power delay profile {E[|hN(m)|2]}
has only one peak as m changes from 0 to N . In this case a first order AR model
with the pole close to the unit circle is adequate to describe the uniformly spaced
CFR samples. For some other wideband and ultra wideband channels, more than
one peak may exist that requires more than one pole to model them. However if
N >> ⌊τmaxfBW⌋ ≥ L, then all peaks of E{|hN(m)|2} are suppressed to the beginning
values of m with essentially a single or at most two peaks, and the power delay profile
decays to zero quickly as m increases towards N . Consequently a first order or second
order AR model is adequate to describe the uniformly spaced CFR samples {HN(n)}
for sufficiently large N . Moreover the poles of T (λ) for the AR model are in the
fourth quadrant of the complex plane because of the reversed index for the PSD in
(2.29). This coincides with the results in [11, 12, 19].

Remark 2.1 Theorem 2.3 shows that accurate modeling for wideband and ultra
wideband channels in frequency domain requires the knowledge of the power delay
profile E{|hN(m)|2} which has to be estimated from the experimental measurements.

Let ĥ
(k)
N (m) be obtained in the kth independent experiment. An unbiased estimate

for E{|hN(m)|2} is given by

σ̂2
m,K =

1

K

K∑

k=1

|h(k)
N (m)|2, 0 ≤ m ≤ N − 1. (2.35)

That is, E{σ̂2
m,K} = σ2

m. The question is how large K should be in order to have
a reasonable estimate for σ2

m = E{|hN(m)|2}. By the Chebyshev inequality, for any
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ǫ > 0 there holds

Prob
{∣∣∣σ̂2

m,K − σ2
m

∣∣∣ ≥ ǫ
}

≤ Var{σ̂2
m,K}

ǫ2

=
E{|h

(k)
N

(m)|4}−σ4
m

Kǫ2

= σ4
m

Kǫ2
.

(2.36)

Hence given any error tolerance ǫ > 0 in estimation of the discretized power delay
profile, the probability for the estimation error to exceed ǫ can be made arbitrarily
small by choosing K sufficiently large.

It is noted that σ2
m is unknown. Thus σ̂2

m,K has to be used in the right hand side of
the inequality (2.36). But if the real and imaginary parts of hN(m) are independent
of each other, and both are Gaussian distributed with zero mean and variance σ2

m/2,

then Xm,K =
2Kσ̂2

m,K

σ2
m/2

is a random variable with χ2-distribution of degree 2K [55] (page

119). In this case the probability on the left hand side of (2.36) can be evaluated
through integration of the χ2 PDF (probability density function) that is a function of
K. Hence K, the number of experiments, can be determined to ensure a reasonably
good estimate for the discretized power delay profile.

Remark 2.2 For ultra wideband channels, fBW, the bandwidth of the channel can
be very large. If N ≈ ⌊τmaxfBW⌋ ≥ L, then low order AR models may not be adequate
to model the uniformly spaced CFR samples due to many peaks and valleys of the
discrete CIR, inherited from the continuous-time CIR. In this case high order ARMA
models are more appropriate in describing the uniformly spaced CFR samples.

2.5 Simulation Study for Parametric Modeling

In this section we investigate the parametric modeling in frequency domain through
numerical simulations. We adopt two time domain channel models as our benchmarks
for the wideband and ultra wideband channels. One is the typical outdoor channel
model used for macrocellular applications and the other is the indoor channel model
introduced by Saleh and Valenzuela [18], which is also validated for the UWB channel
[17]. Both models generate the continuous-time CIRs that can be described by (2.1).
The N -point uniform samples of the corresponding CFRs are obtained from (2.4).
We will show that these discrete CFRs can indeed be described accurately by low
order parametric models.

2.5.1 Benchmark Time Domain Channel Models

We begin with the outdoor wideband wireless channel. Figure 2.1 illustrates the
continuous-time model for a multipath mobile radio channel. The received signal is
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comprised of L paths with time delays τ0, τ1, · · · , τL−1. For path k, k = 0, 1, · · · , L−1,
the attenuation Akgk(t) is attributed to the Doppler frequency shift and admits the
Rayleigh fading property with average power gain A2

k. We use the 12-ray power delay
profile listed in Table 2.1, which is recommended in the COST207 study for a typical
urban area [6]. It is assumed that the path attenuations are uncorrelated. This model
is solely determined by the power delay profiles and the maximum Doppler frequency
shift [59]. By assuming a quasi-stationary channel, the CIR of the continuous-time
channel is given by

C(t) =
L−1∑

k=0

Akgkδ(t − τk). (2.37)

For the indoor ultra wideband channel, we adopt the model from [18]. The time
domain measurements reveal that, for indoor wireless channels, the path arrivals tend
to occur in clusters. In light of [18], the impulse response of the channel is given by

h(t) =
∞∑

i=0

∞∑

k=0

βk,ie
jθk,iδ(t − Ti − τk,i) (2.38)

where Ti denotes the arrival time of the ith cluster, and τk,i denotes the excess delay
of the kth multipath component in the ith cluster relative to Ti. The Ti’s and τk,i’s
are modeled as the arrival times of two independent Poisson processes with arrival
rates Λ and λ, respectively. The average power gain of each ray satisfies the double-
exponential decaying property, manifested by the following expression [18]:

E{β2
k,i} = E{β2

0,0}e−Ti/Γe−τk,i/γ . (2.39)

The clustering of the multipath components has been reported for UWB channels in
[5]. The model in (2.38) has also been validated in [8] for the UWB channel with
bandwidth ranging from 2 GHz to 8 GHz under the assumption that {βk,i} have
log-normal distribution, and {θk,i} are independent uniform random variables over
[0, 2π) [17]. Furthermore the power variance

σ2 = E
{(

β2
k,i − E{β2

k,i}
)2
}

∀ i, k ≥ 0 (2.40)

is assumed to be constant [8]. It follows that this model is determined by the param-
eters Λ, λ, Γ, γ and σ2. The parameters we choose in our simulation are as follows:
Λ = 0.4 ns−1, λ = 1.0 ns−1, Γ = 5.2 ns, γ = 6.5 ns and σ = 4.8 dB. According to [17],
these parameters correspond to the case of none line-of-sight (NLOS) situation, and
the separation between the transmitter and receiver is 0 ∼ 4 meters.

As mentioned earlier, the discrete CFR is obtained through uniform sampling over
the bandwidth of interest. For the outdoor channel, the low frequency edge, fL, is set
to be 900 MHz and the bandwidth is fBW = 10.24 MHz. The total number of samples
is N = 512. So the frequency offset between the neighboring samples is fBW /N = 20
KHz. For the indoor channel, we set fL = 5 GHz, fBW = 1.024 GHz and N = 512. So
the frequency offset is 2MHz in this case. It is indeed clear that the outdoor channel
considered here is wideband and the indoor channel is ultra wideband.
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Figure 2.1: Outdoor mobile radio propagation model

Table 2.1: Typical macrocellular urban 12-ray power delay profile

Index Delay (µs) Fractional power Index Delay (µs) Fractional power

k τk A2
k/
∑

l A
2
l k τk A2

k/
∑

l A
2
l

1 0.0 0.092 7 0.5 0.127

2 1.3 0.046 8 3.1 0.032

3 0.1 0.115 9 0.8 0.115

4 1.7 0.074 10 3.2 0.018

5 0.3 0.231 11 1.1 0.074

6 2.3 0.051 12 5.0 0.025
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2.5.2 Parametric Modeling for the Discrete CFRs

It can be seen that running the time domain model once generates one CFR sequence,
which is comprised of N samples. In this section, we will show that every CFR se-
quence produced by the two benchmark models can be modeled as a low order ARMA
process. In order to identify the coefficients of the ARMA process corresponding to
each CFR sequence, we first compute an estimate of its ACS using (2.30) that is the
same as frequency autocorrelation function (ACF). The channel orders, namely ra

for the AR part, and rb for the MA part, are estimated subsequently. Several meth-
ods exist for order estimation [54, 8]. Once the AR and MA orders are determined,
estimation of the ARMA coefficients is performed using the two-stage least-squares
method [14, 63]. We would like to point out that while other algorithms (such as
Levinson-Durbin [14, 63] for the AR models) are available the two-stage least-squares
method is the most effective for the more general ARMA models.

In order to have a more complete view about the parametric modeling, we first
evaluate the modeling quality for parametric models of different orders by comparing
the normalized prediction error (NPE) defined as follows:

NPE =
E
{∑N−1

n=0 |HN(n) − T (q)VN(n)|2
}

∑N−1
n=0 |HN(n)|2 (2.41)

where {HN(n)} is the given CFR sequence, T (q) is the transfer function determined by
the estimated AR and/or ARMA model coefficients, and {VN(n)} denotes a periodic
i.i.d. Gaussian process with zero mean and variance σ2

V . In practice, the expectation is
replaced by averaging. By running the outdoor and indoor models for 1000 times, we
generated 1000 independent CFR sequences for each channel model. In each channel
realization, we obtained the associated NPEs for different AR and MA orders. Table
2.2 illustrates the NPEs each was averaged over 1000 channel realizations. It can
be seen that the prediction errors decrease dramatically with the increase of the AR
order. Moreover for ra = 2 and rb = 0, the NPE is already quite small for both
outdoor and indoor channels. Figure 2.2 illustrates the scatter plots of the two poles
in the complex plane associated with different channel realizations where ra = 2 and
rb = 0 are fixed. It can be seen that for both channels the first poles are densely
situated close to the unit circle, while the second poles are scattered more and are
not so close to the unit circle. This suggests that the first pole is more dominant than
the second, and if a higher order ARMA model is used, the higher order poles will
not reduce the modeling errors significantly.

In Figure 2.3, the cumulative distributive functions (CDFs) of the noise processes
{VN(n)} in the ARMA model are plotted for both the outdoor and indoor channels.

The CDFs are computed based on the histogram of the simulation results under
one channel realization in both cases, where the model orders are fixed to be ra = 2
and rb = 0. The theoretical CDFs of the Gaussian random variables are also plotted
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Table 2.2: NPEs with respect to the model orders

Outdoor Channel Indoor Channel

MA order AR order Average NPE MA order AR order Average NPE

1 0.0168 1 0.0113

0 2 5.57 × 10−4 0 2 2.835 × 10−4

3 1.35 × 10−5 3 7.0634 × 10−6

1 0.0167 1 0.0113

1 2 4.93 × 10−4 1 2 2.8136 × 10−4

3 1.366 × 10−5 3 7.1047 × 10−6
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Figure 2.2: Pole distributions for the outdoor channel (left) and the indoor channel
(right)
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Table 2.3: Parameters for the 2nd-order AR models

Parameters Outdoor channel Indoor channel

α1 −1.7047 + 0.3488j −1.7681 + 0.2681j

α2 0.7029 − 0.3302j 0.7678 − 0.2450j

σ2
V 0.008729 0.006306

for reference. It can be seen that the distribution of the noise process the matches
Gaussian distribution very closely in both cases.

In summary, the simulation results presented in this section suggest that a second
order AR model is capable of reproducing each CFR sequence generated by our chosen
benchmark models.

2.5.3 Performance of the Second Order Frequency Domain
AR Model

Consider a second order AR model whose coefficients α1 and α2 are constant complex
values. We will examine its performance as a frequency domain model by applying
at input an i.i.d. Gaussian process with zero mean and variance σ2

V . The length of
the input sequence is N and the output represents the CFR samples. If the difference
equation (2.8) is adopted, the N CFR samples can be generated by applying the white
Gaussian noise input periodically with period N . The simulation can also be carried
out by computing N -point DFT of the input and its product with the uniformly
sampled transfer function which is solely determined by α1, α2, and σ2

V . The CFR
samples can then be obtained by taking N -point inverse DFT of the product which
is one realization of the channel corresponding to the above noise sequence. It will
be shown that by correct estimation of α1, α2, and σ2

V , this low order AR model is
capable of capturing the main statistical properties of the benchmark channels.

Using the same parameters as in Subsection 2.5.1 for the two benchmark models,
we first generated 1000 sequences of CFR samples for each of the two. In order
to validate the 2nd order AR model for channel modeling in frequency domain, we
computed 1000 CIR sequences via inverse DFT of the corresponding 1000 sequences
of CFR samples, and then obtained 1000 power delay profiles based on which the AR
parameters (α1, α2, σ2

V ) were estimated. Recall the theoretical results in Section 2.4.
These AR parameters are listed in Table 2.3. We then generated 1000 CFR sequences
with this second order AR model for both outdoor and indoor channels by exciting
the AR model with the 1000 sets of i.i.d. Gaussian random variables (length N). The
statistical properties of these discrete CFR’s are compared side by side with that of
the benchmark models.

