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Abstract. Task-based image quality procedures in CT that substitute a human observer with a model observer
usually use single-slice images with uniform backgrounds from homogeneous phantoms. However, anatomical
structures and inhomogeneities in organs generate noise that can affect the detection performance of human
observers. The purpose of this work was to assess the impact of background type, uniform or liver, and
the viewing modality, single- or multislice, on the detection performance of human and model observers.
We collected abdominal CT scans from patients and homogeneous phantom scans in which we digitally inserted
low-contrast signals that mimicked a liver lesion. We ran a rating experiment with the two background conditions
with three signal sizes and three human observers presenting images in two reading modalities: single- and
multislice. In addition, channelized Hotelling observers (CHO) for single- and multislice detection were imple-
mented and evaluated according to their degree of correlation with the human observer performance. For human
observers, there was a small but significant improvement in performance with multislice compared to the single-
slice viewing mode. Our data did not reveal a significant difference between uniform and anatomical back-
grounds. Model observers demonstrated a good correlation with human observers for both viewing modalities.
Human observers have very similar performances in both multi- and single-slice viewing mode. It is therefore
preferable to use single-slice CHO as this model is computationally more tractable than multislice CHO.
However, using images from a homogeneous phantom can result in overestimating image quality as CHO per-
formance tends to be higher in uniform than anatomical backgrounds, while human observers have similar
detection performances. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.025501]
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1 Introduction

Image quality plays a central role in clinical CT. A relevant way

to assess image quality could be by measuring the diagnostic

accuracy of an observer performing a task of interest. At the

same time, there is an advantage in terms of reducing time/

cost of reader studies in substituting a human observer with

a numerical model. This has led to the development of many

model observers that can predict human observer detection per-

formance in medical images. In recent years, the channelized

Hotelling model observer (CHO) has been increasingly

used1–4 and during the last decade, numerous studies have

documented a good correlation with human observers in CT

dose optimization or assessment of iterative reconstruction

algorithms.5–10

Many studies for low-contrast detection with model observ-

ers use images with a uniform background from homogeneous

phantoms.7,11 However, anatomical structures and inhomogene-

ities in organs generate noise that can affect the detection per-

formance of human observers.4,12 In addition, a recent study of

model observers showed that anatomical-like texture in CT

images affects low-contrast lesion detectability.13 Image quality

assurance procedures in CT that use uniform background

images and CHO would therefore greatly benefit from a

comparison of performances with clinical images of patients

containing anatomical textures and features. This could be

achieved by assessing the correlation of CHO detection perfor-

mance compared with human observers in both uniform and

anatomical images.

CT produces a volumetric representation of an object that

radiologists usually explore slice-by-slice in a multislice view-

ing mode. However, low-contrast detection studies with CHO

have only focused on single-slice images. Strategies to model

multislice reading with CHO (msCHO) have been proposed14,15

and recent studies16,17 found a good correlation with human

observers in CT images of a homogeneous phantom with a uni-

form background. While it is closer to clinical practice to model

a multislice reading task with msCHO, single-slice CHO

(ssCHO) is more tractable17 and has already been extensively

validated. In addition, ssCHO and human observer detection

performance correlates well in a multislice reading task in CT

images with a uniform background.17 However, for some two-

dimensional (2-D) imaging modalities, e.g., in mammography,12

human observer performance is affected by anatomical noise,

and it is therefore worthwhile to investigate if this is valid for

a three-dimensional imaging modality such as CT. This can be
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achieved by comparing ssCHO and msCHO with human perfor-

mance for anatomical images. Ultimately, if ssCHO and uniform

background images are to be used for quality assurance proce-

dures, it could be worthwhile to investigate how it correlates

with msCHO in anatomical images.

The purpose of this study is to answer the following

questions: Does detection in anatomical backgrounds lead to

different performances than in a uniform background? What

is the impact of the reading modality (single- versus multislice)

on detection performance in anatomical backgrounds? What is

the level of correlation for detection performance between CHO

and human observers in anatomical backgrounds?

