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It is a challenge to automatically and accurately segment the liver and tumors in computed 

tomography (CT) images, as the problem of over-segmentation or under-segmentation 

often appears when the Hounsfield unit (Hu) of liver and tumors is close to the Hu of other 

tissues or background. In this paper, we propose the spatial channel-wise convolution, 

a convolutional operation along the direction of the channel of feature maps, to extract 

mapping relationship of spatial information between pixels, which facilitates learning the 

mapping relationship between pixels in the feature maps and distinguishing the tumors 

from the liver tissue. In addition, we put forward an iterative extending learning strategy, 

which optimizes the mapping relationship of spatial information between pixels at different 

scales and enables spatial channel-wise convolution to map the spatial information 

between pixels in high-level feature maps. Finally, we propose an end-to-end convolutional 

neural network called Channel-UNet, which takes UNet as the main structure of the 

network and adds spatial channel-wise convolution in each up-sampling and down-

sampling module. The network can converge the optimized mapping relationship of 

spatial information between pixels extracted by spatial channel-wise convolution and 

information extracted by feature maps and realizes multi-scale information fusion. The 

proposed ChannelUNet is validated by the segmentation task on the 3Dircadb dataset. 

The Dice values of liver and tumors segmentation were 0.984 and 0.940, which is slightly 

superior to current best performance. Besides, compared with the current best method, 

the number of parameters of our method reduces by 25.7%, and the training time of our 

method reduces by 33.3%. The experimental results demonstrate the efficiency and high 

accuracy of Channel-UNet in liver and tumors segmentation in CT images.

Keywords: liver and tumors segmentation, computed tomography, deep learning, spatial channel-wise 

convolution, Channel-UNet
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INTRODUCTION

Automatic liver and tumors segmentation in medical images has 
great significance in qualitative analysis of hepatic carcinoma, which 
can facilitate surgeons to diagnose disease and plan the patient-
specific surgery (Vorontsov et al., 2019). Computed tomography 
(CT) is the main modality to diagnose hepatic carcinoma, while 
the CT images are characterized by collections of interrelated 
objects with uneven gray levels and gray similarities, linked 
together into complex graphs and structures. It is a challenging 
task to achieve accurate and automatic segmentation of liver 
and tumors in CT images, as the problem of over-segmentation 
or under-segmentation often appears when the Hounsfield unit 
(Hu) of tumors is close to the liver tissue, especially for 3D CT 
images due to large data scale and computation (Moghbel et al., 
2018; Qin et al., 2018; Liu et al., 2019a).

To accurately segment liver and tumors in CT images, numerous 
segmentation methods have been proposed, including intensity 
threshold, region growth, and deformation model. In recent years, 
the development of convolutional neural networks, especially 
fully convolutional neural networks (FCN) (Long et al., 2015), has 
made great achievements in the field of semantics segmentation, 
such as the methods in (Lee et al., 2019; Zhou et al., 2019; Liu 
et al., 2019b). However, in dealing with the problem of image 
segmentation, convolutional neural networks may exaggerate 
the difference between similar objects (inter-class distinction) 
or the similarity between different kinds of objects (intra-class 
consistency) (Yu et al., 2018). This problem is especially serious 
in the field of medical image segmentation due to the similarity 
of physical characteristics of various human tissues that the Hu 
of various tissues is overlap with each other. For example, in liver 
segmentation, the Hu of the liver tissue is very close to that of the 
adjacent stomach (as shown in first row of Figure 1), and the Hu 
value of the tumor is close to the background (as shown in second 
row of Figure 1). This ultimately makes it difficult for the neural 
network to distinguish the boundary between the target tissues 
(liver, tumors) and other similar soft tissues or background.

To tackle with the above difficulty, we need to locate the target 
tissue and extract the features of similar objects, and solve the 
problems of "inter-class difference" and "intra-class consistency" 
(Liu et al., 2015). To solve the problem of "inter-class difference," (Liu  
et al., 2015) introduced the global context information and combined 
the original feature map with the pooled images to fully utilize the 
global information. Similar studies (He et al., 2015; Chen et al., 2017; 
Li et al., 2018a) also used the idea of global context feature to select 
and combine low- and high-level features. To solve the problem 
of "intra-class consistency," researchers mainly added the edge 
detection network to the original segmentation network, thus the 
whole network can realize both segmentation and edge detection 
(Chen et al., 2016a; Cui et al., 2018) to distinguish the boundaries 
between similar classes.

