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Channel Modeling for Diffusive Molecular

Communication – A Tutorial Review
Vahid Jamali, Student Member, IEEE, Arman Ahmadzadeh, Student Member, IEEE, Wayan Wicke, Student

Member, IEEE, Adam Noel, Member, IEEE, and Robert Schober, Fellow, IEEE

Abstract—Molecular communication (MC) is a new commu-
nication engineering paradigm where molecules are employed
as information carriers. MC systems are expected to enable new
revolutionary applications such as sensing of target substances in
biotechnology, smart drug delivery in medicine, and monitoring
of oil pipelines or chemical reactors in industrial settings. As for
any other kind of communication, simple yet sufficiently accurate
channel models are needed for the design, analysis, and efficient
operation of MC systems. In this paper, we provide a tutorial
review on mathematical channel modeling for diffusive MC sys-
tems. The considered end-to-end MC channel models incorporate
the effects of the release mechanism, the MC environment, and
the reception mechanism on the observed information molecules.
Thereby, the various existing models for the different components
of an MC system are presented under a common framework
and the underlying biological, chemical, and physical phenomena
are discussed. Deterministic models characterizing the expected
number of molecules observed at the receiver and statistical
models characterizing the actual number of observed molecules
are developed. In addition, we provide channel models for time-
varying MC systems with moving transmitters and receivers,
which are relevant for advanced applications such as smart
drug delivery with mobile nanomachines. For complex scenarios,
where simple MC channel models cannot be obtained from
first principles, we investigate simulation-driven and experiment-
driven channel models. Finally, we provide a detailed discussion
of potential challenges, open research problems, and future
directions in channel modeling for diffusive MC systems.

Index Terms—Molecular communications, diffusion, flow, re-
action, end-to-end CIR, statistical model, simulation-driven mo-
dels, and experiment-driven models.

I. INTRODUCTION

Wireless communication networks have permeated throug-

hout modern society, but existing systems are constrained

by where conventional radio frequency technologies can be

deployed. There are emerging applications where wireless

communication could be a vital component, but where con-

ventional implementations would be unsafe or impractical.

An alternative approach that has received increasing attention

within the communications research community over the last

decade is molecular communication (MC), where molecules are
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employed as the information carriers1. MC was first proposed

for the design of synthetic communication networks in [1].

The topic has received steady growth since the seminal survey

on nanonetworks in [2], which are networks of devices with

nanoscale functional components. MC is ubiquitous in natural

biological systems, which lends credibility to its potential

for biomedical applications such as targeting substances,

smart drug delivery, and designing lab-on-a-chip systems [3].

Furthermore, MC could be deployed in industrial settings,

including the monitoring of chemical reactors and nanoscale

manufacturing, or for larger activities such as monitoring the

emission of pollutants or the transport of oil [4]. A network of

nanomachines communicating with each other via MC can help

realize the Internet-of-BioNanothings and enable nanomachines

to perform complex tasks [5].

Motivated by natural MC systems, several different me-

chanisms have been considered for MC in the literature

including free diffusion [6]–[12], gap junctions [13]–[15],

molecular motors [16], and bacterial motors [17]; see Fig. 1.

In particular, diffusion is referred to as the random movement

of small particles suspended in a fluid medium as a result

of their collisions with other particles in the fluid. Diffusion

is one of the dominant propagation mechanisms in nature

including communication inside cells and between cells, e.g.,

in quorum sensing among bacteria and in the synaptic cleft

between neurons. Gap junctions enable another form of

communication between cells where the molecules pass through

small channels that connect the cytosols of neighboring cells.

Calcium signaling is an example of this form of MC that is

used by adjacent cells to regulate a large number of cellular

processes including fertilization, proliferation, and death of

mammalian cells [13], [18]. Molecular motors enable a form of

active transportation of large signaling molecules via a special

rail-like infrastructure, e.g., actin or microtubule filaments [19].

The motor moves along the rail by using repeated cycles of

coordinated binding and unbinding of its legs to the rail. This

type of MC is primarily used for intracellular communication

among organelles inside a cell [16]. Finally, bacterial motors

enable another kind of active transport where the bacteria can

pick up large signaling molecules, e.g., deoxyribonucleic acid

(DNA), and move in a specific direction, e.g., due to a food

concentration gradient, using their tiny propellers (known as

flagella) [17].

Diffusion-based MC, sometimes in combination with ad-

vection and chemical reaction networks (CRNs), has been the

1We note that, in this paper, we use the terms “molecule” and “particle”
interchangeably.
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Fig. 1. Bio-inspired mechanisms for MC between a transmitter (tx) and a receiver (rx); a) Free diffusion, b) gap junctions, c) molecular motors, and d)
bacterial motors.

prevalent approach considered in the literature thus far; see [3,

Table 4]. The main advantages of diffusion-based MC include

that, unlike gap junction-based MC, special infrastructure

is not needed, and unlike motor-based MC, external energy

for propagation of the signaling molecules is not required.

Moreover, the simplicity of diffusion makes it an attractive

propagation scheme, especially for ad hoc networks where

mobile nanorobots with limited computational resources form

a communication network among themselves and/or with living

cells in their close proximity. Hence, in this tutorial, we focus

on diffusion-based MC, where we also consider environments

with advection and CRNs.

A. Scope

The physics of diffusion and characterizing expected diffu-

sion in environments of different shapes have been extensively

studied in the physics, biology, and chemistry literature, cf.

e.g., [20], [21]. Thereby, the primary goal is to understand how

natural phenomena work, e.g., to understand the natural and

evolutionary MCs that exist within and among living organisms.

In contrast, in the emerging field of engineered MC, the aim

is to design, build, and control human-made MC systems

for a specific purpose2. To this end, the communications

research community has expanded the models obtained in

other disciplines to account for the behavior of the end-to-end

system, for the inclusion of non-diffusive phenomena that play

important roles in biophysical systems, and for the statistics

of molecular behavior.

Recent surveys, in particular [3], [23], have provided

excellent qualitative summaries of diffusive MC and included

some of the most common channel models available thus far.

A more complete mathematical treatment of diffusion-based

2Different options to build MC systems exist, e.g., to genetically modify
natural cells or to design fully-synthetic MC systems [22]. Therefore, an
engineered MC system may also include components that naturally developed
via evolution.

modeling of MC can be found in [24]. However, there have

been significant advances in channel modeling in the years

since the publication of [24], and also since the most recent

major survey of models in [3]. In particular, non-diffusive

effects that can be coupled with diffusion, such as advective

flow and chemical reaction kinetics, have been integrated in

many channel models to make them more practical and more

accurate.

Due to the rapid growth in channel models, it has become

difficult for an interested researcher to enter the MC field

and become familiar with the state-of-the-art in diffusion-

based channel modeling. It has also become more challenging

for practitioners in this field to stay up to date. The aim

of this tutorial review is to satisfy both audiences. We

present a detailed and rigorous mathematical development

of diffusive MC channel models. We seek to provide a

useful comprehensive reference on channel models that is

both approachable for an audience that is new to the field

and also convenient for active practitioners to assess and

select a model. To do so, we begin with a review of the

underlying fundamental laws that govern diffusive MC channels

and show how they are used in the literature to derive the

channel impulse responses (CIRs) of different MC systems.

In addition, we present different deterministic and statistical

models developed for the observation signal at the receiver.

We also discuss the complementary roles of simulations and

physical experiments to both support analytical modeling and

provide data-driven models when simple analytical models that

capture the underlying complex dynamics of the system cannot

be readily obtained.

B. Contributions

In this tutorial review, we make the following contributions:

1) By taking a mathematically rigorous approach, we first

provide a tutorial on the underlying phenomena from

biology, chemistry, and physics, and their effect on the
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components of MC systems. Specifically, we start with

Fick’s laws of diffusion and build towards the general

advection-reaction-diffusion equation. We discuss the

common assumptions and special cases that enable the

general equation to be solved for the CIR in closed form.

2) We review the major end-to-end channel models in the

diffusive MC literature including the effects of release

mechanisms, the physical channel, and reception mecha-

nisms. In particular, we include the relevant classical

models from the physical sciences literature, as well as a

comprehensive presentation of the models that have been

developed and the equations that have been derived within

the communications engineering community over the last

few years.

3) We present a unified definition for the observed signal at

a receiver. The unified definition encompasses both timing

and counting receivers and helps to better understand

the basic assumptions that have been made to arrive at

the well-known signal models used in the MC literature

and how they relate to each other. Then, we focus on

counting receivers and derive signal models relevant for

different time scales. We further generalize these models

to account for interfering noise molecules and inter-

symbol interference (ISI). Finally, we study the correlation

between the received signals observed at different time

scales.

4) We discuss the integral role of simulations and experi-

ments, in particular to gain insight from a data-driven

model when closed-form solutions for the CIR are not

readily available. We also describe how to implement

simple stochastic simulations as well as how to derive an

example data-driven model based on experimental data.

For clarity of presentation, the focus of the channel models

presented in this work is on a single communication link

between one transmitter and one receiver. Many of the

envisioned applications of diffusive MC systems will depend

on many links within a network of devices. While there have

been a number of relevant contributions that consider the

propagation of signals over multiple links, such as via relaying

and cooperative detection (cf. e.g., [25]–[29]), these models

can often be decomposed into a superposition of individual

links. In these cases, the analytical models developed in this

paper (cf. Sections III and IV) still apply to the individual

links. However, it is important to note that single-link analysis

cannot always be applied to multi-link systems. For example,

when other non-transparent entities (such as reactive receivers)

are present in the system and molecules can collide or react

with them, each of these entities will impact the signal received

at any receiver. In general, the impact of other reactive entities

on the received signal can be considered by modeling them via

additional boundary conditions. Then, the analytical channel

modeling methodologies presented in this paper can be used,

cf. Sections III and IV. Nevertheless, the resulting systems of

partial differential equations (PDEs) are typically too complex

to solve and hence, data-driven approaches have to be used

in practice, cf. Section V. For example, in [30], the CIR was

presented in closed form for the special case of having two

absorbing receivers placed on either side of a transmitter,

whereas in [31] a data-driven model was proposed for the

more general case of having multiple absorbing receivers at

arbitrary positions.

C. Organization

The rest of this tutorial review is organized as follows,

and also summarized in Table I to show how the content

of Sections II-V is connected. We review the fundamental

physical principles that govern diffusion-based MC systems

in Section II. In particular, we model diffusion, advection,

and chemical reactions, which leads to a general advection-

reaction-diffusion PDE to describe the spatio-temporal variation

in molecule concentrations.

In Section III, we discuss the components of MC systems and

their effect on the end-to-end CIR. Our definition of the end-

to-end channel includes the physical and chemical properties

of the transmitter and receiver, as well as the fluid medium

in which they are located. A table to summarize the reviewed

CIRs is also provided.

In Section IV, we present a unified definition for the diffusive

signal observed at the receiver. We focus on counting receivers

and derive deterministic and statistical signal models that are

valid for different time scales.

We discuss simulation- and experiment-driven models in

Section V. We describe the different physical scales for simu-

lating diffusion-based systems, summarize existing simulation

platforms for each scale, and discuss how to implement

simple stochastic simulations. Moreover, we review a selection

of experimental platforms and propose to employ either

physically-motivated parametric models or neural networks,

whose parameters are found using experimental data.

We end this tutorial review with a discussion of future

work and open challenges in Section VI before presenting our

conclusions in Section VII.

II. FUNDAMENTAL GOVERNING PHYSICAL PRINCIPLES IN

MC SYSTEMS

In this section, we review the fundamental laws that govern

the propagation of molecules. In particular, we mathematically

model the impact of diffusion, advection, and reaction on

the spatio-temporal distribution of molecules. This modeling

is essential for the development of channel models. A solid

understanding of these phenomena is needed to develop

intuition for molecule propagation in diffusive MC systems.

Furthermore, in Section III, we will use the mathematical tools

introduced in this section for the derivation of the CIR for

several different diffusive MC systems.

A. Free Diffusion

Molecules in a fluid environment, such as a liquid or a gas,

are affected by thermal vibrations and collisions with other

molecules. The resulting movement of the molecules is purely

random without any preferred direction and is referred to as

random walk or Brownian motion. Let di(t) = [x, y, z] denote
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TABLE I
ORGANIZATION AND CONTENT OF SECTIONS II-V AND THEIR CONNECTIONS.

Section II

Governing Physical Principles

Diffusion Advection Reaction

Reaction-
Advection-

Diffusion Eq.

Section III

End-to-End Channel Modeling

Transmitter Channel Receiver

Point Volume Diffusive Advective Degradative Passive Active

End-to-End

CIR

Section IV

Signal Modeling

Signal Type Three Scales Interference

Timing Counting Deterministic Statistical Time-Varying External ISI

Binomial Gaussian Poisson

Correlation

Sample CIR

Section V

Data-Driven Modeling

Simulation Experiment

Continuum Mesoscopic Microscopic
Molecular

Dynamics

Parametric

Model

Neural

Network
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a vector specifying the position of the i-th molecule in three-

dimensional (3D) Cartesian coordinates at time t. Thereby, the

random walk is modeled by [32, Eqs. (1.3) and (1.21)]

di(t+∆t) = di(t) +N (0, 2D∆t I) , (1)

where ∆t is the time step size and D in [m2s−1] is the diffusion

coefficient of the i-th molecule. Moreover, N (µ,Σ) denotes a

multivariate Gaussian random variable (RV) with mean vector

µ and covariance matrix Σ, 0 represents a vector whose

elements are all zeros, and I is the identity matrix. The diffusion

coefficient determines how fast the molecule moves. The larger

the diffusion coefficient, the larger the average displacement

of the molecule in a given time interval. The value of the

diffusion coefficient depends on the environment as well as

the shape and the size of the particle. For spherical particles

immersed in a fluid continuum, the diffusion coefficient can be

determined based on the Einstein relation [33, Chapter 5.2.1]

D =
kBT

6πηR
, (2)

where kB = 1.38× 10−23 JK−1 is the Boltzmann constant, T
is the temperature in kelvin, η is the (dynamic) viscosity of the

fluid (η = 10−3 kg m−1s−1 for water at 20 ◦C), and R is the

radius of the particle. Note that larger particles have a smaller

diffusion coefficient and are hence less affected by diffusion.

Remark 1: From [33, Chapter 5.2.1], the diffusion coefficient

can be determined from (2) as long as the surrounding liquid

can be modeled as a continuum. By experiment, this is an

accurate assumption if the particle size is at least five times

the size of the molecules of the liquid. For example, in water,

(2) is applicable for particles having a diameter larger than

1.5 nm. For small particles not satisfying this condition, the

diffusion coefficient tends to be larger than that predicted by

(2). Nevertheless, a general formula encompassing all physical

regimes does not exist. �

Remark 2: Besides the ideal free diffusion with constant

diffusion coefficient discussed above, there are also other

types of diffusion. For instance, in contrast to the typical

free diffusion where the mean squared displacement (MSD)

is linearly proportional to time, i.e., MSD ∝ D∆t, in

anomalous diffusion, the MSD follows a nonlinear relation,

i.e., MSD ∝ D∆tγ where γ 6= 1. Sub-diffusion occurs when

γ < 1 and can be used to model diffusion inside biological cells

where the presence of the organelles does not allow ideal free

diffusion to take place [34]. Super-diffusion occurs when γ > 1
and can be used to model active cellular transport processes

[35]. Moreover, in (1), we assumed the diffusion coefficient to

be constant. However, the diffusion coefficient may depend on

the local concentration of the molecules [33]. For the constant

diffusion coefficient assumption to hold, the temperature and

viscosity of the environment are assumed to be uniform and

constant and all solute molecules (dissolved molecules) are

assumed to be locally dilute everywhere, i.e., the number

of solute molecules is sufficiently small everywhere. These

assumptions allow us to ignore potential collisions between

solute molecules such that the diffusion coefficient does not

vary with the local concentration [8], [33]. We refer the readers

to [36] for the study of diffusion with non-constant diffusion

coefficients. Another example of a complex diffusion process

is the diffusion of protons in water. Here, the movement of

the protons is a combination of ideal free diffusion and the

so-called structural diffusion where protons hop from one water

molecule to the next. Nevertheless, it has been shown in [37]

that proton transport can be well approximated by free diffusion

with an effective diffusion coefficient. �

We let c(d, t) denote the concentration of the solute mole-

cules, i.e., the average number of solute molecules per unit

volume, at coordinate d and time t. The random movement of

molecules due to diffusion, described by (1), leads to variation

of c(d, t) across time and space that obeys Fick’s second law

of diffusion3

∂c(d, t)

∂t
= D∇2c(d, t), (3)

where ∇2 is the Laplace operator, e.g., ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

in Cartesian coordinates. The PDE in (3) can be solved for

simple initial conditions (ICs) and simple boundary conditions

(BCs). In the following, we consider a simple example, namely

diffusion in an unbounded 3D environment with an impulsive

point release, which has been the most widely studied case

in the MC literature due to its simplicity [3], [38]–[46]. In

the remainder of this paper, we denote the solutions of the

considered PDEs by c∗(d, t).
Example 1 (Diffusion in an Unbounded 3D Environment with

Impulsive Point Release): Consider a 3D diffusion process with

instantaneous release of N solute molecules from d0 at time

t0. To obtain c∗(d, t), we have to solve (3) with the following

initial and boundary conditions

IC1 : c(d0, t → t0) = Nδ (d− d0) (4)

BC1 : c(‖d‖ → ∞, t) = 0, (5)

where δ(d) = δ(x)δ(y)δ(z), and δ(·) is the Dirac delta

function. Solving (3) with IC1 and BC1 yields [32, Eq. (2.8)]

c∗(d, t) =
N

(4πD(t− t0))3/2
exp

(

−‖d− d0‖2
4D(t− t0)

)

. (6)

�

In Fig. 2, the molecule concentration c∗(d, t)
[
molecules/m3

]
in (6) is plotted versus time [µs] at

distance d = [d, 0, 0] with d ∈ {300, 400, 500} nm for an

initial release of N = 104 molecules with D = 4.5 × 10−10

m2/s from the origin d0 = [0, 0, 0] at time t0 = 0. From Fig. 2,

we observe that first c∗(d, t) increases with time, which is due

to the non-zero propagation time that the molecules need to

reach d, before it decreases since the molecules diffuse away.

Moreover, as distance increases, the peak of the concentration

decreases since the molecules are spread over a larger volume.

Furthermore, the time when the concentration peak occurs,

denoted by tp, increases with distance.

The assumption of an unbounded environment is accurate

when the actual boundaries of the system are far away from

the region of interest (i.e., from transmitter and receiver), such

that the impact of the boundaries on the diffusing molecules

3Fick’s first law of diffusion relates the diffusive flux, denoted by J(d, t),
to the concentration as J(d, t) = −D∇c(d, t).
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Fig. 2. Molecule concentration c∗(d, t)
[

molecules/m3
]

versus time [µs]
at distance d = [d, 0, 0] with d ∈ {300, 400, 500} nm for initial release
of N = 104 molecules with D = 4.5 × 10−10 m2/s from the origin
d0 = [0, 0, 0] at time t0 = 0.

can be neglected. In the following, we present an example

where the effect of the boundaries cannot be neglected.

Example 2 (Diffusion in an Unbounded Straight Duct with

Impulsive Release from Cross-Section): We assume a straight

duct4 channel with circular cross-section and for convenience,

we employ cylindrical coordinates, i.e., d = [ρ, ϕ, z] with

0 ≤ ρ ≤ ac, 0 ≤ ϕ ≤ 2π, −∞ < z < +∞, where ac denotes

the radius of the circular cross-section of the duct. We assume

that, at the time of release, t0, the molecules are uniformly

distributed across the cross-section at z = z0. Therefore, we

have the following initial and boundary conditions

IC2 : c(d0 = [ρ, ϕ, z], t → t0) =
N

πa2c
δ(z − z0) (7)

BC2 :
∂c(d, t)

∂ρ

∣
∣
∣
ρ=ac

= 0 (8)

BC3 : c(d = [ρ, ϕ, z → ±∞], t) = 0, (9)

where BC2 enforces the reflection of the molecules at the wall,

i.e., a fully reflective wall is assumed. Solving (3) with IC2,

BC2, and BC3 yields [47]

c∗(d, t)

=
N

πa2c
√

4πD(t− t0))
exp

(

− (z − z0)
2

4D(t− t0)

)

, ρ < ac.(10)

�

As can be seen from (10), c∗(d, t) does not depend on

variables ρ and ϕ due to the symmetry of the initial condition

and the environment with respect to ρ and ϕ. This model can

be used to characterize the propagation of molecules in blood

vessels as is necessary for drug delivery applications of MC

in the cardiovascular system [48]–[52].

4A duct is a pipe, tube, or channel which carries a liquid or gas.

B. Advection

Besides diffusion, advection is another fundamental mecha-

nism for solute particle transport in a fluid environment. In the

following, we first specify how mass transport by advection

affects a single solute particle. Subsequently, we distinguish

between two types of advection, namely drift and fluid flow,

and give the particle velocity vector for some example cases.

Moreover, we present the advection equation which describes

the change in molecule concentration due to advection. Finally,

we introduce the advection-diffusion equation, which captures

the joint impact of diffusion and advection, and characterize

the relative importance of diffusion and advection.

In general, transport by advection can be described by a

velocity vector v(d, t) which generally may depend on position

d and time t. When considering the movement of the i-th
particle at position di due to advection, its position at time

t+∆t can be modeled by

di(t+∆t) = di(t) + v(di(t), t)∆t, (11)

where ∆t should be small enough such that the velocity vector

is constant between di(t) and di(t +∆t). Next, we discuss

what may cause the velocity vector v(d, t) and what form it

may take.