It is noted that the empirical frequency domain autocorrelation functions (ACF)
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Figure 2.3: CDFs of the periodic noise processes vs. Gaussian CDF

for these two models can be calculated by

RH(k) =
1

1000

1000∑

i=1

R̂
(i)
H (k), k = 0,±1,±2, · · · (2.42)

where R̂
(i)
H (k), given by (2.30), is the estimate of the ACS for the ith channel real-

ization. In general, the frequency domain ACS may depend on not only the index
difference but also the index itself, as given below

R̂H(n; k) ≈ 1

1000

1000∑

i=1

H(i)(n)H(i)∗(n − k) (2.43)

n ∈ {0, · · · , N − 1}; (n − k) ∈ {0, · · · , N − 1}

where
{
H(i)(n)

}
is the CFR sequence for the ith channel realization, in which WSS is

not assumed. In Figure 2.4 the real and imaginary parts of the general ACS defined
in (2.43) have been plotted with respect to k for n = 140 and 200. It can be observed
that the benchmark models and the second order AR models match well in terms
of the frequency domain ACS. On the other hand, different values of n yield almost
the same ACS. Furthermore, the real part of ACS tends to be an even function and
the imaginary part is approximately odd in all cases. These observations hold true
for other values of n and k that are not plotted here. This implies that the CFR
sequences generated by the benchmark models and the AR models can be viewed as
WSS.

Similar to [12] we have compared the distributions of 3dB width of the frequency
correlation functions for the AR models and the benchmark models. Figure 2.5
illustrates the CDF plots of 3dB width for various channel models, where the mean
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values (µ) and standard deviations (ρ) have been listed as well. Although the 3dB
width associated with the AR models tend to be less dispersed than that of the
benchmark models, especially for the case of indoor channel, the mean values match
well. Further study shows that the 3dB width for the AR models and benchmark
channels follow the same type of distributions.

Another important metric for wireless channel models is the rms delay spread
(τRMS). Given discrete CIR, the rms delay spread of the channel can be calculated
following the same steps as in [12]. In our simulation, the discrete CIRs are obtained
by taking N -point IDFT of the CFR samples generated by each channel model. The
CDF plots for the rms delay spread of different channel models are shown in Figure
2.6. For the indoor channel, the second order AR model matches perfectly the time
domain model in terms of rms delay spread. However, for the outdoor channel, there
are noticeable differences between the AR model and the benchmark model in terms
of the rms delay spread.

Figure 2.7 illustrates the power delay profile for the AR models and benchmark
time domain channel models. It can be observed that they match very well in the
case of indoor UWB channel. As for outdoor channel, the AR model only resembles
the average power delay profile of the time domain model.

Remark 2.3 Our simulation results confirm that the proposed second order AR
model reproduces the CFRs of the indoor UWB channel model accurately. However
some noticeable differences between the outdoor benchmark model and the second
AR model are observed, especially in Figures 2.4 and 2.7. The main reason for such
discrepancies is that the path delays are fixed in the 12-ray outdoor channel model
and we have employed N ≈ ⌊τmaxfBW⌋. Hence in light of Remark 2.2, more than two
significant peaks exist in the associated power delay profile, which is closely related
to the PSD of the ARMA process of order higher than 2, in accordance with our
analysis. In this case, an AR model with higher order is necessary to yield a better
match.

2.6 Chapter Summary

Channel modeling in frequency domain has been investigated for wideband and ultra
wideband channels. The periodic random processes are introduced to facilitate the
parametric modeling. Our main results show that the sampled CFR is periodic WSS,
if and only if the discrete CIR is periodic uncorrelated. It follows that the parametric
modeling in frequency domain is possible, if and only if the uniformly spaced CFR
samples are WSS that is equivalent to that the discrete CIR are US. This new WSS-
US condition is shown to hold under some mild assumption that answers the question
why wideband and ultra wideband channels can be modeled in the frequency domain
as proposed and studied in [10, 11, 19]. In addition, the PSD of the uniformly
spaced CFR samples is derived that explains why low order AR models are adequate
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for channel modeling in frequency domain. Our simulation study investigated two
wireless channels, one outdoor wideband and the other indoor ultra wideband, which
shows the effectiveness of the parametric modeling in frequency domain. Narrowband
channels are not studied because they do not involve frequency-selective fading.

It is important to note that uniformly spaced sampling for CFR over the chan-
nel bandwidth converts the wireless channel into an equivalent OFDM (orthogonal
frequency division multiplexing) system such as the one studied in [7] in which the
CFR samples can be shown to be periodic WSS. Hence the results in this chapter
are applicable to such wideband OFDM channels. However for more general wide-
band OFDM channels where matched filters are used, the WSS assumption for the
CFR does not hold in general. We would like to comment that for a non-WSSUS
wireless channel, its uniformly spaced CFR samples are unlikely to be WSS, and thus
parametric modeling is less effective in frequency domain because the time-invariant
models are inapplicable. Time-varying AR or ARMA models have to be employed
that has its own independent interest for which not all multipath gains are resolv-
able. Consequently the corresponding discretized channel does not satisfy the WSSUS
assumption. This specific modeling problem deserves further investigation.
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CHAPTER 3. COMPUTATIONALLY EFFICIENT
RESOURCE ALLOCATION FOR MULTI-USER OFDM

SYSTEMS

3.1 Introduction

Orthogonal frequency division multiplexing has been regarded as one of the most
effective techniques for broadband wireless communication systems. OFDM converts
the frequency selective fading channel into a number of parallel narrowband flat fad-
ing subchannels thereby eliminating the need for complex equalizers at the receiver.
The flexibility of subcarrier management in OFDM systems provides an attractive
multiple access control mechanism for systems supporting multiple users. Through
judicious assignment of subcarriers to users, one can not only eliminate multiuser
interference but also improve the system power and spectral efficiency. System per-
formance can be further enhanced by employing resource allocation techniques which
optimize the power and bit allocation for each subcarrier in response to the channel
state information.

Many authors have recently considered the problem of subcarrier, bit and power
allocation in multiuser OFDM (MU-OFDM) systems [25, 27, 29]. In these studies it
is assumed that the base station (BS) knows the channel state information (CSI) for
all the users and, using the CSI, dynamically assigns a subset of subcarriers to each
user and allocates the power and modulation scheme for each subcarrier. In general,
a constrained optimization problem is formulated wherein the object is to minimize
the total transmit power (resp. maximize the total data rate) for the entire OFDM
block while satisfying some constraints for the average bit-error-rate (BER) and the
data rate of each user (resp. the total transmit power).

The optimal subcarrier, bit and power allocation is a challenging task and its
complexity is prohibitive in practical communication systems [24, 26]. To avoid this
difficulty a tractable approach is to divide this problem into two separate problems:
first find the optimal allocation for subcarriers to users, next, given the assignment
of subcarriers, find the optimal allocation of bit and transmit power for each user.
While the first step exploits the multiuser diversity, the second step makes use of
the frequency diversity for each user. Although this approach does not result in the
optimal solution for joint subcarrier, bit and power allocation, it is possible to achieve
a close-to-optimal performance in most cases [25, 26]. The bit and power allocation
problem has been investigated in [21, 22, 23, 24]. Several suboptimal solutions for
subcarrier allocation have also been proposed in [25, 27, 29]. The main difficulty with
the algorithms proposed in these references is their high computational complexity.
While these algorithms may be applicable in wireline applications where the CSI
remains static for extended periods of time, they are not suitable for the wireless
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environment where, even in the case of slowly fading channels, the CSI needs to be
updated (and the solution recalculated) after several OFDM blocks.

In this chapter we present a novel method for subcarrier, bit and power allocation.
We also consider the problem in two steps: subcarrier allocation to all the users
followed by bit and power allocation for each user. Our algorithm achieves a near
optimal solution with considerably less computational complexity than the optimal
solution. The remainder of this chapter is organized as follows. In Section 3.2 we
present the framework for our study and describe the optimal allocation problem for
a multi-user OFDM system. In Section 3.3 we present an efficient bit and power
allocation scheme for a single user system. The subcarrier allocation algorithm is
described in Section 3.4 and numerical results are presented in Section 3.5. Finally
conclusions are drawn in Section 3.6.

3.2 Framework

Consider a MU-OFDM system with K users and N subcarriers. We are concerned
with the downlink channel where data is transmitted from the base station to the
mobile stations. The base station and all mobile stations are presumed to have single
transmit and receive antennas. Assuming that the frequency offset between adjacent
subcarriers is much less than the channel coherence bandwidth, that the channel delay
spread is less than the cyclic prefix, and perfect block and symbol synchronization,
the frequency selective channels from the BS to these users may be represented by a
series of NK flat fading subchannels. Thus the received symbol for subcarrier n and
user k, denoted Yn,k, is given by

Yn,k = ρn,kHn,kSn,k +
∑

j 6= k

ρn,jHn,jSn,j + Vn,k; n = 1, · · · , N ; k = 1, · · · , K. (3.1)

where Sn,k is the input symbol for subcarrier n and user k, Hn,k is the channel
frequency response (CFR) for the nth subcarrier of the kth user and {Vn,k} is an iid
sequence of zero-mean Gaussian random variables with variance σ2

V . Moreover, ρn,k

denotes the multiplexing factor of subcarrier n and user k. If not specified, the real
and imaginary parts of the CFR are assumed to be arbitrary real numbers.

It is shown in [28] that in the optimal allocation scheme a single subcarrier should
be assigned to a single user. Thus ρn,k is either 1 or 0 where ρn,k = 1 implies that the
nth subcarrier has been assigned to the kth user. Accordingly Equation (3.1) can be
simplified as

Yn,k = Hn,kSn,k + Vn,k; for all n assigned to user k; k = 1, · · · , K. (3.2)

The transmitted signal Sn,k is the modulated symbol from a discrete constellation
(e.g., PSK or QAM) whose average power, assuming unit duration of symbol transmit
time, is denoted by Pn,k = E [|Sn,k|2]. Let βn denote the number of bits assigned
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to the nth subcarrier of an OFDM block. In this case βn bits are mapped into a
complex-valued symbol chosen from the modulation alphabet of size 2βn . Suppose
βn ∈ Ω, where Ω = {0, b1, b2, · · · , bL} is the collection of all possible number of bits
that can be transmitted through one subcarrier. We assume that bi’s are integers and
0 < b1 < b2 < · · · < bL.

In this chapter we consider a system where each user has a predetermined QoS
requirement. The QoS requirement of user k is specified in terms of its target average
BER εk and data rate Rk, where Rk denotes the total number of bits transmitted for
user k in each OFDM block.

For a given modulation class (e.g., QAM, PSK, FSK) the bit error probability of
the optimal demodulator is a function of the signal-to-noise ratio (SNR), as well as
the size of the signal constellation (e.g., the number of bits βn in that subcarrier). Let
f(β, ε) denote the minimum SNR required to ensure that the target BER ε is met
when the size of the constellation is 2β. For any given signal constellation f(β, ε) is
either given in closed form or can be well approximated in closed form. It is clear that
f is monotone decreasing with respect to ε and monotone increasing with respect to
β.

The problem of optimal subcarrier, bit and power allocation can be formulated as
follows.

min
{ρn,k,βn,k,Pn,k}

K∑

k=1

N∑

n=1

ρn,kPn,k (3.3)

subject to:
N∑

n=1

ρn,kβn,k≥Rk, ∀k ∈ {1, 2, · · · , K} (3.4)

Pn,k≥
σ2

V

|Hn,k|2
f(βn,k, εk), ∀n, k such that ρn,k = 1 (3.5)

βn,k ∈ Ω, Pn,k≥0, ρn,k ∈ {0, 1},
K∑

k=1

ρn,k = 1 (3.6)

The following lemma somewhat simplifies the optimal subcarrier, bit and power allo-
cation.

Lemma 3.1 If {ρ∗
n,k, β

∗
n,k, P

∗
n,k} is the solution to the optimization problem (3.3) -

(3.6), then

P ∗
n,k =





0 if ρ∗
n,k = 0

σ2
V

|Hn,k|2
f(β∗

n,k, εk) if ρ∗
n,k = 1

(3.7)

Proof: The case for ρ∗
n,k = 0 is trivial. For arbitrary n and k and ρ∗

n,k = 1, assume to

the contrary that P ∗
n,k >

σ2
V

H2
n,k

f(βn,k, εk). Then by setting P ∗
n,k =

σ2
V

H2
n,k

f(β∗
n,k, εk) while

all other variables are fixed a better solution for (3.3) - (3.6) can be obtained.
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Lemma 3.1 shows that given the subcarrier assignment, the optimal power allo-
cation can be solely determined by the optimal bit allocation. Thus, the optimal
subcarrier, bit and power allocation problem can be reduced to a problem of subcar-
rier and bit allocation. The original optimization problem can now be described as
follows.

min
{ρn,k,βn,k}

K∑

k=1

N∑

n=1

ρn,k
σ2

V

|Hn,k|2
f(βn,k, εk) (3.8)

subject to:
N∑

n=1

ρn,kβn,k≥Rk, ∀k ∈ {1, 2, · · · , K} (3.9)

βn,k ∈ Ω, ρn,k ∈ {0, 1}, and
K∑

k=1

ρn,k = 1 (3.10)

In the following sections we first derive an efficient algorithm for bit and power
allocation by assuming all subcarriers have been allocated to users and then propose
a simple method for assigning subcarriers to users. In practice, the allocation of
subcarriers is performed first.