To answer these questions, we collected both abdominal CT

scans from patients and homogeneous phantom scans in which

we digitally inserted low-contrast signals mimicking a liver

lesion. We ran a rating experiment with the two background

conditions with three signal sizes and three human observers in

two reading modalities: single- and multislice. We estimated

the receiver operating characteristic (ROC) for all observers

and computed the area under the ROC curve as a performance

metric. In addition, a CHO for single- and multislice detection

was implemented and evaluated according to its degree of

correlation with the human observer performance.

2 Materials and Methods

2.1 CT Data Acquisition

Two categories of CT images were used in this study: liver CT

images from patients with an anatomical background and CT

images of an abdominal phantom with a uniform background

(QRM, Moerendorf) (Fig. 1). The first category involved 16

CT exams of contrast-enhanced abdominal cases without path-

ologies that were collected in our hospital database [Fig. 1(b)].

The images were acquired with a local protocol for abdominal

exploration using a multidetector CT (Discovery HD 750, GE

Healthcare) at a pitch of 1.375, 0.6 s rotation time, 40 mm

collimation width, 120 kVp tube voltage, and a noise index

of 25. The images were reconstructed using statistical iterative

algorithm (ASIR) at a level strength of 50%, image thickness

was 2.5 mm, and slice interval was 2 mm. The second image

category contained 13 repeated acquisitions of an abdominal

phantom with additional shell mimicking medium to large

patient attenuation (100 cm perimeter).

2.2 Image Texture Characterization

The uniform and anatomical textures were characterized accord-

ing to their noise power spectrum (NPS) using a homemade

Igor Pro-based software (WaveMetrics Inc., Portland). For each

clinical exam, 50 ROIs of 70 × 70 mm were manually selected

within the respective liver structure. No overlap between ROIs

was allowed. The 2-D NPS was estimated by calculating the

average squared amplitude of the finite Fourier transform of

the ROIs. To facilitate comparison, the 2-D NPS was radially

averaged and resampled using linear interpolation.

2.3 Image Sets for Reader Studies

We used the same collected images to generate the signal-

present and the signal-absent dataset. The signal-present images

were hybrid CT images generated by inserting 6, 8, and 10 mm

low-contrast spherical signals, mimicking hypodense focal liver

lesions for both anatomical and uniform image classes. The

signal profile in all directions was fitted to real liver lesion

profiles18,19 [Fig. 2(a)]. The method used an alpha blending tech-

nique, which replaces anatomical structures in the volume of

interest by another obtained by blending a uniform region

and the signal. For anatomical images, lesions were manually

inserted into the regions of interest within the liver. We avoided

superimposing the lesions onto main anatomical structures such

as veins, arteries, or known focal liver lesions. For uniform

images, the lesions were randomly inserted in the liver-like

part of the phantom and distributed within eight nonoverlapping

specific locations.

All the images contained 512 × 512 pixels (one pixel = [0.58

to 0.98] mm, depending on patient size). In signal-present and

signal-absent datasets, two subsets were generated with single

and multiple slices. The multislice sets contained 10 consecutive

slices. The signal was present in 3, 4, or 5 consecutive slices, for

6, 8, and 10 mm signal size, respectively, centered in the middle

slice. The single-slice image category was extracted from the

middle slice image of the multiple slice image subsets. Each

dataset contained 100 anatomical and 100 uniform independent

sets of images with a signal prevalence of 1∶2. For the human

observer study, four contrasted fiducial cues were inserted

around the signal location and were presented [Fig. 2(b)].

For the model observer study, 78 × 78-pixel regions of interest

around signal locations, without fiducial cues, were cropped

from the human observer study dataset. For multislice image

sets, only slices containing the signal were used for model

observer computation (Fig. 3).