However, the above methods lack the pixel-level mapping 
relationship of spatial information between pixels, which 
would result in wrongly detecting the similar tissues as the 
target tissue, as well as failing to distinguish various sub-
domains with difference of the target tissue. To address this 
problem, we consider to extract the mapping relationship of 

spatial information between pixels from different convolutional 
layers of UNet (Ronneberger et al., 2015). The core idea is that, 
in convolutional neural network, although the feature maps 
obtained by convolutional operation retain spatial information, 
there is no extracted mapping relationship of spatial information 
between pixels, making it difficult to perform iterative spatial 
mapping optimization by loss function. Therefore, we consider 
extracting the mapping relationship of spatial information 
between pixels for identifying the differences of similar tissues 
and commonalities of different tissues. In this paper, we propose 
spatial channel-wise convolution, a 1×1 convolutional operation 
along the channel of feature map to extract the mapping 
relationship of spatial information between pixels in the feature 
maps. Then, we put forward an iterative extending learning 
strategy, which optimizes the spatial information at multiple 
scales. Finally, we propose the Channel-UNet, which can 
effectively converge the optimized spatial information extracted 
by spatial channel-wise convolution and the existing information 
extracted by UNet in the feature maps. The third and the fourth 
column of Figure 1 show a comparison of liver segmentation 
results with UNet (Ronneberger et al., 2015) and the proposed 
Channel-UNet, the experimental results demonstrate that the 
proposed method can effectively alleviate the problems of over-
segmentation and under-segmentation.

The contributions of this paper are as follows:

• We propose the spatial channel-wise convolution, a 
convolutional operation along the direction of the channel 
of the feature maps, which facilitates the neural network to 
learn the mapping relationship between pixels in feature maps 
and to distinguish liver and tumors from other similar tissues 
or background.

• We put forward an iterative extending learning strategy. The 
proposed learning strategy extends the receptive field of 
single spatial channel-wise convolution layer by layer, and 
obtains spatial channel-wise convolution at multiple scales by 
max-pooling and transpose convolution. Thus, the receptive 
field of spatial channel-wise convolution at multiple scales is 
increased and the mapping relationship of spatial information 
between pixels can be effectively optimized iteratively by 
back propagation.

• We propose the Channel-UNet, which takes UNet as the 
main framework. Each module in the UNet consists of the 
convolution layer and the spatial channel-wise convolution 
layer. By concatenating spatial channel-wise convolution and 
feature map along the direction of the channel of the feature 
maps, the Channel-UNet can realize multi-scale information 
fusion and effectively suppress the over-segmentation and 
under-segmentation problems in the process of segmentation.

Related Work
Convolutional neural networks have been applied to various 
medical image segmentation tasks. However, medical images 
contains various soft tissues with complex structures, we need 
to distinguish the target tissue from various soft tissues. Current 
research mainly focuses on adding multi-scale image information 
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and optimizing the extracted image information by using 
attention-aware methods to achieve accurate segmentation.

Multi-Scale Context-Based Methods
In image segmentation, the convolution network can successfully 
determine the coarse boundary of the target by extracting the 
abstract features of the image. Generally, the deeper the network is, 
the more complex and abstract the information can be fitted with 
the increase of parameters and receptive field of convolution kernel. 
This success can be partly attributed to the inherent invariance of 
local image transformation in the convolution network, which 
enables the network to learn higher-level feature. This invariance 
is helpful for higher-level tasks, but it may hinder low-level tasks. 
For example, in image segmentation, both the high-level abstract 
information and low-level pixel information are required for 
accurate segmentation. While with the increasing of the numbers 
of neural network layers, the information at low-levels is prevented 
from being transmitted to the output. To solve this problem, 
researchers propose two solutions. The first solution is to use low-
level feature information to assist high-level feature to restore image 
details. Specifically, up-sampling operations are used to encode 
the information and recover the missing target details due to the 
down-sampling process by connecting the encoding network with 
the decoding network. For example, FCN (Long et al., 2015) and 
UNet (Ronneberger et al., 2015) use transposed convolution for 
up-sampling, and then connect the shallow convolutional layers 
with the deep convolutional layers by jump connection, so that 
the network can make full use of the shallow information of the 
convolutional neural network. However, these methods cannot 
retrieve the spatial information loss in the process of pooling and 
convolution. Although the dilated convolution proposed in (He 
et al., 2015) can avoid this problem, it consumes a lot of computing 
resources. The second solution is to use the semantic information 

in the middle layer of the network to generate high-resolution 
prediction results, thus reducing the information loss in the 
encoding stage due to the addition of pooling layer, such as multi-
path refinement network (Lin et al., 2017) and GCN network (Peng 
et al., 2017). By using ResNet (He et al., 2016), the feature maps 
output in four different down-sampling stages are input into refined 
net module to generate feature maps with both rough high-level 
semantic features and fine low-level semantic features.

