Channels: Runtime System Infrastructure for Security-typed Languages

Boniface Hicks*
Saint Vincent College
fatherboniface @acm.org

Abstract

Security-typed languages (STLs) are powerful tools for
provably implementing policy in applications. The pro-
grammer maps policy onto programs by annotating types
with information flow labels, and the STL compiler guaran-
tees that data always obeys its label as it flows within an
application. As data flows into or out of an application,
however, a runtime system is needed to mediate between
the information flow world within the application and the
non-information flow world of the operating system. In the
few existing STL applications, this problem has been han-
dled in ad hoc ways that hindered software engineering and
security analysis. In this paper, we present a principled ap-
proach to STL runtime system development along with pol-
icy infrastructure and class abstractions for the STL, Jif,
that implement these principles. We demonstrate the ef-
fectiveness of our approach by using our infrastructure to
develop a firewall application, FLOWWALL, that provably
enforces its policy.

1 Introduction

Security-typed languages (STLs) provide a means of ver-
ifiably ensuring that an application will enforce its security
policy. This is accomplished analogous to mandatory access
controls (MAC), but within applications. In a MAC operat-
ing system, all processes and system objects are labeled and
a reference monitor ensures all security sensitive operations
obey the labels relative to a system policy. In STL applica-
tions, all data is labeled and the type checker ensures that
all data operations obey the labels, relative to an applica-
tion policy. STLs can accomplish this fine-grained secu-
rity checking efficiently, because much of the checking can

*This material is based upon work supported by Motorola through
SERC and the National Science Foundation under Grant No. CCF-
0524132, “Flexible, Decentralized Information-flow Control for Dynamic
Environments” and CNS-0627551, “CT-IS: Shamon: Systems Approaches
for Constructing Distributed Trust”. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science
Foundation, Motorola or SERC.

Timothy Misiak and Patrick McDaniel

Penn State SIIS Lab

tgm117 @psu.edu, mcdaniel @cse.psu.edu

be completed at compile-time. For the remaining checks,
the STL compiler ensures the required dynamic checks are
in place in the code. In this way, the STL compiler en-
forces information flow properties (data confidentiality and
integrity) from end to end (data input to output) within an
application.

A critical element needed for implementing security pol-
icy using STLs has been neglected, however. Thus far, the
primary focus has been to implement security policy by 1)
placing labels statically on code and 2) by defining a la-
bel semantics (an application policy) using a principal hi-
erarchy. To implement security policy in real applications,
however, policy must also be implemented at a third pol-
icy enforcement point: in a runtime system (RTS). The run-
time system is responsible for mediating all communica-
tions between the information-flow world within the appli-
cation and the (possibly) non-information flow world out-
side the application. Without runtime infrastructure to han-
dle dynamic labeling of I/0, STLs can only be effective for
analyzing closed systems (with no inputs or outputs).

Real programs are seldomly closed systems, however.
They must interact with a world outside themselves, re-
ceiving data from and sending data out on various chan-
nels. Consider an email client that must interact with a re-
mote mail server as well as a local user, various files and
databases. Another example is a network firewall that must
interact with the networking subsystem and may also save
audit logs to files.

STLs can perform a critical service in provably ensuring
noninterference, i.e. that secret flows and public flows will
remain separate everywhere within an application. They
cannot, however, automatically reason about the security of
data as it crosses the application boundary to and from the
system. A runtime system is needed to handle these security
decisions, governing whether the data arriving on a socket
should be labeled secret or public or alice-data or bob-data
(in fact, labels may even be much more expressive than this)
or determining whether secret data may safely be output to
a particular file. In fact, these are critical decisions; the rest
of the label checking is moot if this step is not handled cor-
rectly.

This has been recognized, de facto, in the construction
of existing STL applications [1, 5, 8, 13, 4]—each imple-
mented its own runtime infrastructure to cover its own par-
ticular policy for labeling I/O. It is notable that these run-
time infrastructures could not be reused from one applica-
tion to the next. This is because the labeling of I/O can
be quite subtle, dependent on several factors, such as what
system resources are used by the application, what system
security mechanisms are available for these resources and
what authentication protocols are used to identify the re-
sources and the data they carry. In other words, runtime
system infrastructure must be specialized for different envi-
ronments and applications.

In this paper, we give principles to guide the develop-
ment of application-specific runtime system infrastructure
for STL applications. Our principles provide for modular-
ized, specialized runtime systems that can be configured
and controlled through high-level policy. As a manifesta-
tion of these principles, we provide a Channel abstraction
for the most mature STL, Jif, a variant of Java. The Channel
facilitates the mapping of policy onto I/O channels and thus
serves as the basic building block of a runtime system. It
can be implemented and extended in different settings ac-
cording to the individualized needs of different applications.
We also provide a high-level policy infrastructure for acti-
vating and configuring Channels.

We evaluate our approach by using our RTS tools to
build FLOWWALL, a basic, packet-filtering network fire-
wall [3]. As part of FLOWWALL, we construct a new
Channel, a PacketChannel, which handles the inputting and
outputting of all network packets. The PacketChannel is
constructed in such a way that in order for a packet to pass
through the FLOWWALL, it must flow from its source to its
destination address. The Jif compiler provably ensures that
all flows obey the label semantics defined in an application
flow policy. By automatically compiling this application
flow policy such that it is isomorphic to the firewall policy,
we are able to implement a firewall that verifiably enforces
its firewall policy.