3.3 An Efficient Algorithm for Bit and Power Allocation

In this section we temporarily ignore the problem of subcarrier allocation and assume
that all the subcarriers have been pre-allocated to users. As a result the total number
of subcarriers and the associated channel frequency response will be fixed for every
user. The optimal bit and power allocation can now be solved for a single user. Thus
in the rest of this section we drop the subscript k and use N to denote the total
number of subcarriers assigned to the individual user of interest.

Following Lemma 3.1, the optimal bit and power allocation problem for a single
user is actually a bit allocation problem, which can be stated as follows.

min
{βn}

N∑

n=1

σ2
V

|Hn|2
· f(βn, ε) (3.11)

subject to:
N∑

n=1

βn≥R (3.12)

βn ∈ Ω, ∀n = 1, 2, · · · , N. (3.13)

The above is a mixed integer programming (MIP) problem requiring an exhaustive
search with high computational complexity. In [21] the authors proposed a greedy
method to assign bits iteratively until the target data rate is reached. During each it-
eration one more bit is added by searching for the smallest additional power necessary
to guarantee the target BER. Although this method can achieve the optimal solution,
its computational complexity is O (N2) making it prohibitive when N is large. In [22]
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another algorithm is introduced whose complexity is O (I × N + 2N) where I is the
number of iterations. However, each iteration calls for N operations of logarithm
calculation and division, requiring a great deal of processing time. A new algorithm
is presented in [23] which eliminates the need for logarithm calculations from each
iteration but still needs to perform N logarithms outside of the iterations. In this
section we propose a novel iterative algorithm to achieve the optimal bit allocation
by simply using comparison operations within each iteration.

3.3.1 Problem Analysis

It is well known that for the modulation techniques of interest the function f(β, ε)
can be well approximated by a function with a closed form which is differentiable
and convex with respect to β [24]. In the sequel we replace f by this approximation.
We further relax the constraint in (3.13) by allowing βn’s to take non-negative real
values. In this way the original optimization problem reduces to a convex optimization
problem with a closed form solution.

Theorem 3.1 Suppose {β†
n}N

n=1 is the solution to the relaxed optimization problem
(3.11), (3.12) and (3.14) below.

βn ∈ ℜ+, ∀n = 1, 2, · · · , N (3.14)

where ℜ+ is the set of non-negative real numbers. If for any ε > 0, the function
f(β, ε) is differentiable, convex and strictly monotone increasing with respect to β,
then

β†
n = max

{
0,F−1

ε

(
|Hn|2
σ2

V

Λ†

)}
∀n = 1, 2, · · · , N (3.15)

where Fε(β) = ∂
∂β

f(β, ε) and F−1
ε is the inverse function of Fε. The parameter Λ† is

a unique solution to the following equation

N∑

n=1

max

{
0,F−1

ε

(
|Hn|2
σ2

V

Λ†

)}
= R (3.16)

Proof: The optimization problem specified by (3.11), (3.12) and (3.14) is a non-
linear programming problem with differentiable convex objective and constraint func-
tions. We can show that strong duality holds for this problem and the optimal solution
can be obtained using the Karush-Kuhn-Tucker (KKT) conditions [61].

Introducing Lagrange multipliers Λ† ∈ ℜ for the constraint in (3.12) and λ† ∈ ℜN

for the constraint in (3.14), the KKT conditions are given by

β†
n ≥ 0 ∀n,

N∑

n=1

β†
n≥R, λ†

n≥0 ∀n, Λ† ≥ 0, λ†
nβ

†
n = 0 ∀n,

Λ†(
N∑

n=1

β†
n − R) = 0,

σ2
V

|Hn|2
Fε(β

†
n) − λ†

n − Λ† = 0 ∀n.
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It is clear that
∑N

n=1 β†
n = R. Otherwise the last two conditions above imply λ†

n =
σ2

V

|Hn|2
Fε(β

†
n) > 0 for all n because f is strictly monotone increasing. Since λ†

nβ
†
n = 0

for all n then β†
n = 0 ∀n and this violates (3.12).

By eliminating λ† the KKT conditions above can be simplified as

β†
n ≥ 0 ∀n,

N∑

n=1

β†
n = R, 0 ≤ Λ† ≤ σ2

V

|Hn|2
Fε(β

†
n), β†

n

(
σ2

V

|Hn|2
Fε(β

†
n) − Λ†

)
= 0 ∀n.

While f is convex Fε(·) is monotone increasing, which, since β†
n is non-negative,

implies that F ε(β
†
n) ≥ F ε(0) for all n. Three cases are considered.

1. If Λ† <
σ2

V

|Hn|2
F ε(0), then

(
σ2

V

|Hn|2
F ε(β

†
n) − Λ†

)
>
(

σ2
V

|Hn|2
F ε(0) − Λ†

)
> 0, and

the last simplified KKT condition implies β†
n = 0.

2. If Λ† >
σ2

V

|Hn|2
F ε(0), then the third condition implies F ε(β

†
n) > F ε(0) and

therefore β†
n > 0. Consequently from the last condition we get β†

n = F−1
ε

(
|Hn|2

σ2
V

Λ†

)
.

3. If Λ† =
σ2

V

|Hn|2
F ε(0) then either β†

n = 0 or F ε(β
†
n) = F ε(0). However, the latter

also implies that β†
n = 0. Thus in this case β†

n = 0.

In summary, if Λ† ≤ σ2
V

|Hn|2
F ε(0) then β†

n = 0. Otherwise β†
n = F−1

ε

(
|Hn|2

σ2
V

Λ†

)
.

If the value of Λ† is known, then a solution of the relaxed bit allocation problem is
at hand in closed form. Unfortunately the calculation of Λ† is in itself computationally
intensive. In the following we first assume that the value of Λ† is known and thus
the solution given by (3.15) is available. Next we will address the solution method
without the knowledge of Λ†.

In general, {β†
n}N

n=1 is not a legitimate solution to the optimization problem (3.11)
- (3.13) since the satisfaction of (3.13) is not guaranteed. A straightforward method of
obtaining an integer-valued solution from {β†

n}N
n=1 is to quantize these values. A vector

{βn}N
n=1 can be obtained from {β†

n}N
n=1 by letting βn = Q(β†

n) where Q : ℜ −→ Ω
denotes a scalar quantization function. To ensure that the data rate of the quantized
solution {βn}N

n=1 remains close to that of {β†
n}N

n=1, we choose Q so as to minimize

E
[∣∣∣
∑N

n=1 β†
n −∑N

n=1 βn

∣∣∣
]
. Now

E

[∣∣∣∣∣

N∑

n=1

β†
n −

N∑

n=1

βn

∣∣∣∣∣

]
≤

N∑

n=1

E[|β†
n − βn|]

The quantizer that minimizes the absolute error E[|β†
n − βn|] has threshold values

T1, T2, · · · , TL given by

Ti =
bi−1 + bi

2
, i = 1, 2, · · · , L. (3.17)
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where b0 = 0. Based on these threshold values, the proposed quantization process is
represented by the following equation.

βn = Q(β†
n) =





0, if β†
n < T1

b1, if T1 ≤ β†
n < T2

...
...

bL, if β†
n ≥ TL

∀n (3.18)

Let T be an arbitrary positive real number. Then the following statements can be
easily verified from (3.15).

β†
n > T ⇔ |Hn|2 >

σ2
V

Λ†
Fε(T ) (3.19)

β†
n = T ⇔ |Hn|2 =

σ2
V

Λ†
Fε(T ) (3.20)

β†
n < T ⇔ |Hn|2 <

σ2
V

Λ†
Fε(T ) (3.21)

The above shows that the proposed quantization process can be applied directly
to the sequence of channel power gains. In other words, the suboptimal bit allocation
{βn}N

n=1 may be obtained by quantizing {|Hn|2}N
n=1 as follows

βn = Q̃(|Hn|2) =





0, if |Hn|2 < G1

b1, if G1 ≤ |Hn|2 < G2

...
...

bL, if |Hn|2 ≥ GL

∀n (3.22)

where

Gi =
σ2

V

Λ†
· Fε (Ti) ∀ i = 1, 2, · · · , L. (3.23)

It should be noted that the threshold values {Gi}L
i=1 can be easily pre-computed from

(3.17) and (3.23).
So far we have developed an adaptive bit allocation scheme assuming the value of

Λ† is known. As mentioned previously, intensive computations are required to obtain
the value of Λ† from (3.16). In addition, even when Λ† is calculated, the bit-allocation
solution obtained from (3.22) may not satisfy (3.12). In the next section, we propose
an algorithm based on the scheme developed in this section which circumvents these
difficulties.
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3.3.2 Algorithm Description and Complexity Analysis

In this section we introduce an algorithm to obtain the values of G1, G2, · · · , GL such
that the result of the quantization process developed in the previous section satisfies
(3.12) as well. We start with the following.

Lemma 3.2 Let δ = maxi∈{1,2,···,L} {bi − bi−1}. Then the solution {β∗
n}N

n=1 for the
optimization problem (3.11) - (3.13) satisfies

R ≤
N∑

n=1

β∗
n ≤ R + δ (3.24)

Proof: Assume to the contrary that
∑N

n=1 β∗
n > R + δ. Clearly there exists n0 ∈

{1, 2, · · · , N} such that β∗
n0

> 0. Suppose β∗
n0

= bi for some i ∈ {1, 2, · · · , L}. Since
bi−1 ∈ Ω, by changing the value of β∗

n0
to bi−1 we obtain a new bit allocation satisfying

constraints (3.12) and (3.13) with less transmit power than the optimal solution. This
contradicts the optimality of the original solution.

The condition in (3.24) will be used in our search algorithm as the condition for
the termination of the algorithm. From (3.23) we get

Gi

G1

=
F ε (Ti)

F ε (T1)
∀i ∈ {2, 3, · · · , L} (3.25)

This shows that we only need to determine the value of one of the Gi’s (say G1). The
remaining threshold values can be computed from (3.25).

It is obvious that R must be no larger than NbL, otherwise (3.12) and (3.13) can
not be both satisfied. According to the definition of δ, it is trivial to consider the
problem of bit and power allocation for R between (NbL − δ) and NbL. Instead, the
value of interest for R is 0 < R < (NbL − δ). Define bi0 = sup{b ∈ Ω|b < R

N
} and

bi1 = inf{b ∈ Ω|b > R+δ
N

}. It can be seen the existence of bi0 and bi1 is guaranteed
for any R of interest. Furthermore bi0 ∈ Ω \ {bL} and bi1 ∈ Ω \ {0}. Let Hmax =
maxn∈{1,2,···,N}{|Hn|2} and Hmin = minn∈{1,2,···,N}{|Hn|2}. The following theorem
specifies a range of values for G1.

Theorem 3.2 Suppose for a value of G1 we generate the vector G = [G1, G2, · · · , GL]
from (3.25) and use G to obtain a bit allocation {βn}N

n=1 from (3.22). If {βn}N
n=1

satisfies (3.24) then the following must be true

G1 < G1≤G1 (3.26)

where

G1 = Hmin · Fε(T1)/Fε(Ti1) (3.27)

G1 = Hmax · Fε(T1)/Fε(Ti0+1) (3.28)
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Proof: Since bi0 ∈ Ω \ {bL} and bi1 ∈ Ω \ {0} then (i0 + 1) , i1 ∈ {1, 2, · · · , L}. Thus
both Ti0+1 and Ti1 exist, i.e., G1 and G1 are well defined.

Suppose Hmax < Gi0+1. Then the power gain of all subcarriers are below the
threshold value Gi0+1, which implies βn ≤ bi0 for all n. Therefore

∑N
n=1 βn ≤ Nbi0 <

N · ( R
N

) < R, which violates (3.24). Thus Hmax ≥ Gi0+1. According to (3.25), this is

equivalent to G1 ≤ Hmax
Fε(T1)

Fε(Ti0+1)
= G1. Similarly it can be shown that G1 > G1.