Attention-Aware Methods
The convolutional layer contains the spatial information of each 
pixel in the feature maps. Therefore, many researchers try to optimize 
the spatial information of convolutional layers. According to the 
location of the convolutional layers in the network structure, the 
optimization of spatial information extracted from feature maps 
can be divided into encoding, decoding and output stages. In the 
stage of network encoding and decoding, attention mechanism 
is often applied to optimize the extracted spatial information of 
feature maps (Chen et al., 2016b; Firat et al., 2016). The basic idea 
is to generate a mask between 0 and 1 by transformation, and then 
multiply it with the original feature maps. In this way, the region 
of interest remains unchanged, the rest of the image becomes 
zero. However, the direct application of attention mechanism 
would result in the loss of useful information when wrong 
judgment of the region of interest occurs. To solve this problem, 
Wang et al. (2017) and Zhu et al. (2017) proposed to add soft mask 
branch to the original convolutional layers to enhance the area 
activated by the convolution kernel while retaining the original 
decoding network. Thus, even if the attention mechanism fails, 
the original image information still can be corrected in the later 
training process. In addition to applying attention mechanism to 
decoding stage, (Hong et al., 2016) applies attention mechanism 
to the encoding stage, and their method multiplies the feature 

FIGURE 1 | Example of over-segmentation and under-segmentation in liver segmentation.
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maps with the feature maps after applying attention mechanism. 
As a result, the graph after attention mechanism and the feature 
maps before attention mechanism can undergo a reversible 
matrix transformation to ensure that the useful information 
will be retained. In the image output stage, conditional random 
field is usually introduced to post-process the segmented images 
(Christ et al., 2016), it can facilitate the smoothing the edge of 
the segmentation.

METHOD

In this paper, we consider extracting and optimizing the 
mapping relationship of spatial information between pixel in 
convolution layers to solve the problems of over-segmentation 

and under-segmentation. We propose the spatial channel-wise 
convolution, iterative extending learning strategy, and Channel-
UNet framework, which can converge the optimized mapping 
relationship of spatial information extracted by spatial channel-
wise convolution and the existing information extracted by UNet 
in the feature maps, thus achieving accurate liver and tumors 
segmentation in CT images.

Network Architecture
Figure 2 illustrates the network architecture of Channel-UNet. 
To be more specific, we adopt UNet (Ronneberger et al., 2015) 
as the backbone structure of the proposed Channel-Net, which 
forms a symmetrical structure, as shown in the top of Figure 2. 
The encoding network extracts the feature information, while 

FIGURE 2 | Network architecture of Channel-UNet.
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the decoding network reconstruct the feature information. 
The encoding and decoding networks are connected by jump 
connection, thus the network can retain shallow information. 
Each sub-module of the backbone network is connected in 
series by max pooling layer and transposed convolution, as 
shown in the bottom of Figure 2. Each sub-module consists 
of two branch channels. Branch 1 is composed of multiple 
convolutional layers in series. Branch 2 is composed of multiple 
convolution layers and a spatial channel-wise convolution 
layer in series, which would extend the receptive field of the 
spatial channel-wise convolutional layers. The two branches are 
eventually concatenated. The purpose of this step is to preserve 
the information of the original convolution layers, such as pixel 
information and shape information, when extracting mapping 
relationship of spatial information between pixels by spatial 
channel-wise convolution. The Channel-UNet adopts the 
iterative extending learning strategy to train the network, the 
mapping relationship of spatial information between pixels can be 
effectively optimized iteratively by back propagation. Finally, the 
optimized mapping relationship of spatial information extracted 
by spatial channel-wise convolution and the feature information 
extracted by convolution are converged by max-pooling layers. 
In practice, batch normalization layer (Normalization, 2015) 
and L2 regularization are added between convolution layers to 
effectively alleviate over-fitting.

Spatial Channel-Wise Convolution
The lacking of mapping relationship of spatial information makes 
it difficult to perform iterative spatial mapping optimization, 
which would result in the problems of over-segmentation 
and under-segmentation. In this paper, we propose the spatial 
channel-wise convolution, a convolutional operation along the 
direction of the channel of feature maps, which extracts the 
mapping relationship of spatial information in convolutional 
layers and facilitates distinguishing liver and tumors from other 
similar tissues or background.

The difference between the spatial channel-wise convolution 
and the convolution is the sliding direction of the convolutional 
kernel. Specifically, in the traditional convolution, the convolution 
kernel slides on the (x, y)-plane of the image, while in the spatial 
channel-wise convolution, the spatial channel-wise convolution 
kernel slides on the channel z-axis of the image. Figure 3 
demonstrates the difference between convolution and spatial 
channel-wise convolution with three input images (32  ×  32). 
Traditional convolution use 1 × 1× N convolution kernels, where 
N represents the number of convolutional kernels whose value 
is equal to the number of output images. In order to calculate 
its output, the 1 × 1 convolution kernel is multiplied by the 
corresponding pixel value in each input image, respectively, 
and then the sum is obtained. Secondly, the 1 × 1 convolutional 
kernel slides in (x, y)-plane. Finally, the N convolution results are 