1) Velocity Vector Field: Transport by advection can be

mediated by different physical mechanisms which we categorize

as force-induced drift and bulk flow [53], [54].

Force-Induced Drift: Advection can be caused by external

forces acting on the particles but not on the fluid containing

the particles. An external force can be modeled by force vector

F(d, t) which describes the force on a particle at position

d at time t. These external forces can be electrical, e.g., if

the particles are ions, or magnetic, e.g., if the particles are

magnetic nanoparticles, or gravitational, e.g., if the particles

have sufficient mass, or a combination of forces [54], [55].

When the force is not too large, the velocity vector can be

determined from the corresponding force by Stokes’ law via

[56, Eq. (2.65)]

v(d, t) =
F(d, t)

ζ
, (12)

where ζ is a proportionality constant referred to as the friction

coefficient. The friction coefficient can be related to the

diffusion coefficient via ζD = kBT . In other words, using

(2), we obtain ζ = 6πηR. Force F(d, t) may vary with time

(e.g., for ions if the electric field changes over time) and space

(e.g., for magnetic nanoparticles, the magnetic force generally

decreases rapidly with increasing distance from the magnet)

[54], [55].

Bulk Flow: If the particle movement is induced by the

movement of the fluid, then the resulting transport by advection

is referred to as flow. Flow can be encountered in many MC

environments such as blood vessels and microfluidic channels

[57]. In MC, we typically have dilute particle suspensions,

where the flow velocity v(d, t) is independent from the particle

concentration. Thereby, the velocity vector will depend on space

if there are boundaries or obstacles in the environment, e.g., in

a duct, the flow velocity is typically largest in the center and

smallest at the boundary where the fluid is subject to friction.
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The flow may also depend on time, e.g., in a blood vessel the

flow is generated by the periodic contractions of the heart.

Remark 3: Although both flow and external force cause the

particles to drift, which can be modeled by (11), they may

require quite different considerations. For instance, any object

in the environment influences the velocity vector caused by

bulk flow since the flow may not be able to penetrate the object

and has to go around the object. On the other hand, the drift

velocity vector caused by an external force is not necessarily

influenced by objects in the environment. �

Flow can be also categorized into two classes, namely

turbulent and laminar flow. In particular, when the variations

of the flow velocity, over space and/or time, are stochastic,

e.g., due to rough surfaces and high flow velocities [58], we

refer to the flow as turbulent. If the flow is not turbulent, it

is referred to as laminar. For flow in a bounded environment

of effective length deff and with an effective velocity of veff ,

the Reynolds number can be used as a criterion for predicting

laminar or turbulent flow and is given by [58, Eq. (1.24)]

Re =
deff · veff

ν
, (13)

where ν is the kinematic viscosity [m2/s] of the fluid5. For

example, for flow in a straight pipe with circular cross-section

of radius ac, the flow can be assumed to be laminar and

turbulent for Re ≪ 2100 and Re ≫ 2100, respectively, where

deff = ac [58]. For microfluidic settings, typically Re ≪ 10
and hence laminar flow can be assumed [56]. For most blood

vessels, Re < 500 holds and hence the blood flow is typically

laminar [59], [60]. Only in large arteries such as the aorta (the

largest artery in the human body), the Reynolds number can

be in the range [3400, 4500] and thereby blood flow exhibits

turbulent behavior [60].

Generally, for a given environment, the flow velocity vector

v(d, t) as a function of space and time can be determined by

solving the so-called Navier-Stokes equation with appropriate

boundary conditions, see e.g. [56, Eq. (5.22)]. Let us review

two special cases of v(d, t), which have been widely studied

in the MC literature [3], [44], [53], [61], [62] and are also

considered in Section III.

Example 3 (Uniform and/or Constant Advection): For

uniform advection, the velocity vector is constant across space

but can be time-dependent, i.e., v(d, t) = v(t) [62]. For

advection by flow in an unbounded environment, uniform flow

solves the Navier-Stokes equation and hence can be physically

plausible. Moreover, for advection by drift, uniform drift is

applicable when the corresponding force vector does not depend

on space, see (12). As a special case, the velocity vector may

be constant across both space and time, i.e., v(d, t) = v. Due

to its simplicity, advection with constant velocity is the most

widely-studied advection model in the MC literature [3], [44],

[53]. �

Example 4 (Steady Flow in an Infinite Straight Duct with

Circular Cross-Section): For this example, we concentrate

on advection by fluid flow because force-induced drift is

completely specified by (12). In particular, in this case, the

5Kinematic viscosity ν is related to (dynamic) viscosity η according to
ν = η/ρd where ρd [kg m−3] is the fluid density.

flow velocity vector in cylindrical coordinates [ρ, ϕ, z] can be

obtained as [58, Eq. (4.134)]

v(ρ) =

[

0, 0, v0

(

1− ρ2

a2c

)]

, 0 ≤ ρ ≤ ac, (14)

where v0 is the center velocity. The flow described in (14)

is laminar and can be interpreted as follows. For a given ρ,

the flow velocity in (14) is constant but increases from the

boundary where v(ac) = [0, 0, 0] towards the center where

v(0) = [0, 0, v0], i.e., for each ρ, we can think of a circular

layer within the duct that slides along its neighboring layers

with a constant velocity. The velocity vector in (14) is known

as the Poiseuille flow profile and is a common model for the

flow in blood capillaries [61]. �

While for other environments and boundary conditions the

velocity vector can still in principle be obtained from the Navier-

Stokes equation, it is often not possible to do so analytically.

In these cases, the Navier-Stokes equation can be solved by

numerical algorithms that are well-established in computational

fluid dynamics [58].

2) Advection Equation: Given v(d, t), the change in con-

centration with respect to time due to advective transport is

modeled by the following PDE, which is referred to as the

advection equation or continuity equation [56, Eq. (4.14)]

∂c(d, t)

∂t
= −∇ · (v(d, t)c(d, t)) , (15)

where ∇ = [ ∂
∂x ,

∂
∂y ,

∂
∂z ] denotes the gradient operator and x ·y

denotes the inner product of two vectors x and y. In general,

(15) cannot be readily solved for a given velocity vector and

numerical methods have to be employed [63]. Nevertheless, for

the velocity vectors in Examples 3 and 4, (15) can be solved

as shown in the following.

Example 5: Assuming initial condition c(d, 0) at t = 0, the

advection equation (15) has the following solution for t > 0

c∗(d, t)

=







c

(

d−
∫ t

0

v(τ) dτ, 0

)

, Uniform Flow

c (d− vt, 0) , Constant Uniform Flow

c (d− v(ρ)t, 0) , Poiseuille Flow.

(16)

�

We note that while the solutions in (16) appear similar,

they are actually fundamentally different. In particular, for

constant uniform flow and uniform flow (space-independent

flow profiles), the initial concentration is simply translated to

a different position without changing its shape. However, for

Poiseuille flow (space-dependent flow profile), the concentra-

tion generally spreads in space over time depending on the

initial concentration.

3) Advection-Diffusion Equation: In many application scena-

rios, such as drug delivery via the capillary networks [48]–[52],

advection and diffusion are both present in the MC environment.

Thereby, the combined effect of both advection and diffusion

is characterized by the following PDE known as the advection-

diffusion equation

∂c(d, t)

∂t
= D∇2c(d, t)−∇ · (v(d, t)c(d, t)) . (17)
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Fig. 3. Molecule concentration c∗(d, t) [molecules/m3] versus time [µs] at
d = [400, 0, 0] nm for initial release of N = 104 molecules with D = 4.5×
10−10 m2/s from d0 = [0, 0, 0] at t0 = 0, and flow velocity v = [v, 0, 0]
with v ∈ {0, 2, 5} × 10−3 m/s.

Similar to diffusion equation (3), (17) cannot be solved

analytically for general velocity vectors v(d, t) and general

boundary and initial conditions. In the following, we first

provide the solution of (17) for constant uniform flow in an

unbounded environment. Subsequently, we quantify the relative

impact of diffusion over advection by introducing the notions

of Péclet number and dispersion factor.

Example 6: Consider an unbounded 3D environment with

instantaneous release of N solute molecules at d0 at time

t0. Solving (17) with initial condition IC1 in (4), boundary

condition BC1 in (5), and constant uniform velocity vector v

yields [44, Eq. (18)]

c∗(d, t) =
N

(4πD(t− t0))3/2

× exp

(

−‖d− (t− t0)v − d0‖2
4D(t− t0)

)

, t > t0.(18)

�

In Fig. 3, we show molecule concentration c∗(d, t)
[molecules/m3] in (18) versus time [µs] at d = [400, 0, 0] nm

for initial release of N = 104 molecules with D = 4.5×10−10

m2/s from d0 = [0, 0, 0] at t0 = 0, and flow velocity vector

v = [v, 0, 0] with v ∈ {0, 2, 5} × 10−3 m/s. From Fig. 3, we

observe that as the flow velocity increases, the concentration

peak increases and tp decreases. This is mainly due to the fact

that the flow is in the same direction as the point where the

concentration is measured, i.e., parallel flow is considered.

Parallel flow can considerably enhance the coverage of a

diffusion-based MC system, e.g., in blood vessels. Moreover,

by increasing v, the tail of c∗(d, t) over time is decreased,

which is useful for ISI reduction in MC systems [44], [64].

Relative Importance of Advection over Diffusion for Mo-

lecule Transport: Advection and diffusion can both displace

and transport molecules, albeit in different ways. An important

question is under what conditions is one more effective than

the other. The Péclet number, denoted by Pe, can be used to

answer this question. Let us assume a velocity vector with

strength v and transport over a distance dc which is referred

to as the characteristic length. The Péclet number quantifies

the ratio of time required for particles to be transported by

diffusion over distance dc (which is proportional to d2c/D) with

the time required for particles to be transported by advection

over distance dc (given by dc/v). This ratio is given by [56,

Eq. (4.44)]

Pe =
d2
c

D
dc

v

=
v · dc
D

. (19)

Note that Pe is a dimensionless number. If Pe ≪ 1 holds,

diffusion dominates advection and the spreading of molecules is

almost isotropic despite a weak biased transport in the direction

of the flow. In this case, the solution of the diffusion equation

(3) provides an accurate estimate of the molecule concentration.

On the other hand, if Pe ≫ 1 holds, advection dominates

diffusion and is the main cause for molecule transport. In this

case, the advection equation (15) can be solved to obtain an

accurate estimate of the molecule concentration. Finally, for

Pe ≈ 1, molecule transport is sensitive to both diffusion and

advection and the advection-diffusion equation in (17) should

be solved.

Relative Importance of Advection over Diffusion for

Dispersion: Let us consider a straight duct with a circular

cross-section, see Examples 2 and 4, where advection is the

main transport mechanism along the duct. In other words,

Pez , veffdz

D ≫ 1 holds where Pez denotes the Péclet number

for transport along the z-axis, veff = v0/2 is the effective

flow velocity in the duct (see (14)), and dz is the desired

transport length along the z-axis. In this case, we are interested

in studying the dispersion (spatial spreading) of individual

particles across the cross-section over the time when transport

along the z-axis occurs. In particular, one may distinguish

between the following two extreme regimes, namely the non-

dispersive and dispersive regimes:

i) Non-dispersive regime: Here, particles do not considerably

diffuse across the cross-section while being transported by

advection. Therefore, each particle is simply transported along

the z-axis by advection with a velocity strength that depends

on the radial position of the particle, ρ, according to (14).

We note that although the dispersion of individual particles is

negligible in this regime, the shape of the concentration profile

varies over time since the flow has a different effect at different

radial positions, i.e., particles closer to the center of the duct

travel faster.

ii) Dispersive regime: In the dispersive regime, particles fully

diffuse across the cross-section while also being transported

along the z-axis by advection. In addition to the dispersion

across the cross-section, there is also dispersion along the z-

axis, due to the combined impact of diffusion and advection

with space-dependent flow profile (14).

In the following, we mathematically quantify the dispersive

and non-dispersive regimes in terms of system parameters,

i.e., veff , D, dz , and ac. We choose the characteristic length

dc as the distance over which the velocity vector changes
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(usually a fraction of ac). Moreover, we define d̄z , dz/dc
as the corresponding dimensionless normalized distance with

respect to characteristic distance dc. Then, we can compare

the characteristic time required for particles to be transported

by advection over distance dz (given by dz/veff ) with the time

required for diffusion over distance dc (which is proportional

to d2c/D). To compare these two time scales, we can define a

dispersion factor αd as

αd =

dz

veff

d2
c

D

=
Ddz
veffd2c

=
d̄2z
Pez

. (20)

Here, αd ≪ 1 signifies that there is not enough time

for particles to diffuse across the cross-section while being

transported by advection over distance dz , i.e., we are in the

non-dispersive regime. On the other hand, for αd ≫ 1, diffusion

causes considerable dispersion across the cross-section, which

in turn causes significant dispersion along the z-axis due to

space-dependent flow velocity (14), i.e., we are in the dispersive

regime. In other words, in terms of the Péclet number Pez , we

have non-dispersive and dispersive regimes if Pez ≫ d̄2z and

Pez ≪ d̄2z hold, respectively.

Fig. 4 illustrates different dispersion regimes for a 3D straight

duct. For clarity of presentation, we only show those particles

for which the x-component of their position lies in interval

[−0.1ac, 0.1ac]. As can be seen from Fig. 4, for αd = 0.1,

the positions of the particles simply follow the velocity profile

in (14) whereas for αd = 10, the particles are significantly

dispersed in the environment.

C. Chemical Reactions

Another important phenomenon affecting the propagation

of signaling molecules in diffusive MC systems is chemical

reactions. On the one hand, chemical reactions may occur

naturally in MC environments and their impact must be taken

into account for communication design. On the other hand,

chemical reactions have been exploited in the MC literature to

achieve certain objectives, such as ISI reduction [43], [44], [65],

[66] and ligand-based reception modeling [67], [68]. Therefore,

in the following, we first review general chemical reactions, the

corresponding reaction equations, and examples of reactions

widely considered in the MC literature. Subsequently, we study

the joint impact of all three phenomena discussed in this section,

namely diffusion, advection, and reaction, on the propagation of

the molecules and solve the corresponding advection-reaction-

diffusion equation for a simple example.

1) Reaction Equation: Consider a general reaction of the

form [69, Eq. (13)]

∑

I∈I

nII
κ→
∑

J∈J

nJJ, (21)

where I ∈ I are reactant molecules, I is the set of reactant

molecules, J ∈ J are product molecules, J is the set

of product molecules, nI and nJ are non-negative integers,

and κ is the reaction rate constant. Let cI(d, t) and cJ(d, t)
denote the concentration of type-I and type-J molecules at

coordinate d and time t, respectively. Reactions locally change

 

 

 

 

 

 

dz

ac

t = d
z

v0

t = 0

c) αd = 10

y
[µ

m
]

z [µm]

t = d
z

v0

t = 0

b) αd = 1

y
[µ

m
]

t = d
z

v0

t = 0

a) αd = 0.1

y
[µ

m
]

−10 0 10 20 30 40 50 60

−10 0 10 20 30 40 50 60

−10 0 10 20 30 40 50 60

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

Fig. 4. Illustration of different dispersion regimes in a 3D straight duct with
reflective walls, D = 10−11m2/s, ac = 10µm, dc = 0.1ac, dz = 50µm,
the flow velocity profile in (14), and v0 = 10−2, 10−3, 10−4m/s which leads
to αd = 0.1, 1, 10, respectively. For clarity of presentation, we only show
particles whose x-component of the position lies in interval [−0.1ac, 0.1ac].
The particles are initially placed at z = 0 and uniformly distributed in a
disk with radius 5 µm centered at (x, y) = (0, 0). The solid horizontal lines
represent the duct walls, the dashed vertical lines denote the initial positions
of the particles on the z-axis, and the dotted vertical lines denote the distance
of interest on the z-axis, i.e., dz .

the concentration of particles over time which is described by

the following PDEs, known as reaction equations

∂cI(d, t)

∂t
= −nIf(κ, cI , ∀I ∈ I), ∀I ∈ I (22a)

∂cJ(d, t)

∂t
= nJf(κ, cI , ∀I ∈ I), ∀J ∈ J , (22b)

where f(κ, cI , ∀I ∈ I) denotes the reaction rate function,

which depends on the reaction rate constant and the concen-

trations of the reactant molecules. The reaction rate function

has the following general form, known as the rate law [70, Eq.

(9.2)]

f(κ, cI , ∀I ∈ I) = κ
∏

I∈I

cεII (d, t), (23)

where εI is the order of the reaction with respect to type-I
reactant molecules and typically takes an integer value (but in

principle may also assume real values). The overall reaction

order is defined as
∑

I∈I εI [47], [70]. Note that the units of

reaction rate function f(κ, cA, cB) and reaction rate constant

κ are molecule
s·m3 and 1

s

(
molecule

m3

)1−
∑

I∈I
εI

, respectively.

In the following, we present three important classes of reacti-

ons, namely unimolecular degradation, bimolecular reactions,

and enzymatic reactions, which can all play important roles in

MC systems [44], [65], [71]–[73]. In particular, degradation



10

is a natural characteristic of some types of molecules and

its effect has to be accounted for in communication design,

see Section III-D and [44], [71]. Bimolecular reactions can be

used to analayze ligand-receptor binding [67], [68] and reactive

signaling [66], [74]. Enzymatic reactions have been studied in

the MC literature for the purpose of ISI reduction [65], [73].

Example 7 (Unimolecular Degradation): This reaction is

used to describe the degradation of a desired type of molecule,

e.g., type A, into a new type of molecule, denoted by φ,

which is of no interest for the considered communications. In

fact, unimolecular degradation is often used as a first-order

approximation of more complex reactions such as bimolecular

and enzymatic reactions, see Examples 8 and 9. Unimolecular

degradation is modeled by [70, Ch. 9]

A
κ→ φ, (24)

where κ [ 1
s

(
molecule

m3

)1−εA
] is the reaction rate constant,

f(κ, cA) = κcεAA (d, t) is the reaction rate function, and εA is

the reaction order. In the MC literature, first-order reactions are

used to model degradation, i.e., εA = 1 [44], [71]. However,

depending on the speed of reaction, higher and lower order

reactions may be relevant, e.g., zero-order (εA = 0) or second-

order (Type-I) (εA = 2) reactions [70, Ch. 9]. Assuming an

initial condition cA(d, t0) at t0, (22) has the following solution

for t > t0

c∗A(d, t) =







[cA(d, t0)− κ(t− t0)]
+, if εA = 0

cA(d, t0) exp(−κ(t− t0)), if εA = 1

1/ (κ(t− t0) + 1/cA(d, t0)) , if εA = 2,

(25)

where [x]+ = max{0, x}. Note that the speed of molecule

concentration decay is hyperbolic for second-order degrada-

tions, which is faster than the exponential decay for first-

order degradations, which in turn is faster than the linear

decay for zero-order degradations. Nevertheless, for sufficiently

large t, c∗A(d, t) for second-order degradations is larger than

that for first-order degradations, whereas c∗A(d, t) = 0, t ≥
t0 +

cA(d,t0)
κ , holds for zero-order degradations. �

Example 8 (Bimolecular Reactions): Some reactions may

involve the interaction of two reactant chemical species, e.g., A
and B, to produce product molecule(s), e.g., C. For instance, in

[67], the activation of ligand receptors via signaling molecules

was modeled by a second-order bimolecular reaction. Moreover,

in [66] and [74], acids and bases were used as reactive signaling

molecules to reduce ISI. Acids and bases cancel each other

out to produce salt and water. This process is modeled by a

second-order bimolecular reaction. In particular, the second-

order (Type-II) bimolecular reaction is given by [75]

A+B
κf

⇋
κb

C, (26)

where κf is the forward reaction rate constant
[

m3

s·molecule

]
, κb[

1
s

]
is the backward reaction rate constant, and f(κ, cA, cB) =

κfcA(d, t)cB(d, t) is the reaction rate function. The PDEs

corresponding to (26) are nonlinear and challenging to solve.

However, after introducing some approximations, in Section III,

we use (26) to derive the CIRs of MC systems affected by

bimolecular reactions. Moreover, let us assume κb → 0 and that

the concentration of type-B molecules is sufficiently large such

that the reaction in (26) does not considerably change cB(d, t)
over time, i.e., cB(d, t) ≈ cB(d, t = 0) , cB(d). In this case,

the bimolecular reaction in (26) can be approximated by the

first-order unimolecular reaction in (24) with κ = κfcB(d)
[67]. �

Example 9 (Enzymatic Reactions): For typical scenarios, the

speed of natural degradation might be too slow compared to the

desired time scale of communication. In this case, enzymes can

be used to accelerate the reaction process. Enzymes, denoted

by E, are specific proteins that bind to the desired molecule

A (also referred to as the substrate), and lower the activation

energy needed for a reaction to occur. Enzymatic degradations

are modeled by the following reactions [65, Eq. (1)]

A+ E
κf

⇋
κb

AE
κd→ E + φ, (27)

where AE is an intermediate chemical species and φ is the

product molecule. Moreover, κf

[
m3

s·molecule

]
, κb

[
1
s

]
, and κd

[
1
s

]

denote the reaction rate constants of the forward, backward6,

and degradation reactions, respectively. As can be seen from

(27), the enzyme molecules are not consumed in the reaction

process. The following set of PDEs, known as Michaelis-

Menten kinetics, describe the evolution of the concentrations

of the participating molecules

∂cA(d, t)

∂t
= −κfcA(d, t)cE(d, t) + κbcAE(d, t) (28a)

∂cE(d, t)

∂t
= −κfcA(d, t)cE(d, t) + (κb + κd)cAE(d, t) (28b)

∂cAE(d, t)

∂t
= κfcA(d, t)cE(d, t)− (κb + κd)cAE(d, t). (28c)

Solving the above system of coupled and nonlinear PDEs is

challenging. Let us consider very fast degradation reactions,

i.e., κd → ∞, slow backward reactions, i.e., κb → 0, and

that the concentration of enzyme molecules is much larger

than the concentration of type-A molecules. In this case, the

formation of intermediate AE molecules does not last long and

hence, we obtain cE(d, t) ≈ cE(d, t = 0) , cE(d). In [65],

it was shown that under the aforementioned assumptions, the

enzymatic reaction in (27) can be approximated by the first-

order unimolecular reaction in (24) with reaction rate constant

κ =
κfκd

κb+κd
cE(d) ≈ κfcE(d). �

2) Advection-Reaction-Diffusion Equation: Next, we con-

sider the joint effects of diffusion, drift, and reactions. For

simplicity, we focus on a single molecule type and drop the

corresponding subscript. In this case, the general advection-

reaction-diffusion equation is given by the following PDE [32],

[76]

∂c(d, t)

∂t
=D∇2c(d, t)

−∇ · (v(d, t)c(d, t)) + qf (κ, c(d, t)) , (29)

where q = 1 and q = −1 hold if the considered molecule

is the product and the reactant of the reaction, respectively.