The upper and lower bounds on G1 established above will be used in searching
for the value of G1. An important observation is that if we increase the value of
G1 all threshold values increase, and thus the total number of bits allocated by the
quantization process decreases, and vice versa. The following algorithm uses this
observation to obtain the optimal value of G1 and in this way solves the bit allocation
problem.

Adaptive Bit and Power Allocation (ABPA) Algorithm

Step 1: Calculate the power gains {|Hn|2}N
n=1, find Hmax and Hmin.

Step 2: Calculate G1 and G1 from (3.27) and (3.28),

let G1 =
G1+G1

2
, ∆ =

G1−G1

4
and I = 0.

Step 3: Determine G2 ∼ GL from (3.25) and compute βn from (3.22) for each n.
Step 4: If

∑N
n=1 βn < R and I ≤ MaxCount, then G1 = G1 − ∆;

else if
∑N

n=1 βn > R + δ and I ≤ MaxCount, then G1 = G1 + ∆;
otherwise, go to Step 6.

Step 5: Let ∆ = ∆/2 , I = I + 1 and go to Step 3.

Step 6: For each n, calculate Pn =
σ2

V

|Hn|2
f (βn, ε).

In the above algorithm Steps 1 and 6 each require operations of order N , and Step
3 needs to perform N quantizations during each iteration. These operations dominate
the complexity of the proposed algorithm since N is usually much larger than L for
practical systems. So the computational complexity of the proposed algorithm is
O(I×N + 2N), where I denotes the number of iterations. It can be seen that the
complexity of the proposed algorithm has the same expression as that in [22] and
[23]. However, the actual complexity, when the algorithm is implemented in DSP
chips, is much lower. This is due to the fact that the operations performed during
each iteration only include comparisons required by the quantization process whereas
the logarithm and/or division operations are necessary in [22] and [23]. Moreover,
the performance of the proposed method is almost the same as that of the greedy
approach in [21] and is better than [22] and [23].

3.4 An Efficient Subcarrier Allocation Method

As mentioned previously the optimal allocation of subcarriers requires the solution
of the constrained optimization problem (3.3) - (3.6) which is computationally pro-
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hibitive. To get around the complexity issue, the problem of subcarrier allocation
may be studied without involving bit and/or power allocation.

In [28] it is shown that if the constraint in (3.4) is removed, then the optimal
subcarrier allocation is to assign each subcarrier to the user whose power gain is
the largest in that subcarrier. This approach, however, is unfair as it penalizes users
whose channel power gains are small. It is clear that any subcarrier allocation method
that satisfies (3.4) must also satisfy

N∑

n=1

ρn,k ≥
⌈
Rk

bL

⌉
∀k = 1, 2, · · · , K (3.29)

In other words (3.29) is a necessary condition so that the data rate requirement of all
users is satisfied.

Several algorithms [27, 25, 30, 31] have been proposed in the literature to perform
subcarrier allocation while satisfying (3.29). In [27] the bit allocation has been as-
sumed to be uniform for all users and the target BER is identical for different users as
well. The proposed algorithm tries to minimize the objective function

∑
n,k ρn,k

1
|Hn,k|2

.

Specifically, it first attains an initial allocation under the constraint of (3.29). Then
improves it following a greedy approach. The performance of this algorithm is very
good. In fact it performs so well for subcarrier allocation that the subsequent adap-
tive bit allocation yields little performance improvement. However, this algorithm
has a high computational complexity of the order of O(KN log N + N2) [29]. We
describe our algorithm for subcarrier allocation next.

3.4.1 Algorithm Description

The algorithm presented below inspects all N subcarriers in a step by step fashion.
In each step it allocates the corresponding subcarrier to a user who requires the least
increase in transmit power among a subset of all users. The subset of users chosen
for comparison during each step is designed to satisfy (3.29).

To evaluate the increases in transmit power we use the normalized power gains
defined by

gn,k :=
|Hn,k|2∑
n |Hn,k|2

∀n = 1, 2, · · · , N, ∀k = 1, 2, · · · , K (3.30)

During the mth step, if the corresponding subcarrier is assigned to the kth user then
the increase of transmit power for that user is given by

∆Pk(m) =
σ2

V f (β0, εk)

gm,k

(3.31)

where, to simplify the algorithm, we assume that the number of bits assigned to each
subcarrier is a constant given by

β0 :=

∑
k Rk

N
(3.32)

44



Subcarrier Allocation (SA) Algorithm

Step 1: Calculate {gn,k} from (3.30). Let Θ0 = {1, · · · , K} and Θ1 = Φ, where Φ
denotes the null set. Let sk = 0 for k = 1, 2, · · · , K.

Step 2: For m from 1 to N , performs the following:

If Θ0 6= Φ, assign the mth subcarrier to user k̂ = arg mink∈Θ0 ∆Pk(m);
sk̂ = sk̂ + 1;

if sk̂ ≥
⌈

Rk

bL

⌉
, let Θ0 = Θ0 −

{
k̂
}

,

if sk̂ <
⌈

Rk

β0

⌉
, then Θ1 = Θ1 +

{
k̂
}
.

Otherwise, assign the mth subcarrier to user k̂ = arg mink∈Θ1 ∆Pk(m).
sk̂ = sk̂ + 1;

if sk̂ ≥
⌈

Rk

β0

⌉
, then Θ1 = Θ1 −

{
k̂
}
.

The proposed subcarrier allocation algorithm terminates after at most N steps. In
each step the number of users chosen for comparison is determined by the size of Θ0

or Θ1, which is less than or equal to K. So the complexity of the proposed algorithm
is no greater than O(N × K). For each user chosen for comparison, calculating the
increase of transmit power requires only one division operation since the numerator
of (3.31) has been given and can be calculated beforehand. It can be seen that the
proposed algorithm is computationally more efficient than the subcarrier allocation
schemes presented in [25], [27] and [29].

3.5 Numerical Results

In this section we examine the performance of the proposed ABPA algorithm and SA
algorithm through simulation. The simulated OFDM system has N = 128 subcarriers
with the frequency offset between adjacent subcarriers equals to ∆F=20KHz. The
modulation schemes that are considered are QPSK, 16QAM and 64QAM. Thus Ω =
{0, 2, 4, 6}. According to [24], the function f associated with this system may be
written as

f(β, ε) =

(
2β − 1

)
(lnc1 − ln ε)

c2

(3.33)

where c1 = 0.2 and c2 = 1.6.

3.5.1 Performance of the ABPA Algorithm

We have generated 1,000 independent realizations of CFR using a 9-path outdoor
channel model similar to the COST207 model [59]. The power delay profile for the
simulated channel model is exponentially decaying with the maximum excessive delay
of 5µs [59]. Specifically, the delay of these 9 rays are randomly generated within the
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5µs interval while their amplitudes undergo independent Rayleigh fading. The CFR
is generated by taking N -point discrete Fourier transform (DFT) for the samples of
channel impulse response, where the sampling rate is N∆F = 2.56MHz. For the

purpose of simplicity, the CFR has been normalized such that
∑N

n=1
|Hn|2

N
= 1 for all

channel realizations. The proposed ABPA algorithm is then performed for a given
target BER ε and data rate requirement R.

The resulting total receive power for all the subcarriers is calculated from the
algorithm for each CFR realization and then averaged over the 1,000 realizations to
obtain Pave(ε,R). The average SNR is then calculated as

ν = 10 log10

Pave(ε,R)

Nσ2
V

(dB). (3.34)

Two values of R = 256 and R = 512 were used. Figure 3.1 illustrates the simu-
lation results where BER ε is plotted vs. the SNR ν. In this figure the performance
of the proposed ABPA algorithm is compared with that of the greedy method in
[21] which is labelled as “optimal”. For comparison the results for the non-adaptive
OFDM system, where bit and power allocation is identical for all subcarriers has
also been plotted. From Figure 3.1 we can see that the performance of the proposed
ABPA algorithm is almost the same as the optimal method of [21] and is at least 10dB
better than the non-adaptive system for BER 10−3. The complexity of our algorithm
is, however, significantly lower than that of the optimal solution. The number of
iterations required for the ABPA algorithm to terminate is less than 7 in most cases.
The worst case we observed involved only 14 iterations.

The complexity of the proposed algorithm has been compared with that of the
method in [23], which is one of the most efficient bit and power allocation algorithms
in the literature. For each value of N , 1000 independent realizations of CFR have
been generated following the approach described previously. Both algorithms are
applied to each channel realization for R = 4N and BER 10−3. The numbers of
various operations including comparison, addition, multiplication, division and loga-
rithm have been counted and averaged in category. We assume that each logarithm
operation requires 16 clock cycles to finish and the division operation needs 8 clock
cycles. All other operations are assumed to take only one clock cycle. Figure 3.2
illustrates the average number of clock cycles for both algorithms as a function of N .
We can see they both increase linearly with respect to N . However, the proposed
ABPA algorithm is significantly faster than the method of [23] for large N . Figure
3.3 shows the performance of both methods for the same parameters as in Figure 3.1
for R = 512. It can be seen that the ABPA algorithm is about 0.3dB better for all
values of SNR.
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3.5.2 Performance of the SA Algorithm

We now consider a MU-OFDM system with K = 5 users. The CFR for these users are
randomly selected from the aforementioned channel realizations. The target BER for
all users are set to the same value ε. For various users the target data rates and the
average channel power gain given by

∑
n |Hn,k|2 can be different. We have simulated

two cases whose configurations are given in Table 3.1. In both cases we compare three
different subcarrier allocation schemes. One is the algorithm presented in [27] and it
is denoted by “WSA”. Another is our proposed subcarrier allocation algorithm which
is referred to as “SA”. The third is a rate proportional FDMA scheme which yields a
fixed subcarrier allocation, and is denoted by “FSA” [25].

After performing subcarrier allocation a bit and power allocation algorithm must
be employed for each user to ensure that their data rate and BER requirements are
satisfied. One method we use is the proposed ABPA algorithm. The other one is
denoted by “UBA”, which uniformly allocates bits to the subcarriers assigned to
the same user according to the data rate requirement for that user. Moreover, the
corresponding transmit power is adjusted such that the BER requirement for that
user is satisfied as well.

Figures 3.4 and 3.5 illustrate the simulation results for both cases where the power
of white noise are assumed to be identical for all five mobile stations. The system SNR
is calculated from equation (3.34) by replacing Pave(ε,R) with the average transmit
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Table 3.1: User and channel configurations for the MU-OFDM system

Case 1 Case 2

User (k) Rk Average Power Gain Rk Average Power Gain

1 100 0dB 24 0dB

2 100 0dB 24 +2dB

3 100 0dB 128 -4dB

4 100 0dB 128 +6dB

5 100 0dB 208 -8dB
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Figure 3.4: Performance of the Subcarrier Allocation algorithm (case 1)
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Figure 3.5: Performance of the Subcarrier Allocation algorithm (case 2)

power of the BS. We can see that when the WSA algorithm is employed the differ-
ence between using UBA or ABPA is negligible although the latter yields a better
performance. Moreover, the performance of the system using both SA and ABPA is
close (within 1.5dB) to the “WSA+ABPA” case whose performance is nearly optimal
[27]. It is clear that the complexity for the proposed SA algorithm along with the
ABPA algorithm is much lower than the WSA method making it more favorable for
the wireless OFDM systems.

3.6 Chapter Summary

The optimal subcarrier, bit and power allocation problem for MU-OFDM systems has
been investigated. The optimal bit and power allocation problem is first formulated
as a mixed integer programming problem. This problem is then relaxed to a con-
straint optimization problem and solved using the Karush-Kuhn-Tucker conditions.
Guided by the insights gained from this solution we develop a computationally ef-
ficient iterative algorithm to obtain a near-optimal solution for the original bit and
power allocation problem. An efficient suboptimal algorithm is also presented for
the subcarrier allocation problem. Numerical results illustrate the low computational
complexity and nearly optimal performance of the algorithms making them suitable
for wireless MU-OFDM systems.
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CHAPTER 4. ON THE BIT AND POWER ALLOCATION
FOR OFDM SYSTEMS WITH TIME-VARYING

CHANNELS

4.1 Introduction

Adaptive modulation has been recognized as an effective technique for improving
the performance of wide-band communication systems over frequency-selective fading
channels. When applied to OFDM systems, this scheme proposes to select for each
subcarrier a proper size of modulation signal set and transmit power according to
the instantaneous frequency response of the channel such that the desired quality of
service (QoS) can be achieved with the maximum spectral efficiency [24, 22, 32, 33].
Intuitively, in order to exploit the full potential of an adaptive modulation scheme, the
transmitter should have complete and perfect knowledge of channel state information
(CSI). However, this condition is too optimistic to be satisfied in practice due to
the following reasons: 1) CSI is obtained by the receiver through channel estimation
and the noise in the received signal may cause estimation errors; 2) the physical
channel is often time-varying and thus transmission and processing delay will make
the CSI estimates outdated. Previous works [36, 39, 40, 41] have confirmed that the
performance of most adaptive modulation schemes assuming perfect knowledge of CSI
will degrade significantly even with moderate errors in the estimated CSI. While the
errors in the estimated CSI can be considerably suppressed using recently proposed
efficient channel estimation techniques, the difficulties caused by the outdated CSI
estimates in time-varying channels remains. For OFDM systems this problem is more
pronounced due to a greater symbol duration than single-carrier systems with similar
bandwidth, as well as the large processing and transmission delay inherent in OFDM
systems.