FIGURE 3 | The difference between convolution and spatial channel-wise convolution. (A) Convolution: the convolution kernel slides on the (x, y)-plane, and the 

resulting feature map is concatenated along the z-axis direction, which is the direction of the channel of the feature maps. (B) Spatial channel-wise convolution: the 

convolution kernel slides in the z-axis direction, and the resulting feature maps are arranged in the (x, y)-plane. The arrangement rules are the same as those of the 

input feature maps.
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superimposed along the z-axis direction, which is the channel of 
feature maps, as shown in Figure 3A. When the step size is 1 and 
the filled convolution kernel is not included, the convolutional 
operation, using the 1×1 convolution kernel, is equivalent to the 
multiplication of matrices, as shown in Equation 1.

 

a Zl l
i j= = ∑δ δ( ) (( , ) a w +b )i,j,k

l-1
k
l l

k=1

N

 (1)

where l is the number of layers, b is the offset, δ is the activation 
function, Z(i,j) is the pixel value of the corresponding feature map, 
N is the number of channels of the feature map, w is the weight 
coefficient.

For spatial channel-wise convolution, as shown in Figure 

3B, we use 1 × 1 × 322 convolutional kernels to calculate 
spatial channel-wise convolution with three input images 
(32 × 32). The 1 × 1 convolutional kernel is placed at the top 
left corner, and then multiplied by the pixel value of the first 
input image (red image). Then the convolutional kernel slides 
along the z-axis, multiplying the corresponding pixel value 
of the second (green) and third (blue) input images. Finally, 
the results of k convolution kernels are arranged in the (x, 
y)-plane according to the original position of spatial channel-
wise convolution kernels. The previous steps can be expressed 
in Equation 2.

 
a z a w bl l

i j k
l

i j
l l= = +−δ δ( ) ( )( , ) ( , )

1  (2)

where l is the number of layers, b is the offset. δ is the activation 
function, z(i,j)is the pixel value of the corresponding feature map, 
k is the number of channels of the feature map, w is the weight. 
coefficient, denotes Hadamard product.

Iterative Extending Learning Strategy
By using spatial channel-wise convolution, we extract the 
mapping relationship of spatial information between pixels, then 
we need to optimize the extracted mapping relationship of spatial 
information for accurate segmentation of liver and tumors. In 
this paper, we put forward an iterative extending learning strategy 
to optimize the mapping relationship of spatial information 
between pixels at different scales and enables spatial channel-
wise convolution to map the spatial information between pixels 
in high-level feature maps. The receptive field of spatial channel-
wise convolution at multiple scales is iteratively extended and the 
mapping relationship of spatial information between pixels can 
be efficiently optimized iteratively by back propagation.

To be more specific, when the input images pass through the 
spatial channel-wise convolution layer, the pixels in the image 
are activated by different convolution kernels and the mapping 
relationship is established between the pixels in the input images. 
For convolution layer (l −1), the input feature of layer (l −1) is 
mapped to X. We denote Z as the output feature of layer l, which 
can be obtained by spatial channel-wise convolution calculation, 
as shown in Equation 3. Figure 4 demonstrates an example of 

learning mapping relationship between two pixels. When nine 
different 1 × 1 convolution kernels are applied to a 3 × 3 image, 
the pixel values of both upper left and lower right corners are 1, 
while the pixel values of the other locations are 0, thus we can 
learn the mapping relationship between the upper left and lower 
right pixels.

 Z W X bl l l l= +− 1
 (3)

where X is the input image, W is the convolution kernel 
variable, b is the offset, l is the index of layers number, and Z is 
the output value.

According to Equation 3, the partial derivative of loss function 
with respect to W of layer l is shown in Equation 4. Similarly, the 
partial derivative of the loss function with respect to the offset b 
of layer l is shown in Equation 5.

 

∂
∂

= ∂
∂

− ( , ) ( , )
( ) ( )

( )y y

W

y y

Z
X

 


l l

l 1
 (4)

 

∂
∂

=
∂
∂

 ( , ) ( , )
( ) ( )

y y

b

y y

Z

 
l l  (5)

where L is the loss function, y is the ground truth, ŷ is the 
predicted value.

FIGURE 4 | Example of learning mapping relationship between two pixels. 