Solving (29) for general initial and boundary conditions is

6The forward and backward reaction rate constants are also referred to as
binding and unbinding reaction rate constants, respectively.
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Fig. 5. Molecule concentration c∗(d, t) [molecules/m3] versus time [µs]
at d = [400, 0, 0] nm for an initial release of N = 104 molecules from
d0 = [0, 0, 0] and at t0 = 0, D = 4.5 × 10−10 m2/s, flow velocity
v = [10−3, 0, 0] m/s, and κ ∈ {0, 1, 2} × 104 1/s.

again difficult for most practical MC environments. Hence, in

the following, we make some simplifying assumptions that

enable us to solve (29) in closed form for one example scenario

[65].

Example 10: Let us assume the impulsive release of N
molecules at time t0 by a point source located at d0 into an

unbounded 3D environment, i.e., initial condition IC1 in (4)

and boundary condition BC1 in (5) hold. Moreover, we assume

uniform flow v(d, t) = v and the first-order degradation

reaction in (24), i.e., q = −1 and f (κ, c(d, t)) = κc(d, t).
Based on these assumptions, (29) has the following closed-

form solution [77], [78]

c∗(d, t) =
N

(4πD(t− t0))
3/2

× exp

(

−κ(t− t0)−
‖d− (t− t0)v − d0‖2

4D(t− t0)

)

, t > t0.(30)

�

In Fig. 5, the molecule concentration c∗(d, t) [molecules/m3]

is shown versus time [µs] at d = [400, 0, 0] nm for an initial

release of N = 104 molecules from d0 = [0, 0, 0] and at t0 =
0, D = 4.5× 10−10 m2/s, flow velocity v = [10−3, 0, 0] m/s,

and κ ∈ {0, 1, 2} × 104 1/s. This figure shows that as the

degradation rate constant increases, the concentration peak

decreases, which is not desirable for an MC system, in general.

However, the tail of the concentration for large t fades away

much faster for larger degradation rates, which was exploited

for ISI reduction in [65].

III. COMPONENT MODELING

In this section, we review the existing component models

for the transmitter, receiver, and physical channel of diffusive

MC systems. To this end, in Section III-A, we first define

the end-to-end CIR of single-link diffusive MC systems, and

discuss the relevant mechanisms of each component and their

impact on the end-to-end CIR. We use the CIR to characterize

the components of MC systems, since the impulse response

fully characterizes the behavior of linear systems, and linearity

is commonly assumed in the MC literature7. Subsequently, in

Sections III-B, III-C, and III-D, we review the existing models

that have been developed by taking into account the impact of

the receiver, transmitter, and physical channel on the end-to-

end CIR, respectively. Finally, in Section III-E, we provide a

summary table of all reviewed end-to-end CIR models.

A. Channel Impulse Response

In this subsection, we first briefly discuss the relevant me-

chanisms that characterize the functionalities of the transmitter

and receiver, and the phenomena and impairments that occur

in the physical channel of diffusive MC systems. Then, we

provide a formal definition of what we refer to as the end-to-

end channel of diffusive MC systems and we show how the

CIR corresponding to the end-to-end channel can be obtained

using the tools introduced in Section II.

Similar to traditional communication systems, the end-to-end

chain of diffusive MC systems consists of three components,

namely the transmitter, the physical channel, and the receiver;

see Fig. 6. Each of these components has unique features and

responsibilities, which are outlined below; see also Fig. 7.

• Transmitter: The transmitter is responsible for the en-

coding and modulation of information bits. In MC, the

information is typically encoded in the number, type, or

time of release of signaling molecules. Furthermore, the

transmitter has to generate the signaling molecules (e.g. by

CRNs inside the transmitter), store the signaling molecules

(e.g. in vesicles), and control their release into the physical

channel.

• Physical Channel: The physical channel is the envi-

ronment in which the signaling molecules move and

propagate once they leave the transmitter. In diffusive

MC systems, the movement of signaling molecules, at its

most basic level, is described by the diffusion process.

However, during the course of diffusion, the random

walk of signaling molecules may be affected by several

other factors and noise sources such as advection, CRNs

degrading the signaling molecules, environment geometry,

and obstacles inside the physical channel, see Section II.

• Receiver: Signaling particles that reach the vicinity of the

receiver can be observed and processed by the receiver to

extract the information that is necessary for performing

detection and decoding. The reception mechanism of

the receiver may include the following functionalities,

depending on its structure: i) external sensory units for

detecting the presence of signaling molecules, membrane

receptors of cells in nature, or sensing component(s)

of macro-scale receivers such as the alcohol sensor in

7Linear models of MC systems provide first-order approximations of the
behavior of these systems and enable further investigation and analysis.
Capturing the nonlinear dynamics of complex MC systems can be achieved
typically only via simulation or direct experimentation, cf. Section V, which
may not provide much insight for system design.
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Fig. 6. Schematic presentation of the end-to-end chain of communication in typical diffusive MC systems.

Fig. 7. Example of a physical system model including a transmitter, physical channel, and receiver.

[64] and the magnetic coils of the susceptometer in

[79]; ii) internal relaying and interface components to

convey and convert the measurements of the sensory unit

into quantitites suitable for detection and decoding of

the information bits. For instance, in nature, this task is

performed by the CRNs inside cells, which are referred

to as downstream signaling pathways [18]. Downstream

signaling pathways may be driven by activated receptors

or directly by signaling molecules that passively enter the

cells.

In the following, we formally define the end-to-end channel

to study the reviewed CIR models in a unified manner.

Definition 1 (End-to-end Channel): We define the end-to-

end channel as the effective channel that not only includes

the physical channel but also the impact of the physical and

chemical properties of the transmitter and receiver, including the

effects of signaling molecule generation, release mechanisms,

sensory units, and internal receiver components. �

Note that our definition of the end-to-end channel does

not include the coding, modulation, detection, and decoding

operations that the transmitter and receiver may perform;

see also Fig. 6. This definition of the end-to-end channel

is analogous to that in traditional wireless communication

systems, where the antennas, power amplifiers, and filters of

the transmitter and receiver are also included in the model for

the wireless end-to-end channel. The input to the end-to-end

channel is the signal representing the modulated information

symbol, which we also refer to as the stimulation signal. The

stimulation signal can be an electrical (voltage or current),

magnetic, mechanical, optical, chemical, or temperature signal.

The output of the end-to-end channel is referred to as the

observed signal and should be in a form that is suitable for the

subsequent detection and decoding operations. Depending on

the structure of the receiver, the observed signal can be either

a number of output molecules or any secondary signal derived

from the output molecules. In particular, output molecules may

represent: i) signaling molecules that can passively enter the

receiver; ii) absorbed molecules that hit the receiver surface;

or iii) activated receptors. Furthermore, the secondary signal

derived from output molecules may be an electrical signal,

e.g., the output voltage or output current of the alcohol sensor

in [64]. In the following, for the definition of the CIR of the

end-to-end channel, we emphasize that we consider the number

of output molecules as the observed signal, as it is commonly

assumed in the MC literature, although our definition can be

easily extended to other forms of the observed signal.

Definition 2 (Channel Impulse Response): We define the

CIR of the end-to-end channel, denoted by h(t), as the

probability of observation of one output molecule at time t at

the receiver when the transmitter is stimulated in an impulsive

manner at time t0 = 0. �

We note that defining the CIR as a probability has several

advantages. In particular, it facilitates the definition of the

received signal in Section IV. There, we propose a general

received signal model that takes into account both the arrival

time and the numbers of observed output molecules. As is

shown in Section IV, both of these quantities can be readily

obtained from the probability of observation of one output

molecule.

In our definition of the CIR, the quantitative meaning of

the term observation depends on the type of receiver and is

defined for each considered receiver model in detail in the

next subsection, e.g., for passive receivers the observed signal

is defined as the number of signaling molecules inside the

receiver, while for reactive receivers it is defined as the number

of activated receptor molecules. Furthermore, we assume that

the transmitter stimulation is an impulsive input that either

controls the opening and closing of the signaling molecule

reservoir or drives the CRNs inside the transmitter responsible

for the generation of the signaling molecules.
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In this section, we assume that the parameters of the

considered MC system are constant, i.e., the end-to-end CIR

h(t) is time-invariant. In the following, we refer to the signaling

molecules as A molecules. The following phenomena may

affect the propagation of the A molecules, and as a result,

h(t):

1) Particle generation: Generation of the A molecules is

performed, e.g., by the CRNs inside the transmitter.

2) Release mechanism: The release mechanism can be

chemical, electrical, or mechanical and controls the release

of the A molecules into the physical channel.

3) Diffusion: Diffusion refers to the propagation of molecu-

les by Brownian motion.

4) Degradation and production: CRNs may degrade or

produce A molecules in the physical channel.

5) Advection: Advection may affect the transportation of

the A molecules in the physical channel.

6) Geometry: Potentially, the geometry of the individual

components of the end-to-end channel can influence the

propagation of signaling molecules.

7) Receptor kinetics: Receptor kinetics affect the interaction

of the A molecules with the receptors of the sensory unit

at the receiver.

8) Signaling pathways: The signaling pathways transducing

the observed A molecules into a secondary signal affect

the received signal.

In order to obtain h(t) for a specific MC system, one

has to solve the advection-reaction-diffusion equation (29)

or a simplified version thereof, depending on the MC system

under consideration, with the appropriate initial and boundary

conditions. The initial conditions of the system capture the

initial states of the CRNs, the time of production of the A
molecules, and the location of the produced A molecules.

The boundary conditions capture the physical and chemical

properties of the components of the end-to-end channel. As

discussed in the previous section, the solution to this system

of PDEs does not exist in closed-form for many environments.

However, as we will see in the remainder of this section, in the

MC literature, different approximations have been developed

to arrive at approximate yet meaningful solutions for h(t)
that can still capture the main effects and phenomena of the

end-to-end channel. These approximate models focus on one

of the components of the MC system and make simplifying

assumptions about the other two. Accordingly, we will consider

such receiver, transmitter, and channel centric models in the

following three subsections.

B. Receiver Models

In this section, we review some of the existing end-to-end

CIR models that focus particularly on the properties of the

receiver, while simplifying assumptions for the transmitter and

MC environment are made. The reception mechanism of the

receiver can be categorized into two classes: i) passive reception,

where the receiver does not impede the movement of signaling

molecules; and ii) active reception, where the receiver may

affect the movement of signaling molecules either by their

absorption on its surface, or by chemically reacting with them

via receptors (and thereby forming ligand-receptor complexes)

embedded in the receiver surface. For active reception, both

mechanisms can be described by a form of chemical reaction.

Moreover, the received signaling molecules may be converted

via signaling pathways into secondary molecules, which can

later be used for detection or decoding of the information.

In nature, cells have diverse types of signaling pathways,

each of which is responsible for relaying a particular type of

measurement taken in the extracellular space to the organelles

in the cytosol, which ultimately causes a response by the cell.

For more information on the signaling pathways in natural

cells, we refer the interested reader to [18].

For the CIR models considered in the following, we adopt

rather simple models for the transmitter and the physical

channel. Specifically, we assume that the transmitter is a

point that releases one A molecule instantaneously upon

stimulation at time t0 = 0 at location dtx, where dtx

denotes the location of the center of the transmitter; see

Section III-C for more details on the point transmitter model.

In other words, a point transmitter implicitly implies that upon

stimulation, the A signaling molecule is immediately produced

and enters the physical channel. We denote the location of

the center of the receiver by drx, and the distance between

the center of the transmitter and the center of the receiver by

d0 = ‖dtx − drx‖. Furthermore, for the physical channel, we

consider an unbounded environment affected only by diffusion

noise; see Section III-D for more complex MC environments.

Passive receiver: Passive receivers (also referred to as

transparent receivers or perfect monitoring receivers) employ

passive reception mechanisms and are commonly considered in

the MC literature, see e.g. [3], [38]–[46]. In particular, signaling

A molecules in the vicinity of the receiver can enter and leave

the receiver via free diffusion; see e.g. Fig. 8a). The passive

receiver model is a good approximation for the diffusion of

small uncharged molecules such as ethanol, urea, and oxygen.

These molecules can enter and leave a cell by passive diffusion

across the plasma membrane [18]. A passive receiver model

is also valid for the experimental system in [79], where the

susceptometer that serves as the receiver does not impede

the movement of the magnetic nanoparticles passing through

it. For passive receivers, the set of all points d inside the

volume of the receiver, Vrx, constitutes the sensing area, and the

number of A molecules in Vrx constitutes the observed signal.

Let Ntx denote the number of molecules that the transmitter

releases. Since we are interested in computing CIR h(t), i.e., the

probability that a molecule released by the transmitter at t0 = 0
is observed at the receiver at time t, we set Ntx = 1. Moreover,

we define p(d, t) = c(d, t)|Ntx=1 which can be interpreted as

the PDF of a molecule released by the transmitter at t0 = 0
with respect to d at time t. In other words, p∗(d, t)dxdydz
is the probability that the molecule is observed at time t in

a rectangular cuboid of length dx, height dy, and depth dz,

centered at coordinate d. Since we focus on linear systems,

solving c∗(d, t) with Ntx 6= 1 and solving p∗(d, t) for Ntx = 1
are related as p∗(d, t) = c∗(d, t)/Ntx. For the considered MC

system with a point transmitter and unbounded environment, the

CIR of a passive receiver can be obtained by first finding p(d, t)
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Fig. 8. Schematic depiction of three common receiver models; a) passive receiver, b) fully absorbing receiver, and c) reactive receiver.

from (3) with the following initial and boundary conditions

IC3 : p(d, t0) = δ (d− dtx) (31)

BC3 : p(‖d‖ → ∞, t) = 0. (32)

Given the solution of (3), p∗(d, t), h(t) can be written as

h(t) =

∫

d∈Vrx

p∗(d, t)dd. (33)

The solution of the integral in (33) can be readily obtained

when the receiver is sufficiently far away from the transmitter,

i.e., d0 is very large relative to the largest dimension of

the receiver. In this case, a common approach, which is

referred to as the uniform concentration assumption (UCA),

is to approximate p∗(d, t) everywhere inside the volume of

the receiver by its value at the center of the receiver, i.e.,

p∗(d, t) ≃ p∗(drx, t), ∀d ∈ Vrx. This leads to the following

simple expression for h(t), [3], [38]–[46]

h(t) =
Vrx

(4πDt)3/2
exp

(

− d20
4Dt

)

, (34)

where Vrx is a constant denoting the volume of the receiver.

We note that (34) is valid independent of the geometry of

the receiver. Specifically, the UCA is one of the most useful

approximation methods in the MC literature, since it directly

relates the solution of (3), (17), and (29) to the CIR of the

corresponding system. Thus, many results in the rich literature

on solving PDEs, see [21], can be used to obtain the CIR in

MC systems with passive receivers under the UCA.

The problem of solving (33) may become cumbersome when

the receiver is close to the transmitter. In this case, the solution

of the integral depends on the geometry of the receiver and

the UCA does not hold. It has been shown in [40, Eq. (27)]

that for a spherical passive receiver with radius arx, h(t) is

given by

h(t) =
1

2

(

erf

(
arx − d0√

4Dt

)

+ erf

(
arx + d0√

4Dt

))

+

√
Dt

arx
√
π

(

exp

(

− (arx − d0)
2

4Dt

)

+ exp

(

− (arx + d0)
2

4Dt

))

, (35)

where erf(·) denotes the error function. Eq. (34) provides an

accurate approximation for (35) if arx < 0.15 d0 [40].

Remark 4: We refer the interested reader to [40] for an

analytical expression for h(t) for a passive receiver with

rectangular geometry. �

Fully-absorbing Receiver: For fully-absorbing receivers

[31], [71], [80]–[84] (also referred to as perfect sinks), unlike

the passive receiver model, the physical and chemical properties

of the receiver geometry are taken into account. In particular,

the signaling A molecules that reach the receiver via diffusion

are absorbed as soon as they hit the receiver surface, see

Fig. 8b). The sensing area of a fully-absorbing receiver is

defined as all points d on the surface of the receiver, Srx,

and the observed signal is the number of absorbed molecules

during an infinitesimally small time dt. Here, a useful quantity

that facilitates the derivation of h(t) is the rate of absorption

of the A molecule, which we denote by k(t). Given k(t), we

have h(t) = k(t)dt. In other words, an absorbing receiver that

measures the hitting rate of molecules on its surface can be

seen as a receiver that counts the number of molecules that

it absorbs in each interval of length dt and divides it by dt.
Now, to derive h(t), we first have to solve (3) with IC3 (31),

BC3 (32), and the following boundary condition that models

the absorption of the A molecule on the surface of the receiver

BC4 : p(d ∈ Srx, t) = 0, (36)

where in a spherical coordinate system, d = [ρ, ϕ, θ], for a

spherical receiver with radius arx located at the origin of the

coordinate system, i.e., drx = [0, 0, 0], we have Srx = {d|ρ =
arx}. Given p∗(d, t), i.e., the solution of (3) with IC3, BC3,

and BC4, k(t) is given by [85, Eq. (3.106)]

k(t) = 4πa2rxD
∂p∗(d, t)

∂ρ

∣
∣
∣
∣
ρ=arx

. (37)

In [80], p∗(d, t) for a spherical absorbing receiver is provided

and h(t) is calculated as [80, Eq. (22)]

h(t) =
arx(d0 − arx)

td0
√
4πDt

exp

(

− (d0 − arx)
2

4Dt

)

dt. (38)

Another quantity of interest is the probability that a given A
molecule is absorbed by time t, g̃(t), which can be obtained

as

g̃(t) =

∫ t

t′=0

k(t′)dt′ =
arx
d0

erfc

(
d0 − arx√

4Dt

)

, (39)

where erfc(·) is the complementary error function.



15

Remark 5: Alternatively, when the receiver counts the number

of absorbed molecules during observation window [tu, tl], h(t)
can be defined as

h(t) = g̃(tu)− g̃(tl)

=
arx
d0

[

erfc

(
d0 − arx√

4Dtu

)

− erfc

(
d0 − arx√

4Dtl

)]

. (40)

�

Remark 6: For a fully-absorbing receiver, it is implicitly

assumed that the whole surface of the receiver is fully-absorbing.

The extension of this model to the case where the receiver

surface is partially covered by fully absorbing receptor patches

is considered in [81]. Moreover, the extension of the fully-

absorbing receiver to take the impact of degradation and

production noise into account, is considered in [71]. �

Remark 7: We note that one of earliest CIR models taking

the absorption of particles in a 1D diffusion channel with

uniform drift into account is proposed in [86]. There, a closed-

form expression is derived for the probability of the time of

absorption of the signaling molecules. �

Reactive Receiver: Large or polar signaling molecules

cannot passively diffuse through the membrane of cells and are

detected by external receptors embedded in the cell membrane.

In particular, the diffusive signaling A molecules that reach

the cell may participate in a reversible bimolecular second-

order reaction with receptor protein B molecules on the cell

surface and form ligand-receptor complex C molecules; see

Fig. 8c). The ligand-receptor interaction can be modeled as

shown in (26) with binding reaction rate constant κf in

[molecule−1 ·m3 · s−1] and unbinding reaction rate constant

κb in [s−1]. For such reactive receivers, the sensing area is that

part of the receiver surface that is covered by receptors, denoted

by S̃rx, and the number of activated receptors C constitute the

received signal. We refer the interested reader to [67] for a

closed-form CIR expression for reactive receivers.

Remark 8: In [68], a reactive receiver with an infinite number

of receptor B molecules covering the whole surface of the

receiver, Srx (i.e., a homogeneous receiver surface, which is a

special case of [67]), was considered and the corresponding CIR

was numerically evaluated. Furthermore, in the MC literature,

first steps to take the impact of ligand-receptor interaction

on the CIR into account are made in [6] and [87]. There,

for the evaluation of h(t), the diffusion equation and the

reaction equation are solved separately, unlike [67], [68] where

a coupled diffusion-reaction equation is considered. �

Remark 9: The fully-absorbing receiver is a special case of

the reactive receiver when the whole surface of the receiver

is covered with infinitely many B molecules, κb = 0, and

κf → ∞. In this case, reaction equation (26) becomes a

pseudo first-order reaction of the form A−→C, with binding

reaction rate constant κf → ∞, where now C corresponds to

the number of absorbed molecules. However, κf → ∞ implies

that any collision of a signaling A molecule with the receiver

surface leads to the formation of a C molecule, i.e., the reaction

is deterministic. We refer the interested reader to [67] where

it is shown how the CIR of the reactive receiver, under the

above assumptions, simplifies to the CIR of the fully-absorbing

receiver. �

Fig. 9. Schematic depiction of transmitter models; a) point transmitter, b)
volume transmitter, and c) ion-channel based transmitter.