The signal amplitude was set in a prestudy to reach a targeted

human performance defined as an area under the ROC curve

(AUC) equal to 0.95 with the uniform multislice dataset and

the largest signal (10 mm). The same signal amplitude was

then used in all the other conditions investigated in this study.

In total, we investigated 12 different image categories: two

background types (uniform and anatomical), two reading modes

(single- and multislice), and three signal sizes (6, 8, and 10 mm).

2.4 Human Reader Study

The participants were one woman and two men and had approx-

imately equal experience with detection study as they were

involved in previous psychophysical studies with similar phan-

tom and images. We used a Python-based (Python Software

Foundation, Beaverton) homemade software for presentation

Fig. 1 Sample slices of the images used in this study. (a) Contrast-
enhanced abdominal CT acquisitions collected in our hospital data-
base. (b) CT image of the QRM abdominal phantom with additional
shell.
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and evaluation of medical images in observer performance stud-

ies. The readers were instructed to inspect the images that could

contain a single signal in a location known exactly (SKE) and

quantify their confidence about the presence of the stimulus

on a nine-level ordinal rating scale: from “signal is definitely

present” (1) to “signal is definitely absent” (9) with the cutoff

in the middle of the scale. With the multiple slice condition, the

readers were allowed to scroll through the 10-slice stack at any

speed or direction.

A white square on the top left of the image indicated the

middle slice in multislice reading mode. No time limitation

to read the cases was imposed and no zoom or pan was allowed.

Figure 4 shows screenshots of the user interface of the software

used for the reader studies. Note that each image was accompa-

nied with the rating scale.

This study consisted of two reading sessions per image back-

ground type, reading mode, and signal size. Each reader was

first trained with demo images of 20 trials. The demo images

were randomly chosen in the testing set and the prevalence

of signal present images was 1∶2. For training and testing,

each image sample was presented once. A feedback was given

after each answer in order to allow the readers to learn about

their strategy. The training session was followed by a testing

session with respectively 100 single-slice uniform, 100 single-

slice anatomical, 100 multislice uniform, and 100 multislice

anatomical images. For each reading session, the reader was

informed about the signal prevalence (which was always 1∶2).

The images were displayed with a zoom factor of two on

a diagnostic monitor (EIZO Radiforce MX210) calibrated to

the DICOM grayscale display function and TG18 standards.

Fig. 2 (a) Synthetic signal profile (solid line) matching with real lesion profile (dashed line) in the slice.
(b) Simulated lesion inserted in abdominal images (signal contrast is enhanced for visualization purpose).
For human reader studies, four contrasted fiducial cues were inserted around the signal location.

Fig. 3 Ensemble average over 120 image samples of signal present images used in model observer
study for multislice sets in uniform background. The ROI with signal present contains three slices for
(a) 6 mm, four slices for (b) 8 mm, and five slices for (c) 10 mm signal size. Single-slice sets were gen-
erated frommultislice ensemble central slice: slice in second position for 6 mm signal size, slice in second
position for 8 mm signal size, and slice in third position for 10 mm signal size.
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2.5 Model Observers for Detection in Single- and
Multislice Datasets

Linear model observers compute a scalar quantity called a deci-

sion variable from a linear combination of the image’s param-

eters. The decision variable λ of a given model with template w

to an image g is given as

EQ-TARGET;temp:intralink-;sec2.5;63;478λ ¼ wtg:

In this study, we chose the channelized Hotelling observer

(CHO).1,20,21 This observer decorrelates image noise from

image samples using the ensemble covariance matrices of the

signal-present and signal-absent image classes to compute the

decision variable. In practice, CHO template, wCHO is obtained

by first processing each image g by a set of 2-D channels uj,

with j ¼ 1; : : : ; J, which reduce the dimensionality of the

image to the number of channels V ¼ ½v1; : : : ; vn� with

V ¼ Utg and U ¼ ½u1; : : : ; un�. Then, the channels’ outputs

are linearly combined using the dot product between the inverse

of the covariance matrix Kv and an estimation of the mean

difference signal in the channel space following wCHO ¼
K−1

v ½hvsignal−presenti − hvsignal−absenti�.
For the multislice dataset, we used the decision variable

from the multiple-slice image with CHO proposed by Platisa

et al.14 and Chen et al.15 In summary, we first computed the

decision variable from the CHO template wCHO to each slice

composing the multislice image to provide N decision variables

λms ¼ ½λ1; : : : ; λn� with λn ¼ wT
CHOvn These N decision varia-

bles were then integrated using a dot product with a one-dimen-

sional Hotelling observer (HO) following λ ¼ wT
HOλms. The HO

template wHO is computed from the ensemble covariance matri-

ces of the signal-present and signal-absent decision variables

ensemble and an estimation of the mean difference of signal-

present and signal-absent decision variable classes following

wHO ¼ K−1½hλsignal−presenti − hλsignal−absenti�.
In this paper, the CHO for signal detection in a single-slice

image is called an ssCHO and the CHO for signal detection in

a multislice image is called a multislice CHO (msCHO).

We chose four types of different anthropomorphical22 sets of

channels, all of which have been successfully used to predict

human observer detection performance: dense-difference-of-

Gaussian channels (D-DOG), sparse-difference-of-Gaussian

(S-DOG), square (SQR), and Gabor (GBR). In this study,

D-DOG, S-DOG, and SQR are used as described by Abbey and

Barrett.23 GBR channels functions are defined as

EQ-TARGET;temp:intralink-;sec2.5;326;730

Vðx; yÞ ¼ exp

�

−4 lnð2Þ ðx
2 þ y2Þ
w2
s

�

× cos½2πfðx cos θ þ y sin θÞ þ β�;

where f is the spatial frequency, θ is the orientation, ws is the

bandwidth, and β is the phase. The Gabor channels’ parameters

proposed in this study used five orientations, seven frequencies,

and one phase resulting in 35 channels.

The D-DOG channels’ radial spatial frequency profile func-

tions are defined as

EQ-TARGET;temp:intralink-;sec2.5;326;602CjðρÞ ¼ exp

�

−
1

2

�

ρ

Qσj

�

2
�

− exp

�

−
1

2

�

ρ

σj

�

2
�

;

where σj ¼ σ0α
j is the channel standard deviation of the

j’th channel, and σ0 is the initial standard deviation, σ0 ¼
0.005 pixels−1, α ¼ 1.4, Q ¼ 1.66. We used 10 channels.

The S-DOG channels’ radial spatial frequency profile func-

tions are defined by the same function as D-DOG with different

parameters, where σj ¼ σ0α
j, σ0 ¼ 0.015 pixels−1, α¼2, Q¼2.

We used three channels.

The SQR channels’ radial spatial frequency profile functions

are defined as

EQ-TARGET;temp:intralink-;sec2.5;326;457CjðρÞ ¼

8

<

:

0 for ρ ≤ ρ0α
j−1

1 for ρ0α
j−1 < ρ ≤ ρ0α

j

0 for ρ > ρ0α
j

:

ρ0 ¼ 0.015, α ¼ 2. We used four channels.

2.6 Figure of Merit and Reader Performance
Analysis

The figure of merit for the human observer experiment was the

area under the ROC curve (AUC) obtained with the multiple-

reader, multiple-case (MRMC) paradigm.24

Reader performance analysis was performed using the soft-

ware package OR-DBM MRMC 2.51, written by Kevin M.

Schartz et al. and freely available at Ref. 25. This program is

based on the methods initially proposed by Dorfman et al.26

and Obuchowski and Rockette27 and later unified and improved

by Hillis and colleagues.28–30 Six analyses were performed, one

for each background-size combination. The three readers were

considered as fixed effects and the cases were considered as

random effects.