The result of our investigation shows that the Channel is
effective for implementing high-level security policy in the
runtime infrastructure. The Channel integrates well with
STLs because it can be incorporated into an STL policy in-
frastructure such that it can be configured and controlled
at a high level. It also facilitates reusability, because it
utilizes a pluggable interface for various protocol-based,
authentication-based and other data-specific labeling mech-
anisms. Finally, it aids STL software engineering, because
it provides an intuitive interface for handling a problem that
repeatedly faces STL programmers.

In Section 2 we show how STLs facilitate the implemen-
tation of information flow security in applications, while
also describing the challenges of handling dynamic labeling

LI T Y T

Listing 1. Keeping statistics on incoming
packets.

public class Stats[label L] {
int{L} sshCount;
public Stats() { sshCount =0; }
public void checkPacket{L}(Packet pkt)
where {pkt} <=L
{ if (pkt != null && pkt.destPort == 22)
sshCount++;
1}

of I/O. This leads us to some principles for developing run-
time infrastructure. We then describe how these principles
can be manifested through our Channel abstraction, pre-
sented in Section 3. In Section 4 we show how the Channel
can be used to implement infrastructure for FLOWWALL.
We give an evaluation FLOWWALL focusing on the effec-
tiveness of our principles in Section 5 . In Section 6 we
consider related work. We conclude in Section 7.

2 Security for STL Applications

Using an STL, a programmer is able to provably imple-
ment high-level security policy in applications. Specifically,
establishing overall security properties in security-typed ap-
plications depends on the security policies established in
three separate parts of the application: 1) the dynamic la-
beling of inputs and outputs, 2) the static labeling of code
in the application, and 3) the relationships between labels
(label semantics). While it was well understood that (2) and
(3) are key parts to implementing system policy in security-
typed languages, the importance of (1) has not previously
been studied; only ad hoc infrastructure has been built for
prior applications.

The power of the STL compiler consists primarily in its
ability to automatically limit the labels that may be placed
statically on code (2) such that they must honor the labels
in (1) with respect to how they may licitly flow, as defined
by (3). In other words, so long as the security analyst can
verify that inputs and outputs are properly labeled (1) and
the label relationships are correctly established (3), the STL
compiler will automatically check the rest. The problem is
that without careful design of the runtime system and with-
out an accompanying high-level policy, these three dimen-
sions of the security policy may be scattered throughout the
code.

2.1 Automatic analysis performed by STL compiler

One of the compelling features of STLs is their modular-
ity [11]—they can ensure security through composition of
secure modules. Modules can be separately type-checked
for security and compiled, then later combined to make se-
cure applications. The more generally the module’s security
properties can be expressed, the more widely it can be used

in different applications.

Developing a basic module Consider the Jif code in
Listing 1. This small module can be used to keep statis-
tics on network packets as they pass through an application
such as a network firewall. It is parameterized by a label L
with the annotation [label L] on line 1 and has a single mem-
ber variable, sshCount on line 2, which is guaranteed to be
protected at the level of L (indicated by the annotation {L}
on sshCount’s type). In this context, “protected” refers to
information flow properties such as confidentiality and in-
tegrity. This variable keeps a running count of the packets
that are being sent to port 22.

Parameterizing a class with a label allows (but does not
require) that label to be used within the class. The label
parameter must be instantiated when an object of the class
is created. For example, the programmer may instantiate a
Stats object that is visible only to the firewall administrator
as follows:

Stats[{admin:}] statsObj = new Stats[{admin:}]();

A key advantage offered by parameterized classes is the
separation of policy from the class; the class makes no re-
striction on L. The only restriction comes from calling the
method checkPacket. When called, information about the
parameter pkt will implicitly flow into sshCount, there-
fore Jif requires the programmer to place a restriction on
checkPacket to ensure sshCount will protect the informa-
tion in pkt. This restriction is expressed on the method
header with the constraint, where {pkt} <=L (line 5). Atthe
call sites for checkPacket, where L and {pkt} must already
be instantiated, the Jif compiler ensures this constraint holds
for those particular label instantiations. Whether the con-
straint holds is determined by the label semantics encoded
in the principal hierarchy, defined in a high-level policy ex-
ternal to the application.

Note the advantages of compositionality here. Stats can
be designed apart from any particular application, and when
it is inserted into an application, the STL compiler ensures
it will not weaken the security properties of the application.
It may restrict the flows in the application, but it cannot in-
troduce any leaks.

Adding system I/O On the other hand, when system in-
puts and outputs are added to code, they can modify the
security policy of the application. Let us consider the chal-
lenges this introduces. We add a print method to Stats to
output the current count, shown in Listing 2. Should this
be legal? No. The programmer explicitly ensured that the
sshCount label (Listing 1, line 2) was secret enough to pro-
tect information about packets. The method printStats
cannot simply print the value to standard output, without
discerning whether standard output is secret enough to pro-
tect the value.