The first column on the left represents the pixel values on three channels 

of the input volume, the second column represents spatial channel-wise 

convolution, and the third column is the output of each channel after the 

spatial channel-wise convolution.
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It can be observed in Equations 4 and 5 that the spatial 
relationship between the pixels can be iteratively optimized 
by back propagation after spatial channel-wise convolution. 
However, the receptive field of 1 × 1 kernel convolution is 
limited, making it difficult to learn the mapping relationship 
of high-level spatial features in the images. Fortunately, we can 
stack convolution layers to extend the receptive field of spatial 
channel-wise convolution. According to the characteristics of 
the receptive field in convolutional neural network, with the 
increase of the number of convolution layers, the receptive 
field of each feature point in the feature map corresponding 
to the original image increases. Therefore, in order to map the 
relationship between different depth features, we consider adding 
convolutional layers to the spatial channel-wise convolution 
layers, thus the relationship between deep image features can 
be mapped by spatial channel-wise convolution. As shown in 
Figure 5, a convolution layer with 3 × 3 kernel and step size of 1 
is added before spatial channel-wise convolution, the receptive 
field of spatial channel-wise convolution will be equal to that 
of convolution layer. In this way, we can represent the mapping 
relationship between pixels in different receptive field with only a 
1 × 1 spatial channel-wise convolutional kernel. As a result, 1 × 1 
spatial channel-wise convolutional kernel can learn the high-
level mapping relationship of spatial information between pixels 
by iterative extending learning strategy.

EXPERIMENTAL RESULTS

In order to evaluate the performance of Channel-UNet, the 
experiment was carried out on the open dataset of 3Dircadb1. 
The experiment consists of two parts: in the first part, we 
conduct the liver segmentation experiment to test performance 
of Channel-UNet under different receptive field. In the second 
part, we adopt the method of ablation research to validate the 
effectiveness of spatial channel-wise convolution. The 3Dircadb 
data set contains 20 abdominal CT images. It also indicates 
the major drawbacks during liver segmentation due to the 
existing of neighboring organs. Therefore, it is convenient to 
test the performance of the proposed network in dealing with 
different drawbacks.

Implementation Detail
The model was implemented using Keras package (Chollet et al., 
2015). The experiments were implemented on a platform with 
two GTX 1080 GPUs (8 GB display memory). Figure 6 illustrates 
the entire training and testing process.

Inspired by (Wang et al., 2017), before training, the medical 
image preprocessing was carried out in a slice-wise fashion. 
First, the intensity values of all scanned images are truncated to 

1 https://www.ircad.fr/research/3dircadb/

FIGURE 5 | Example of extending receptive field of spatial channel-wise convolution. Taking the blue pixel as example, when only using the spatial channel-wise 

convolution, as shown in (A), the effective receptive field of the red pixel in the output feature map is 1, which is the corresponding blue pixel in the input feature 

map. When adding the traditional convolution layer before spatial channel-wise convolution (convolution kernel size = 3, padding = 1, stride = 1), as shown in (B), 

the effective receptive field of the blue pixel in the output feature map is 3, which is the same size of the convolution kernel in the input feature map.
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(−200, 250) Hu to enhance the contrast between the liver and 
the surrounding organs and tissues, in order to remove irrelevant 
organs and tissues. Second, we crop the 512×512 scale data to 
256×256 so as to reduce the amount of parametric quantity and 
increase the proportion of foreground regions. Third, because 
the training data provided by the dataset is small, horizontal 
flip and perspective transformation are used to enhance the 
training set and effectively alleviate the over-fitting of the model. 
Finally, since the original slice data are too small in the target 
area at the beginning and the end, five slices will be discarded 
at the end of the training. The training process is divided into 
three stages. First, the liver is segmented by Channel-UNet. 
Then, the tumors are segmented by Channel-UNet. Finally, the 
tumors are segmented by cascaded Channel-UNet. We train the 
network using mini-batch adaptive moment estimation (Adam) 
(Kingma and Ba, 2014) with batch size 2, learning rate 0.00001. 
Loss function is set to Dice loss function. The number of training 
iterations is set to 100, and the training is stopped when over 
fitting occurs. In this paper, when generalization errors increase 

within N (here we set N = 8) continuous epochs, the over fitting 
occurs and we stop training the network.

In the test, 10% of the training data were randomly extracted 
as the verification set, and the results were verified by 10-fold 
cross-validation. For measuring the performance of our 
proposed network, five metrics are used to measure the accuracy 
of segmentation results including the Dice, which refers to the 
same measurement as Dice per case in 3Dircadb dataset, average 
symmetric surface distance (ASD), volumetric overlap error 
(VOE), relative volume difference (RVD), and root mean square 
symmetric surface distance (RMSD). For the last four evaluation 
metrics, smaller values indicate better segmentation results.