In this chapter, we focus on the problem of resource allocation based on the
noisy and outdated knowledge of the CSI. An earlier study in [42] shows that the
state of a frequency-flat fading channel can be reliably predicted from the outdated
observations across a long range of time. This motivates the prediction of frequency-
selective channels for the OFDM system since, using OFDM, the wide-band channel
is transformed into a number of flat-fading sub-channels. We adopt the idea of CSI
prediction and propose to perform resource allocation based on the predicted CSI.

This chapter is organized as follows. The channel model used in this chapter is first
introduced in Section 4.2, in which we also motivate channel prediction by showing
the effect of delayed CSI estimation in the time-varying channel. In Section 4.3, dif-
ferent channel predictors using Wiener filter or adaptive filters are discussed and their
performance are compared. Bit and power allocation based on the predicted CSI is
discussed in Section 4.4, where, by taking the remaining errors in channel predictions
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into account, the proposed allocation schemes guarantee to meet the target BER.
Finally, simulation results are presented in Section 4.5. We draw some conclusions in
Section 4.6.

4.2 Preliminary Analysis

4.2.1 Channel Model

In general, the equivalent lowpass impulse response of a time-varying, frequency-
selective multipath fading channel can be written as [58, 59]

c(τ ; t) =
D−1∑

i=0

αie
−jφi(t)δ(τ − τi),

where
φi(t) = 2π{(fc + fd,i)τi − fd,it}

and where D denotes the number of paths, τi, αi and fd,i are, respectively, the prop-
agation delay, the attenuation factor and Doppler frequency spread for the ith path,
δ(·) is the Dirac delta function, and fc is the carrier frequency. Let ri(t) = αie

−jφi(t).
Then

c(τ ; t) =
D−1∑

i=0

ri(t)δ(τ − τi) (4.1)

where we assume that the path gains ri(t) are uncorrelated wide-sense stationary ran-
dom processes (wide-sense stationary, uncorrelated scattering (WSS-US) condition)
[58, 59]. The WSS-US assumption implies that

E[ri(t1)r
∗
j (t2)] =





0 i 6= j

E[|ri|2]ρ(t1 − t2) i = j
(4.2)

where ρ(t) denotes the normalized autocorrelation function of {ri(t)}.
Now consider an N -tone OFDM system transmitted over the channel defined by

(4.1). The size of the cyclic prefix (CP) used in this system is denoted by L, and the
sampling time is TS. It is assumed that, when compared with the rate of the OFDM
blocks, the variation of ri(t) is slow for all i. Thus, in this case, the inter-carrier
interference (ICI) can be ignored, and the OFDM system can be simply represented
by yn,k = hn,kxn,k +vn,k for all n = 0, 1, · · · , N−1 and k = · · · , 1, 2, · · ·, where xn,k and
yn,k are, respectively, the nth transmitted and received complex symbols of the kth

block. Meanwhile, the sequence {hn,k}N−1
n=0 represents the channel frequency response

(CFR) and {vn,k}N−1
n=0 is a sequence of iid complex Gaussian random variables with

zero mean and fixed variance σ2
v for all k and n. Let h(k) = [h0,k, · · · , hN−1,k]

T . Then
it is known that h(k) = FLg(k) for all k, where FL is the first L columns of the
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N -point DFT transform matrix and g(k) = [g0,k, · · · , gL−1,k]
T is the channel impulse

response (CIR) for block k in the discrete time domain. g(k) is determined by the
realization of c(τ ; t) at the time t = kTB, where TB = (N +L)TS. Let p(τ) denote the
composite impulse response of the analog components in the OFDM system including
DAC, ADC, analog filters, power amplifiers, etc. It is shown in Chapter 1 that

gl,k =
D−1∑

i=0

ri(kTB)p(lTS − τi), ∀l = 0, 1, · · · , L − 1, (4.3)

for all k. It is inferred from (4.3) that, although ri(t) are uncorrelated for different
i, the elements of g(k) are correlated. Therefore, in order to achieve optimal channel
prediction, all elements of the outdated CIRs should be used to predict each element
of the current CIR.

4.2.2 Motivation

In this section we illustrate the effect of outdated channel state information and
motivate the need for channel prediction. As mentioned previously, it is not feasible
to obtain perfect knowledge of g(k) or h(k) for resource allocation of the kth OFDM
block. A straightforward approach is to take the most recent estimation of CSI from
the receiver, which is not only noisy but also outdated, as a prediction of the current
CSI. In other words, let

g̃(k) := ĝ(k − d) = g(k − d) + e(k − d),

where ĝ(k − d) is the estimated CIR at time k − d, g̃(k) is our prediction of CIR
at time k and dTB is the associated delay and e(k − d) is the channel estimation
error. The normalized mean square error (NMSE), which is defined by NMSEg̃(k) :=
E(‖g̃(k) − g(k)‖2)/E(‖g(k)‖2), is used to measure the difference between g(k) and
g̃(k), where ‖ · ‖ is the L2-norm and E(·) denotes expectation. From the relationship
between CIR and CFR one can show that NMSEh̃(k) = NMSEg̃(k). Using the WSS
assumption of the channel, the NMSE of the outdated CIR can be calculated as
follows

NMSEg̃(k) = E
[
‖g(k − d) + e(k − d) − g(k)‖2

]
/E

[
‖g(k)‖2

]

=
2E(‖g‖2) + E(‖e‖2) − 2Re

[∑L−1
l=0 E(g∗

l,k−dgl,k)
]

E(‖g‖2)
(4.4)

Using (4.2) it can be shown that

E[g∗
l,k−dgl,k] =

D−1∑

i=0

D−1∑

j=0

E[r∗i ((k − d)TB)rj(kTB)p∗(lTS − τi)p(lTS − τj)

= ρ(dTB)
D−1∑

i=0

E[|ri|2] |p(lTS − τi)|2

= ρ(dTB)E[g∗
l,kgl,k] (4.5)
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Figure 4.1: Performance of channel prediction in terms of NMSE

Using (4.4) and (4.5) we can write

NMSEg̃(k) = 2 [1 − Re(ρ(dTB))] + E(‖e‖2)/E(‖g‖2) (4.6)

Equation (4.6) shows that if the outdated channel estimate is used as a prediction of
the current CSI, the associated NMSE is not only determined by the signal to noise
ratio (SNR) of the channel estimation method, but also the autocorrelation function
ρ(·). It turns out that in this case the effect of the channel autocorrelation function
is more significant than that of the estimation error.

For Rayleigh fading channels, it is well known that ρ(t) = J0(2πfmt) [59], where
J0(·) is the zeroth-order Bessel function of the first kind and fm denotes the maximum
Doppler frequency shift. Another commonly used autocorrelation function is ρ(t) =
e−λfmt. For λ ≈ 2.8634 this model has the same coherence time1 as the Rayleigh
fading model. The NMSEs calculated from (4.6) using these two correlation functions
have been plotted with respect to fmdTB in Figure 4.1, where the SNR in the CIR
estimation, namely the value of E(‖e‖2)/E(‖g‖2), has been fixed to be 25dB. This
figure illustrates that, when a delayed version of the estimated CIR is used for future
CIR prediction, a small delay may result in large errors in CIR prediction even in cases
where the estimation error is at an acceptable level (SNR=25dB). For comparison, in
the same figure, we show the results of the CIR prediction using different predictors,
which will be discussed in the next section.

1The time over which the correlation coefficient is above 0.5
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4.3 Channel Prediction

Channel prediction can be performed for either CFR or CIR. There are two advantages
in performing channel prediction in the time domain (CIR). First, the length of CFR
sequence (N) is often much larger than that of CIR (L) resulting in much higher
complexity for the predictor. Secondly, there exist several well established models for
the autocorrelation function of CIR [58, 59]. Recently, new autoregressive models for
the CFR of wideband channels have been proposed [12, 35], which may be exploited
for the prediction of CFR. However, the first point on the higher complexity of CFR
prediction remains.

4.3.1 Wiener Channel Prediction

As mentioned previously, due to the correlation between channel coefficients, a vec-
tor predictor should be used to achieve optimal performance. Let ĝ(k − d), ĝ(k −
2d), · · · , ĝ(k − Md) be the CIR estimations available to the transmitter. Due to the
limited capacity of the feedback channel, it is assumed that only a down-sampled
version (by a ratio of d) of the CIR estimates at the receiver are fed back to the
transmitter. So, d is usually an integer number larger than 1. The objective is to find
an optimal estimation of g(k) based on these outdated samples. We rearrange all ele-
ments of these vectors into a single LM -by-1 vector u(k) := [uT

0,k, · · · ,uT
L−1,k]

T , where
ul,k = [ĝl,(k−d), · · · , ĝl,(k−Md)]

T . Then the optimal linear prediction of g(k), which
will result in the minimum mean-squared error (MSE), is given by the Wiener-Hopf
equation as follows

g̃opt(k) =
(
R−1

uuPug

)H
u(k) (4.7)

where Ruu = E[u(k)u(k)H ], Pug = E[u(k)gH(k)], and (·)H and (·)−1 denote, respec-
tively, the matrix transpose conjugate and matrix inversion operations [60]. The def-
inition of u(k) implies that Ruu = [A(l1, l2)]0≤l1,l2≤L−1, where A(l1, l2) = E[ul1,ku

H
l2,k]

is a square matrix. Similarly, Pug = [b(l1, l2)]0≤l1,l2≤L−1, in which b(l1, l2) = E[ul1,kg
∗
l2,k]

is a column vector. The minimum MSE associated with this predictor is given by

NMSEopt = 1 − Tr(PH
ugR

−1
uuPug)/E[‖g‖2] (4.8)

where Tr(A) is the trace of the matrix A. In order to implement this predictor
and evaluate its performance, it is necessary to have A(l1, l2) and b(l1, l2) for all
l1, l2 ∈ {0, · · · , L − 1}. While these can, in principle, be calculated from (4.3), the
implementation of the predictor requires the inversion of a matrix of size LM ×LM .
This is computationally prohibitive and makes this predictor impractical.

In many cases, when l1 6= l2, the cross-correlation between gl1,k1 and gl2,k2 is rela-
tively small and can be ignored. Thus, assuming E(gl1,k1g

∗
l2,k2

) = 0 for all l1 6= l2, the
matrices Ruu and Pug can be rewritten as Ruu = diag {A(0, 0), · · · ,A(L − 1, L − 1)}
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and Pug = diag {b(0, 0), · · · ,b(L − 1, L − 1)}. Accordingly, (4.7) and (4.8) can be
significantly simplified as follows

g̃sub(k) =
{
bH(l, l)A−1(l, l)ul,k

}L−1

l=0
(4.9)

NMSEsub = 1 −
L−1∑

l=0

bH(l, l)A−1(l, l)b(l, l)/E[‖g‖2] (4.10)

where the subscript “sub” indicates a suboptimal predictor when neglecting the cross-
correlation of coefficients of the CIR. On the other hand, (4.9) reveals a channel
predictor structure different from that of (4.7). Instead of lumping all entries of
the M outdated CIR estimations to perform a complicated vector predictor, (4.9)
suggests to use L independent scalar predictors. This structure is computationally
much more efficient and will be adopted in the remainder of this chapter.