Remark 10: A receiver model that, unlike the CIR models

reviewed in this section so far, also accounts for the impact of

the signaling pathways, is proposed in [88]. In that model, two

simple approximate signaling pathways, modeled via first-order

and second-order CRNs, are considered. The CIR model in

[88] is derived based on a mesoscopic modeling approach; see

Section V for more details on mesoscopic modeling. �

C. Transmitter Models

In this section, we review some of the existing end-to-end

CIR models developed in the MC literature that mainly focus

on the properties of the transmitter. The main features of

the transmitter that can potentially affect the end-to-end CIR

include: i) the geometry of the transmitter, i.e., the volume,

boundaries, and shape of the transmitter [2], [23]; ii) the particle

generation via chemical reactions, which can take different

forms ranging from a simple zero-order production reaction to

more complex CRNs that take several aspects of A molecule

generation into account including, e.g., energy consumption

via hydrolization of adenosine triphosphate (ATP) molecules

[18]; and iii) the release mechanism controlling the release

of the A molecules into the physical channel. In particular,

after production, the A molecules can leave the transmitter

either passively, for instance by passive diffusion through

channels or gates embedded in the hull of the transmitter,

or actively, for example via pumps integrated in the hull of the

transmitter. In nature, passive and active transportation occur

in cells via ion channels and transporters, respectively, see [18].

In the following, we study transmitter models that partially take

the effects of the geometry, release mechanisms, and particle

generation into account.

Point Transmitter: The point transmitter is the most widely

used transmitter model in the MC literature mainly due to

its simplicity, see [3]. However, this model takes none of

the above mentioned features into account. In particular, the

point transmitter, as the name suggests, is modelled as a

zero-dimensional point, i.e., the impact of the geometry of a

physical transmitter is not included in the model; see Fig. 9a).

Furthermore, it is commonly assumed that the A molecules

are produced instantaneously and enter the physical channel

immediately. These assumptions imply that the effects of the

particle generation and the release mechanism on h(t) are

neglected.

Volume Transmitter: Unlike point transmitters, where all

A molecules are generated at the same location, volume
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transmitter models take the transmitter geometry into account

by assuming that the A molecules are initially distributed

over the transmitter volume8 [89]; see Fig. 9b). This leads

to more realistic models since, in reality, signaling molecules

are physical quantities that occupy space. However, volume

transmitter models assume that the A molecules are generated

instantaneously, and that the surface of the transmitter is

transparent and does not impede the diffusion of the A
molecules. With these two assumptions, volume transmitters

neglect the effect of the particle generation and the impact

of the release mechanisms. Let us, for the moment, denote

the CIR models obtained for a point transmitter model, e.g.,

(35), (34), (38), by h•(t, d0). Then, employing the principle of

superposition and assuming a uniform particle distribution over

the volume of the transmitter, Vtx, the CIR of the corresponding

volume transmitter can be written as [89, Eq. (12)]

h(t) =
1

Vtx

∫

d∈Vtx

h• (t, ‖d− drx‖) dd, (41)

where Vtx denotes the volume of the transmitter.

Remark 11: In [89], (41) is solved numerically for a 3D

spherical transmitter and both passive and fully-absorbing

receivers. Furthermore, in [89], closed-form expressions are

given for corresponding one-dimensional scenarios. �

One useful approximation of (41) can be obtained when the

transmitter is sufficiently far away from the receiver. Then, the

distance of any point inside the transmitter to the receiver can

be approximated by d0 and (41) simplifies to

h(t) ≈ h• (t, d0)

Vtx

∫

d∈Vtx

dd =
h• (t, d0)

Vtx
× Vtx = h•(t).

(42)

We refer the interested reader to [89], where the accuracy

of the above approximation has been investigated for several

environments.

Remark 12: The analytical transmitter models in [89] assume

that the A molecules are generated throughout Vtx. The authors

of [89] and [90] simulated a volume transmitter model where

the A molecules are generated on the surface of a reflective

spherical transmitter. In [90], a parametric model is proposed for

the CIR of an MC system employing the considered transmitter

and a fully-absorbing receiver. A machine learning approach

is used to obtain the parameters of the parametric model. �

Ion-Channel Based Transmitter: Ion-channel based (IC)

transmitters are considered in [91] to model the effect of the

release of the signaling molecules into the physical channel.

IC transmitters take both the transmitter geometry and the

release mechanism into account. In particular, IC transmitters

are modelled as spherical objects with ion-channels embedded

in their membrane; see Fig. 9c). The opening and closing of the

ion-channels is controlled via a so-called gating parameter such

as a voltage or a ligand. When the gating parameter is applied,

e.g., in the form of a voltage across the transmitter membrane,

the ion-channels open and the A molecules can leave the

transmitter via passive diffusion. The impact of the particle

8We note that, here, the term “volume” is generic and may refer to a volume
or a surface in a 3D space, a surface or a line in a 2D space, and a line in a
1D space.

generation is neglected in [91]. In particular, it is assumed that

the A molecules diffuse with different diffusion coefficients

inside and outside the transmitter. In [91] an expression is

derived for the average rate of signaling molecules entering

the physical channel upon transmitter stimulation. Furthermore,

an approximate solution for the CIR of the corresponding end-

to-end channel is provided under the conditions that the entire

surface of the transmitter is covered by a large number of open

ion-channels and that the signaling molecules diffuse with the

same diffusion coefficient inside and outside the transmitter.

There, a passive receiver under the UCA and an unbounded

environment are assumed. Then, the CIR is approximated as

[91, Eq. (42)]

h(t) =
atx

d0
√
2Dt

exp

(

−
(
d20 + a2tx

)

4Dt

)

sinh

(
d0atx
2Dt

)

, (43)

where sinh(·) denotes the hyperbolic sine function. In fact,

(43) is actually the CIR of a volume transmitter, since the

assumption of having many open ion-channels is equivalent

to assuming that the entire surface of the transmitter is a

transparent membrane.

Remark 13: The transmitter models reviewed so far do not

consider the impact of particle generation via CRNs inside the

transmitter. This is mainly due to the fact that to take particle

generation into account, a coupled reaction-diffusion equation

has to be solved, which is a challenging task. Nevertheless,

the effect of particle generation has been studied in [9], [92],

[93]. A common methodology for solving the corresponding

reaction-diffusion equation is to adopt mesoscopic models and

to numerically solve the problem; see Section V-A for a review

of numerical methods. �

D. Physical Channel Models

In this section, we review some of the existing end-to-end

CIR models that emphasize the phenomena or impairments of

the physical channel. In diffusive MC systems, the signaling

molecules that enter the physical channel may be affected by

several factors and noise sources besides diffusion, including:

i) advection that can be constructive or destructive depending

on the direction and strength of the velocity vector; ii) the

geometry of the physical channel, e.g., bounded or unbounded

environments, constraining the dispersion of the particles; and

iii) degradation and production of A molecules. For the CIR

models reviewed in this section, in order to be able to focus

on how h(t) is affected by the phenomena in the physical

channel, we adopt the point or volume transmitter model and

the passive receiver model.

Bounded Diffusion Channels: The CIR models reviewed

previously were obtained under the assumption of an un-

bounded physical channel. Now, we focus on CIR models

that assume a more elaborate physical channel geometry. To

determine h(t) for bounded physical channels, generally, one

has to solve a diffusion equation (3) with appropriate boundary

conditions reflecting the physical and chemical properties of

the geometry of the channel. Unfortunately, for many practical

geometries, simple and insightful solutions of (3) do not exist.

Thus, approximations are needed to model practical geometries.
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Fig. 10. Schematic presentation of two duct channels with a) rectangular and
b) circular cross sections.

In the following, we focus on a class of bounded physical

channels that are referred to as duct channels. In particular,

we consider duct channels with rectangular and circular cross

sections; see Fig. 10. These two duct channels are of particular

importance since they approximate the geometry of microfluidic

channels and blood vessels, respectively.

• Rectangular Duct Channel: For a rectangular duct channel

with dimensions −∞ < z < +∞, 0 < x < lx, 0 < y <
ly, fully reflective walls, a point transmitter at dtx =
[xtx, ytx, ztx], and a receiver at drx = [xrx, yrx, zrx], the

CIR can be obtained by solving (3) for p(d, t) with IC3

and the following boundary conditions

BC5 :
∂p(d, t)

∂x

∣
∣
∣
∣
x={0,lx}

= 0, (44)

BC6 :
∂p(d, t)

∂y

∣
∣
∣
∣
y={0,ly}

= 0, (45)

BC7 : p(d = [x, y, z → ±∞], t) = 0, (46)

where BC5 and BC6 capture the reflection of the A mole-

cule on the duct walls. Since, for the considered geometry,

the diffusion of the A molecule in one Cartesian coordinate

does not influence its diffusion in the other coordinates,

we can write p(d, t) = p(x, t) × p(y, t) × p(z, t). Now,

solving (3) for p(x, t), p(y, t), and p(z, t) with BC5, BC6,

and BC7, respectively, and considering a passive receiver

under the UCA, h(t) can be obtained as follows [21,

Eq. (14.4.4)]

h(t) =
Vrx

lxly

[

1 + 2

∞∑

n=1

e−Dn2π2t/l2x cos

(
nπxrx

lx

)

× cos

(
nπxtx

lx

)]

×
[

1 + 2

∞∑

n=1

e−Dn2π2t/l2y

× cos

(
nπyrx
ly

)

cos

(
nπytx
ly

)]

×
[

1√
4Dπt

exp

(−(zrx − ztx)
2

4Dt

)]

. (47)

• Circular Duct Channel: For a circular duct channel with

dimensions 0 < ρ < ac, 0 < θ < 2π, −∞ < z <
+∞ in cylindrical coordinates, fully reflective walls, a

point transmitter at dtx = [ρtx, ϕtx, ztx], and a receiver at

drx = [ρrx, ϕrx, zrx], the CIR can be derived by solving

(3) with IC3 (31) and the following boundary conditions

BC8 :
∂p(d, t)

∂ρ

∣
∣
∣
∣
ρ=ac

= 0, (48)
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Fig. 11. Channel impulse response, h(t), as a function of time t, for an
unbounded environment and a bounded circular duct channel. The duct radius
increases in the direction of the arrow.

BC9 : p(d = [ρ, ϕ, z → ±∞], t) = 0. (49)

Here, BC8 models the reflection of the A molecule at

the wall of the duct with radius ac. Employing the same

technique as for rectangular duct channels, using [21,

Eq. (14.13.7)] and considering a passive receiver under

the UCA, h(t) can be obtained as follows

h(t) =
Vrx exp

(
−(zrx − ztx)

2/4Dt
)

2πa2c
√
πDt

×
[

1 +

+∞∑

n=−∞

cos (n (ϕrx − ϕtx))

×
∑

α

exp
(
−Dα2t

) α2Jn(αρrx)Jn(αρtx)

(α2 − n2/a2c) J
2
n(acα)

]

,(50)

where the summation in α is over the positive roots of

J ′
n(αac) = 0. Here, Jn(·) denotes the n-th order Bessel

function of the first kind and J ′
n(·) denotes its derivative.

The CIR expressions in (47) and (50) indicate that even for

simple bounded environments, the solution to h(t) may be quite

complicated and difficult to interpret. To gain more insight,

in Fig. 11, we compare the CIR of an unbounded physical

channel to that of a circular duct channel for system parameters

dtx = [0, 0,−1.15] µm, drx = [0, 0, 0] µm, receiver radius

arx = 0.15 µm, and ac ∈ {5, 6, 9, 12} × arx. Fig. 11 shows

that when duct radius ac is small, the CIR of the duct channel

is much larger than the CIR of the unbounded channel, i.e.,

for a given time t it is more likely to observe the signaling

molecule. This is because when ac is small, the signaling

molecule is reflected more frequently on the duct walls which

increases its chance of being observed at the receiver compared

to the unbounded case where the A molecules can diffuse away.

However, for large ac, the CIR of the duct channel approaches

the CIR of the unbounded environment, i.e., the CIR of the

unbounded channel provides a good approximation for the CIR

of a large bounded circular duct channel.
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Remark 14: We note that the necessary condition for

the validity of the UCA developed for passive receivers in

unbounded channels, i.e., arx < 0.15d0, is not applicable

for bounded physical channels. However, we expect that as

arx/d0 → 0, the accuracy of (47) and (50) improves. �

Advection Channels: Next, we consider physical channels

in which the signaling molecules experience advection in

addition to their random walk. In particular, for the CIR

models reviewed in this section, for mathematical tractability,

we consider advection processes with a time-invariant velocity

field, i.e., we assume v(d, t) = v(d), ∀t > t0.

• Uniform constant advection: In this case, the magnitude

and the direction of the velocity field are identical at any

point d in space, i.e., v(d) = v = [vx, vy, vz], ∀d ∈ R3,

where R3 is the set of all points in the 3D Cartesian

coordinate system, see Example 3 in Section II. Vector

v can be effectively decomposed into two components, a

parallel component v‖ and an orthogonal component v⊥
with respect to d0 = dtx − drx. Let us assume, without

loss of generality, a point transmitter at dtx = [0, 0,−ztx]
and a passive receiver located at drx = [0, 0, 0], such

that d0 = [0, 0,−ztx]. Then, v‖ = vz , and we can write

v⊥ =
√

v2x + v2y .

– Unbounded Channel with UCA: For an unbounded

channel and a passive receiver under the UCA, h(t)
can be obtained by solving advection-diffusion equation

(17). Using the method of moving reference frame, i.e.,

assuming that the reference of the coordinate system is

moving with v, it can be readily verified that h(t) can

be obtained from (34) as [44, Eq. (18)]

h(t) =
Vrx

(4πDt)
3/2

× exp

(

− (v⊥t)
2 + (z + ztx − v‖t)

2

4Dt

)

. (51)

Eq. (51) can be also directly obtained from (18) after

setting N = 1, multiplying c∗(d, t) with Vrx, and using

the v, dtx, and drx mentioned above.

– Unbounded channel without UCA: For the case when

the UCA does not hold, v‖ 6= 0, and v⊥ 6= 0, h(t) can

be solved numerically. However, it is shown in [44] that

for the special case of v⊥ = 0, h(t) can be obtained

from (35) after substituting d0 with −(ztx − v‖t).
– Bounded channel with UCA: In this case, i.e., when

we have bounded channels such as duct channels, and

for the general case where v‖ 6= 0, v⊥ 6= 0, we cannot

apply the technique of moving reference frame in the

dimensions of the coordinate system where the physical

channel is bounded. Thus, h(t) has to be directly

evaluated via the corresponding advection-diffusion

equation. However, for the special case of v⊥ = 0,

after substituting ztx with ztx − v‖t, the corresponding

CIRs of the rectangular and circular duct channels can

be obtained from (47) and (50), respectively.

– Bounded channel without UCA: In this case, the general

form of h(t) depends on the geometries of the bounded

physical channel and the passive receiver. However,

Fig. 12. Schematic presentation of a circular duct channel with radius ac
and laminar flow; a) cross-section and b) along the z axis. The receiver is
depicted in blue color.

for a rectangular duct channel, a rectangular passive

receiver, and v‖ 6= 0, v⊥ 6= 0, an analytical expression

for h(t) is derived in [54]. We note that in [54], it is

assumed that v‖ and v⊥ are a fluid velocity field and a

drift velocity caused by a magnetic field, respectively.

However, the derived expression for h(t) is valid

independent of the origin of v‖ and v⊥. Furthermore,

in [54], the case of partially absorbing duct channel

walls is also considered.

• Laminar flow: In this case, we only focus on bounded

channels, and in particular on circular duct channels, since

laminar flow arises in bounded environments. Thus, we

consider v(d) given in (14). For the CIR models reviewed

here, we distinguish between point and volume transmitter

models with axial position ztx = 0, and consider the

passive receiver model with the following dimensions

in cylindrical coordinates ac − lρ ≤ ρrx ≤ ac, |ϕrx| ≤
lϕ/2, |zrx − dz| ≤ lz/2; see Fig. 12. In particular, we

distinguish between two cases, namely the dispersion

regime (αd ≫ 1) and the flow dominant regime (αd ≪ 1),

see (20).

– Dispersion regime with UCA: In the dispersion regime,

αd ≫ 1 holds in (20). As a result, the time required for

transportation of the A molecule in the z direction via

flow, dz/veff , is much larger than a2c/D, which is the

characteristic time for diffusion of the A molecule over

distance ac. This fact has two immediate consequences:

i) by the time that the released A molecule reaches

the receiver, it experiences the average flow velocity,

i.e., veff , due to its fast diffusion across the cross

section; ii) there is no difference between point and

uniform release and h(t) only depends on z. Thus,

the corresponding advection-diffusion equation in three

dimensional space can be effectively approximated by

its one dimensional equation with effective velocity veff
and effective diffusion coefficient Deff as follows

∂tp(z, t) = Deff∂
2
zp(z, t)− vefft, (52)

where Deff is the Aris-Taylor effective diffusion coeffi-

cient and can be obtained as [57, Eq. (4.6.35)]

Deff =

(

1 +
1

48

(
(veffac)

2

D

))

. (53)
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Solving (52) with the UCA approximation, BC9, and

the following initial condition for uniform release across

the cross section

IC4 : p(z, t0) =
1

πa2c
δ(z) (54)

leads to [61, Eq. (11)]

h(t) =
Vrx

πa2c
× 1√

4πDefft
exp

(

− (dz − vefft)
2

4Defft

)

.

(55)

– Dispersion regime without UCA: In this case, h(t) can

be obtained by taking the integral of the solution of

(52) over the volume of the receiver, which leads to

[61, Eq. (13)]

h(t) =
lϕ(2aclρ − l2ρ)

2πa2c
×
[

Q

(
dz − lz/2− vefft

2Defft

)

+ Q

(
dz + lz/2− vefft

2Defft

)]

, (56)

where Q(·) denotes the Gaussian Q-function.

Remark 15: We note that the accuracy of both (55) and

(56) depends on the value of αd in (20). For example,

by increasing D and dz , αd increases and the accuracy

of the dispersion regime improves; see [61]. �

– Flow dominant regime with volume transmitter: In this

case, i.e., αd ≪ 1, the impact of diffusion is negligible.

Thus, the signaling molecules do not have sufficient time

to disperse across the cross section of the duct channel

before they arrive at the receiver. As a result, a particle

released at radial position ρ is observed approximately

at the same radial position at the receiver. Thus, we have

to distinguish between the volume and point transmitter

models. For the case of uniform release, h(t) can be

approximated as [61, Eq. (16)]

h(t) =







0, t ≤ t1
cϕ(2aclρ−l2ρ)

2πa2
c

− lϕ
2π

dz−lz/2
2veff t

, t1 < t < t2
lϕ
2π

lz
2veff t

, t ≥ t2.

(57)

where

t1,2 =
dz ∓ lz/2

2veff(1− (1− lρ/ac)2)
. (58)

In (58), t1 and t2 are the times when the parabolic

velocity field first hits and leaves the receiver volume,

respectively.

– Flow dominant regime with point transmitter: For the

case of a point transmitter, when the A molecule is

released dz away from the receiver but within the ρ and

ϕ coordinates defining the dimensions of the receiver,

i.e., at ρtx ∈ [ac − lρ, ac] and ϕtx ∈ [−lϕ/2, lϕ/2], we

observe the A molecule with certainty if dz − lz/2 ≤
v(ρtx)t ≤ d+ lz/2

h(t) = rect

(
v(ρtx)t− dz

lz

)

, (59)

where rect(x) = 1 if −1/2 ≤ x ≤ 1/2.

Remark 16: In the MC literature, first steps towards the

extension of some of the CIR models reviewed for the advection

channel to more complex networks of interconnected bounded

duct channels are provided in [49], [52], [94], [95]. For

example, in [94], the Aris-Taylor effective diffusion coefficient

approximation is employed to calculate the end-to-end CIR

of multiple interconnected blood vessels for drug delivery

applications. Furthermore, in [52], the uniform advection model

is adopted to model blood vessel networks for abnormality

detection applications in biological systems. �

Degradation Channels: In degradation channels, the arrival

of the signaling molecules is affected by their possible degra-

dation and production. In this case, h(t) can be obtained by

solving the diffusion-reaction equation (29) (with v(d, t) = 0)

given appropriate initial and boundary conditions. However,

the solution to (29) depends very much on the structure of

the corresponding CRN described by reaction rate function

f(·). Often, the reaction terms in f(·) are highly nonlinear

and coupled, which makes the problem of solving (29) very

challenging. Here, in order to arrive at mathematically tractable

and insightful results describing the general behaviour of

degradation channels, we focus on two particular forms of

degradation and production noise, namely first-order degrada-

tion and enzymatic degradation; see Examples 7 and 9, and

[27], [65], [67], [71].

• First-order degradation: Let us for the moment denote

the CIR expressions developed in the previous sections

by h̃(t). It can be shown that h(t), for a physical channel

with first-order degradation reaction of the form (24) and

reaction rate constant κ can be readily obtained from h̃(t)
when the following assumptions hold. A1) The signaling A
molecule is affected by the degradation reaction uniformly

and equally throughout the entire end-to-end channel, and

A2) it is not involved in any other CRN from stimulation

time t0 until observation time t. In this case, we can write

h(t) = h̃(t)× exp (−κt) . (60)

In (60), the term exp (−κt) captures the surviving proba-

bility of the signaling molecule, which is a monotonically

decreasing function of time, i.e., as t increases, it becomes

more likely that the signaling molecule A is degraded

in the channel. As a result, for degradation channels, at

any instant, h(t) is smaller than the corresponding CIR

without degradation.