The Effect of Extending Receptive Field on 
Spatial Channel-Wise Convolution
According to the analysis in Iterative Extending Learning 
Strategy, the receptive field of spatial channel-wise convolution 
can be improved by adding convolutional layer before spatial 
channel-wise convolution layer. In order to further test its effect 
in practical application, in this section we test the effect of spatial 
channel-wise convolution on liver segmentation under different 
receptive field by changing the number of convolutional layers 
in front of spatial channel-wise convolution layer. The network 
structure is based on the network introduced in Network 
Architecture. The number of convolutional layers in branch 2 is 
{0,1,2,3,4} in the experiment. Table 1 lists the dice values of the 
segmented liver. The experimental results are shown in Figure 7. 
It can observed in the experimental results that with the increase 
of the number of convolutional layers stacked in front of spatial 
channel-wise convolution layer, the Dice value increases first and 
then decreases. Through the experiment, we found out that when 
the convolutional layer number is 3, the Dice value is the highest.

Ablation Study for Channel-Unet
To verify the validity of the spatial channel-wise convolution layer 
structure, we compared the segmentation effects of removing 
the spatial channel-wise convolution layer with Channel-UNet 
on liver and tumor. Compared with the network after removing 
the spatial channel-wise convolution layer, the Channel-UNet 
proposed in this paper achieves good segmentation results in 
two measurement indicators of liver and tumors segmentation, 
as shown in Table 2. The improvement of segmentation accuracy 
indicates that the information between the pixels on (x, y)-plane 
extracted by spatial channel-wise convolution is helpful to 
the recognition of tumors and liver, especially when the pixel 
values of tumors and background are close. Figures 8 and 9 

FIGURE 6 | The illustration of the pipeline for Channel-UNet.

TABLE 1 | The performance of Channel-UNet with different number of 

convolutional layers.

Number of convolution layers Dice (%)

0 92.6

1 94.2

2 97.4

3 98.4

4 96.3

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1110

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Channel-UNet for Medical Image SegmentationChen et al.

9

show the segmentation results of removing spatial channel-wise 
convolution layer and Channel-UNet on the 3Dircadb dataset. 
The results show that the segmentation effect is better after adding 
spatial channel-wise convolution and our method can resolve the 
problems of over-segmentation and under segmentation.

Comparison With Other Methods
To verify the advantage of our method, we conduct comparison 
experiments on 3Dircadb dataset, which is publicly available 

FIGURE 7 | Examples of liver segmentation from different receptive field. The first column is the original image, the second column is the true liver segmentation, and 

the columns 3 to 7 show the effect of different number of convolutional layers in front of spatial channel-wise convolution layer. The green region denotes the liver.

TABLE 2 | Segmentation results by ablation study of our method on the test 

dataset.

Method Dice

Tumor Liver

UNet 91.2 94.3

UNet+conv 89.5 92.4

UNet+conv+channelconv 

(Channel-UNet)

94.7 98.4

conv, convolutional layer; channelconv, spatial channel-wise convolution layer.

FIGURE 8 | Liver segmentation results by ablation study on validation dataset. The red part is the heat map of the output, and the green part represents the 

segmentation of the liver.
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and offers a higher variety and complexity of livers and tumors. 
On the 3Dircadb dataset, we compare the cross validation of 
Channel-UNet with the current best method (Li et al., 2018b), 
as well as other methods. The liver and tumors segmentation 
accuracy is shown in Tables 3 and 4. Compared with the 
current best method (Li et al., 2018b), the Dice values of liver 
and tumors segmentation by Channel-UNet are 0.984 and 
0.940 (as shown in Tables 3 and 4), which is slightly superior 
to it. Besides, for (Li et al., 2018b), the number of parameters 
is 61.4 × 106 and the training time is 9 h, while for Channel-
UNet, the number of parameters is 45.6 × 106 and the training 
time is 6 h. Compared with (Li et al., 2018b), the number of 
parameters of our method reduces by 25.7% and the training 
time of our method reduces by 33.3%. Our method optimizes 
the mapping relationship of spatial information between pixels 
extracted by spatial channel-wise convolution, and reduces 
the computational complexity and training parameters at the 
same time.

DISCUSSION

Automated segmentation of liver and tumor plays an important 
role in clinical diagnosis and treatment planning. In this paper, 
we first propose spatial channel-wise convolution to extract 
the mapping relationship of spatial information between 
pixels by spatial channel-wise convolution. Essentially, spatial 
channel-wise convolution is also a convolutional operation. 
The difference between traditional convolution and spatial 
channel-wise convolution is that the convolutional kernel 
slides along the channel direction, while the spatial channel-
wise convolution slides perpendicularly to the plane direction 
of the channel. Compared with the image segmentation 
algorithm which only adds multi-scale image information(Lin 
et al., 2017; Peng et al., 2017), spatial channel-wise convolution 
can extract the mapping relationship of spatial information 
between the pixels in the convolution network, so that multi-
scale information can be filtered through spatial information 

FIGURE 9 | Tumor segmentation results by ablation study on validation dataset. The gray regions denote the true liver while the white ones denote the true tumors. 