4.3.2 Adaptive Channel Prediction

Using the L predictors in (4.9) requires the matrices {A(l, l)}L−1
l=0 and the vectors

{b(l, l)}L−1
l=0 . However, for a time-varying channel, frequent computation of these will

be unrealistic. In this case, a more realistic approach is to use an adaptive filter such
as least mean-square (LMS) filter, recursive least-squares (RLS) filter or a Kalman
filter, to replace each of the L Wiener filters in (4.9). In this case, the filter coefficients
can be computed recursively. More importantly, an adaptive channel predictor has
the ability of tracking the variation of channel statistics. Take the LMS predictor for
example, the processing of the lth branch of the predictor can be represented by

g̃l,k = wH
l,kul,k (4.11)

wl,k+d = wl,k + ν
(
ĝl,k−d − wH

l,kul,k−d

)∗
ul,k−d (4.12)

where wl,k denotes the filter coefficients of the lth branch at time t = kTB, and ν is a
positive constant denoting the step size. The choice of ν greatly affects the conver-
gence properties and the performance of this predictor and this has been thoroughly
discussed in [60]. It should be noted that, in (4.12), the prediction error for block
k is evaluated by the difference between the latest channel estimation ĝl,k−d and the
predicted value g̃l,k−d = wH

l,kul,k−d using the current filter coefficients.
Figure 4.1 also shows the performance of the optimal and suboptimal Wiener

predictors ((4.7), (4.9)) and the LMS predictor ((4.11)-(4.12)) in terms of NMSE
assuming a 12-ray channel model following (4.1), i.e., D = 12. The path delays {τi},
which are spaced within the interval of [0, 5] µsec, are provided in [59] (Table 2.1
of page 96) and remain constant throughout the simulation. All paths are assumed
to undergo Rayleigh fading and have the normalized autocorrelation function ρ(t) =
J0(2πfmt). The power gain for each path has also been listed in Table 2.1 in [59].
The OFDM parameters used are N = 64, L = 16, TS = 0.625µs (TB = 50µs), and
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p(τ) is set to be the raised-cosine function with a roll-off factor of 0.35. The SNR of
CIR estimation is set to 25dB, as in Section 4.2.2. In this case, d is set to 10 and
the Doppler frequency fm varies between 0Hz and 240Hz. It is clear that, the two
Wiener predictors have very close performance and are better than the LMS predictor.
Moreover, even the LMS predictor has significant performance improvement over that
of using outdated CSI. It should be noted that, when fm is small the performance
of the predicted CIR can be better than that of the estimated CIR. This is because
the considered channel estimation is performed for only one OFDM block, while the
channel predictor can take estimations from M blocks whose CIRs can be strongly
correlated with the current CIR.

4.4 Bit and Power Allocation Based on CSI Predictions

In this section we consider the problem of optimal bit and power allocation for OFDM
systems using the predicted values of CIR. Since the discussion is focused on a single
block, the subscript indicating the block number will be dropped. Let Pn and βn,
respectively, denote the power and the number of bits allocated to subcarrier n. The
size of the modulation signal set for this subcarrier is then 2βn . The objective is
to minimize the power allocated to the entire block while satisfying the requirement
on system BER (εtarget) and data rate (Rtarget bits per block). In this section the
prediction error is treated as additive noise and is measured by NMSE. We first show
that if the prediction error in CIR is assumed to have a Gaussian distribution, then
the resource allocation problem can be transformed into an equivalent problem of bit
and power allocation with perfect CSI. Another approach to resource allocation will
be presented in a subsequent section for general distributions of the channel prediction
error.

4.4.1 Resource Allocation with Gaussian Prediction Error

We assume that the CIR prediction error e = (g̃ − g) is a complex-valued Gaussian
random vector such that E[e] = 0L×1 and E[eeH ] = σ2

eIL×L. This assumption is
justified in light of the fact that the predictor is linear and that all fading components
of the channel are assumed to follow a Gaussian distribution. In [33], we discussed
the problem of bit and power allocation for the case of perfect CSI (i.e., σ2

e = 0). In
this section, this is extended to the case of σ2

e 6= 0.
The instantaneous bit error probability for subcarrier n can be written as

BERn = c1 exp
[
−Pn|hn|2q(βn)

]
(4.13)

where q(·) is a known function of βn [24]. For example, for QAM, q(βn) = c2
(2βn−1)σ2

v
,

where c1 and c2 are known constants. It should be noted that the BER in (4.13)
is evaluated using the channel CFR {hn}, whereas the bit and power allocation is
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performed using the predicted values of CFR, namely {h̃n}, which in turn is obtained
from an N -point DFT of CIR predictions {g̃n}. For σ2

e = 0, i.e., (h̃n = hn), setting
BERn = εtarget results in a closed form relationship between Pn and βn. This signif-
icantly simplifies the problem of bit and power allocation, which can then be solved
using some computationally efficient algorithm, such as that in [33, 34]. On the other
hand for σ2

e 6= 0, hn and thus BERn are random variables. In this case, a constraint
regarding system BER requirement is proposed as follows:

E(BERn|h̃n) = εtarget, ∀n = 0, · · · , N − 1. (4.14)

Based on the assumption on the distribution of the channel prediction error, it can be
shown that, given h̃n, hn is a complex-valued Gaussian random variable with mean
h̃n and variance Lσ2

e . Using (4.13), (4.14) can be rewritten as:

c1

1 + Lξnσ2
e

exp

[
− |h̃n|2ξn

1 + Lξnσ2
e

]
= εtarget, ∀n = 0, 1, · · · , N − 1, (4.15)

where ξn = q(βn)Pn. Thus, (4.15) also offers an analytical relationship between Pn

and βn. The left hand side of (4.15) is monotone decreasing in ξn. Thus for a given
εtarget, there exists a unique ξ∗n satisfying (4.15). Define |h†

n|2 := ln( c1
εtarget

)/ξ∗n. It can

be shown that Pn and βn satisfy (4.15) if and only if

c1 exp[−Pn|h†
n|2q(βn)] = εtarget.

Consequently |h†
n|2 can be defined as the effective power gain of subcarrier n, and can

be calculated as follows:

|h†
n|2 = L2σ4

e ln

(
c1

εtarget

)
/




|h̃n|2

Ψ−1

{
εtarget

c1
Ψ[ |h̃n|2

Lσ2
e
]
} − Lσ2

e


 (4.16)

where Ψ(x) = xex and Ψ−1(·) is the inverse function of Ψ(x). The effective power gain
calculated from (4.16) has been plotted versus |h̃n|2 in Figure 4.2, for εtarget = 10−3,
c1 = 0.2, and Lσ2

e = 1. This figure show that, when the channel-to-noise ratio
(CNR) |h̃n|2/Lσ2

e is more than 15dB, the effective power gain is very close to the
predicted value. For lower CNR, the effective power gain can be much smaller than
the originally predicted value. Moreover, the effective value tends to be a very small
constant as CNR approaches zero.

By treating |h†
n|2 as the perfect power gain for sub-channel n, the bit and power

allocation problem can be solved using known algorithms developed for the case of
perfect CSI. However, unlike the approach of directly using |h̃n|2, the proposed method
guarantees that the average BER satisfies the requirement in (4.14). The complete
bit and power allocation method for σ2

e 6= 0 is implemented as follows.
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Figure 4.2: Effective channel power gain with errors in CFR

1. Use (4.16) to calculate |h†
n|2 for all n.

2. Use the bisection method proposed in [33] or [34] to find the cutoff power gain
for all modulation signal sets.

3. For all n, determine βn by comparing |h†
n|2 with the cutoff points obtained in

the previous step.

4. Calculate Pn from βn using (4.15).

4.4.2 Resource Allocation with Arbitrary Channel Predic-
tion Error

Our discussion in the previous section assumed that {hn}, the values of CFR at
all subcarriers, are predicted. However, in bit and power allocation algorithm it is
{|hn|2}, the channel power gain, (or more specifically the SNR of each subcarrier) that
is required. As argued in [41], using the square magnitude of h̃n as a prediction of the
channel power gain underestimates the true power and results in a biased estimate.
Consequently in [41], an unbiased quadratic power prediction method from [37] has
been used for optimal rate and power allocation.

In this section we consider the problem of optimal bit and power allocation in
OFDM assuming an arbitrary distribution for the channel CFR. In particular let
Xn := |hn|2 and Yn := |h̃n|2. It is assumed that the joint PDF of Xn and Yn, denoted
by fXn,Yn

(x, y), is known, whether h̃n or |h̃n|2 is obtained through channel prediction.
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For all n, both Xn and Yn are viewed as complex random variables. As before, Pn and
βn are, respectively, the power and the number of bits allocated to the nth subchannel.

In the optimal bit and power allocation Pn and βn are determined by the value
of Yn. Since BER also depends on the value of Xn, (see (4.13)), as in the previous
section the BER constraint is considered as follows.

E (BERn|Yn = y) =
∫ ∞

0
c1e

−q(βn)PnxfXn|Yn
(x; y)dx = εtarget, ∀n = 1, · · · , N. (4.17)

Define
Zn(z; y) =

∫ ∞

0
e−zxfXn|Yn

(x; y)dx

Then, for each y, Zn(z; y) is a monotone decreasing function of z. Let Z−1
n (·; y) denote

its inverse function such that Zn(Z−1
n (x; y); y) ≡ x. Thus (4.17) can be rewritten as

Pn =
1

q(βn)
Z−1

n

(
εtarget

c1

; y
)

(4.18)

Given the channel power prediction Yn = y, (4.18) describes a relationship between
Pn and βn. By using this relationship we ensure that the BER constraint is satisfied as
well as significantly simplify the problem by reducing it to a bit (or power) allocation
problem.

Let Ω = {b0, b1, · · · , bM} be the set of integers that βn can assume. In other words,
Ω is the number of bits transmitted over each subcarrier in one block. In other words,
βn ∈ Ω for all n. Our proposed algorithm is the following. Divide the interval [0,∞)
into M consecutive subintervals with the boundary points 0 = ϕ0,n < ϕ1,n < · · · <
ϕM,n < ϕM+1,n = ∞. Then, let βn = bm if the value of Yn falls in the interval
(ϕm,n, ϕm+1,n]. Finally, calculate Pn from (4.18) with βn = bm. The same procedure
will be performed for all n to obtain resource allocation for the entire block. From
(4.18), the transmit power of the OFDM block is given by

P̄ =
N∑

n=1

∫ ∞

0

1

q(βn)
Z−1

n

(
εtarget

c1

; y
)

fYn
(y)dy

=
N∑

n=1

M∑

m=1

1

q(bm)

∫ ϕm+1,n

ϕm,n

Z−1
n

(
εtarget

c1

; y
)

fYn
(y)dy, (4.19)

and the data rate is given by

R̄ =
N∑

n=1

M∑

m=1

bm

∫ ϕm+1,n

ϕm,n

fYn
(y)dy = Rtarget (4.20)

The bit and power allocation algorithm attempts to minimize the total power assigned
to an OFDM block subject to the constraints on the BER and the data rate per OFDM
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block. It can be shown that there exist optimal boundary values ϕ∗
m,n such that the

transmit power in (4.19) can be minimized subject to (4.17) and rate constraint in
R̄ = Rtotal. This problem can be solved using the method of Lagrange multipliers.
The Lagrange cost function is

J(ϕ1,1, · · · , ϕM,N) =
N∑

n=1

M∑

m=1

1

q(bm)

∫ ϕm+1,n

ϕm,n

Z−1
n

(
εtarget

c1

; y
)

fYn
(y)dy

+Λ

[
N∑

n=1

M∑

m=1

bm

∫ ϕm+1,n

ϕm,n

fYn
(y)dy − Rtarget

]
(4.21)

where Λ is the Lagrange multiplier. The necessary conditions for optimality are given
by

∂J

∂ϕm,n

∣∣∣∣∣
ϕm,n=ϕ∗

m,n

= 0, ∀m,n (4.22)

which yield

Z−1
n

(
εtarget

c1

; ϕ∗
m,n

)
= − Λ(bm − bm−1)

[ 1
q(bm)

− 1
q(bm−1)

]
(4.23)

for n = 1, · · · , N ; m = 1, · · · ,M.

For a given value of Λ, we can obtain {ϕ∗
m,n} by solving the above equations. For a

given set of thresholds {ϕ∗
m,n} we can obtain the value of Λ, from (4.20). In practice,

a recursive numerical method can be used to solve for {ϕ∗
m,n} and Λ. We should point

out that further information on the convexity of P̄ and R̄ is required to ensure the
optimality of the solution. We also note that the proposed algorithm can be applied
in conjunction with an arbitrary channel prediction method as long as fXn|Yn

and fYn

can be determined a priori. We provide the following two examples to illustrate the
effectiveness of the proposed method.

