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Channels with Arbitrarily Varying 
Channel Probability Functions in the Presence 

of Noiseless Feedback 

Rudolf  Ahlswede 

In this article we study a channel with arbitrarily varying channel probability 
functions in the presence of a noiseless feedback channel (a. v. ch. f.). We determine 
its capacity by proving a coding theorem and its strong converse. Our proof of 
the coding theorem is constructive; we give explicitly a coding scheme which 
performs at any rate below the capacity with an arbitrarily small decoding error 
probability. The proof makes use of a new method (I l l )  to prove the coding 
theorem for discrete memoryless channels with noiseless feedback (d.m.c.f.). It 
was emphasized in [13 that the method is not based on random coding or maximal 
coding ideas, and it is this fact that makes it particularly suited for proving coding 
theorems for certain systems of channels with noiseless feedback. 

As a consequence of our results we obtain a formula for the zero-error capacity 
of a d. m. c.f., which was conjectured by Shannon ([8], p. 19). 

1. Introduction 

Let X =  {1 . . . . .  a} and Y= {1, . . . ,  b} be finite sets, which serve as input and 
output alphabets of the channels discribed below. Write X t = X  and V =  Y for 

n 

t = 1, 2 , . . . .  By X, = 1~I X 3 denote the set of input n-sequences (words of length n) 
n t = l  

and by 17,= I ]  yt denote the set of output n-sequences. Let w(. I.) be a stochastic 
t = l  

a • b-matrix. The transmission probabilities of a discrete memorytess channel 
(d. m.c.) ~ are defined by 

(1.1) P(y,]x,)= ~ w(yt[x 3) for every x,=(x 1, ..., x')~X,,, 
t = l  

y, = (y~, ..., y') E I1, and every n = 1, 2 . . . . .  

Let S be any set, and let ~ = {w(-]-]s)]sES} be a set of stochastic a • b-matrices 

w(']-[s). Set $3=S for t =  1, 2 . . . . .  For  every s ,=(s  1 . . . . .  s")~S,,= FI St we define 
P('l'[s,) by 3=a 

n 

(1.2) P(yn[x,,[s,,)= H w(yt]xt[ g) for all X,,~Xn, y,,~ Y,,. 
t = l  

For  every n; n = 1 , 2  . . . .  ; set ~,={P(.].ls,)ls,~S,}. A channel with arbitrarily 
varying channel probability functions (a.v.ch.) ~i is defined by the sequence 

.... 
9.I is of o-l-type, if E contains only matrices, which have 0 and 1 as entries. 

We denote this channel by 9~ a . 
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Suppose that sender and receiver want to communicate over 9.I without 
knowing which P(. I'ls,) will govern the transmission of any word sent. A code 
(n, N, 2) for this situation is a system {(ui, A~)ti= 1, ..., N}, where ui~X,,, AicY,, 
for i=1,2 ,  . . . ,N ;  Ai~Aj=f~ for i+j  and P(Ailuils,,)>l-)~ for i=1,  . . . , N  and 
all s, e S,. A number C is called the capacity of the channel 9.1, if for any e > 0 and 
any 2 , 0 < 2 < 1 ,  there exists a code (n, d c-~)", 2) and there does not exist a code 
(n, e (c+~)", 2) for all sufficiently large n. In case b =2  a formula for C is known ([4]). 
For b > 3 a formula for the capacity, which makes it in principle possible to compute 
its value within any desired accuracy, is still unknown. It was shown in [2] that 
the problem to determine the capacity C1 of 9.I1 is equivalent to the problem to find 
a computable formula for the zero-error capacity (I-8]) Co of a discrete memoryless 
channel (d.m.c.). This problem is of graph theoretic nature and still unsolved. 

We introduce now an a.v.ch, with noiseless feedback (a.v.ch.f.) which we 
denote by 9X~. By this we mean that in addition to 9.1 there exists a return channel 
which sends back from the receiving point to the transmitting point the element 
of Y actually received. It is assumed that this information is received at the trans- 
mitting point before the next letter is sent, and can therefore be used for choosing 
the next letter to be sent. The assumption of noiseless feedback is certainly quite 
restrictive for a real communication situation, but mathematically it should be 
considered as a step forward that one can prove theorems about a. v. ch. under this 
assumption. Shannon gave in I-8] for a.d.m.c, with noiseless feedback (d.m.c.f.) 
@s a formula for its zero-error capacity Col. This result encouraged us in finding 
a formula for the capacity of ~I s. However the approach taken by Shannon in [8] 
does not extend to ~l I .  

Henceforth, when we talk about feedback we shall always mean noiseless 
feedback. 