I Y

Listing 2. A faulty first attempt.

public void printStats()
{ System.out.println("SSH count: " + this.sshCount); }

Listing 3. A valid approach.
public void printStats{L}() {
final label userL = Runtime.userLabel();
PrintStream[userL] out = Runtime.stdout(userlL);
if (L <=userL)
if (out !=null) out.printIln("SSH count: " + this.sshCount);

Labeling I/O with the process owner A straight-forward
fix is to retrieve standard output from a runtime system that
implements a particular policy. For example, a reasonable
policy defines the standard output to be as secret as the
UNIX user who ran the program. This gives rise to the code
in Listing 3. This is not a bad solution. The Runtime keeps
track of the process owner (initialized at program start up)
and stores a corresponding user label. When retrieving the
standard output stream (line 3), it requires the stream to be
parameterized by the user label, userL (indicated with the
code PrintStream[userL]). Whenever something is printed
on the stream, a dynamic check is made, querying the label
semantics to be sure that userL is sufficiently secret to pro-
tect the data in sshCount, i.e. that L <= userL (line 4). This
approach is essentially the approach offered by Jif’s default
runtime system.

Notice how policy is encoded in the construction of the
Runtime class in Listing 3. Making standard I/O as secret as
the user running the application is an approximation of an
information flow policy. However, this approximation may
not hold in different settings: the terminal window may be
in plain sight, in which case it should be considered pub-
lic. In other settings the secrecy of the terminal window
may be determined from the windowing system. This facet
of runtime infrastructure (indeed all runtime infrastructure)
implements application security policy and should be con-
figured based on the security goals and assumptions of the
particular application.

The process owner approach is also limited in another
way. It prevents the possibility that the output stream could
be authenticated to a higher secrecy level. For example,
although the application is run by alice, she might have
special privileges allowing her to see information on pack-
ets. To use those privileges, however, she must dynamically
authenticate herself by providing a password. This requires
the addition of an input stream. Furthermore, the data re-
trieved through the input stream must be able to change the
security label on the output stream to reflect a valid authen-
tication. This gives rise to the final version of printStats

Listing 4. Robust approach using Channels.
public void printStats{L}() {
Channel stdio =Policy.getChannel("stdio",null);
Policy.authenticate(stdio,"stats");
final label outL = stdio.getNextOutputLabel();
if (L <= outL)
if (stdio != null)
stdio.put("SSH count: " + this.sshCount, outL);

33

using more advanced data structures to handle labeled I/O
channels.

A new construction Listing 4 gives our solution to this
challenge. In this final version, policy decisions are deferred
to a Policy module. The Policy provides methods for re-
trieving system channels, each in its own Channel object
(line 2) and authenticating them (line 3). The Channel ab-
straction contains a pair of input and output streams. The
input stream delivers LabeledObjects which package to-
gether the next object on the input stream with its label. The
output stream can be queried to determine what level of pro-
tection it can ensure for the next object. This label can be
used to determine whether it is possible to output a given
object on the stream. The Channel.put method requires that
the label on its first parameter (the object that will be output)
be dominated by the second parameter (the label it expects
for its next output, which may always be retrieved by a call
to Channel.getNextOutputLabel() as on line 4).

As a result, the Jif compiler requires the program-
mer to guard the call to put with the dynamic check
if (L <= outl) (line 5). We present the Channel, Policy and
LabeledObject classes in more detail in Section 3.

The key advantage to our solution is that it adds a layer
of indirection, isolating policy decisions to a policy module
that can be configured external to the program. In a spirit
similar to the policy handling in the checkPacket method,
the labels and channels need not be determined here, but
only checked at runtime for certain relationships. The Jif
compiler ensures all needed runtime checks are in place.
Policy decisions such as whether to allow standard I/O to be
used at all, how it will be labeled, and what authentication
to allow for this channel, are lifted out to a separate module
that can be controlled and configured along with the rest of
the policy for the application.

2.2 Runtime system principles

To accurately determine the security properties of the en-
tire system in which this code is executed, it is necessary
to analyze the labels dynamically placed on system objects
(the packets and output stream in this case) and the relation-
ships between labels (which will determine the result of the
dynamic policy check if (L <= Lout)). If the dynamic label-
ing of system objects or relationships between labels do not

properly reflect the system security context, the system will
fail to meet security goals, despite its automatically checked
objects.

These critical security decisions should not be hidden
in application code, but isolated into separate modules and
configured as part of an external, high-level policy. To this
end, we have found the following principles to be effective
for moving security policy decisions regarding the dynamic
labeling of I/O out of main application code and into run-
time modules governed by high-level policy. These princi-
ples serve as the requirements for our runtime system and
its use. We provide further rationale for the principles as
we explain the additional infrastructure we provide (Sec-
tion 3) and we return to these principles after presenting our
FLOWWALL application (Section 4) to show how they were
effective. For now, we simply list them.

Principle 1 Isolate dynamic labeling by placing the code
for dynamic labeling of system objects (inputs and out-
put channels) into the runtime system infrastructure.

Principle 2 Limit the runtime API such that it is carefully
controlled and as minimal as needed for the applica-
tions.

Principle 3 Customize the semantic granularity of dy-
namic system labelings by ensuring that the security
context determined for inputs and outputs corresponds
with the desired granularity of control in the applica-
tion.

Principle 4 Configure runtime labeling through high-level
policy by governing what Channels and authentication
may be used based on high-level policy.

We define the term semantic granularity in Principle 3
to refer to the amount of semantic structure an object has.
For example, a stream of bytes has less semantic granularity
than when those bytes have been assembled into IP packets
or emails. This is not a strict measurement but intended to
reflect the insight that the security properties of inputs and
outputs can often depend on the semantics of the data, and
a datum’s semantics cannot be understood until the data is
parsed to a higher semantic granularity.