The figure of merit for model observer experiments was the

detectability index d 0. The model observer performance was

estimated using the resubstitution method with corrected bias

from Ref. 31. The advantage of this method is to provide an

unbiased direct estimation of d 0 and the associated 95% confi-

dence interval.

To enable the comparison with model observers, AUC from

the human observer study was converted to a detectability index

from a rating experiment using

EQ-TARGET;temp:intralink-;sec2.6;326;118dA ¼
ffiffiffi

2
p

Φ
−1ðAUCÞ:

Both dA and d 0 are equivalent if the decision variable is nor-
mally distributed under each hypothesis with equal variance.32

Fig. 4 Screenshot of the software user interface used for the reader
studies. The figure shows the central slice of an anatomical image set
with cues indicating the possible signal location.
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3 Results

3.1 Textures Characterization

Figure 5 presents the measured NPS averaged over all orienta-

tions and displayed versus their radial spatial frequency for

anatomical and uniform background image sets. Both NPS pre-

sented a relatively close agreement from approximately two to

eight cycles deg−1. For the lower frequency range, the uniform

image NPS decreases and the anatomical image NPS increases.

The small-size signal profile is plotted in the same figure. Its

contribution is essentially below two cycles deg−1, where the

two NPS differ.

3.2 Comparison of Detection Performance between
Single-Slice and Multislice Reading Modality,
and Uniform and Anatomical Backgrounds for
Human Observers

Figure 6 presents the human observers d 0 for single- and multi-

slice viewing modalities. As expected, d 0 increased with signal

size. Detectability in the multislice reading modality was

consistently higher than or equal to the single-slice reading

modality, but no individual comparison revealed a statistically

significant difference.

Figure 7 presents the performance of human observers for

uniform and anatomical backgrounds. As expected, d increased

with signal size. Detectability in uniform backgrounds was in

all but one case consistently higher than in anatomical back-

grounds, but no individual comparison demonstrated a

statistically significant difference.

3.3 Multiway Statistical Analysis

The MRMC variance analysis shows a small but significant

effect of the viewing condition when pooling all the data

together (across signal size and anatomical background

type) with the average AUC going from 0.787 to 0.820

(p < 0.007). This effect was no more significant when the

results are stratified based on background type (p ¼ 0.197

and p ¼ 0.282 for uniform and anatomical backgrounds,

respectively).

The same analysis could not be performed by pooling all the

data together in order to compare the effect of the backgrounds,

because the anatomic background cases are different from the

uniform cases. If we just ignore this and assume that perfor-

mance is independent in multislice, single-slice, uniform, and

anatomic images, the calculation reveals that the difference in

performance between anatomic and uniform background is

not significant.

3.4 Correlation between Human Observers and
CHO

Figure 8 shows the human and CHO detectability index. Human

and model observers d 0 show a relatively linear relationship for

all investigated channel types. The least performing model

observer was the square channel CHO. As expected, all model

observers overestimated human observers. We also calculated

the Pearson rank correlation between human and model

observers. All models investigated demonstrated a high rank

correlation (rho ¼ 1, p-value ¼ 0) except for CHO with SQR

channels in an anatomical background multislice viewing

modality (rho ¼ 0.5, p-value ¼ 0.667).

Fig. 5 Plot of NPS (left axis) with respect to the radial frequency pro-
file in cycle per degrees for the 16 cases collected in the anatomical
image category (dot markers) and for one image realization of the
phantom in the uniform image category (bold solid line). Frequency
range was calculated for a screen observer distance of 50 cm.
The shaded area represents the 6-mm signal frequency profile
(right axis).

Fig. 6 Plot of d 0 for human observers comparing single- and multislice viewing mode for (a) uniform and
(b) anatomical backgrounds. Error bars represent 95% interval confidence.
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4 Discussion

Figure 6 shows that human performance in a multislice reading

modality is consistently higher than or equal to a single-slice

viewing mode thus suggesting that humans take significant

advantage of additional slices to detect low-contrast signals.