Assumption A2) holds for all CIR models presented so

far except the CIR model for the reactive receiver in

Section III-B. This is because for reactive receivers, the

signaling molecule is involved in a ligand-receptor kinetic

reaction (26), in addition to the degradation reaction, and

may experience several binding/unbinding events before

reception time t. We refer the interested reader to [67],

where a closed-form expression is derived for the CIR

of an MC system with a reactive receiver in a first-order

degradation channel.

• Enzymatic degradation: The impact of enzymatic degrada-

tion reactions in the channel is studied for passive receiver

and point transmitter models in [65]. Enzymatic reactions

include a second-order reaction, and as a result, in order
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to obtain h(t), we have to solve (29) with IC3, BC3, and

f(·) driven by (28). However, this system of nonlinear

equations does not facilitate a closed-form solution for

h(t). As a result, in [65], several approximate solutions

were proposed for the CIR of an MC system with point

transmitter, passive receiver, and unbounded environment

as follows:

– If the concentration of signaling molecules, cA(d, t),
and the concentration of the intermediate species AE,

cAE(d, t), remain constant over time and space, then

f(·) is described only by (28a) and h(t) has the

following solution

h(t) ≈ Vrx

(4πDt)
3/2

exp

(

−κfcEt−
d0
4Dt

)

+ κbcAEt.

(61)

– If κd → ∞ and κb → 0, then the total concentration of

the enzyme E molecules remains constant and cAE = 0.

Then, a lower bound for h(t) is obtained via (61) after

setting cAE = 0.

– Another useful approximation is obtained by assuming

that cAE is constant [65]. This is a valid assumption

when κf → ∞ and κb → 0. Then, as explained

in Section II, the enzymatic reaction in (27) can be

approximated by the first-order unimolecular reaction

in (24) and the corresponding h(t) can be written as

h(t) ≈ Vrx

(4πDt)
3/2

exp

(

− κfκd

κb + κd
cEt

t− d0
4Dt

)

,

(62)

where cEt
denotes the total concentration of the enzyme

E molecules, including both bound and unbound

enzyme. We refer the interested reader to [65] for

verification of the accuracy of the proposed approximate

expressions for h(t).

Remark 17: Signaling molecules of different types may

also degrade each other. For instance, the MC testbed

in [66] uses acids and bases as signaling molecules that

can participate in a bimolecular reaction and cancel each

other out, cf. (26). Unfortunately, the underlying PDEs

that describe the bimolecular reaction are coupled and

nonlinear and closed-form expressions for the CIR are

not available. In [74], a numerical method was developed

which decouples reaction and diffusion in each time slot

and computes the channel response in an iterative manner.

�

E. Summary of End-to-End CIR Models

To conclude this section, we provide a summary of the

reviewed CIR models in Table II. Although the keywords,

notations, and variables used in this table are mostly self-

explanatory, for clarity and completeness, we briefly explain

them in the following. For the transmitter, “Ωtx” indicates

whether a point transmitter is assumed or a volume transmitter

releasing the molecules from its volume (Vtx) or surface (Stx).

In the latter case, we also specify whether the surface is

“transparent” or “reflective”. Furthermore, we specify whether

“Particle generation” and the “Release mechanism” are taken

into account in the CIR model, respectively. For the physical

channel, we indicate whether “Diffusion” and “Advection”

processes are taken into account. In the case of advection,

we distinguish between “uniform” and “laminar” advection.

The category “Geometry” specifies whether a “bounded” or

an “unbounded” environment is considered. Reactions inside

the physical channel involving the signaling molecules are

indicated in the column “Degradation & production”. For the

receiver, “Ωrx” indicates whether the volume of the receiver,

Vrx, a surface, Srx, or a partial surface, S̃rx, constitute the

sensing area of the receiver. Furthermore, “Passive” and

“Active” refer to the reception mechanism of the receiver.

In the latter case, “Deterministic” and “Stochastic” specify

whether the corresponding reaction for active reception is

modeled deterministically or stochastically, respectively. We

also indicates whether “Signaling pathways” in the receiver

are considered. Moreover, we provide the “Dimension” of

the considered end-to-end channel. “Numerical” indicates that

the CIR h(t) is obtained numerically. Whenever possible, we

also provide the equation number of the corresponding CIR

h(t). Finally, whenever the reaction-diffusion equation (29) was

employed to obtain h(t), we highlight whether the reaction and

diffusion processes were considered “Separately” or “Jointly”.

IV. RECEIVED SIGNAL MODELING

In this section, we provide mathematical models for the

signals used for estimation of the system parameters and

detection of the transmitted data by MC receivers. To this

end, we first present a unified signal representation for MC

systems. Next, we introduce three time scales for the signal

observed at the receiver, and subsequently, we provide signal

models for each of these time scales. In addition, we generalize

these models to account for the interfering noise molecules

in the environment. Subsequently, time-slotted communication

is considered and a corresponding signal model is developed

which accounts for the impact of ISI. Finally, the correlation

of the signals received at different time instants is discussed

for the considered time scales.

The models that we present in this section are general in the

sense that they apply to all MC systems discussed in Section III.

More specifically, these models only depend on the CIR h(t)
within the considered observation window or at the considered

sampling times. We note that for most MC environments,

derivation of the CIR in closed form, as was done for specific

cases in Section III, is challenging. In Section V, we present

numerical and simulation methods to obtain the CIR of more

complex MC systems. In addition, in practical MC systems,

the transmitter may send known pilot symbols that enable

the receiver to estimate the CIR from its observations (see

e.g. [45] and [96] for channel parameter estimators for MC

systems). The models developed in this section are applicable

for analytically derived, simulated, and estimated CIRs.

A. Unified Signal Definition

In the MC literature, different physical quantities have

been modeled as the received signal. Important examples
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TABLE II
SUMMARY OF CIR MODELS REVIEWED IN SECTION III.
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include i) the number of molecules observed at a given time

within the volume of a transparent receiver [38]–[46], ii) the

number of molecules bound at a given time to the receptors

of a reactive receiver [67], [68], [81], iii) the accumulated

number of molecules observed by a fully-absorbing receiver

within a given observation time window [11], [80], [97]–

[99], and iv) the arrival times of the molecules at a fully-

absorbing receiver [10], [100]–[104]. In the following, we

first provide a unified definition of the received signal of

general MC receivers including the aforementioned special

cases. Since the presented general signal model is difficult to

analyze, subsequently, we introduce the concept of counting

receivers, which are widely considered in the literature and

allow for simple mathematical modeling. The main purpose

for introducing a general representation of the received signal

is to highlight the basic assumptions that have been made to

arrive at specific signal models used in the literature and to

unveil the connections between different signal models.

1) Generalized Receivers: Since different molecules of the

same type are indistinguishable for the receiver, the most

detailed information that the receiver could access at a given

time t is the arrival (and departure, if relevant) times of the

molecules at (or from) the receiver up to that time. We use this

fact to introduce a unified representation of the received signal

of general MC receivers. For mathematical rigor, let us first

formally distinguish between two types of receivers, namely

recurrent and non-recurrent receivers.

Definition 3: If a given molecule can be observed by the

receiver at most once, then the receiver is referred to as non-

recurrent; otherwise, it is referred to as recurrent.

Transparent and reactive receivers with unbinding rate

κb 6= 0 are recurrent since a given molecule can be observed

multiple times by the receiver. On the other hand, fully-

absorbing receivers and reactive receivers with κb = 0 are

non-recurrent since after a molecule has been observed at

the receiver, it cannot be observed again. For non-recurrent

receivers, the time instants at which the molecules are observed

constitute the most general signal representation. Let us define

~Tarv(t) =
[
t1, t2, . . . , tnarv(t)

]
, (63)

as the vector containing the arrival times tn, n =
1, 2, . . . , narv(t), of all narv(t) molecules observed by time

t in an ascending order. We note that both the number of

molecules observed by time t, i.e., narv(t), and their arrival

times tn, n = 1, . . . , narv(t), are RVs. On the other hand, for

recurrent receivers, in addition to ~Tarv(t), we need to keep

track of the molecules that have been un-observed, i.e., have

left the receiver. To this end, let us define

~Tdpr(t) =
[

t′1, t
′
2, . . . , t

′
ndpr(t)

]

, (64)

as the vector containing the departure times t′n, n =
1, 2, . . . , ndpr(t), of all ndpr(t) molecules that have left the

receiver by time t in an ascending order. We note that by

the above formulation, non-recurrent receivers can be seen as

a special case of recurrent receivers where ndpr(t) = 0, ∀t.
In summary, ~Tarv(t) and ~Tdpr(t) constitute a complete and

unified representation of the received signal of MC receivers.

As will be shown in the following, different notions of received

signal used in the MC literature can be seen as special cases

of ~Tarv(t) and ~Tdpr(t).
2) Timing-based Receivers: In the MC literature, timing

channels have been used as a model for non-recurrent receivers

[10], [100]–[103]. Let Trls denote the vector containing the

release times of the molecules by the transmitter and let

Tarv be the vector containing the respective arrival times of

the molecules at the receiver. Thus, Tarv is related to Trls

according to [10], [100]–[104]

Tarv = Trls +Tdly, (65)

where Tdly is a vector containing the random delays between

the release of the molecules by the transmitter and their

observation at the receiver. Moreover, it is typically assumed

that the release, propagation, and reception of molecules

are independent from each other, which we refer to as the

independent molecule behavior assumption [102], [103]. Based

on this assumption, the elements in Tdly are independent and

identically distributed and assume only non-negative real values.

For an unbounded 1D environment, the random observation

delay follows a Levy distribution if no flow is present [10]

and the inverse Gaussian distribution if flow in the direction

of the receiver is present [100].

We note that, in practice, Tarv is not available at the

receiver since i) different molecules of the same type are

indistinguishable by the receiver and ii) out of the total number

of released molecules, only narv(t) molecules are observed

by time t. In fact, ~Tarv(t) is the actual observation signal

available to the receiver. To arrive at a model for ~Tarv(t),
we introduce the following definitions and assumptions. Let

us assume that Ntx molecules are released by the transmitter

within interval [0, t] and their release times are collected in

Trls. Since the narv(t) molecules observed at the receiver are

indistinguishable, we do not know which narv(t) molecules

out of the total Ntx released molecules have been observed.

In general, there are at most Ntx!
(narv(t)−1)! possibilities for

selecting narv(t) (observed) molecules from the Ntx (released)

molecules. Therefore, we define pp, p = 1, . . . , Ntx!
(narv(t)−1)! ,

as a vector which contains the p-th possible order index of the

observed molecules. Moreover, let fX(x) and FX(x) denote

the probability density function (PDF) and cumulative density

function (CDF) of RV X at X = x, respectively. We note that

due to causality, fTdly(t) = 0, t < 0, has to hold where RV

T dly denotes the random delay of a given molecule. Following a

similar framework as developed in [102], [103], the PDF of the

observation vector ~Tarv(t) = ~tarv conditioned on the molecule

release time vector Trls, denoted by f~Tarv(t)|Trls

(

~tarv|Trls
)

,

is obtained as

f~Tarv(t)|Trls

(

~tarv|Trls
)

=

Ntx!
(narv(t)−1)!
∑

p=1

f~Tarv(t)|Trls

(

~tarv|Trls,pp

)

=

Ntx!
(narv(t)−1)!
∑

p=1

[
narv(t)
∏

m=1

fTdly

(
tm −Trls[pp[m]]

)
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×
Ntx∏

m=narv(t)+1

[

1− FTdly

(
t−Trls[pp[m]]

) ]
]

(a)
=

Ntx!

(narv(t)− 1)!

(
fTdly(tm)

)narv(t)

×
(
1− FTdly(tm)

)Ntx−narv(t)
, (66)

where equality (a) holds when all Ntx molecules are released

at time zero. The above formulation provides a general

framework for modeling the arrival times of non-recurrent

receivers. Unfortunately, (66) cannot be easily simplified and

its generalization to recurrent receivers or the cases when

interfering noise molecules or ISI are present is cumbersome. In

fact, the results reported in [10], [100]–[104] are valid for non-

recurrent receivers when ISI and interfering noise molecules

do not exist. In addition, perfect synchronization is a key

underlying assumption for most timing channels considered in

the literature [10], [100]–[104] and hence the performance of

timing receivers is very sensitive to synchronization errors.

Therefore, in the remainder of this section, we consider

special receivers, namely molecule counting receivers, whose

signal is a function of narv(t) and ndpr(t) only. Molecule

counting receivers are widely adopted in the literature and the

corresponding received signal lends itself to more tractable

models and analysis.

3) Counting Receivers: These receivers consider the number

of observed molecules as the received signal. In general, the

receiver may count the number of observed molecules multiple

times, which is referred to as a multi-sample detector [38], [39],

[42], [53], [90], [105]. Let r(tm) denote the received signal

at sample time tm = m∆t, m = 1, 2, . . . , where ∆t is the

sample interval. To formally characterize r(tm), we distinguish

two types of counting receivers, namely arrival-counting and

observation-counting receivers.

Definition 4: If a receiver counts the number of molecules

that have arrived within the observation window (tm−∆t, tm]
at its reception site, i.e., r(tm) = narv(tm)− narv(tm −∆t),
then it is referred to as an accumulative-molecule-counting

(AMC) receiver, whereas if the receiver counts the number of

molecules that are observed at a given time t at its reception

site, i.e., r(tm) = narv(tm)− ndpr(tm), then it is referred to

as an instantaneous-molecule-counting (IMC) receiver.

In general, there are four types of receivers based on the

recurrent/non-recurrent and AMC/IMC classifications. In the

following, we present the different counting receivers used in

the MC literature as special cases of these four categories:

Non-Recurrent Accumulative-Molecule-Counting (nR-

AMC) Receivers: The signal in this case is r(tm) =
narv(tm)−narv(tm−∆t) where narv(tm) ≥ narv(tm−∆t) ≥
0. For instance, for fully-absorbing receivers, r(tm) denotes

the number of molecules that have arrived within interval

(tm −∆t, tm] [11], [80], [97]–[99].

Recurrent Accumulative-Molecule-Counting (R-AMC)

Receivers: The signal in this case is r(tm) = narv(tm) −
narv(tm − ∆t) where narv(tm) ≥ narv(tm − ∆t) ≥ 0.

Although the mathematical form looks identical to that for

nR-AMC receivers, the modeling for R-AMC receivers is

much more cumbersome since one molecule might be counted

multiple times within the observation window (tm −∆t, tm].
Furthermore, we note that the expected number of observed

molecules for R-AMC receivers is larger than that for nR-AMC

receivers because some molecules may be counted multiple

times.

Recurrent Instantaneous-Molecule-Counting (R-IMC)

Receivers: The signal in this case is r(tm) = narv(tm) −
ndpr(tm) where narv(tm) ≥ ndpr(tm) ≥ 0. For instance, for

transparent receivers, r(tm) denotes the number of molecules

within the receiver volume at time tm [38]–[46], and for reactive

receivers, r(tm) is the number of molecules bound to the

receiver’s receptors at time tm [67], [68], [81].

Non-Recurrent Instantaneous-Molecule-Counting (nR-

IMC) Receivers: The signal in this case is r(tm) =
narv(tm) − ndpr(tm) = narv(tm) where narv(tm) ≥ 0 and

ndpr(tm) = 0. We note that since the received molecules do not

leave the receiver, r(tm) is a non-decreasing function of time.

In the remainder of this section, we focus on the modeling

of r(tm) for R-IMC receivers as a function of CIR h(t), i.e.,

the probability of a molecule being observed at time t seconds

after its release by the transmitter; see Section III. This model

is also valid for nR-AMC and nR-IMC receivers if h(tm) is

substituted by the probability of observing a molecule within

intervals (tm−∆t, tm] and (0, tm], respectively, after its release

by the transmitter at time t = 0, cf. (40). Modeling of r(tm)
for R-AMC receivers is cumbersome due to the possibility of

counting a given molecule multiple times within the observation

window. This type of signal is relevant, e.g., for ligand-based

receivers when a ligand molecule can activate the receptors on

the receiver surface multiple times. However, this problem has

not yet been studied in the MC literature and is a potential topic

for future research. Finally, in the following, we assume that the

sampling interval ∆t is sufficiently large such that consecutive

samples are statistically independent. Therefore, we drop index

m in Sections IV-B, IV-C, and IV-D for simplicity. How large

∆t should be chosen to guarantee sample independence will

be discussed in Section IV-F.

B. Three Time-Scale Signal Representation

Let us define r(t, τ) as the number of molecules observed

at the receiver t seconds after their release is stimulated by the

transmitter at time τ . Then, r(t, τ) can be modeled as

r(t, τ) = r̄(t, τ) + w(t, τ), (67)

where r̄(t, τ) = ❊ {r(t, τ)} denotes the mean of the signal for

a fixed set of channel parameters, w(t, τ) denotes the random

fluctuations around the mean (e.g., caused by diffusion), and

❊ {·} denotes expectation. We note that the channel parameters

may also change over time; however, this is over a scale that

is much slower than the signal variations. In other words, the

mean of the signal, r̄(t, τ), varies over time t due to diffusion,

advection, and reactions in the channel, but it also varies over

the larger time scale τ due to variations of system parameters

such as temperature, viscosity, and the distance between a

mobile transmitter and receiver [72], [106], [107]. In summary,

we have variations on three time scales in r(t, τ):

• Time Scale 1: Variations of r(t, τ) around its mean r̄(t, τ),
i.e., noisy fluctuations w(t, τ).



24

#
O

b
se

rv
ed

M
o
le

cu
le

s
r
(t
,
τ
)

Release Time τObservation Time t

Fig. 13. Schematic illustration of the number of molecules observed at the
receiver t seconds after their release by the transmitter at time τ . The three
time scales are illustrated as follows: 1) the actual received signals, r(t, τ),
are denoted by colored solid lines; 2) the black dashed lines denote the signal
mean r̄(t, τ); and 3) the variations of the signal due to changes in the system
parameters over time scale τ are represented by different colors.

• Time Scale 2: Variations of the signal mean r̄(t, τ) over

observation time t, which are slower than the variations

of w(t, τ).
• Time Scale 3: Variations of r̄(t, τ) over the release time

τ , which are slower than the variations of r̄(t, τ) with

respect to t.

For instance, for typical MC systems at microscale, e.g.,

cell-to-cell communication, the noisy fluctuations vary on the

order of a few µs, the variations of the signal mean over time

t are on the order of tens or hundreds of µs, and the change in

the parameters, e.g., due to the mobility of the nodes, can be on

time scales much larger than ms [67]. Fig. 13 illustrates r(t, τ)
versus t for three values of τ . The aforementioned three time

scales are illustrated in this figure: 1) the actual received signals,

r(t, τ), are denoted by colored solid lines; 2) the black dashed

lines denote the signal mean r̄(t, τ); and 3) the variations of

the signal due to changes in the system parameters over time

scale τ are represented by different colors.

Remark 18: The three time-scale signal representation

for MC is analogous to a similar signal representation in

wireless communications. In particular, in a wideband wireless

communication system impaired by additive white Gaussian

noise (AWGN) and fading, the AWGN is analogous to the

random fluctuations of the signal in MC, the CIR of the wireless

communication channel is analogous to the signal mean in MC,

and the variations of the CIR over time (due to the movement

of the transmitter and/or receiver) are analogous to the time-

variant signal mean in MC [108, Chapter 4]. �

C. Signal Models

In the following, we first derive the expected number of

molecules observed at the receiver, which we refer to as the

deterministic model of the received signal. Subsequently, we

derive statistical models of the received signal that capture the

random fluctuations of the observed molecules. Finally, we

study time-variant channels and derive stochastic models to

capture the effect of the time variance.
1) Deterministic Models: In Section III, we derived the CIR

h(t) which can be interpreted as the probability of a molecule

released at time t = 0 being observed at the receiver at time t.
Let us define h(t, τ) as the probability of a molecule released

by the transmitter at time τ being observed at the receiver

at time t. In the following, we first assume a time-invariant

MC channel which leads to h(t, τ) = h(t− τ), t ≥ τ . Then,

in Section IV-C3, we analyze the impact of time variance of

the channel. Following the independent molecule behavior

assumption [8], [11], the expected number of molecules

observed at the receiver at time t due to the release of Ntx

molecules by the transmitter at time τ = 0 is readily obtained

as

r̄(t, τ) = Ntxh(t, τ). (68)

For a given set of system parameters, the expected behavior is

non-random and we have a deterministic signal model. Thus,

each of the CIR expressions derived in Section III constitutes

a deterministic representation of the respective MC system.

Remark 19: The independent molecule behavior assumption

has to hold for (68) to be valid. However, for some practical

MC systems, this assumption does not hold. For instance, if a

high fraction of receptors on the surface of a reactive receiver is

occupied, r̄(t, τ) becomes a nonlinear function of the released

molecules Ntx and cannot be described by the simple linear

expression in (68). This effect is known as receptor occupancy

[67]. In these cases, r̄(t, τ) has to be found for a given Ntx

either numerically or via simulation, cf. Section V-A for a

detailed discussion on simulation methods. �

Remark 20: The deterministic model in (68) assumes an

impulsive release of Ntx molecules at time τ = 0 by

the transmitter. In general, the transmitter may release the

molecules continuously over a finite time interval [0, T rls] of

length T rls. Let g(t) denote the release function satisfying
∫ T rls

t=0
g(t)dt = Ntx and g(t) = 0, t /∈ [0, T rls]. Then, the

expected number of molecules observed at the receiver at time

t due to the release of molecules by the transmitter with release

function g(t) is given by

r̄(t, τ) =

∫ t

t′=0

g(t′)h(t− t′, τ)dt′. (69)

We note that (69) reduces to (68) for g(t) = Ntxδ(t). In the

remainder of this section, we focus on impulsive release, as

this is typically assumed in the MC literature. �

2) Statistical Models: In the following, we develop statistical

models for the number of molecules observed at the receiver

as a function of h(t, τ) for time-invariant MC channels.