3 Runtime system

In this section, we present a new runtime system (RTS)
infrastructure, designed and implemented according to the
principles presented in Section 2.2. Figure 1 provides an
overview of our infrastructure for compiling policy into a
Jif application. In this system, the programmer is respon-
sible for developing Jif application code. If the application
requires specialized runtime components (our FLOWWALL
requires a component to interact with the network packet

Listing 5. Jif signature API for Channels.
public abstract class Channel[label L] {
public abstract LabeledObject[L] getNextObject{L}();
public abstract label{L} getNextOutputLabel{L}();

}

public abstract void put{*1bl}(0bject{+1bl} obj, label{*1bl} 1bl);

stream using a special 1libipq library, e.g.) for communi-
cating with the host system, these must also be provided
along with Channel interfaces for using them. The Jif flow
policy and RTS policy can be customized by the application
deployer. The RTS policy determines what channels can be
activated as well as (optionally) configuring how they do
labeling and authentication.

Our two key contributions are the Channel abstraction
and the RTS policy compiler; they work in concert with the
existing Jif compiler [10] and Jif policy compiler [6, 5]. The
RTS compiler produces a Policy object based on the policy
it has been given. The Channel abstraction can be extended
to implement different kinds of channels. The Policy class
controls what Channels can be used when executing the
application and may configure some labeling and authen-
tication schemas used by the Channels. The Policy class
should only be generated automatically from a high-level
policy and then linked into a final application when it is ex-
ecuted. In this way, the channels and authentication used by
an application can be controlled through high-level policy
while still providing for separate compilation of application
modules.

3.1 Channels

The basic Channel API is shown in Listing 5. Channels
cannot be created directly (the API disallows this); they can
only be instantiated through the Policy class. The Policy
class is configured using high-level policy and may include
or exclude the methods to instantiate various Channels. This
serves to separate policy specification from its implementa-
tion in the application.

A Channel delivers labeled objects from the system to
the application (inputs) and from the application to the
system (outputs). Channel.getNextObject returns an ob-
ject packaged with its label in a LabeledObject. For
outputs, Channel.getNextOutputLabel returns a label and
Channel.put only accepts outputs with lower security re-
quirements than expressed by that label.

Past experience building STL applications exposes the
main challenges for developing a channel abstraction that
is both sufficiently expressive and sufficiently general to be
useful in a wide variety of settings. These challenges in-
clude that 1) labeling of I/O depends on the security mech-
anisms offered by specific environments (contrast SELinux
mandatory access controls with UNIX ACLs on files with
authenticated sockets, etc.). 2) Labeling of data sometimes

Application

, byte codes
. ! auto-
o Jif ' | App main |-~~~ checked
»| compiler [" |bytecode| : by Jif
Application . Runtime
Jif code : _l/ System
Runtime /O ; | —— '
App components\,\'\ |
'_P_Oﬂ(zy_l RTS }I =37 . RT dynamic
! I i + labeling and
Chapnel. ‘ad pollqy 1" T'\T\channel code
policy ! L compiler —_
: : : I app policy
! | | N ytecode
Jif flow ! ; : | ;o
S N | Jif policy : _
policy —— : compiler —.»I \:\Iall)ellng.
__________ . relationships
"""""""" code

Figure 1. Infrastructure for compiling secu-
rity policy into Jif applications for provable
enforcement of policy.

depends on the structure of the data itself (the To: address
on an email or the source address of a packet, e.g.) or 3) on
a series of data exchanges (an authentication protocol, e.g.).
4) The protection offered on an output channel may depend
on data (like an authentication token) that has been received
on a companion input channel. 5) As the protection on an
output channel may change over time, the output channel
API must include a means to determine its current label.

These challenges guided the design for the Channel. Si-
multaneously, we ensured that the Channel would help the
programmer meet our principles for sound RTS develop-
ment. Firstly, a Channel maintains state between uses.
By keeping track of some previous inputs and outputs, the
Channel can track authentications and modify labeling poli-
cies based on transmitted data. This is critical for handling
data-specific labeling (2) and authentication protocols (3).
Also, when the system must be queried after a stream is
opened to determine the security context (1), this context
can be saved as part of the state of the Channel. Secondly,
input and output streams are coupled together in a single
Channel to allow input data to affect the labeling of outputs
(4). In our experiments, we did not find a need for multi-
ple inputs to be coupled with a single output or vice versa,
although some channels could naturally have an input (or
output) such as a read-only (write-only) file with no corre-
sponding output (or input).

Another innovative quality of Channels is that they can
be queried to determine what protection they offer for the
next output. A Channel connected to a file may return a
label indicating that it can protect data according to the se-
curity properties on the file.

o - WY SN S VR R

Channels can operate at the level of semantically expres-
sive Objects rather than only streams of bytes. They provide
a specific object type as input and expect a specific object
type (a String, a Packet, or some other data structure) as
output. Hence, Channels can adjust I/O according to the
proper semantic granularity demanded by the application.
This is an important feature for handling the challenges of
data-specific labeling (2).

Finally, a key design goal of the Channel abstraction was
to make sure that Channels could be activated and config-
ured by high-level policy. We have included a level of indi-
rection for activating each kind of Channel, by not allowing
Channels to be instantiated except through Policy. Another
level of indirection allows customization of the labeling pol-
icy for each Channel input and output. Finally, external
classes implementing authentication protocols can be acti-
vated to customize Channel instances in different settings.