Example 4.1 Suppose that the prediction of channel power gain is perfect, i.e.,
Yn = Xn for all n. In this case, fXn|Yn

(x; y) = δ(x − y) and Zn(z; y) = e−zy. Thus
(4.23) can be reduced to

ϕ∗
m,n =

ln( εtarget

c1
)

Λ




1
q(bm)

− 1
q(bm−1)

bm − bm−1


 , ∀m, n. (4.24)

Equation (4.24) shows that the ratio of the optimal threshold values are fixed. A
result which coincides with earlier results in [33, 34]. Moreover, the values given by
(4.24) are the same as those obtained in [34], where these optimal threshold values
are derived using a different approach.
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Example 4.2 Suppose h̃n = hn + ηn, where hn and ηn are independent complex
Gaussian random variables satisfying hn ∼ CN (0, θ2) and ηn ∼ CN (0, σ2

η), where θ2

and σ2
η are given. When conditioned on h̃n, hn is a complex-valued Gaussian random

variable with mean h̃n and variance σ2
η. It is clear that given Yn = |h̃n|2, Xn = |hn|2

has a noncentral chi-square distribution with two degrees of freedom. Accordingly,
fXn|Yn

(x; y) can be written as

fXn|Yn
(x; y) =

1

σ2
η

exp

(
−x + y

σ2
η

)
I0

(√
xy

σ2
η/2

)
(4.25)

where I0(·) denotes the zeroth order modified Bessel function of the first kind. For
the conditional distribution defined in (4.25), the function Zn can be rewritten as
follows:

Zn(z; y) =
exp

[
−( yz

1+σ2
ηz

)
]

1 + σ2
ηz

(4.26)

In this case, (4.23) can be simplified as

ϕ∗
m,n =

[
1

Λ∆m

+ σ2
η

]
ln

(
c1/εtarget

1 + Λσ2
η∆m

)
(4.27)

for all n = 1, · · · , N ; m = 1, · · · ,M.

where ∆m = −(bm − bm−1)/(
1

q(bm)
− 1

q(bm−1)
). It is observed that for σ2

η = 0, (4.27)

reduces to (4.24). In general, the Lagrange multiplier Λ is determined by the con-
straint in (4.20). Specifically, if σ2

η and θ2 are identical for all n, then (4.20) can be
rewritten as follows:

M∑

m=1

bm

θ2

(
e−ϕ∗

m/θ2 − e−ϕ∗

m+1/θ2
)

=
Rtarget

N
(4.28)

4.5 Simulation Study

In this section, we first illustrate through simulation the efficacy of the resource
allocation schemes proposed in Section 4.4. For simplicity, we neglect the details of
channel predictor by assuming its output is a (Gaussian) noisy version of the CIR
with known NMSE. Meanwhile, the 12-ray channel model described in Section 4.3.2
has been used in this simulation, where fm=200Hz. The noisy CIR used for resource
allocation is generated by adding to g(k), which is calculated using (4.3), a sequence
of iid complex-valued Gaussian random variables, whose variance is determined by
NMSE. Moreover, the system parameters are the same as those in Section 4.3.2.
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Figure 4.3: Comparison between the measured BER and the target BER

The set of modulation schemes used in this case are QPSK, 16QAM, 64QAM and
256QAM, and the target data rate is Rtarget = 4N .

Let NMSE be -15dB. The allocation methods proposed in Section 4.4.1 and Section
4.4.2 are compared with the results in [33] assuming perfect knowledge of the CSI. We
should point out that the method in [33] is in fact optimal if the knowledge of CSI is
indeed perfect. For these three approaches, the BERs measured from simulation are
plotted with respect to the target values in Figure 4.3. It is clear that both methods
in Section 4.4 meet the BER requirement while the approach in [33] can not.

The efficiency of the above three allocation methods is compared in Figure 4.4,
where the results corresponding to the perfect CSI case (NMSE=-∞ dB) is also
plotted. For the method in Section 4.4.1, since the effective power gain |h†

n|2 in (4.16)
equals the predicted value |h̃n|2 in the case of perfect CSI, then the scheme in Section
4.4.1 is equivalent to that in [33]. Thus, only two curves exist in the case of perfect
CSI. Moreover, in this case, the approach in Section 4.4.2 outperforms that in Section
4.4.1. This can be explained as follows: the method in Section 4.4.1 requires each
OFDM block to transmit Rtarget bits, while the method in Section 4.4.2 has a more
relaxed condition (4.20) and should result in higher efficiency. However, it should be
noted that the scheme in Section 4.4.1 is easier to implement. For this reason, we use
this method in the following simulation. On the other hand, for the case of imperfect
CSI (NMSE=-15dB), the resource allocation scheme in Section 4.4.1 has about 2.5dB
improvement over the method in [33] for εtarget = 10−4, and the method in Section
4.4.2 is about 1dB better than the method in Section 4.4.1.

A complete OFDM system using both channel prediction and resource allocation
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Figure 4.4: Performance of resource allocation schemes for imperfect CSI

is shown by the block diagram in Figure 4.5. The same channel model and system
parameters as those in previous simulations have been used in this system, where
the range of Doppler frequency is 0∼150Hz and Rtarget = 2N . For every 20 OFDM
blocks, one channel estimation is sent back to the transmitter, i.e., d = 20. Conse-
quently, the rate of CFR updating is 1000Hz. In Figure 4.5, a bit allocation vector
(BAV) and power allocation vector (PAV) have been used to control modulation and
demodulation for every OFDM symbol, and they are determined by the resource allo-
cation scheme in Section 4.4.1. The channel predictor used here is the LMS predictor
(4.11)-(4.12) with M=5.

Figure 4.6 illustrates simulation results for the above OFDM system. A reference
system without either the proposed channel prediction or resource allocation meth-
ods, which uses the most recent channel estimation and treats it as perfect, has also
been simulated. The results corresponding to the reference system have been labelled
as “non-pred.” in Figure 4.6. The system having channel prediction and the pro-
posed resource allocation clearly outperforms the reference system under all Doppler
frequencies. In this case, the efficiency of the proposed system is almost as good as the
perfect CSI case for Doppler frequencies up to 100Hz, which corresponds to a mobile
speed of 73.8mph for a carrier frequency of 900MHz. On the other hand, the reference
system suffers tremendous performance loss even if fm is 50Hz. For εtarget = 10−3,
the proposed system results 2dB improvement from the reference system in fm=50Hz,
8dB improvement in 100Hz, and 10dB improvement in 150Hz.
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Figure 4.5: OFDM system using channel prediction and resource allocation
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4.6 Chapter Summary

The problem of resource allocation with imperfect CSI has been considered for OFDM
systems for time-varying channels. The outdated CSI is identified as the main diffi-
culty for achieving performance enhancement promised by resource allocation. With
the aid of channel prediction, a bit and power allocation scheme has been proposed
to overcome this difficulty. The simulation results confirm that, using the proposed
method, the system performance for slowly time-varying channels (e.g., fm ≤100Hz
in our simulation) can be very close to that of the static channel case.
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CHAPTER 5. MAXIMUM LIKELIHOOD RECEIVER
FOR THE MULTIBAND KEYING SIGNALS IN THE

AWGN CHANNEL

5.1 Introduction

Ultra Wideband (UWB) communication is now receiving a great deal of attention
from the research community. The FCC has allocated a band of several gigahertz
(3.1GHz – 10.6GHz) for the prospective UWB systems. According to FCC, a signal
is qualified to be a UWB signal when it occupies a -10dB bandwidth which exceeds
500MHz or 20% of its center frequency [43]. Several techniques have been proposed
to modulate information bits into UWB signals including OFDM [2], DS-CDMA [46],
Frequency Hopping [47] and Multiband Keying modulation [44] [45]. Among these
techniques, the Multiband Keying (MBK) modulation is a form of fast frequency
hopping, which significantly increases the number of information bits carried in each
symbol without sacrificing much of the symbol error rate. Thus for the same infor-
mation bit rate the symbol rate can be reduced in order to eliminate the inter-symbol
interference (ISI) due to multipath fading [44] [45].

The basic idea of MBK modulation is to divide the whole symbol interval into P
subintervals of duration Ts. Within each subinterval, the information bits are mod-
ulated onto a specific carrier frequency using the conventional MPSK modulation1.
The carrier frequencies are distinct and are chosen from a set of L different frequen-
cies ΩF = {F0, F1, . . . , FL−1}, which are selected from the UWB band and satisfy the
condition

|Fi+1 − Fi| ≥
1

Ts

i = 0, 1, · · · , L − 2. (5.1)

For each symbol, the sequence of carrier frequencies f = {f0, f1, . . . , fP−1|fk ∈ ΩF}
as well as the phases of symbols within each subinterval are determined by the infor-
mation bits.

Denote by ΩS the set of phases that define the MPSK signal set, i.e. ΩS =
{2πl

M
| 0≤l≤M − 1}. Then the MBK symbol is given by

u(t) =

√
2Es

Ts

P−1∑

k=0

p(t − kTs) cos (2πfkt + φk) (5.2)

φk∈ΩS, fk∈ΩF , fk 6= fj ∀k 6=j

where p(t) is the pulse shaping function and Es is the signal energy for each subin-

1The case of null subinterval is not considered here.
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terval. We only consider the rectangular shaping pulse, i.e.,

p(t) =





1, 0≤t < Ts

0, otherwise
(5.3)

The distinction of carrier frequencies implies that L≥P . In this chapter we assume
L = P . It follows that the total number of MBK symbols is given by [44]

Ntotal = (P !)MP (5.4)

Then the number of information bits that an MBK symbol will carry is

log2Ntotal = log2P ! + P log2M. (5.5)

The distinct sequence of carrier frequencies in MBK can be viewed as a form of
coding akin to frequency hopping in spread spectrum and provides improved BER
[44], multi-access capability for pico-nets and robustness against frequency-selective
fading.

5.2 Optimal Receiver of Multiband Keying Signals

Consider an AWGN channel with two-sided power spectral density of N0

2
watts/Hz.

Let

qk
ij =

∫ (k+1)Ts

kTs

√
2

Ts

cos (2πFit +
j2π

M
) r(t) dt (5.6)

k, i = 0, 1, . . . , P − 1; j = 0, 1, . . . ,M − 1,

where r(t) is the received signal. Define the set of P×M matrices Q0,Q1, . . . ,QP−1

by Qk =
[
qk
ij

]
. The maximum likelihood (ML) decision rule can now be stated as

follows:

ML Decision Rule 1: Select one entry from each P×M matrix Qk such that: (a)
all entries come from different rows of the matrices (b) the summation of the selected
P entries is largest for all possible selections.

Condition (a) corresponds to the fact that the frequencies f0, f1, . . . , fP−1 in every
MBK symbol are distinct. Condition (b) maximizes the correlation between the
received signal r(t) and the MBK symbol. Note that if the sequence of elements
chosen by the ML decision rule is q0

i0,j0
, q1

i1,j1
, . . . , qP−1

i(P−1),j(P−1)
, then the estimation

of the transmitted carrier frequencies and MPSK phases are fi0 , fi1 , . . . , fi(P−1)
and

j02π
M

, j12π
M

, . . . ,
j(P−1)2π

M
, respectively.

The complexity of the exhaustive search for the ML decision rule is clearly pro-
hibitive. The following approach simplifies the decision rule somewhat. Let vik =
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max0≤j≤M−1{qk
ij} for i, k = 0, 1, . . . , P − 1 and define the P×P matrix V = [vik]. It

is straightforward to show that the ML decision rule can then be stated as follows:

ML Decision Rule 2: Choose P elements v0j0 , v1j1 , . . . , v(P−1)j(P−1)
from V such

that: (a) {j0, j1, . . . , j(P−1)} is a permutation of {0, 1, . . . , P −1}. (b) The summation∑P−1
i=0 vi,ji

is the largest among all permutations.

We would like to note that the construction of the matrix V is equivalent to
performing MPSK demodulation in each subpulse for every carrier frequency without
prior knowledge of the actually transmitted frequencies. The block diagram of the
optimal receiver is illustrated in Figure 5.1. For each of the P branches , the MPSK
receivers output not only the estimated signal phases but also the corresponding
correlation values. The ’ML Detector’ module takes all these correlation values to
construct the matrix V and then applies ML rule 2.
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Figure 5.1: Maximum Likelihood receiver block diagram

The minimum Euclidean distance between MBK symbols with MPSK modulation
is given by

dmin = 2
√

Es sin
π

M
(5.7)

The number of neighbors at distance dmin is given by

Ndmin
=





P (2P − 1), M=2

2P, M>2
(5.8)

Thus in the case of large signal to noise ratio (SNR), the symbol error probability
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can be approximated by [58]

Pe ≈





P (2P − 1) Q
(√

2Es

N0

)
, M = 2

2P Q
[√

2Es

N0
sin2 ( π

M
)
]
, M > 2

(5.9)

It can be shown that the Euclidean distance between any pair of MBK symbols
which have different frequency sequences is no less than 2

√
Es for any P and M . From

this property and (5.7) we conclude that when M > 2 the minimum Euclidean dis-
tances correspond to MBK symbols having identical frequency sequences but different
phases. Thus the symbol error rate is dominated by phase errors when M > 2.