Binomial Model: Based on the independent molecule

behavior assumption and since any given molecule released

by the transmitter is either observed by the receiver or not,

a binary state model applies and the number of observed

molecules follows the Binomial distribution with Ntx trials

and success probability h(t, τ), i.e.,

r(t, τ) ∼ B (Ntx, h(t, τ)) , (70)
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where B (N, p) represents a Binomial distribution with pa-

rameters N and p denoting the number of trials and the

success probability, respectively. Under the Binomial model,

the probability mass function (PMF) of r(t, τ), denoted by

fB
r (n), is given by

fB
r (n) =

(
Ntx

n

)
(
h(t, τ)

)n(
1− h(t, τ)

)Ntx−n
, (71)

for n ∈ {0, 1, . . . , Ntx}. Unfortunately, the Binomial distri-

bution considerably complicates the analysis of MC systems.

Therefore, in the following, we present two approximations of

the Binomial model with better mathematical tractability.

Gaussian Model: If the expected number of molecules

observed at the receiver, i.e., r̄(t, τ), is sufficiently large, then

we can apply the central limit theorem (CLT) and approximate

r(t, τ) by a Gaussian RV with mean and variance identical to

that of the Binomial RV. This leads to

r(t, τ) ∼ N (Ntxh(t, τ), Ntxh(t, τ)(1− h(t, τ))) . (72)

Under the Gaussian model, the PDF of r(t, τ), denoted by

fN
r (n), is given by

fN
r (n) =

1
√

2πNtxh(t, τ)(1− h(t, τ))

×exp

(

− (n−Ntxh(t, τ))
2

2Ntxh(t, τ)(1− h(t, τ))

)

, n ∈ R.(73)

The Gaussian distribution is much more amenable to analysis

than the Binomial distribution. However, the basic assumption

behind the applicability of the Gaussian distribution, namely

large r̄(t, τ), may not hold in MC systems. In fact, although

the number of released molecules Ntx can be quite large, the

expected number of observed molecules r̄(t, τ) can be very

small. Moreover, Gaussian RVs are continuous and can assume

non-integer and negative values, which contradicts the true

nature of RV r(t, τ) as discrete and non-negative.

Poisson Model: For the case when the number of trials is

large and the mean of the Binomial RV is small, the Binomial

distribution can be well approximated by a Poisson distribution

with the same mean r̄(t, τ) = Ntxh(t, τ), i.e.,

r(t, τ) ∼ P (Ntxh(t, τ)) , (74)

where P (λ) represents the Poisson distribution with parameter

λ denoting the mean of the RV. Under the Poisson model, the

PMF of r(t, τ), denoted by fP
r (n), is given by

fP
r (n) =

(Ntxh(t, τ))
n

n!
exp (−Ntxh(t, τ)) , n ∈ N. (75)

In fact, assuming r̄(t, τ) is fixed, the proof simply follows

from [47]

lim
Ntx→∞

fB
r (n)

= lim
Ntx→∞

(
Ntx

n

)(
r̄(t, τ)

Ntx

)n(

1− r̄(t, τ)

Ntx

)Ntx−n

(a)
=

(r̄(t, τ))
n

n!
exp (−r̄(t, τ)) = fP

r (n), (76)

where for equality (a) we used lim
x→∞

(
x
y

)
= xy

y! and

lim
x→∞

(
1− y

x

)x
= exp(−y) [109].

Comparison: In order to quantify the accuracy of the

Gaussian and Poisson approximations, we define the root

mean square error (RMSE) between the approximated Gaussian

and Poisson CDFs, denoted by F x
r (n), x ∈ {N ,P}, and the

Binomial CDF, denoted by FB
r (n), as [11], [98], [110]

RMSEx =

√
√
√
√ 1

Ntx + 1

Ntx∑

n=0

|F x
r (n)− FB

r (n)|2. (77)

In Fig. 14, the RMSE between the approximate Gaussian

and Poisson CDFs and the Binomial CDF versus h(t, τ) is

shown for Ntx ∈ {102, 103, 104, 105}. We observe from this

figure that by increasing h(t, τ), the accuracy of the Poisson

model deteriorates whereas the accuracy of the Gaussian model

improves, which is consistent with the respective assumptions

that led to their derivation. Moreover, as Ntx increases, the

Gaussian model becomes more accurate whereas this is not

true for the Poisson model if h(t, τ) is very small. In fact, for

small h(t, τ) and small Ntx, both the Binomial and Poisson

distributions approach the binary distribution, i.e., either zero

or one molecule is observed and the probability of observing

more than one molecule becomes negligible, i.e., r̄(t, τ) ≪ 1.

Thus, for a fixed value of h(t, τ), the accuracy of assumption

r̄(t, τ) ≪ 1 improves as Ntx decreases. Since for typical MC

systems, the value of h(t, τ) is expected to be much smaller

than 0.1, the Poisson model is generally a more accurate model.

Nevertheless, the fact that the accuracy of the Gaussian model

increases with increasing Ntx makes it a suitable model for

macroscale applications when Ntx is potentially very large.

Moreover, the Gaussian model is attractive for asymptotically

high signal-to-noise ratio (SNR) analysis. These observations

are consistent with the results reported in [11].

3) Time-Variant Models: Until now, we have assumed time-

invariant MC channels where the channel parameters are fixed.

Hence, h(t, τ) and consequently r̄(t, τ) were only functions

of t− τ . Now, we consider time-variant MC channels where

h(t, τ) and r̄(t, τ) are in general functions of both t and τ .

More specifically, we study the impact of system parameter

variations on the mean received signal r̄(t, τ). In principle,

each of the system parameters such as D, v(d, t), the physical

and chemical properties of the boundaries of the end-to-end

channel, the reaction rates of the involved CRNs, and dtx and

drx can potentially vary over time, which in turn leads to a

variation of r̄(t, τ). For instance, the diffusion coefficient D
appears in the expressions for h(t, τ) for all diffusive MC

systems, and consequently in r̄(t, τ). As we can see from

(2), changes in the parameters of the fluid environment, e.g.,

the viscosity or temperature, will result in a change in D.

In fact, the impact of variations in D on r̄(t, τ) for a point

transmitter and passive receiver in 1D is investigated in [107].

The authors in [72] consider a point transmitter with impulsive

release, a passive receiver with the UCA, and an unbounded

3D environment with uniform flow and uniformly distributed

enzymes, cf. (33) and (30). There, the impact of Gaussian

variations in the diffusion coefficient, flow velocity, and enzyme
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Fig. 14. RMSE between the approximate Gaussian/Poisson CDF and the
Binomial CDF versus h(t, τ) for Ntx ∈ {102, 103, 104, 105}. The number
of released molecules increases in the direction of the arrows. For typical MC
systems, h(t, τ) < 0.1 holds, which is indicated by the shaded area and the
dashed vertical line and denoted by practical regime.

concentration is modeled by a parametric model where the

parameters of the model are obtained via curve fitting. The

impact of the mobility of a point transmitter and a passive

receiver on the CIR r̄(t, τ) is studied in [106] and a stochastic

model for r̄(t, τ) is derived. Similarly, a stochastic model for

mobile MC systems with a point transmitter and fully-absorbing

receiver is derived in [99]. We note that mobile transceivers

are relevant for many envisioned applications of synthetic MC

systems such as targeted drug delivery and health monitoring

[49]–[52]. Therefore, in the following, we focus on diffusive

mobile MC systems and review some of the results reported

in [106].

We assume a point transmitter, a passive receiver with the

UCA approximation, and an unbounded diffusive channel

without advection. Furthermore, we model the mobility of

transmitter and receiver via 3D diffusion, since diffusion

is a common cause of mobility and can also be used to

model more elaborate movements such as cell migrations and

bacteria chemotaxis [111], [112]. In particular, we denote the

diffusion coefficients of transmitter and receiver by Dtx and

Drx, respectively, and their corresponding locations at time τ
by dtx(τ) and drx(τ), respectively. Then, it can be shown that

d(τ) = dtx(τ)− drx(τ) follows a Gaussian distribution [106,

Eq. (2)]

fd(τ)(d) =
1

(4πD2τ)3/2
exp

(−‖d− d(0)‖2
4D2τ

)

, (78)

where D2 = Dtx + Drx is an effective diffusion coefficient

capturing the relative motion of transmitter and receiver, see

[113, Eq. (10)]. Then, given (34), the CIR of the end-to-end

channel can be rewritten as

h(t, τ) =
Vrx

(4πD1t)3/2
exp

(−d2(τ)

4D1t

)

, (79)

where d(τ) = ‖d(τ)‖ and D1 = D + Drx is the effective

diffusion coefficient capturing the relative motion of the

signaling molecules and the receiver, see [113, Eq. (8)]. The

movement of the receiver affects both (78) and (79) via D2

and D1, respectively, as long as its movement with respect

to the transmitter and the signaling molecules is accounted

for. For any given t, h(t, τ) is a stochastic process with RVs

h(t, τi), i ∈ {1, 2, 3, . . . }. In the following, we analyze the

mean, the variance, and an approximate expression for the PDF

of r̄(t, τ).
Mean: Let d0 denote the distance between the transmitter

and receiver at τ = 0, i.e., ‖d(0)‖ = d0. Given (78) and (79),

the mean of the time-variant channel, denoted by m(t, τ), can

be evaluated as [106, Eq. (14)]

mr̄(t, τ) = ❊ {r̄(t, τ)}
=

∫

d∈R3

r̄(t, τ |d0) fd(τ)(d)dd,

=
NtxVrx

(4π (D1t+D2τ))
3/2

exp

( −d20
4 (D1t+D2τ)

)

, (80)

where in ❊ {r̄(t, τ)}, the expectation is taken with respect

to the RV d(τ). As we expected, r̄(t, τ) is a function of τ ,

because of the mobility of transmitter and receiver. As a result,

r̄(t, τ) is a non-stationary stochastic process. Moreover, due

to the assumption of an unbounded environment, on average

the transmitter and receiver diffuse away from each other.

Therefore, when at least one of the transceivers is mobile, i.e.,

D2 6= 0, we obtain r̄(t, τ) → 0 as τ → ∞.

Variance: The variance of r̄(t, τ), denoted by σ2
r̄(t, τ), is

given by

σ2
r̄(t, τ) = ❊

{
r̄2(t, τ)

}
−m2

r̄(t, τ), (81)

where the second order moment φr̄(t, τ) , ❊
{
r̄2(t, τ)

}
is

obtained as [106, Eq. (21)]

φr̄(t, τ) =
(Ntx)

2V 2
rx exp

(
−d2

0

2(D1t+2D2τ)

)

(4πD1t)
3/2

(4π (D1t+ 2D2τ))
3/2

. (82)

We note that σ2
r̄(t, τ) → 0 as τ → ∞, which is due to the fact

that r̄(t, τ) → 0 as τ → ∞. On the other hand, it can be shown

that the normalized variance
σ2
r̄(t,τ)

m2
r̄(t,τ)

→ ∞ as τ → ∞. In other

words, the normalized variance increases as τ increases. This

in turn implies that due to the random walk, the uncertainty

that we have about r̄(t, τ) increases as τ increases.

Approximate PDF: In the following, we present the ap-

proximated PDF of the considered time-variant channel with

mobile transceivers and refer the interested reader to [106] for

the exact expressions of the CDF and PDF. In particular, it is

shown in [106] that when D2τ ≤ d20/200 holds for any τ > 0,

then the PDF of the CIR can be accurately approximated via

a log-normal distribution [106, Eq. (29)]

fh(t,τ)(h) ∼ Lognormal
(
µ̃, σ̃2

)
(83)

with






µ̃ = ln
(

Vrx

(4πD1t)3/2

)

− D2τ
4D1t

(

6 +
d2
0

D2τ

)

σ̃2 =
(

D2τ
2D1t

)2 (

6 +
2d2

0

D2τ

)
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where µ̃ and σ̃2 denote the mean and the variance of the log-

normal distribution. Given (83), the PDF of r̄(t, τ), denoted

by fr̄(t,τ)(r̄), can be written as

fr̄(t,τ)(r̄) =
1

Ntx
× fh(t,τ)

(
r̄

Ntx

)

. (84)

The above stochastic model can be used for the design and

performance analysis of time-variant MC systems. For instance,

(84) was used in [113] to compute the expected error probability

of a mobile MC system when the knowledge of CIR h(t, τ)
used for detection becomes gradually outdated due to the

mobility of the transceivers. Moreover, in [72], a stochastic

channel model was used to develop non-coherent detectors.

In contrast to the stochastic model in (84) for mobile MC

systems, it was shown in [72] that the Gamma distribution is

a good fit for (Gaussian) variations in the diffusion coefficient,

flow velocity, and enzyme concentration in a non-mobile MC

system.

D. Interfering Noise Molecules

In the previous section, we have considered statistical models

for the number of molecules observed at the receiver due to

the release of signaling molecules by the transmitter. However,

MC systems may be impaired by noise molecules that are

not released by the transmitter but originate from interfering

natural or synthetic sources. In the following, we introduce

statistical models to account for the number of noise molecules

that are observed at the receiver. Since information and noise

molecules are indistinguishable, the receiver treats the total

numbers of observed signaling molecules, denoted by rsig(t, τ),
and interfering noise molecules, denoted by rint(t, τ), as the

received signal r(t, τ), i.e.,

r(t, τ) = rsig(t, τ) + rint(t, τ). (85)

To derive a statistical model for rint(t, τ), we focus on a

passive receiver. Similar arguments apply for other receiver

types. We make the following assumptions. A1) Let r̄int(τ)
denote the expected number of noise molecules observed within

the receiver volume Vrx at a given sample time t. We assume

that the value of r̄int(τ) is constant over observation time

t. Nevertheless, r̄int(τ) may change over larger time scale

τ due to variations in the system parameters such as the

temperature, cf. Section IV-B and Section IV-C3. A2) It is

further assumed that the observation of one noise molecule

at the receiver is independent from the observations of other

noise molecules. A3) Finally, we assume that the expected

number of noise molecules observed within a given volume in

space is proportional to the size of that volume.

Based on assumptions A1-A3, the statistics of the observed

noise molecules is Poisson following the law of rare events

(LRE) [114]. In particular, suppose the receiver volume is

divided into J subvolumes where J ≫ r̄int(τ). Thus,
r̄int(τ)

J
can be interpreted as the probability that one noise molecule

is observed in one of these subvolumes at the receiver.

The probability that two noise molecules are simultaneously

observed in one subvolume becomes negligible for large J .

Therefore, the number of noise molecules observed over the

entire volume of the receiver follows a Binomial distribution

B
(

J, r̄int(τ)
J

)

with J trials and success probability
r̄int(τ)

J .

Consequently, since J is a free variable, one can assume

J → ∞ such that the Binomial distribution approaches the

Poisson distribution P (r̄int(τ)), cf. (75). In summary, under

assumptions A1-A3, we obtain rint(t, τ) ∼ P (r̄int(τ)).
Remark 21: The choice of the Poisson distribution for

the number of environmental noise molecules observed at

the receiver, rint(t, τ), can be further justified from an

information-theoretic perspective [115]. Let us define RV

D = [d1,d2, . . . ,drint ] where di denotes the coordinates of

the i-th noise molecule observed at the receiver and we drop

argument (t, τ) of rint(t, τ) in D for notational simplicity. In

particular, the maximum entropy distribution for D corresponds

to a Poisson distribution for the number of observed noise

molecules rint(t, τ). Therefore, the most random noise under

assumptions A1-A3 is Poisson noise, i.e., a worst-case scenario.

To see this, let fD(D) denote the distribution of RV D. Using

the chain rule, we have fD(D) = fD|rint(D|rint)frint(rint)
where fD|rint(D|rint) is the conditional distribution of D given

rint(t, τ), and frint(rint) denotes the distribution of rint(t, τ).
For maximum entropy, fD|rint(D|rint) should be a uniform

distribution across the receiver volume. Substituting this result

in fD(D), we obtain that frint(rint) has to be the Poisson

distribution to maximize the entropy of D [115, Appendix 8].

�

We note that the Poisson distribution P (λ) approaches

a Gaussian distribution N (λ, λ) for λ → ∞. Therefore,

for very noisy environments, the approximation rint(t, τ) ∼
N (r̄int(τ), r̄int(τ)) becomes valid.

Remark 22: Assumption A1 states that the mean of the

observed interfering molecules is constant, i.e., r̄int(t, τ) =
r̄int(τ), ∀t. This assumption is accurate for natural sources

that continuously secrete molecules. However, for multi-user

interfering sources, the mean number of observed molecules is

in general time-dependent. Nevertheless, when no information

about the activity of the interfering users is available, it is

reasonable to assume that the mean number of observed

interference molecules is constant. We note that examples

of time-dependent interference were studied in [78], [116],

[117]. In [78], the authors assumed that an external noise

source starts to release molecules into the environment with a

constant rate at t = 0. They derived the expected number of

noise molecules observed at the receiver at time t > 0, denoted

by r̄int(t, τ), as a function of the system parameters such as

the distance between the noise source and the receiver. It was

shown that asymptotically as t → ∞, r̄int(t, τ) converges to a

constant value, i.e., r̄int(τ), which is consistent with assumption

A1 made earlier in this section. In [116], [117], statistical

models for the number of received noise molecules originating

from multiple interfering sources were derived for various

scenarios regarding the distribution of interfering sources in

the environment and their molecule release patterns. �

E. Continuous Transmission

The statistical models developed so far are appropriate for

one-shot transmission. Nevertheless, in most communication
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systems, the transmitter may send multiple symbols consecuti-

vely to the receiver. To develop a model valid for continuous

transmission, we consider a time-slotted communication system

where one symbol is transmitted in each time slot, also

referred to as a symbol interval, of length T symb. We focus

on concentration shift keying (CSK) modulation where the

transmitter releases s[k]Ntx molecules at the beginning of the

k-th symbol interval to convey information symbol s[k] ∈ [0, 1]
[3]. We assume synchronous transmission and that the receiver

counts the number of observed molecules multiple times in

each symbol interval with sampling interval ∆t [105]. Because

of the memory of the MC channel, ISI occurs. To take this

into account, we assume that the MC channel has a memory of

L symbol intervals, i.e., the ISI in symbol interval k originates

from the symbols transmitted in the L − 1 previous symbol

intervals. We further take into account that communication

may be impaired by noise molecules that originate from

interfering natural or synthetic sources. Finally, we assume

that the MC channel parameters remain unchanged for the

considered observation window, and hence, we drop argument

τ in r(t, τ), r̄int(τ), and h(t, τ) for notational simplicity. In

the following, we first provide the signal model for a general

case and subsequently simplify it for extreme SNR regimes to

obtain further insight.

1) General Case: Let r[k,m] denote the total number of mo-

lecules observed at the receiver for sample m in symbol interval

k, i.e., r[k,m] = r(tk,m) where tk,m = (k− 1)T symb +m∆t
and r(tk,m) is given in (67). Then, following the discussion in

Section IV-C2, r[k,m] can be accurately modeled as a Poisson

RV, i.e.,

r[k,m] ∼ P
(

L∑

l=1

r̄sig[l,m]s[k − l + 1] + r̄int

)

, (86)

where r̄sig[l,m] = Ntxh (tl,m). Moreover, we used the

superposition property of Poisson RVs, i.e., if X and Y are two

independent Poisson RVs with means λx and λy , respectively,

then X + Y is also a Poisson RV with mean λx + λy [118].

Alternatively, defining r̃[k,m] = r[k,m]− r̄int, one can obtain

the following more familiar additive signal model

r̃[k,m] =

L∑

l=1

r̄sig[l,m]s[k − l + 1]

︸ ︷︷ ︸

signal component

+rdfn[k,m]
︸ ︷︷ ︸

diffusion noise

+ rint[k,m]
︸ ︷︷ ︸

interference noise

, (87)

where rdfn[k,m] ∼ P0

(
∑L

l=1 r̄sig[l,m]s[k − l + 1]
)

denotes

the diffusion noise and rint[k,m] ∼ P0 (r̄int) denotes the

interfering noise molecules. Here, we use the notation X ∼
P0(λ) when X = Y −λ where Y ∼ P (λ), i.e., X is a Poisson

RV whose mean has been subtracted.

When the expected numbers of information and in-

terfering noise molecules are large, one may use the

Gaussian model for the number of observed molecules,

i.e., r[k,m] ∼ N (r̄[k,m], r̄[k,m]) where r̄[k,m] =
∑L

l=1 r̄sig[l,m]s[k − l + 1] + r̄int. One can also write r̃[k,m]
in the form of (87) where for the Gaussian model, we

have rdfn[k,m] ∼ N
(

0,
∑L

l=1 r̄sig[l,m]s[k − l + 1]
)

and

rint[k,m] ∼ N (0, r̄int). We note that unlike for the AWGN

channel in conventional wireless communication, the Gaussian

diffusion noise in MC is signal dependent.