3.2 Example

The policy given in Listing 6 defines the semantics for
the standard I/O channel given in Section 3.1. It starts with
public labels and allows the user to authenticate herself
as having “stats” privileges. The StdioChannel contains
the standard input and standard output streams. It prints
Strings to standard out and retrieves Strings from standard
in. Firstly, the channel must be enabled by adding a policy
entry to the high-level policy file. The channel line of this
policy (Listing 6, line 1) indicates that the StdioChannel
should be enabled in the Policy and can be selected in
the application with the String "stdio" (Listing 7, line 13).
Without such a policy line enabling StdioChannel, it could
not be used in the application.

Listing 6. Policy entries for Std. I/0 channel.

channel policy "stdio" {
channel pol.StdioChannel
authentication "stats"
labeling "flowwall" }
authentication policy "stats" {
pol.StdioAuth.pwdauth ["stats-pwds.txt"] }
labeling policy "flowwall" {
init pol.StdioChannel.setPublicLabel
inputs pol.StdioChannel.getCurrentLabel
outputs pol.StdioChannel.getCurrentLabel }

The initial label on inputs and outputs is established by
the method pol.StdioChannel.setPublicLabel as defined
in the stdio’s labeling policy’s init field. This method es-
tablishes standard I/O as being public initially (this will cor-
respond to the desired policy for the FLOWWALL in which
no one is allowed to see statistics on packets until authen-
ticated as having that privilege). The labeling policy for
this channel is quite simple—the method getCurrentLabel
merely returns the current label (which is kept as part of the
state for the channel). To raise the security of the channel,
an authentication module may be used in the application

code, in this case causing pol.StdioAuthenticate.pwdauth
to be called with a parameter, "stats-pwds.txt" indicating
the location of the password file.

A StdioChannel may be used as previously shown in
Listing 4 or as shown in Listing 8.

Listing 7. Policy class generated automati-
cally from the policy in Listing 6.

public class Policy {
static public void authenticate(Channel channel,
String authType, Label 1)
throws PolicyException {
if (channel instanceof StdioChannel &&
authType.equals("stats"))
StdioAuth.pwdauth((StdioChannel)channel, 1,
"stats-pwds.txt");

static public Channel getChannel(String channelType,
Object params, Label 1)
throws PolicyException {
if (channelType.equals("stdio"))
return StdioChannel.getInstance();
else return null;

1}

Listing 8. A simple use of standard 1/O.
final Channel[{}] stdio =
Policy.getChannel("stdio",null,new label{});
if (stdio !=null) {
final LabeledObject[{}] obj = stdio.getNextObject();
if (obj !=null) {
String str = (String)obj.getObject();
stdio.put("You entered " + str, obj.1bl);

1

3.3 A principled runtime system

A design goal for the Channel and Policy classes was to
guide programmers in implementing the principles given in
Section 2.2.

Principle 1 Isolate dynamic labeling This is achieved
by pushing all dynamic labeling decisions into the Channel
classes. Each object is labeled as it enters the application,
as determined by the semantics of the Channel class. Like-
wise, the Channel class limits the objects that can be output
from an application, based on the object’s label.

Principle 2 Limit the runtime API Because the runtime
API is governed by what Channels can be retrieved from
the Policy class, the Channels used by an application can
be easily limited to what is needed.

Principle 3 Customize semantic granularity An alter-
native design for Channels is to restrict Channels only to
read and write individual bytes. This fails to accomodate
the needs each application has for a specific semantic gran-
ularity of inputs and outputs. On the contrary, our design

Listing 9. IPTables-style firewall rules
iptables —A FORWARD —d 192.168.1.20 —j DROP

iptables —A FORWARD —s 192.168.1.0/24 —d 192.168.2.0/24 —j ACCEPT
iptables —A FORWARD —s 192.168.2.0/24 —d 192.168.1.0/24 — j ACCEPT

requires Channels to get and put Objects, freeing the devel-
oper to design the semantic granularity as appropriate to the
application.

Principle 4 Configure runtime labeling through high-level
policy This principle is met through our policy infras-
tructure which allows high-level policy to be compiled into
a Policy class that is specialized for each application. The
Policy class governs which channels can be used in an ap-
plication and how the channels can be authenticated. It also
allows configuration of these decisions, specifying creden-
tials repositories such as a keystore or password file.

In the following section we present FLOWWALL. We fo-
cus on extending the Channel class and policy infrastructure
to handle the unique demands of this application.

4 FlowWall

To evaluate our design principles, we apply our approach
to a real-world application, a network firewall. Network
firewalls are a well-known part of the security infrastructure
of almost every computer. Ensuring that a network firewall
properly implements its policy is not always an easy prob-
lem [9], however, and benefits from automated assistance.
The task of a network firewall is, essentially, to prevent il-
licit network packet flows across a particular boundary (a
particular computer, an enterprise router, etc.).

A basic firewall policy signifies this with rules as in List-
ing 9 (we borrow a subset of the rule syntax used by the
standard UNIX firewall tool, IPTables). Rules may contain
a —s flag to indicate the source address (including optional
port number'), a —d flag to indicate the destination address
(including optional port number) and a —j flag to indicate
whether the packets should be accepted or dropped. The
rules are evaluated top-down. In the Listing, if a packet
matches the first rule (i.e. its destination is IP address
192.168.1.20, any port), it is dropped and further processing
stops. If it does not match this rule, it is processed by the last
two rules. The last two rules match on a 24-bit subnet for
both source and destination. The ranges that this notation
represents are 192.168.1.0 — 192.168.1.255 and 192.168.2.0
—192.168.2.255. In the next section we describe how to im-
plement this application in an STL.