This is statistically significant when the data are pooled alto-

gether. So it appears that humans derive a small benefit from

multislice data (about a 0.03 increase of AUC on average

going from single-slice to multislice).

The results of our study suggest that detection in anatomical

backgrounds lead to performances similar to those in uniform

background. Although Fig. 7 shows a small tendency toward

better performance for uniform than for anatomical back-

grounds; our data could not show that this was significant.

Fig. 7 Plot of d 0 for human observers comparing uniform and anatomic background for (a) single- and
(b) multislice viewing mode. Error bars represent 95% interval confidence.

Fig. 8 Plot of d 0 for human observers versus d 0 for model observers in (a) single-slice reading modality
with uniform background, (b) multislice reading modality with uniform background, (c) single-slice reading
modality with anatomical background, and (d) multislice reading modality with anatomical background.
Error bars represent 95% interval confidence.
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The performances of human observers in both backgrounds

are correlated, which suggests that human observers can at least

partly process anatomical fluctuations present in liver CT

images. At first, this seems surprising as the NPS of a liver

texture is different from a uniform background, especially in

the low-frequency domain of the signal. However, the low-

frequency domain accounts for large structures in the liver

parenchyma such as arteries or blood vessels. Moreover, the

liver parenchyma texture is locally uniform as described by

the NPS, and these structures appear as a hypersignal in con-

trast-enhanced abdominal CT and are contrasted relative to

the background. Low-contrast targets can therefore be easily

distinguished from such structures. This could explain why

the anatomical part of the liver image noise has a weak effect

on the detection of low-contrast signals.

The level of correlation for detection performance between

CHO and human observers is high as suggested by Fig. 8. This

result stands for any kind of reading modality and background

type. However, according to the type of channels, the correlation

might be different as illustrated by the different slopes in Fig. 8.

CHO with D-DOG and S-DOG channels present a similar cor-

relation with human observer as the radial spatial frequency pro-

file functions for these types of channels is identical. Therefore,

the number of channels, the channels’ bandwidth, and the initial

channels’ spread parameter have marginal effects on DOG chan-

nels response for this kind of task. CHO with GBR channels are

similar to CHOs with D-DOG or S-DOG channels. The use of

GBR channels in our case was probably a bit of overkill since

our signals are circularly symmetric and therefore do not require

a large number of free parameters (orientation and phase) and

channels. Finally, SQR channels had the poorest agreement

among the channels investigated, thus demonstrating the lowest

correlation with a human observer for any condition. This result

was expected and shows that SQR channels should not be pre-

ferred to D-DOG, S-DOG, or GBR channels for this kind of

task.4,23

The level of correlation between human and CHOs is con-

sistent among the types of reading modality and therefore in line

with previous results,17 suggesting that modeling a single-slice

viewing mode for low-contrast detection is sufficient for volu-

metric imaging assessment.

There were a number of limitations in this study. The first

was the number of independent conditions investigated.

Although we chose clinically representative dose levels and

reconstruction algorithms, these parameters can influence

image quality and we did not evaluate that aspects in this

work. Another limitation was the small number of human

observers. However, the good coherence between their perfor-

mances gives us confidence in our results. Finally, we chose the

NPS to quantify the statistical properties of the background

because this quantity is widely accepted in the medical imaging

community. However, the NPS is one of many features that

could describe an image’s texture; a thorough investigation

of the differences between the textures of a uniform and an ana-

tomical image could include other descriptors.33

5 Conclusion

For the assessment of image quality in low-contrast liver CT

images, human observers have very similar performances in

both multi- and single-slice viewing mode. As a consequence,

it is preferable to use ssCHO as this model is computationally

more tractable than mmCHO and has already been extensively

validated by the medical imaging community.

However, using images from a homogeneous phantom can

result in overestimating image quality as measured by CHOs,

as their performance tends to be higher in uniform than

anatomical backgrounds, while human observers have similar

performances.
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