Remark 23: In (87), we distinguish between two types

of additive noise, namely rdfn[k,m], which originates from

signaling molecules, and rint[k,m], which originates from

external interfering noise molecules. We note that the rand-

omness of rdfn[k,m] and rint[k,m] can be attributed to the

random Brownian motion of the signaling and noise molecules,

respectively. In addition to the aforementioned noises, other

types of noises may be present. For instance, in a reactive

receiver, the noisy measurements of the activated receptors,

caused by the randomness of diffusion and ligand-receptor

interactions, may be relayed by signaling pathways to the

interior of the receiver (e.g. a cell), which may add extra noise

[6], [110]. We refer to this noise as counting noise to contrast

it with the diffusion noise. �

2) Simplifications for Extreme SNR Regimes: In the fol-

lowing, we further simplify the model in (87) for two

asymptotic SNR regimes, namely the diffusion-noise-limited

and interference-limited regimes. To do so, we first formally

define SNR as [119]

SNR

=
Power of Signal

Variance of Diffusion Noise + Variance of Interfering Noise

=
r̄2sig

r̄sig + r̄int
, (88)

where r̄sig denotes the expected number of signaling molecules

received at the sampling time. In the following, we focus on

the ISI-free channel, i.e., L = 1, and a single-sample detector.

Therefore, we drop indices l and m for notational simplicity.

Remark 24: One approach to obtain an approximately ISI-

free channel is to choose a sufficiently large symbol interval

such that the CIR practically fully decays to zero within one

symbol interval. In such a case, the transmission rate may

be severely reduced which may lead to an inefficient system

design. Fortunately, it has been shown in the literature that

reactions can be beneficial for ISI mitigation [65], [66], [74]. In

particular, enzymes [65] and reactive signaling molecules, such

as acid and base molecules [66], [74], may be used to speed

up the decay of the CIR as a function of time, which would

increase the accuracy of the assumption of an ISI-free channel,

see Fig. 5. For instance, in [74], a reactive signaling MC system

was assumed where the transmitter employs different molecules

that react with each other, e.g., acids and bases. Then, after the

release of the signaling molecules (e.g., an acid), the transmitter

may release so-called cleaning molecules (e.g., a base). It is

shown that the resulting CIR is considerably shortened, which

makes the ISI-free channel an accurate model, see Fig. 15.

Moreover, the peak of the received signal remains unchanged

since the cleaning molecules are released after the peak is

observed at the receiver. �

Diffusion-Noise-Limited SNR Regime: In this case, we

assume r̄sig ≫ r̄int holds. Thus, the model in (87) simplifies
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Fig. 15. Expected number of molecules observed at the receiver versus time.
The dotted vertical lines indicate the beginning of symbol intervals. The
injection of the reactive cleaning signal helps to shorten the CIR.

to

r̃[k] = r̄sigs[k] + rdfn[k], (89)

where rdfn[k] ∼ P0 (r̄sigs[k]) and rdfn[k] ∼ N (0, r̄sigs[k])
hold for the Poisson and Gaussian models, respectively. The

SNR in this case is obtained as SNR = r̄sig.

Interference-Limited SNR Regime: In this case, we as-

sume r̄sig ≪ r̄int holds. Thus, the model in (87) simplifies

to

r̃[k] = r̄sigs[k] + rint[k], (90)

where rint[k] ∼ P0 (r̄int) and rint[k] ∼ N (0, r̄int) hold for

the Poisson and Gaussian models, respectively. The SNR in

this case is obtained as SNR = r̄2sig/r̄int. We note that this

special case yields a signal-independent (Gaussian) model as

it is widely adopted in conventional wireless communications.

Finally, we note that it may be necessary to use a combination

of both of the above special cases for the analysis of MC

systems. For instance, for a simple on-off keying (OOK)

modulation, i.e., s[k] ∈ {0, 1}, the interference noise molecules

are dominant for bit s[k] = 0 whereas the diffusion noise is

dominant for bit s[k] = 1. This is schematically illustrated

in Fig. 16 where it can be observed that the noise power

for symbol s[k] = 1 (diffusion-noise-limited regime) is larger

than that for symbol s[k] = 0 (interference-limited regime). A

similar observation has also been reported for photon-counting

receivers in optical wireless communications where the shot

noise at the receiver has two components, one generated by

the laser transmitter (analogous to diffusion noise) and one

generated by the ambient background light (analogous to

interfering noise molecules) [120].

F. Time Correlation

In the following, we discuss the signal correlation with

respect to observation time scale t and release time scale τ .
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Fig. 16. Received signal versus time. Illustration of diffusion-noise-limited
and interference-limited regimes.

1) Sample Correlation: In (86) and (87), we assume that

the number of molecules counted at different time instants t
within one symbol interval or in different symbol intervals

are independent from each other. However, this assumption

holds only if the sampling interval is chosen large enough such

that the independence of consecutive samples is guaranteed. In

[53], the mutual information between two samples r(t1, τ) and

r(t2, τ) was numerically computed and the minimum spacing

needed to ensure independence between consecutive samples

was found such that the corresponding mutual information is

below some threshold. Since the mutual information between

two samples is difficult to derive in closed form, one may

consider the Pearson correlation coefficient [121] among two

consecutive samples instead, i.e.,

ρt(t1, t2)

=
❊
{(

r(t1, τ)− r̄(t1, τ)
)(
r(t2, τ)− r̄(t2, τ)

)}

√

❊

{(
r(t1, τ)− r̄(t1, τ)

)2
}

❊

{(
r(t2, τ)− r̄(t2, τ)

)2
}

(a)
=
❊ {r(t1, τ)r(t2, τ)} − r̄(t1, τ)r̄(t2, τ)

√

r̄(t1, τ)r̄(t2, τ)
, (91)

where equality (a) follows from the fact that under both

Poisson and Gaussian statistics, the variance of r(t, τ) is

r̄(t, τ). The cross-correlation term ❊ {r(t1, τ)r(t2, τ)} depends

on the specific adopted receiver type. Note that by definition,

−1 ≤ ρt(t1, t2) ≤ 1 holds. Typically, the sample times t1
and t2 should be separated such that ρt(t1, t2) falls below a

certain threshold, denoted by ζt, i.e., |t2 − t1| should be large

enough such that ρt(t1, t2) < ζt holds. In Fig. 17, we show

the absolute correlation |ρt(tp, tp +∆t)| versus ∆t where tp

denotes the peak of the expected received signal. As can be

seen from this figure, the correlation decreases as ∆t increases.

Moreover, as an example, we choose the value of the threshold

as ζt = 0.2. One can observe from Fig. 17 that as the diffusion

coefficient of the molecules increases, the minimum sample

spacing ∆t needed to ensure |ρt(tp, tp +∆t)| < ζt decreases.
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Fig. 17. Absolute correlation |ρt(tp, tp +∆t)| versus ∆t [µs] where tp =
maxt r̄(t, τ) for a point transmitter, an unbounded environment, a passive
receiver of radius arx = 50 nm, d = 200 nm, Ntx = 2000, and D =
{1, 5, 10} × 10−11 m2/s.

2) Mean Correlation: Recall that if the system parameters

change, the mean signal r̄(t, τ) varies over time scale τ . In

a similar manner as for sample correlation, one can define a

correlation factor ρτ (τ1, τ2) between the mean signals at time

τ1 and τ2 as follows

ρτ (τ1, τ2) =
❊ {r̄(t, τ1)r̄(t, τ2)} −mr̄(t, τ1)mr̄(t, τ2)

σr̄(t, τ1)σr̄(t, τ2)
. (92)

For the case when transmitter and receiver mobility are

the cause of the variations in r̄(t, τ), cf. Section IV-C3,

mr̄(t, τ) and σr̄(t, τ) are given by (80) and (81), respectively.

Moreover, the cross-correlation, denoted by φr̄(t, τ1, τ2) ,

❊ {r̄(t, τ1)r̄(t, τ2)}, for two arbitrary times τ1 and τ2 > τ1 is

derived in [106, Eq. (19)]

φr̄(t, τ1, τ2)

=

∫∫

d1,d2∈R3

r̄(t, τ1|d(τ1) = d1)r̄(t, τ2|d(τ2) = d2)

×fd(τ1),d(τ2) (d1, d2) dd1dd2,

=
(Ntx)

2(2π)3φ2λ(τ1)λ(τ2 − τ1)
(
4θ(τ1, τ2)

)3/2

× exp

(

−β (τ1) d
2
0

[

1− (α+ β(τ2 − τ1))β(τ1)

θ(τ1, τ2)

])

, (93)

where for compactness φ, λ(τ), α, β(τ), and θ(τ1, τ2) are

respectively defined as

φ =
Vrx

(4πD1t)3/2
, λ(τ) =

1

(4πD2τ)3/2
,

α =
1

4D1t
, β(τ) =

1

4D2τ
, and

θ(τ1, τ2) = (α+ β (τ1)) (α+ β (τ2 − τ1)) + αβ (τ2 − τ1) .

In order to quantify the time variations of the end-to-end MC

channel, we define the coherence time, Tc, as the minimum time

 

 

Dtx = Drx = 0.1D
Dtx = Drx = 0.05D
Dtx = Drx = 0.01D

Time Tc

Coherence

ζτ = 0.5

|ρ
τ
(τ

1
,τ

1
+
∆
τ
)|

∆τ [ms]
0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 18. Absolute correlation |ρτ (τ1, τ1 + ∆τ)| versus ∆τ [ms] for a
point transmitter, an unbounded environment, a passive spherical receiver
of radius arx = 50 nm, d0 = 200 nm, τ1 = 1 ms, observation time at
tp = maxt r̄(t, τ = 0), Ntx = 2000, D = 10−11 m2/s, and Dtx =
Drx = {0.01, 0.05, 0.1} ×D. Markers denote simulation results and lines
denote the analytical results based on (92).

∆τ for which ρτ (τ1, τ1 +∆τ) falls below a certain threshold

value 0 < ζτ < 1, i.e., [106]

Tc = argmin
∀∆τ>0

(ρτ (τ1, τ1 +∆τ) < ζτ ) . (94)

The coherence time of the channel is a metric which determines

the time over which the channel does not change substantially.

As such, the particular choice of ζτ depends on the application

of interest. Future applications of synthetic MC systems that are

more robust to CIR variations can assume smaller values of ζτ ,

whereas applications that are more sensitive to CIR variations

may require larger values of ζτ . For example, typical values

of ζτ reported in the conventional wireless communications

literature span the range from 0.5 to 1 [122]–[124]. Smaller va-

lues of ζτ are often employed for resource allocation problems,

while larger values of ζτ are used for channel estimation. In

Fig. 18, we show the absolute correlation |ρτ (τ1, τ1 + ∆τ)|
versus ∆τ for different scenarios of transmitter and receiver

mobility, i.e., Dtx = Drx = {0.01, 0.05, 0.1} × D. As can

be seen from Fig. 18, the channel mean decorrelates as ∆τ
increases. Moreover, assuming a fixed threshold ζτ = 0.5,

the coherence time decreases as the diffusion coefficients of

transmitter and receiver increase.

V. SIMULATION- AND EXPERIMENT-DRIVEN MODELS

The analytical results presented thus far in this tutorial have

focused on tractable solutions based on the underlying physical

principles of advection, reaction, and diffusion. In order to

arrive at these results, we often had to make assumptions

that simplify the physical transmitter, receiver, and channel.

However, this approach has limitations. Assumptions are

generally constrained by specific channel parameters or the

conditions for which they accurately apply. For example,

we can assume that an environment’s outer boundary is
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unbounded if it is sufficiently larger than the signaling range;

see Fig. 11 and [125]. Similarly, we can model the locally-

varying concentration due to a molecule source as uniform if

we are observing from a distance that is sufficiently far from

the source; see the UCA in Section III and [40].

Sometimes we are able to relax assumptions and still

maintain analytical tractability, cf. Section III. When this occurs,

we can define a reliable rule of thumb that dictates explicit

conditions under which the assumption can be satisfied to some

degree of accuracy. For instance in [40], it was shown that the

simplified CIR with UCA was within 2 % of the ideal CIR for

most of the time of interest if the radius of a spherical receiver

was no more than 15 % of the distance from the molecule source

to the center of the receiver. However, we generally do not

have the option to relax assumptions for analytical tractability

while maintaining sufficient accuracy. Furthermore, we might

encounter a channel with complex or novel phenomena where

we do not yet know what suitable assumptions might be.

In the absence of reliable analytical results, we must rely on

data-driven approaches to model a channel. Such approaches

can also be used to help verify analytical results. This section

reviews simulation and experimental approaches for generating

data. Simulations can provide an efficient means for channel

modeling, even in the presence of complex and coupled physical

phenomena. Reliable experimental data may be preferred, but

can be time-consuming and expensive to obtain.

A. Simulation-Driven Models

Simulations of reaction-diffusion systems can be performed

over a range of physical scales. As such, there are a range of

simulation classes available, which we summarize in Fig. 19

and also discussed in [125]. We refer to these classes as

continuum simulations, mesoscopic simulations, microscopic

simulations, and molecular dynamics simulations. Generally,

each class is suitable for a particular scale. Not surprisingly,

there is an inherent trade-off between the physical resolution

of a simulation and the computational resources (whether

measured in time or memory) that are required to simulate

it. The continuum approach is most suitable for macroscale

systems. Both the microscopic and mesoscopic approaches can

be appropriate for microscale systems. The molecular dynamics

approach is most suitable for systems at the nanoscale and

smaller. While the microscopic approach has been the most

common simulation method within the MC research community,

here we discuss all four approaches, their relevance, and also

the potential to combine them in a single simulation. For the

microscopic and mesoscopic approaches, we also describe how

to implement a simple simulation.

1) Continuum Simulations: When the physical scale of a

simulation, including the number of molecules, is sufficiently

large, then the evolution of the system can be directly described

using the corresponding spatio-temporal PDEs, see e.g. (29).

We refer to these as continuum simulations. Specifically, finite

element analysis is used to spatially partition the system into

a grid (see Fig. 19a)), and the system is simulated over a

sequence of time steps. The molecule concentrations at each

node in the grid are updated in every time step according to the

(a) Continuum (b) Mesoscopic

(c) Microscopic

(d) Molecular Dynamics

Fig. 19. Physical scales of molecular simulation. a) Continuum simulations
solve the PDEs that describe the system. Molecular concentrations are non-
negative and real-valued. b) Mesoscopic simulations proceed as a sequence
of events, where each event is an occurrence of a chemical reaction or a
molecule moving between adjacent subvolumes. c) Microscopic simulations
individually track each molecule of interest. The solute molecules diffuse
within a continuum of solvent molecules. d) Molecular dynamics simulations
model all individual atoms and molecules, including intermolecular forces and
collisions.

differential equations that describe the phenomena. The updated

concentrations are always non-negative real values. Popular

commercial solvers that follow this approach include COMSOL

Multiphysics [126] and ANSYS [127]. This approach was used

in an MC context in [128] for the characterization of the

diffusion of autoinducer molecules in a bacterial environment.

Unless the differential equations are stochastic or explicit

noise sources are introduced, the continuum simulation of a

system is deterministic. Generally, the accuracy depends on

the resolution of the grid and the size of the time step; more

accurate simulations can be performed by increasing the grid

resolution and decreasing the size of the time step. However,

as the nodes in the grid become increasingly close, the number

of molecules associated with each node decreases. When the

molecule concentrations get sufficiently small, it becomes more

appropriate to consider integer numbers of molecules instead

of continuous-valued concentrations. Thus, we next discuss

mesoscopic simulations.

2) Mesoscopic Simulations: Like continuum simulations,

mesoscopic simulations also partition the system into a

grid. The resulting containers are commonly referred to as

subvolumes or voxels, and have also been referred to as

lattices; see [129]. However, instead of tracking continuous

molecule concentrations, mesoscopic modeling counts discrete

numbers of molecules in each subvolume; see Fig. 19b) and

implementations for MC systems in [125], [129]. Instead of

deterministically solving the system’s set of PDEs, mesoscopic

simulations proceed by stochastically generating event times,

where each event is the occurrence of a chemical reaction

or a molecule’s transition between two subvolumes. The key

physical assumptions to justify using a mesoscopic approach

are that i) molecules within a given subvolume are uniformly

distributed, and ii) the solvent molecules in a subvolume

can be treated as a homogeneous continuum that is in
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thermal equilibrium. When these assumptions are satisfied, the

mesoscopic approach can simulate chemical reactions exactly

(in a statistical sense, as proven in [130]). Furthermore, if the

subvolume sizes are appropriately chosen, advection-reaction-

diffusion systems can also be simulated exactly; see [131],

[132]. An important constraint is that the subvolume size (e.g.,

cube length) ℓ must be much smaller than both
√
2nDtr and

2D/|v|, where n is the dimension of the subvolume, tr is the

characteristic time of the fastest reaction in the system, D is

the diffusion coefficient of the largest corresponding reactant,

and |v| is the magnitude of the flow velocity. If this is not

satisfied, then we cannot safely assume that the subvolumes are

well-stirred (i.e., that the molecules are uniformly distributed).

Simple Implementation: A basic implementation of a

mesoscopic simulation with equal-sized subvolumes (of length

ℓ) is as follows. Let Us,m be the number of molecules of the

m-th type that are in the s-th subvolume. Events are associated

with propensities. The propensity αs,q,m of a transition of a

molecule of the m-th type to diffuse from the s-th subvolume to

the q-th subvolume, where these two subvolumes are adjacent

and share a face, is [133, Eq. (1.6)]

αs,q,m =
Dm

ℓ2
Us,m, (95)

where Dm is the diffusion coefficient of the m-th molecule

type. The propensity βs,p of the p-th chemical reaction in the

s-th subvolume is [134, Eq. (6)]

βs,p =κpV, (96)

βs,p =κpUs,m, (97)

βs,p =
κpUs,mUs,n

V
, (98)

for zeroth-, first-, and second-order reactions, respectively,

where the order corresponds to the number of reactants. κp is

the corresponding reaction rate constant, V is the subvolume

volume, and Us,m and Us,n are the corresponding numbers of

reactant molecules. For the entire system, the total propensity

γtot is then

γtot =
∑

s,q,m

αs,q,m +
∑

s,p

βs,p, (99)

and we can simulate the time tnext of the next event in the

system by generating exponential random variable

tnext = − log u

γtot
, (100)

where u is a random number uniformly distributed between 0

and 1. We can determine which of the possible events occurred

by tossing a weighted die, where the likelihood of each event

is proportional to its associated propensity. Once the event

is determined, we update the molecule counts, update the

corresponding propensities, and repeat the process to find the

next event.

Remark 25: We note that there are mathematically equi-

valent but more computationally efficient implementations,

particularly when updating propensities. These include Gibson

and Bruck’s Next Reaction Method; see [135]. Furthermore,

different accuracy-efficiency trade-offs can be introduced to

provide more flexible scalability. For example, tau-leaping can

be used to execute multiple events in a constant time step, where

“tau” refers to the time step size; see [136]. Tau-leaping enables

a transition between continuum and mesoscopic simulations;

if the number of events during one “leap” is sufficiently large,

then it can be treated as a deterministic value. As long as the

propensities do not significantly change between time steps,

then tau-leaping’s computational efficiency gains can be made

with minimal losses in accuracy. �

3) Microscopic Simulations: In some sense, microscopic

simulations are the dual of the mesoscopic approach. Whereas

the (non-leaping) mesoscopic approach is continuous over time

and discrete over space, the common microscopic approach

implementation is discrete over time and continuous over

space; see [76]. Instead of relying on well-stirred subvolumes,

microscopic simulations track every molecule individually (i.e.,

particle-based simulation); see Fig. 19c). Nevertheless, they

still assume that the solvent is a continuum of molecules, which

means that the diffusion of the molecules of interest is still

governed by a diffusion coefficient.

Simple Implementation: A basic implementation of a

microscopic simulation with flow and first-order reactions in

the propagation environment is as follows. In each time step ∆t,
every molecule is tested for every possible first-order reaction.

If there is only one potential reaction, and the associated

reaction rate is κ, then the corresponding reaction probability

Prxn is [76, Eq. (14)]

Prxn = 1− exp (−κ∆t) . (101)

If a coin flip with this probability is successful, then the

molecule is converted to the corresponding reaction product.

After all of the possible reactions have been tested, the remai-

ning molecules are diffused along every available dimension

by adding a displacement of
√
2D∆t×N (0, 1) towards each

dimension of the Cartesian coordinate system, cf. (1). The

realizations are independent for every molecule and along

every dimension. Furthermore, if the environment has a bulk

flow with a component v along a particular dimension, then

every molecule should have an additional displacement of v∆t
along that dimension, cf. (11). Diffusion should be unimpeded,

unless there are boundaries in the environment. For example, if

a molecule crosses a solid reflective surface, then the coordinate

that is normal to the surface is reverted to its value before

diffusion. If a molecule crosses an absorbing surface, then it

should be consumed by the absorbing reaction.

Due to their simplicity and their suitability for simulations

over a range of nanometers to micrometers, microscopic

simulations have been common for cellular systems and also

specifically for MC systems. Mature tools from the physical

chemistry community include Smoldyn (see [76], [145]).

Microscopic tools that have been developed specifically for the

MC community include BiNS2 [142], N3Sim [143], MUCIN

[97], and AcCoRD [125].

4) Molecular Dynamics Simulations: At a more precise

scale, solvent molecules and their interactions with solute

molecules and with each other can be modeled in detail; see

Fig. 19d). These are molecular dynamics simulations, and

they might account for intermolecular forces (including those
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TABLE III
SUMMARY OF THE SIMULATION METHODS REVIEWED IN SECTION V-A.

Class Typical System Scale Physical Chemistry Examples and Algorithms MC Community Examples Notes

Continuum Greater than micron
COMSOL Multiphysics [126],

ANSYS [127], Virtual Cell [137]
nanoNS3 [138] Solving PDEs. Requires large concentrations.

Mesoscopic Micron and larger Gillespie’s Method [130], [136], URDME [139] BNSim [140]
Counting molecules inside subvolumes.

Requires homogeneous concentration within a subvolume.