4.1 An information flow policy for a firewall

In contrast to normal software development processes,
the first step in developing any security-typed application

Port numbers are left out here for simplicity of presentation, but we
handle them in the natural way in FLOWWALL.

- Runtime system (Java) | Flowwall

libipg policy
src_ packet ST app (Jif)
dest / 7 >
num> getht
data:

packet
acptPkt

(]
dropPkt

Figure 2. The FLowWaLL filters packets
based on a high-level information flow policy.

must be to determine what kind of information flow pol-
icy it will enforce. This design phase is critical in security-
typed languages and constitutes one of the greatest chal-
lenges to security-typed application development. Haphaz-
ard setup results in extremely difficult programming, be-
cause it leads to many labeling conflicts, which usually in-
duces a cascade of relabeling throughout the application.
For the FLOWWALL we want to maintain a simple informa-
tion flow policy: Packets arriving from a given source ad-
dress may only flow to their destination address if allowed
by the firewall policy rules. All other packets are dropped.

As described in Section 2, application security analy-
sis depends on (1) how system objects are dynamically
labeled, (2) how labels are propagated on code through-
out the application and (3) the relationships between la-
bels (label semantics). We illustrate the basic structure of
the FLOWWALL in Figure 2 such that these three areas can
be identified. To determine whether this policy is fulfilled
by FLOWWALL, it is necessary to determine (1) that in-
put packets are labeled with their source addresses, (2) that
the application type-checks and (3) that the relationships
between source addresses and destination addresses are in
compliance with the firewall policy rules. The STL com-
piler will automatically ensure that all code inside the inner
box in Figure 2 is secure. This requires the security ana-
lyst only to check by hand the three API methods for the
PacketChannel, in contrast to a normal firewall application,
which would need to be checked entirely by hand.

As other functionality is added to examine or process
packets, the Jif compiler will ensure that they maintain the
security properties for packets as we showed earlier for
Stats.checkPacket (Section 2.1). In this regard, we can
treat additional modules as black boxes since they are guar-
anteed to sustain (or possibly somewhat restrict) the secu-
rity properties established on data at their call sites.

We now present the design of FLOWWALL, focusing on
the three elements which impact its overall security, the run-
time system, application code and the high-level policy.

Listing 10. Main loop for getting, processing
and accepting or dropping packets.

final Channel[{}] pktChannel = Policy.getChannel("packet" null);

while (true) { // code to handle one packet
if (pktChannel != null) {
final LabeledObject[{}] obj = pktChannel.getNextObject();
// any processing of packets ...
final label{ } destL = pktChannel.getNextOutputLabel();
if (obj !=null) {
Object pkt = obj.getObject();
if (obj.1bl <=destL)/read "<=" here as "may flow to”
pktChannel.put(pkt,destL);
1}

4.2 Runtime system: Labeling inputs and outputs

The FLOWWALL needs a way to retrieve packets and
a way to output packets. Packets that are not output are
dropped. The first challenge is to implement the input la-
beling and output restrictions on packets using the Channel
abstraction.

The key insight for implementing FLOWWALL is to use
the source and destination addresses on packets as the se-
curity labels that will govern how packets can flow through
the FLOWWALL. This insight is not imposed on the appli-
cation but drawn out from the fact that the data flow seman-
tics are really determined by the source/address pair in the
packets. In light of this insight, the PacketChannel’s input
channel delivers packets labeled with their source address.
When a packet is retrieved from the PacketChannel, the
channel’s internal state reflects this by changing the label
for the PacketChannel’s output channel—it will only accept
a packet labeled with the proper destination address. This
corresponds to the expected firewall policy that a packet can
only be accepted if it can flow from its source address to its
destination address. Having set up the runtime system 1/O
labeling, the final step is to configure the label semantics.
The label semantics must reflect the firewall policy. If a
source address s may flow to a destination address d in the
firewall policy then the Jif label corresponding to s must be
dominated by the Jif label corresponding to d in the label
semantics (Jif flow policy).

This facilitates the code in Listing 10, which demon-
strates the central processing loop of the FLOWWALL.

As expected, the API for packet channels meets the
principles set forth in Section 2.2, because it utilizes the
Channel pattern we established. Namely, Principle 1 is ful-
filled by isolating all dynamic labeling of system objects
(only the packets in this case) in the runtime infrastructure.
Principle 2 is fulfilled by limiting the runtime API to include
only the needed interface—for packets in this case. Princi-
ple 3 is fulfilled by basing the dynamic labels on source and
destination addresses for the packets, which is the granu-

larity of control desired for the application (not on data in
the packets or any other criteria). Principle 4 is fulfilled
by describing all possible address ranges for packets in the
FLOWWALL policy and giving the licit flows by relating
source and destination addresses. We describe these last
two points, the granularity and configurability now in more
detail.