The optimal receiver of MBK symbols requires the computation and comparison
of different summations of the elements of the matrix V. This requires a total of
(P − 1)P ! additions and P ! − 1 comparisons. When P is large, this complexity is
clearly prohibitive. In the following we present a suboptimal search algorithm which
reduces the complexity of the ML detector significantly for large P .

5.3 Efficient ML Detection for Multiband Keying Signals

The ML decision rule can be viewed as a tree search algorithm in a P -array tree
of depth P . Figure 5.2 represents such a tree graph for P = 3. At any depth
we label the nodes and the branches from left to right from 0 to P − 1. The P
branches emanating from the root node represent the first row of matrix V with
the jth branch having label v0,j−1. Similarly, at depth i, the branches emanating
from any node represent the ith row of V with the branch label for the jth branch
equal to vi−1,j−1. The ML decision rule now corresponds to finding the path in the

 

S 

  j 

 j+1 

j-1 

Figure 5.2: Tree graph representation of V(P=3)

tree with the maximum weight such that the branch numbers form a permutation
of {0, 1, . . . , P − 1}. While an exhaustive search will result in optimal ML detection
of MBK symbols, other suboptimal search procedures with lower complexity, which
do not compromise the performance significantly, may also be used. An example is
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a depth-first search algorithm which starts at the root node by selecting the branch
with the largest label. At every subsequent node, it will choose the branch with the
largest label and will back track only when a branch number is repeated. Such an
algorithm reduces the complexity of the decision rule especially in the case of large
signal to noise ratio where there will be very few, if any, back tracks.

In this chapter, a variant of the depth-first search algorithm is implemented and
its performance and complexity are evaluated through simulations. The results are
presented in the next section.

5.4 Simulation Results

In this section the receiver having structure of Figure 5.1 is called a ’suboptimal
receiver’ when the ML detection is performed by the depth-first search algorithm
instead of the exhaustive search.

We have simulated the performance of the optimal receiver for two cases, the first
one uses QPSK (M=4) and has 4 carrier frequencies (P = 4) while the second one
uses BPSK (M=2) and has 5 carrier frequencies (P = 5). For larger values of P the
simulation of the ML decision rule becomes excessively time consuming as a result of
exhaustive search. Figure 5.3 shows the symbol error rate (SER) of the optimal ML
decision rule vs Eb/N0 for the two cases described above. In this figure we also plot
the symbol error rate obtained from the approximations in Equation (5.9). In both
cases the simulation results match the approximation quite well, especially for large
Eb/N0. This result holds for other values of M and P as well.
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Figure 5.3: Performance of optimal receiver
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Let Pe1 be the probability that the estimated carrier frequency sequences not
equal to that of the transmitted symbols, and Pe2 be the symbol error probability
given correct carrier frequencies i.e. the probability of phase error, then the symbol
error rate can be written as

Pe = Pe1 + Pe2 − Pe1Pe2 ≈ Pe1 + Pe2. (5.10)

We have simulated the probability Pe1 for the optimal and the suboptimal receivers.
Figure 5.4 shows the results for M = 2 and P = 5, Figure 5.5 shows the results for
M = 4 and P = 5. It can be seen that Pe1 of the suboptimal receiver is close to that
of the optimal receiver. This result holds for other values of M and P also. According
to the definition of Pe2, it is identical for the optimal and the suboptimal receivers.
By (5.10) the overall SER of the suboptimal receiver should be close to that of the
optimal receiver. Furthermore, the probability Pe2 has been plotted in Figure 5.4 and
Figure 5.5. It can be seen that Pe2 is much larger than Pe1 for the case of M = 4 and
P = 5. This result holds for all M greater than 2, i.e.

Pe2 ≫ Pe1, ∀M > 2. (5.11)

By (5.10) and (5.11) we draw the same conclusion as Section 5.2 that when M > 2
the symbol error rate is dominated by the probability of phase error Pe2. Since Pe2

is identical for the optimal and suboptimal receivers then the performance of them
should be almost the same when M > 2.
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Figure 5.4: Frequency error vs phase error (P=5, M=2)

In Figure 5.6 the performance of the suboptimal receiver is compared with that of
the optimal receiver for the case of BPSK MBK signals with P = 8, where the SER of
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Figure 5.5: Frequency error vs phase error (P=5, M=4)

the optimal receiver was obtained from (5.9). We can see although the performance
is slightly worse than the optimal receiver, the difference between them is quite small.
For instance, the optimal receiver is merely 0.5dB better than the suboptimal receiver
when SER is on the order of 10−4. Figure 5.7 shows similar results for the case
of QPSK and P = 8. In this case the suboptimal receiver almost has the same
performance as that of the optimal receiver.

The computational complexity of the suboptimal receiver is quantified by the
number of comparisons and additions per MBK symbol. These are both random
variables whose statistical properties vary greatly for different matrix sizes P and
different Eb/N0. As an example, in Figure 5.8 the mean and the standard deviation
of the number of comparisons are plotted vs Eb/N0. It can be seen that, when Eb/N0

is high the number of comparisons is almost a constant. As Eb/N0 declines the
mean and standard deviation both increase and approach an upper bound. The same
property hold for the number of additions.

In Figure 5.9 we present a comparison between the complexity of the optimal
receiver, which is constant, and the upper bound on the average complexity of the
suboptimal receiver. In both cases the number of additions and comparisons are
plotted vs the value of P . The value of Eb/N0 is fixed at −10dB for the purpose
of making the suboptimal receiver’s complexity close to its upper bound. It can be
seen that while the complexity of the optimal receiver increases as P ! , that of the
suboptimal receiver increases as P 2.
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5.5 Chapter Summary

In this chapter we describe the Maximum Likelihood receiver for Multiband Keying
modulation and evaluate the symbol error rate through approximation as well as
simulation. The results show that the approximation is very good specially in the
case of large signal to noise ratio. We also present a suboptimal ML detector and
compare its performance and complexity with that of the optimal ML detector. The
results show that while the complexity of the suboptimal detector is significantly
lower than that of the optimal detector, its performance in terms of symbol error rate
is very close to that of the optimal detector.
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CHAPTER 6. CONCLUSIONS

6.1 Channel Modeling in the Frequency Domain

Measurement results in wideband and ultra wideband wireless channels have revealed
that a low order AR model is adequate to model the uniformly spaced samples of the
CFR. An analytical approach has been presented in this dissertation offering a the-
oretical explanation to this observation. It is concluded that parametric channel
modeling in the frequency domain is possible if and only if the uniformly spaced CFR
samples are periodic WSS, which is equivalent to that the discrete CIR is periodic
uncorrelated. This condition can be satisfied in wideband and ultra wideband chan-
nels as long as the underlying continuous-time channel is WSSUS with independent
path gains and arrival times. Moreover, the power delay profile of the discrete CIR
is closely related to the PSD of the discrete CFR samples, and this has been used
to explain the existence of low order AR model. Theoretical results regarding para-
metric channel modeling in frequency domain have been verified through extensive
simulations.

Although the channel modeling approach in this dissertation is partially motivated
by the property of OFDM systems, it requires further investigation before being
applied to model the CFR in OFDM systems, since the aforementioned WSS-US
condition may not hold in this case. This is highlighted by Equation (1.7), where the
elements of CIR are correlated in theory, which violates the US condition. Therefore,
in this case, the parametric models discussed in this dissertation becomes less effective.
As a suggestion for future work, we propose extending the results in this dissertation
to OFDM channels with correlated CIRs (or equivalently non-WSS CFRs).

6.2 Resource Allocation in OFDM Systems

The problem of bit and power allocation in OFDM systems is formulated as a con-
strained minimization problem, where the overall transmit power is used as a cost
function and the data rate and BER are constraints. We have solved this problem
for the cases of perfect CSI and imperfect CSI.

In the signal user OFDM system with perfect CSI knowledge, it is concluded that
a close-to-optimal bit allocation (and subsequently power allocation) can be obtained
by quantizing the square of amplitude of the CFR. Consequently, a computation-
ally efficient bit and power allocation algorithm has been proposed. In addition,
the problem of resource allocation has also been considered for multi-user OFDM
systems, where a two-step approach involving subcarrier allocation and subsequent
bit-power allocation has been adopted. A heuristic algorithm has been proposed to
perform subcarrier allocation in the first step, whose effectiveness is verified through
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extensive simulation. We would like to notice that, although the proposed subcarrier
allocation algorithm is numerically more efficient than other known algorithms, there
is a noticeable loss of performance compared to optimal solutions. Further work is
needed to find a better tradeoff between performance and complexity for the problem
of subcarrier allocation.

In case of time-varying channels, the CSI available for bit and power allocation
is generally imperfect. The speed of channel variation is shown to have a connection
with the accuracy of the delayed CSI. Channel predictors based on Wiener filter and
Adaptive filters are used to reduced the error in CSI, whose effectiveness have been
tested in a Rayleigh fading channel. Furthermore, bit and power allocation schemes
assuming imperfect CSI have been discussed with different approaches. Simulation
results have confirmed that, in slowly time-varying Rayleigh channel, the proposed
bit and power allocation scheme is able to achieve a performance close to that of the
perfect CSI case with the aid of channel prediction.

6.3 ML Detection of Multiband Keying Signals

In the final part of this dissertation, the structure of optimal receiver and the asso-
ciated ML decision rules have been derived from analysis for the Multiband Keying
systems. It is concluded that, the ML decision is equivalent to find P elements with
different rows and columns from a P -by-P square matrix such that the sum of them
are the largest, in which P is the number of subpulses in every MBK symbol. An
exhaustive searching algorithm guarantees to find the optimal solution but has a pro-
hibitive complexity (O(P !)) for large P . Based on a depth-first tree search, we propose
a suboptimal approach with much lower complexity O(P 2). Simulation results have
shown that the proposed suboptimal approach has an excellent performance, which
is very close to that of the exhaustive searching approach.
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[59] G. Stüber, Principles of Mobile Communication, Kluwer Academic Publishers,
1996.

[60] S. Haykin, Adaptive Filter Theory, Fourth Edition, Prentice Hall, 2002.

[61] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, 2004.

[62] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1993.

[63] P. Stoica and R.L. Moses, Introduction to Spectral Analysis, Prentice Hall, Feb.,
1997.

[64] Robert G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, New Youk, 1968.

83



APPENDIX: LETTER OF PERMISSION

From: Jacqueline Hansson Date: 03/05/2007
Subject: Re: Request for Permission

Dear Xiang Gao:

This is in response to your letter below, in which you have requested permission
to reprint, in your upcoming thesis/dissertation, the described IEEE copyrighted
material. We are happy to grant this permission.

Our only requirement is that the following copyright/credit notice appears promi-
nently on the first page of the reprinted paper, with the appropriate details filled in:
c©[Year] IEEE. Reprinted, with permission, from (complete publication information).

It is our understanding that University Microfilms, Inc., may supply single copies
of the dissertation.

Sincerely yours,

Jacqueline Hansson
IEEE Intellectual Property Rights Office 445 Hoes Lane, Piscataway, NJ 08855
Telephone: +1 732-562-3966 Fax: +1 732-562 1746
w.hagen@ieee.org http://www.ieee.org/copyright
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=–=-=

Dear Sir or Madam,

This is Xiang Gao from Louisiana State University. I want to ask for your per-
mission to reprint the following article accepted by an IEEE journal:

Author(s) : Guoxiang Gu, Xiang Gao, Jianqiang He, Morteza Naraghi-Pour
Paper Title: Parametric Modeling of Wideband and Ultra Wideband Channels in

Frequency Domain
Journal Title: IEEE Transactions on Vehicular Technology

As one of the authors of this paper, I want to reprint the entire article as Chapter
2 in my dissertation with the tile ”Channel Modeling and Resource Allocation in
OFDM Systems”. The requested permission extends to any future revisions and
editions of my dissertation including non-exclusive world rights in all languages, and
to the prospective publication of my dissertation by the UMI Company. These rights
will in no way restrict republication of the material in any other form by IEEE or
by others authorized by IEEE. Your permission of this request will also confirm that
IEEE owns the copyright of the above-described material.

84



If these arrangements meet with your approval, please response this email no later
than Monday March 5th, 2007. Thank you for your cooperation.

Sincerely

Xiang Gao
Feb. 28, 2007

85



VITA

Xiang Gao was born in Jiangsu Province, China, on May 12, 1975. In July 1998
and July 2001, he received, respectively, the Bachelor of Science degree in Electrical
Engineering and the Master of Science degree in Electrical Engineering from Peking
University, Beijing, China. In August 2002, he entered the graduate program in the
Department of Electrical and Computer Engineering at Louisiana State University,
where he is currently a candidate for the degree of Doctor of Philosophy in electrical
engineering.

86


	Channel modeling and resource allocation in OFDM systems
	Recommended Citation

	tmp.1483830367.pdf.OUdNi