Microscopic Micron and smaller Smoldyn [137], [141]
BiNS2 [142], N3Sim [143],

MUCIN [97], AcCoRD [125]
Tracking molecules in solvent.

Most common approach for MC simulation.

Molecular Dynamics Nanometer LAMMPS [144] n/a Tracking all molecules and intermolecular forces.

Hybrid Multiple
Smoldyn (+mesoscopic), URDME (+microscopic),

LAMMPS (+Continuum), Virtual Cell (+microscopic)
AcCoRD (+mesoscopic)

Combining multiple classes.
Needs special treatment at interface between classes.

Can improve scalability.

imposed by charge potentials) and collision dynamics. One

such example is the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS); see [144]. Due to the very large

density of molecules to be considered, molecular dynamics

simulations are best suited for very small systems, e.g., on a

nanoscale. For instance, molecular dynamic simulations can

be used to study how the conformation of receptor proteins

change after binding to a specific molecule. Thus, they have

generally not been applied to study MC systems.

Remark 26 (Hybrid Simulations): The aforementioned dis-

cussion of simulation classes has emphasized their suitability

for simulations over different physical scales. However, a

particular system might have multiple scales of interest. In

order to avoid constraining the entire simulation by the most

granular approach needed, hybrid simulation tools have sought

to integrate different classes within a single simulation. One

approach has been to combine microscopic and mesoscopic

models, using hybrid interfaces such as that proposed in [133]

and later implemented in Smoldyn (see [141]) and AcCoRD

(see [125]). Other examples include the integration of the

molecular dynamics solver LAMMPS with a continuum model

(see [146]), and the integration of the continuum solver Virtual

Cell with the microscopic approach in Smoldyn (see [137]). �

The aforementioned different simulation methods, their

characteristics, and example implementations are concisely

summarized in Table III. In the following, we present an

example for CIR characterization of an MC system using

the AcCoRD simulator.

Example 11 (Example Simulation): We complete our discus-

sion of simulations with a brief demonstration. We consider an

extension of the bounded rectangular-duct channel discussed in

Section III-D that has no readily available analytical channel

response. Nevertheless, we can simulate the system. The

environment is a microfluidic system where two chambers are

connected via a long pipe, as shown and described in Fig. 20.

We place Ntx = 500 molecules uniformly within one of the

chambers (i.e., a cube). These molecules can diffuse out through

the rectangular pipe and into the other chamber and no flow

is considered. The second chamber has a perfectly-absorbing

surface and we count the number of molecules that are absorbed.

We assume that the receiver counts the number of molecules

absorbed by time t. Therefore, the receiver can be classified

as nR-AMC, i.e., non-recurrent and accumulative-molecule-

counting, with received signal r(t) = narv(t), cf. Section IV-A.

A realization of this system is simulated using a microscopic

approach in the AcCoRD simulator with a simulation time

step of ∆t = 1ms. The number of absorbed molecules r(t)

Fig. 20. Example environment to simulate. This “dumbbell”-shaped environ-
ment represents two connected microfluidic chambers with a rectangular duct
between them. It is composed of two cubes of length 32µm that are connected
by a rectangular pipe of size 60µm x 12µm x 12µm. We can also vary the
length of the pipe. The left cube has molecules initialized throughout it. The
right cube has an absorbing surface on the far side. An analytical channel
response for this environment is not readily available.

is plotted in Fig. 21 for different pipe lengths. We see that

all released molecules are absorbed within about 850 s for the

shortest pipe length (i.e., 60µm). As the distance between the

two chambers increases, fewer molecules get absorbed within

the same time. We note that one can obtain the CIR of this

system, i.e., h(t) defined as the probability of a molecule being

absorbed at the receiver in interval (0, t] after its release by

the transmitter at t = 0, by simulating the system for many

realizations and averaging the result, i.e., h(t) = ❊ {r(t)/Ntx}.

�

B. Experiment-driven Models

In the previous subsection, we have seen how elaborate

simulations can be used for scenarios where it is difficult or

even impossible to derive an analytical model based on physical

principles. However, for practical systems, we may also face

situations where even simulation of certain phenomena is

challenging. In fact, even complex simulation methods typically

cannot account for all characteristics of a real experimental

environment. In the following, we first highlight some of the

unique characteristics of two existing experimental platforms

for MC [64], [147] that cannot be easily modeled or simulated.

Subsequently, to cope with the aforementioned challenges, we

present a general data-driven modeling approach which is then

applied to an example experimental system.

1) Challenges in Modeling Existing Experimental Systems:

Several experimental systems exist for demonstrating MC.

These testbeds include both non-biological systems [64], [66],

[79], [148]–[152] and biological systems [147], [153]–[156].

To show the need for experiment-driven models, we review

the challenges of channel modeling for two of these testbeds.
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Fig. 21. Number of absorbed molecules in the simulation of the system
described in Fig. 20. 500 molecules are instantaneously released throughout
the molecule source, which freely diffuse with a diffusion coefficient of

10−10 m2

s
. A single realization is shown for different pipe lengths using a

simulation time step of 1ms.

Example 12 (Non-biological Testbed [64]): An early expe-

rimental MC system was presented in [64] and is based on

spraying and detecting alcohol in open space. In [157], it was

shown that a simple model based on diffusion and the flow

generated by a fan cannot accurately explain the measurements

obtained from the testbed in [64] due to system nonlinearities

whose exact cause is not known. For example, the spray that is

used for releasing the chemicals may not produce consistently-

sized droplets in the spray stream across different trials, the

flow may show turbulent behavior that is difficult to model,

and the receiver sensor is prone to long response and recovery

times. �

Example 13 (Biological Testbed [147]): The biological MC

testbed reported in [147] converts an electrically controlled

optical signal into a chemical signal. In particular, for this

testbed, E. coli bacteria were genetically modified to incorporate

light-driven proton pumps in their cell membranes. Upon a light

stimulus, the modified bacteria then pump protons out into the

environment which increases the proton concentration outside

the bacteria. The resulting proton concentration was measured

by a pH sensor playing the role of the receiver. Although

complex models were developed in the biology literature for

describing the proton release rate of proton pumps as a function

of a given induced optical intensity [158]–[160], they typically

do not account for all of the dynamics inherent to living cells.

In fact, the growth, dying, and varying living conditions of

the bacteria due to constant exposure to light may impact the

channel model of the MC system in [147] and cannot be easily

captured analytically or via simulation. �

We note that similar inherent randomness and nonlinearities

as discussed for the two examples above also exist for other

experimental testbeds [66], [79], [148]–[156], [161] and are

challenging to model analytically or even simulate since their

exact cause is unknown.

2) Data-Driven Model: To address the aforementioned

shortcomings of analytical and simulation models, we propose

to employ data-driven models to account for the unpredictable

randomness and nonlinearities of real MC systems. The basic

idea behind these models is to select an appropriate parametric

model and choose its corresponding parameters to fit the

measurement data. In the following, we describe two different

approaches for selecting a suitable parametric model.

Physically-Motivated Parametric Models: Here, the mo-

del is chosen based on physics’ first principles. For instance,

in [157], a mathematical model is developed for the testbed

in [64] which is based on the solution to the advection-

diffusion equation with uniform flow, cf. (18). Nevertheless,

the parameters of the original analytical model were modified

to fit the model to the experimental data. As another example,

we consider the system in [79]. The model uses magnetic

nanoparticles in duct flow that are detected upon moving

through a coil enclosing the duct. Here, the parametric model

is based on laminar flow, cf. (14), and depends on the initial

distribution of the particles released across the cross-section

of the duct. The adopted parametric model was then shown

to accurately model the complex advection-diffusion process

in the duct after fitting its parameters to the measurement

data. In general, after choosing the parametric model, standard

curve fitting toolboxes can be employed to find the model

parameters. One common approach is to use the parameter set

that minimizes the mean square error between the model and

the measurement data [79], [147], [157].

Blind Models based on Neural Networks: In the absence

of an appropriate physically-motivated model, an alternative

option is to employ blind models based on neural networks to

jointly learn the model and its parameters [169], [170]. One

suitable network architecture for this purpose is the generative

adversarial network (GAN) which is able to generate a model

that creates artificial data very similar to the measurement

data [171]. The advantage of such blind parametric models is

that they can be universally applied to general MC systems,

whereas physically-motivated models have to be carefully

chosen according to the MC system under consideration. On

the other hand, the parameters of a physically-motivated model

have physical meaning, which is not the case for the parameters

of a trained neural network. The other challenge of channel

modeling based on neural networks is that they typically

require much more experimental data than parametric models

to construct the model. This is not surprising since without

domain knowledge, the number of parameters to be learned

for a neural network is much larger than that for a parametric

model.

Table IV summarizes the components (i.e., the transmitter,

the receiver, the channel, and the signaling messenger), the

characteristics (synthetic versus biological), and if available,

the corresponding data-driven channel models of several MC

testbeds that have been reported in recent years. In the

following, we explain a data-driven modeling methodology

for one example in detail.

3) Example of an Experiment-driven Model: In order to

further familiarize the reader with the main steps of developing

an experiment-driven channel model and to highlight some
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TABLE IV
SUMMARY OF COMPONENTS, CHARACTERISTICS, AND CORRESPONDING DATA-DRIVEN MODELS OF SEVERAL MC TESTBEDS.

Testbed Messengers Channel Transmitter Receiver Model

Synthetic Systems

Farsad et al. [64] Ethanol Open air; turbulent flow via fan Spray pump Semiconductor gas sensor
Parametric analytical model; unbounded
diffusion; constant uniform flow [157]

Farsad et al. [66] Acid and base
Water in vessel;

laminar flow via water pump
Injection pump pH electrode

Continuum simulation; unbounded 1D;
finite difference method [162]

Continuum and microscopic simulations;
unbounded 1D-3D;

hybrid analytical-numerical method [74]

Unterweger et al. [79] Magnetic nanoparticles
Water in vessel;

laminar flow via water pump
Injection pump Magnetic susceptometer

Parametric analytical model;
flow-dominated

Kennedy et al. [150], [161] Isopropyl alcohol Air in pipe; flow via fan Spraying pump Photoionization gas sensor Parametric data-driven model [163]

Giannoukos et al. [151]
Chemical odorants

(e.g. Acetone, n-Hexane)
Nitrogen gas in pipe;

flow via mass flow controller
Spraying pump Mass spectrometer

Parametric analytical model; 1D diffusion;
constant uniform flow; transparent receiver [164]

Approximate analytical model; 3D diffusion;
constant uniform flow; absorbing receiver [165]

Atthanayake et al. [148] Fluorescent dye Water in chamber; turbulent flow Injection pump Fluorescence detector -

Abbaszadeh et al. [166]
Vortex ring (specific

structure of gas molecules)
Open air; turbulent flow Injection piston Motion camera -

Leo et al. [152] Microfluidic droplet
Fluorinated oil FC-3283 in

microfluidic channel; turbulent flow
Injection pump Camera Continuum simulation using OpenFOAM [167]

Tuccitto et al. [168] Fluorescent chemicals
Liquid pH buffer in tube;

laminar flow
Injection pump Fluorescence detector Continuum simulation

Biological Systems

Krishnaswamy et al. [153] Molecule C6-HSL
2×YT broth in microfluidic channel;

diffusion and laminar flow
Injection pump E. coli bacteria

Modeling GFP production
via bacterial CRNs [156]

Felicetti et al. [154] Protein CD40L Liquid in confinement; diffusion
Platelet cells

via manual stimulation
Endothelial cells visualized

by fluorescence detector
Approximate model;

diffusion in infinite cylinder

Grebenstein et al. [147] Proton H+ Liquid pH buffer in
confinement; diffusion

E. coli bacteria
via light stimulus

pH electrode
Parametric analytical model;

state-dependent diffusion

Nakano et al. [155]
Lucifer yellow Diffusion through gap junctions

expressed by HeLa cells

Manual injection Fluorescence detector
-

Calcium ion C2+ Photolysis of caged-ATP Calcium imaging

peculiarities that may arise, we present the modeling metho-

dology for the biological testbed in [147] in some detail, cf.

Example 13 and Fig. 22.

Simple Physically-Motivated Parametric Model: In order

to arrive at an analytical model, the following assumptions

are made in [147]. It is assumed that the bacteria (i.e., the

transmitter) are uniformly distributed in their container and

that all bacteria are subject to the same light stimulus at the

same intensity because the bacteria suspension is continuously

stirred. It is further assumed that the bacteria begin and stop

pumping protons (i.e., signaling molecules) instantly when the

light is activated and deactivated, respectively. Furthermore,

it is assumed that the bacteria take up protons in a passive

manner, i.e., protons are consumed by the bacteria which lowers

the measured proton concentration. Finally, it is assumed that

the pH measuring device (i.e., the receiver) is passive and

that its presence does not change the proton concentration

or the behavior of the bacteria. These assumptions do not

strictly hold but are reasonable in consideration of the size

of the setup, the pumping speed of a proton pump, and the

characteristics of the bacteria [147]. We note that counting

the individual molecules observed at the receiver, r(t), might

be a reasonable assumption for nanomachines; however, for

experimental testbeds such as [147], computing r(t) is not

feasible. Hence, in [147], the proton concentration obtained

from the measured pH was considered as the received signal

and was modeled as

rc(t) =
r(t)

Vrx
= cb(t) + w(t), (102)

where cb(t) is the expected proton concentration and w(t) is

a random additive noise. It was shown that w(t) follows a

Gaussian distribution and this was justified using the CLT since

w(t) consists of different types of noises including diffusion

(counting) noise, pH sensor circuitry noise, and the noise

inherent to the biological machinery of the bacteria. We assume

that the light stimulates the bacteria over a time interval (i.e.,

a rectangular input pulse) since an impulsive stimulus (i.e.,

a delta input) does not effectively stimulate the bacteria to

release a sufficient number of protons into the MC channel,

see Remark 20. Under the aforementioned assumptions, the

expected proton concentration cb(t), depending on whether the

light is on (i = 1) or off (i = 0), can be obtained as

cb(t) = cb(t0) + (c∞i − cb(t0))

(

1− exp

(

− t− t0
τi

))

,

(103)

where cb(t0) is the initial concentration at starting time t0, c∞i
is the saturation concentration, and τi is a time constant. The

parameters of this model are cb(t0), c
∞
i , t0, and τi, which are

found using nonlinear least square error minimization to fit

the measurement data. For example, in Fig. 23a), we apply

constant illumination for 54 minutes followed by darkness.

The corresponding measurement signal and the fitted model

using (103) are shown in Fig. 23b) using blue and black lines,

respectively. As expected, the concentration increases upon

illumination and decreases quickly in darkness. Nevertheless,

the model in (103) fails to accurately follow the measurement

data. In fact, there exists an additional persistent decreasing

bias in the measurement signal which is not anticipated by the

saturation model in (103).

Enhanced Parametric Model: The assumptions made to

arrive at (103) do not account for the dynamics inherent to

living cells. As such, cells can be growing in number or dying,

or their fidelity can change. Motivated by the observations

from the measurement data in Fig. 23b), it was suggested in

[147] to enhance the model (103) with a simple additive linear

offset as follows

cd(t) = md · (t− t0), (104)
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a b

Fig. 22. Biological testbed. (a) Benchtop experimental setup; (b) Schematic illustration. Taken from [147].
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Data taken from [147].

where md is a parameter controlling the slope of the bias. The

extended model is then given by rc(t) = c(t) + w(t) where

c(t) = cb(t) + cd(t). From Fig. 23b), we can observe that

the enhanced model, shown in red, fits the measurement data

well. This example shows that further modification of a model

that was obtained solely based on physical principles may be

needed to arrive at an appropriate parametric model for an

experimental system.

VI. CHALLENGES AND DIRECTIONS FOR FUTURE WORK

MC is still in its early stages of development and our

understanding of MC channels is still quite limited. In the

following, we review some potential challenges and open

research problems which have to be addressed for successful

deployment of MC systems.

Particle Generation and Signaling Pathways: Although

the impact of CRNs in the physical channel (e.g. degradation

reactions) on the CIR of MC systems has been studied, see

Section III-D and [43], [44], [65]–[68], [74], less attention has

been dedicated to the analysis of the influence of the CRNs

at the transmitter and receiver. Such CRNs include particle

generation reaction networks at the transmitter and signaling

pathways at the receiver. In the MC literature, there are some

preliminary works that have studied the impact of particle

generation reaction networks and also simplified signaling

pathways; see e.g. [9], [88]. However, the corresponding models

are derived with a mesoscopic modeling approach. Analytical

CIR models that take the impact of these CRNs into account

are crucial for system design and hence constitute an interesting

research challenge.

Turbulent Flow: The majority of the CIR models in the MC

literature for advection channels have been developed based

on the assumption of a uniform or laminar flow velocity field,

cf. Section III-D. However, for several MC environments, such

as large arteries (e.g. the aorta) and macroscale environments

(e.g. oil pipe lines), flow may exhibit turbulent behavior [60].

In particular, turbulence can occur when the MC channel is

non-homogeneous, e.g., due to the presence of obstacles in the

physical channel. Therefore, studying and analyzing advection

channels with a turbulent velocity field is an important open

research problem. First results towards analyzing turbulent flow

for MC systems were reported in [148].

Sample Correlation: Multiple-sample detectors are used

in the MC literature to improve the detection performance

[38], [39], [42], [44], [53], [65], [90], [96], [105]. It is

typically assumed that different samples are statistically in-

dependent from each other. However, this assumption holds

only when the sampling interval is chosen large enough such

that the independence of consecutive samples is ensured. In

Section IV-F1, we have numerically evaluated the correlation

among consecutive samples, and in [53], the mutual information

between consecutive samples is numerically evaluated. We

note that sample correlation significantly depends on the

type of receiver, e.g., a recurrent, non-recurrent, AMC, or

IMC receiver, and its physical and chemical properties, e.g.,

the size, the number of receptors, and the reaction rate

constants of the binding and unbinding reactions for a reactive

receiver. Therefore, a careful study of sample correlation

and the minimum sampling interval needed to ensure sample

independence for different receiver types is essential for the

applicability and performance analysis of the multiple-sample

detectors proposed in the literature.

Complex Networks: In this tutorial, we focused on a single
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one-way communication link from a transmitter to a receiver.

This is the simplest communication architecture and hence

the basis for more complex network typologies. We note that

although multi-node networks can often be decomposed into

a superposition of individual links, there are certain scenarios

where such a decomposition is invalid. For instance, if multiple

reactive receivers are in the environment, the presence of each

receiver will impact the signal received at any other receiver,

see e.g. [30], [31], and the discussion in Section I-B. Moreover,

in Section III, we considered MC environments with simple

boundary and initial conditions in order to derive analytical

channel models. However, some important MC environments,

such as the cardiovascular system, are quite complex and

cannot be fully modeled based on physics’ first principals.

One approach is to develop simulation environments for such

complex networks, see [142] and Section V-A. Nevertheless,

for system design, it is desirable to have simple yet sufficiently

accurate analytical models for complex multi-node networks.

Developing such analytical models constitutes an important

future research topic, see [49], [82], [154], [172] for some

related works.

Microscale and Macroscale Models: MC systems have

numerous potential applications which range from targeted

drug delivery and health monitoring for microscale systems

to communication in oil pipelines or chemical reactors and

environmental monitoring for macroscale systems. Neverthe-

less, most of the current literature has targeted microscale

applications and the available models are typically developed

for microscale MC environments. However, macroscale and

microscale MC systems may require quite different conside-

rations. For instance, the number of molecules needed for

communication at macroscale is typically much larger than

that needed for communication at microscale. Moreover, while

at microscale, molecules can be counted at the receiver (e.g.

via ligand-receptors), at macroscale, receivers usually measure

a quantity that is a function of the molecule concentration (e.g.

a pH sensor was used in [66], [79] and mass spectroscopy

was used in [151], [165]), see also Table IV. In summary, the

development of channel models for macroscale MC systems is

an important and interesting topic for future research. We refer

the interested reader to [4], [79], [151], [157], [165], [173] for

preliminary results on channel modeling for macroscale MC

systems.

Generally-Accepted and Experimentally-Verified Mo-

dels: Over the past years, several non-biological experimental

testbeds [64], [66], [79], [148]–[152] and biological experi-

mental testbeds [147], [153]–[156] have been developed to

demonstrate MC, see Table IV. Most of these experimental tes-

tbeds were developed as proofs-of-concept for human-designed

MC and mathematical models that explain the corresponding

measurement data are usually too simplistic if available at all,

see Table IV. However, for the advancement of MC research, it

will be crucial to specify generally-accepted test channels with

corresponding experimentally-verified mathematical channel

models. Then, researchers in the MC community can use these

established models for the design and performance analysis of

newly-developed communication schemes.

VII. CONCLUSIONS

This paper provided a comprehensive tutorial review of the

diffusive MC channel models available in the literature. To

this end, we first presented the underlying fundamental laws

that govern diffusion, advection, and chemical reactions in MC

channels and constitute the essential mathematical tools from

biology, chemistry, and physics required for the development of

MC channel models. Subsequently, we reviewed the main end-

to-end channel models reported in the diffusive MC literature

and showed how they were developed from basic physical

principles. The reviewed end-to-end channel models included

the joint effects of release mechanisms, the physical channel,

and reception mechanisms. Moreover, we provided a unified

definition for the received signal that included the representation

obtained by both timing and counting receivers as special cases.

Furthermore, for counting receivers, we derived signal models

relevant for different time scales. We generalized these models

to account for interfering noise molecules and ISI and studied

the correlation among the received signals observed at different

time scales. In addition, simulation-driven and experiment-

driven channel models were investigated for complex scenarios

where simple MC channel models cannot be obtained from

basic physical principles. Finally, we provided a discussion of

challenges, open research problems, and future directions for

channel modeling of diffusive MC systems.
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