4.3 High-level policy infrastructure

As shown in Figure 1, the two parts of high-level pol-
icy include an RTS policy governing the dynamic labeling
of I/O and a Jif flow policy, defining the label semantics
(and thus, the legal flows). The RTS policy for FLOWWALL
must at least activate the PacketChannel with the labeling
described above. The Jif flow policy must be a faithful en-
coding of the IPTables firewall policy. Then we implement
the policy through the JP compiler [6] and our RTS com-
piler. Both policies compile into bytecodes that are linked
into the application when it is executed. We now consider
the advantages of this approach with regards to our princi-
ples, especially focusing on the last two principles: seman-
tic granularity and high-level policy configuration.

4.3.1 Semantic granularity

Principle 3 asserts that the dynamic labeling provided in the
runtime system should be targeted to a semantic granular-
ity that is appropriate to the application. This refers to the
amount of security context which must be determined be-
fore a label can be applied. One level of semantic granu-
larity would be to consider all data input from the network
merely as a stream of bits and label each bit the same way.
This might be useful for enforcing a simple information
flow policy that prevented network data from being saved
to disk or printed to the screen, for example. Labeling net-
work streams, disk streams and stdout with three different
labels, {network:}, {stdout:} and {disk:} for example, and
then ensuring that {network:} £ {stdout:} and {network:}
£ {disk:} would be sufficient to achieve this information
flow goal. In this case, there is no need to recover the se-
mantic granularity of packets, source addresses and desti-
nation addresses.

As another example, we might be interested in a different
level of semantic granularity which abstracts packets into
SSL channels. In an instant messaging chat client, for ex-
ample, we may want to label streams of String data with
a label indicating the public-key certificate and certificate
authority used when establishing the SSL connection.

Because the semantic granularity of labels depends on
the security goals of the application, this cannot be achieved
in a general way. Rather, the dynamic labeling runtime sys-
tem for applications must be specialized based on the secu-
rity goals of the applications and what level of information
flows they seek to control. This motivates the important de-
sign goal of our policy and infrastructure: to simplify the

specialization process and improve reusability of RTS com-
ponents.

For the FLOWWALL we are concerned with labeling
packets as they enter the application and ensuring they have
proper labels as they leave the application. Thus, labeling
packets based on the context of their source and destina-
tion addresses is the best choice for the semantic granu-
larity of labels. Namely, the security context of incoming
packets consists of the source address and the security con-
text of outgoing packets consists of the destination address.
Whether a packet can flow from source to destination is
governed by the firewall policy and enforced by the rela-
tionship between source labels and destination labels (label
relationships are discussed in more detail below).

4.3.2 Establishing relationships between labels

Establishing the relationships between labels is critical for
enforcing security policies over applications. The labels
determine the expressiveness of the security policies that
can be enforced. The relationships between the labels gov-
ern the ways that information can flow through an appli-
cation. For example, in a traditional military security lat-
tice [2], it is acceptable for unclassified information to flow
into secret documents, but not vice versa. In this con-
text, the label {unclassified:} is dominated by the label
{secret:} allowing information flows from unclassified to
secret. The establishment of relationships between labels
should be done as much as possible in policy separate from
the code, as stated in Principle 4.

The IPTables firewall policy must be isomorphic to the
Jif policy used by the application. To ensure this is the case,
we provide a specialized firewall policy compiler, just for
use in FLOWWALL, that automatically generates the Jif pol-
icy from the [PTables policy. The basic conversion is that a
source address label should be dominated by a destination
address label exactly when the firewall rules allow packets
from the source address to flow to the destination address.
There are some subtleties in carrying this out, but since our
main contribution is in the area of the RTS, not the label-
ing relationships, we reserve more details on the IPTables
policy compiler to a companion technical report [7].

5 Evaluation

5.1 Analyzing FLOWWALL’s security

A security analysis of the application is driven by the
high-level policies for the RTS and the label semantics. The
security goals for FLOWWALL were that it would accept or
drop packets exactly in accordance with its IPTables firewall
policy. Clearly, this depends on the application inputs, out-
puts and intermediate flows. The advantage of our approach
is that all application inputs and outputs can be determined
from the RTS policy. This reveals that packets enter and
leave through the PacketChannel.

In order to determine how packets can flow through the
application, we must know 1) how they are initially labeled,
2) how data with that label can flow through the application
and 3) what labels must be on outputs. For determining in-
put and output labels, we consult the RTS policy, which di-
rects us to some code. This code must be carefully checked
to ensure that packets are labeled with their source address.
The RTS policy also directs us to code that reveals that the
acceptable output labels for PacketChannel are always de-
rived from the destination address of the last input. Finally,
checking the Jif flow policy compiled automatically from
the IPTables policy, we complete our analysis: 1) input
packets are always labeled with their source addresses. 2)
A packet labeled with its source address can only be rela-
beled to destination addresses allowed by the Jif policy and
the Jif policy allows relabelings isomorphic to the IPTables
firewall policy it was compiled from. 3) Only packets la-
beled with the destination address of the last input packet
can be output; the rest are dropped.

In short, presuming the correctness of our compilers,
we have a packet-filtering firewall which provably enforces
its policy. This can be determined almost entirely without
examining the application code, through inspection of the
high-level policy and manual inspection of some labeling
runtime infrastructure indicated by the policy. Inspection of
the application code is only needed to ensure basic correct-
ness: that the application actually reads any packets at all
and does not just drop all packets.

This demonstrates our goal to show that security-typed
languages significantly aid programmers in bridging the gap
between high-level policy specification and code-level en-
forcement of that policy. At the same time, we have shown
how runtime infrastructure plays a critical role in that imple-
mentation. Furthermore, using principled design, exempli-
fied by our Channel pattern, we can allow the bulk of policy
decisions to be deferred to an external, high-level policy.