Columns 3, 5, and 7 show the heat map of tumor segmentation. Columns 4, 6, and 8 show the results of tumor segmentation, where red represents the tumor and 

green represents the liver.

TABLE 3 | Comparison of liver segmentation results. 

Model VOE (%) RVD (%) ASD (mm) RMSD (mm) DICE (%)

UNet (Chlebus et al., 2017) 14.21 ± 5.71 –0.05 ± 0.10 4.33 ± 3.39 8.35 ± 7.54 0.923 ± 0.03

ResNet (Han, 2017) 11.65 ± 4.06 –0.03 ± 0.06 3.91 ± 3.95 8.11 ± 9.68 0.938 ± 0.02

Christ (Christ et al., 2016) 10.7 −1.4 1.5 24.0 0.943

X. Li et al. (Li et al., 2018b) 10.20 ± 3.44 −0.01 ± 0.05 4.06 ± 3.85 9.63 ± 10.41 0.947 ± 0.01

H. Jiang et al. (Jiang et al., 2019) – – – – 0.945 ± 0.02

Ours 9.52 ± 4.65 −0.02 ± 0.07 8.43 ± 9.39 14.21 ± 5.71 0.946 ± 0.03

Li et al. + (Li et al., 2015) 9.15 ± 1.44 −0.07 ± 3.63 1.55 ± 0.39 3.15 ± 0.98 –

Moghbel + (Moghbel et al., 2016) 5.95 7.49 – – 0.911

Lu et al. + (Lu et al., 2017) 9.36 ± 3.34 0.97 ± 3.26 1.89 ± 1.08 4.15 ± 3.16 –

X. Li et al. + (Li et al., 2018b) 3.57 ± 1.66 0.01 ± 0.02 1.28 ± 2.02 3.58 ± 6.58 0.982 ± 0.01

Ours + 4.02 ± 1.42 −0.02 ± 0.03 1.24 ± 1.02 3.48 ± 4.16 0.984 ± 0.01

+ denotes the method using augmented training dataset; - denotes the unreported result.
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extracted by spatial channel-wise convolution when adding 
multi-scale information. What is more, compared with the 
image segmentation algorithm which optimizes the extracted 
information (Hong et al., 2016), we do not use attention 
mechanism that spatial channel-wise convolution layer 
obtains probability graph model through soft-max activation 
function, and then multiplies it with feature graph. On the 
contrary, we adopt the method of concatenating spatial 
channel-wise convolution layer and convolution layer directly 
along the channel direction. This is because spatial channel-
wise convolution is not the optimization of convolution layer 
information, but the extraction of mapping relationship of 
spatial information between pixels of convolution layers. This 
information exists in convolution layer but cannot be learned 
by parameters. Therefore, concatenating operation can retain 
the mapping relationship of spatial information extracted by 
spatial channel-wise convolution to the maximum extent.

Secondly, we add convolution layer before spatial channel-wise 
convolution to increase the receptive field of spatial channel-wise 
convolution. In this way, the spatial channel-wise convolution 
can extract the mapping relationship of spatial information on 
different feature maps. The experimental results show that the 
dice value of liver segmentation increases first and then decreases 
with the increase of spatial channel-wise convolution. It shows 
that too much increase of the visual field of spatial channel-wise 
convolution cannot improve the segmentation effect. Therefore, 
we did not use the dilated convolution (Yu and Koltun, 2015), 
which can greatly expand the receptive field of spatial channel-
wise convolution.

Finally, we propose an end-to-end network, called Channel-
UNet, for automatic segmentation of liver and tumors. We find 
out that it can solve the problems of over-segmentation and 
under segmentation in image segmentation. We compare our 
method with current best method (Li et al., 2018b), the Dice 
value of our method is slightly superior to (Li et al., 2018b), and 
number of parameters of our method is reduced by 25.7% and 
the training time is reduced by 33.3%. This is definitely important 
in clinical practice, especially when there is a lot of slice data to be 
processed. Our method can provide more efficient and accurate 
liver and tumors segmentation for clinical analysis.

Additionally, in order to better test the performance of the 
Channel-UNet under different segmentation drawbacks, we 
test the performance of the network for liver segmentation 
under different segmentation drawbacks according to the 
segmentation drawbacks given by 3Dircadb. Table 5 shows 10 
segmentation drawbacks and the serial number of validation 
data, which is the original patient index of the 3Dircadb 
dataset. As shown in Table 5, our method improves the Dice 
by 1.01–3.91% compared with the baseline under different 
segmentation drawbacks, and Dice of liver increases by 2.31% 
on average in the case of segmentation drawbacks compared 
with 1.01% in the case of no segmentation drawbacks. Based 
on the comparison results, it can be concluded that the 
improvement of segmentation accuracy is mainly attributed to 
the improvement of liver with segmentation drawbacks. This 
is mainly because the spatial channel-wise convolution layer 
extracts the mapping relationship of spatial information between 
pixels, which makes the original blurred boundary become 
conducive to segmentation. Also, it can be found in Table 5 that 
the improvement of segmentation is limited when the network 
encounters the drawbacks of heart and diaphragm, as these 
interference organs usually occur in fewer slices. However, 

TABLE 4 | Comparison of tumors segmentation result. 