5.2 Performance

Because performance is not our central consideration,
we refer the reader to a more detailed performance evalu-
ation in a companion technical report [7]. Our tests were
run on an Intel 2.4 GHz Core 2 Duo with 2 GB of RAM,
running Ubuntu Linux. In summary, FLOWWALL demon-
strated performance expected of a Java-based application
without any effort spent on optimization. At the same time,
it demonstrated processing throughputs sufficient for an av-
erage Ethernet setting using gigabit Ethernet cards.

6 Related Work

There has been a great deal of prior research in STLs as
described in the survey by Sabelfeld and Myers [11]. Much
of this work has focused on laying theoretical foundations
for STLs. Only two projects have generated realistic pro-
gramming languages, Flow Caml [12] and Jif [10], and only

Jif has been used to build realistic applications. The number
of realistic applications is still very small, but each would
benefit from a principled, configurable runtime system as
given in this paper.

JPmail [5], a PKI-based mail client, utilized a variety
of system resources, but handled their security concerns
in a limited way. Sockets were considered public and all
dynamic labeling of emails was buried in the application
code. Communications with password stores and keystores
as well as user communication were accomplished in se-
cure, but unprincipled ways that made it difficult to program
and to verify the security of the application.

SIF [4] is a specialized runtime infrastructure for host-
ing web servlets. It provides a very limited API that con-
trols how web servlets can interact with the web server and
clients. Their infrastructure follows the first three of our
principles, but provides no way to control or configure their
I/O through high-level policy (principle 4). SIF is a reusable
runtime system for a specific application area, but they give
no insight about how to apply the concepts it utilizes to
other application areas.

The runtime system for Security-enhanced Linux [8] is
reusable and, because it interfaces with a MAC operating
system, much security information is readily available for
all system resources (all resources are already labeled with
detailed security policies configured in a central policy).
The interfaces developed for this project were ad hoc, how-
ever, and not configurable through high-level policy nor
specialized for diverse semantic granularities.

7 Conclusion

The importance of security-typed languages for devel-
oping strongly secure systems has gained much credibility
in the research community over the past few years. The
importance of having strongly secure components whose
security can be automatically checked and easily reasoned
about promises to aid greatly the overall security of com-
plex systems. Various obstacles have prevented them from
being utilized widely, however, including the need for run-
time systems which must be specialized per application and
operating system environment and the need for high-level
policy infrastructure which supports separation of security
policy specification and implementation.

In this paper, we have identified the need for runtime
system and high-level policy infrastructure, presented some
principles that can be used to guide the development of such
infrastructure for future applications and have demonstrated
the utility of our principles on a small application, a network
firewall. We have found these principles to be effective for
developing the FLOWWALL. We are convinced that they
will provide a good guide for future security-typed appli-
cation developers and aid in the construction of secure sys-
tems.

10

Acknowledgements We are grateful for editorial help
from Mike Hicks and from members of the Penn State SIIS
Lab.

References

[1] A. Askarov and A. Sabelfeld. Secure implementation of
cryptographic protocols: A case study of mutual distrust. In
Proceedings of the 10th European Symposium on Research
in Computer Security (ESORICS ’05), LNCS, Milan, Italy,
September 2005. Springer-Verlag.

D.E.Bell and L. J. LaPadula. Secure computer system: Uni-
fied exposition and Multics interpretation. Technical Report
ESD-TR-75-306, MITRE Corp. MTR-2997, Bedford, MA,
1975. Available as NTIS AD-A023 588.

W. Cheswick, S. Bellovin, and A. Rubin. Firewalls and
Internet Security: Repelling the Wily Hacker. Addison-
Wesley, 2002.

S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing con-
fidentiality and integrity in web applications. In Proceedings
of the 16th USENIX Security Symposium, Boston, MA, Au-
gust 2007. To appear.

B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understand-
ing practical application development in security-typed lan-
guages. In 22st Annual Computer Security Applications
Conference (ACSAC), Miami, Fl, December 2006.

B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted
declassification: High-level policy for a security-typed lan-
guage. In Proceedings of the 1st ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security
(PLAS ’06), Ottawa, Canada, June 10 2006. ACM Press.

B. Hicks, T. Misiak, and P. McDaniel. Channels: Runtime
system infrastructure for security-typed languages. Tech-
nical Report NAS-TR-0078-2007, Networking and Security
Research Center, Department of Computer Science, Penn-
sylvania State University, 2007.

B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel. From trusted
to secure: Building and executing applications that enforce
system security. In Proceedings of the USENIX Annual
Technical Conference, Santa Clara, CA, USA, June 2007.
To appear.

S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and
M. Frantzen. Analysis of vulnerabilities in Internet firewalls.
Computers & Security, 22(3):214-232, 2003.

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java + information flow. Software release.
Located at http://www.cs.cornell.edu/jif, July 2001-.

A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5-19, Jan. 2003.

V. Simonet. FlowCaml in a nutshell. In G. Hutton, editor,
Proceedings of the first APPSEM-1I workshop, pages 152—
165, Mar. 2003.

S. Tse. Dynamic Security Policies. PhD thesis, University
of Pennsylvania, 2007. Can be found at http://www.cis.
upenn.edu/"stse/main.pdf.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