Model VOE (%) RVD (%) ASD (mm) RMSD (mm) DICE (%)

UNet (Chlebus et al., 2017) 62.55 ± 22.36 0.380 ± 1.95 11.11 ± 12.02 16.71 ± 13.81 0.51 ± 0.25

Christ (Christ et al., 2016) – – – – 0.56 ± 0.26

ResNet (Han, 2017) 56.47 ± 13.62 −0.41 ± 0.21 6.36 ± 3.77 11.69 ± 7.60 0.60 ± 0.12

X. Li et al. (Li et al., 2018b) 49.72 ± 5.20 −0.33 ± 0.10 5.29 ± 6.15 11.11 ± 29.14 0.65 ± 0.02

H. Jiang et al. (Jiang et al., 2019) 1.354 0.129 1.074 1.412 0.62 ± 0.07

Ours 41.54 ± 4.32 0.159 ± 5.03 2.04 ± 4.32 2.12 ± 5.52 0.66 ± 0.03

Foruzan ∗ (Foruzan and Chen, 2016) 30.61 ± 10.44 15.97 ± 12.04 4.18 ± 9.60 5.09 ± 10.71 0.82 ± 0.07

Wu et al. ∗ (Wu et al., 2017) 29.04 ± 8.16 −2.20 ± 15.88 0.72 ± 0.33 1.10 ± 0.49 0.83 ± 0.06

Li et al. + (Li et al., 2015) 14.4 ± 5.3 −8.10 ± 2.1 2.4 ± 0.8 2.9 ± 0.7 –

Moghbel + (Moghbel et al., 2016) 22.78 ± 12.15 8.59 ± 18.78 – – 0.75 ± 0.15

Sun et al. + (Sun et al., 2017) 15.6 ± 4.3 5.80 ± 3.5 2.0 ± 0.9 2.90 ± 1.5 –

X. Li et al. + (Li et al., 2018b) 11.68 ± 4.33 −0.01 ± 0.05 0.58 ± 0.43 1.87 ± 2.33 0.937 ± 0.02

Ours + 13.68 ± 3.71 2.01 ± 0.05 0.46 ± 0.43 1.67 ± 2.33 0.940 ± 0.02

* denotes the semi-automatic method; + denotes the method using augmented training dataset; - denotes the unreported result.

TABLE 5 | Effectiveness of our method regarding to the segmentation drawbacks. 

Segmentation 

drawbacks

Test 

number

Dice (%)

Baseline Channel-UNet

Stomach 20 94.25 97.65 (+3.40)

Pancreas 15 95.55 97.62 (+2.07)

Duodenum 19 95.35 97.42 (+2.07)

Metal 3 96.90 98.15 (+1.25)

Heart 4 96.74 97.97 (+1.23)

Diaphragm 5 96.54 97.76 (+1.22)

Spleen 7 90.82 94.43 (+3.91)

Colon 9 96.65 98.64 (+1.99)

Muscles 16 93.16 96.07 (+2.91)

Esophagus 18 93.77 96.81 (+3.40)

No 12 97.85 98.86 (+1.01)

Baseline is the UNet with data augmentation.
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the proposed method is a supervised learning method. When 
segmenting the liver and tumors, we need to train the Channel-
UNet with the corresponding liver and tumor dataset, which 
make the proposed method heavily dependent on the scale and 
quality of the dataset. In future work, we plan to integrate the 
Channel-UNet with transfer learning (Van Opbroek et al., 2018) 
and small sample learning to address the above challenges. 
Besides, researchers have shown that using convolution kernels 
of different sizes can fuse information of different scales and 
improve classification accuracy (Szegedy et al., 2015), we plan 
to investigate the spatial channel-wise convolution kernels with 
different sizes to extract spatial mapping relations at different 
scales and improve the segmentation accuracy of liver tumors.

CONCLUSION

In this paper, we propose the spatial channel-wise convolution 
layer to extract mapping relationship of spatial information 
between pixels, raise the iterative extending learning strategy 
that extends the receptive field of single spatial channel-wise 
convolution layer by layer and optimizes the mapping relationship 
of spatial information by back propagation, and finally design 
an end-to-end network named Channel-UNet to solve the 
problems of over-segmentation and under-segmentation. The 
proposed Channel-UNet achieves superior Dice value of liver 

and tumors segmentation, and significantly reduces the number 
of parameters and training time compared with state-of-the-arts.
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