We describe now the encoding for ~ f  and 9.1 I. Suppose there is given a finite 
set of messages M =  {1,...,  N} one of which will be presented to the sender for 
transmission. Message meM is encoded by an encoding (vector valued) function 

(1.3) f ,  (m) = [f~,f2,1 2 (Z1), . . . ,  j,,,f' ~Z 1,.. . ,  Z ' -  :), . . . , ,f" . . . . . .  (Z 1 , Z"-I)] ,  

where f~ is defined on Y~_ ~ for t > 1 and takes values in X ~, and Z 1, Z2, ..., Z ~- 
are the chance received elements of Y (known to the sender before he sends 
f~ (Z1,..., Z t- 1)); f~ is an element of X:. 

The distribution of the random variables U;  t =  1, 2 , . . . ,  n; is determined by 
f2, ..., f~-1 and w (resp. s,). We denote the probability of receiving y, e X,, if m is 
thus encoded, by P(y,,I f, (m)) (resp. P(y, t f. (re)Is,,), s,,~ S,,). 

An (n, N) code is a system 

(1.4) {(f,(m),A,,)lmeM }, where A~cY,, for mGM; A,,,nA,,,.--fS 

for m+m', and the f"(m) are defined as in (1.3). 
The (n, N) code {(f,(m), A,n)lmeM} is an (n, N, 0) code for NI, if 

(1.5) P(Am]f,(m))= 1 for meM, 

and an (n, N, 2) code for 9.I I ,  if 

( 1 . 6 )  P(A,,,If"(m)ls,,)>l-2 for all meM and s,,eS,,. 
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(1.7) A number Col is called the zero-error capacity of @I if for any e > 0  and 
some no(0 there exists a code (n, e Ic~ 0), and if for no n there exists a code 
(n, e ~c~ 0). 

(1.8) A number Cy is called the capacity of 9~I, if for any ~>0  and any 2, 0 < 2 <  1, 
the following is true for all n sufficiently large: There exists a code (n, e (c~-`)", 2) 
and there does not exist a code (n, e (ce+~)", 2). 

Denote C I of 9111 by Cly. 
We introduce now several channels which are related to channel 9~. 
For i~ X let T(i) be the convex closed hull of the set of probability distributions 

(p. d.){w('lils)[s~S}. 
Denote by G the closed convex hull of G and by ~ the row-convex hull of G, 

that is 

(1.9) ~-= {w(. l. )lw(. l. )E T(i) for i~ X} . 

Define Ge by 

(1.10) Gr every i e X  there exists an s~S: w( Ii)=w( Iils)}. 

For n = l , 2  . . . .  define G,, G, and G,~ analogously to G, and index sets 
n n n 

S, = lrI S, '~, = I~ ~ and s e = I ]  S e. 
1 1 1 

Set ~=(~ , ) ,~ ,2 , . . . ;  ~I=(~;~),_~,2,...; 91 r ~r _ =( ,),:~,~,.... 
In case of feedback we write ~ s ,  ~ I  and 9X) or ~[~I, ~ I  and 9.1~ I, i fg  contains 

o_nlyO-l-matrices. Denote the corresponding capaci t ies- in  case they e x i s t - b y  
Cx, C z, C), Cl l  Cl l  and C~I. 

We say that a channel has a positive rate, if for a positive number R and for 
any 2, 0 < 2 < 1, there exists a code (n, e R", 2) for all sufficiently large n. One easily 
verifies that ~e = ~  and hence also that_~[~--~[ I. It follows from Lemma 2 in 
section 2 that the capacities for 9.I~ and 9Ix (resp. 9.I)_and ~x)_are equal. One can 
limit oneself therefore to the study of the channels 9Xf and ~[~, If we choose 
such that ~e = ~, then ~ s  = ~ )  = ~[f. A chann_el ~[~ is therefore a special channel of 
type ~:f. Example 2 in section 3 shows that 9.Iz can have positive rate and still ~[~ 
has capacity 0. (It was shown in [5], Lemma 3, that 9.I, ~[ and ~I have the same 
capacities.) In section 3 the channel ~I~ is treated and we explain there how the 
limitation to this channel can be motivated from a practical point of view. The 
other channel concepts introduced above are needed in section 4 only. 

2. Auxiliary Results 

In order to state and prove several lemmas used in the later sections we need 
the following list of definitions. 

For a p.d. 7r on X and a stochastic a • b-matrix define a p.d. q on Y by 

(2.1) q j = ~  zciw(j[i), j~  y. 
i 

We also shall write q (w) instead of q, if we want to indicate the dependence on w. 
Define w* as any stochastic b • a-matrix which satisfies 

(2.2) w* (ilj) q;= ~i w(j[ i), i~X,  j~  Y. 



(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) Xl(v, e, re)= U Xt(v, ~, re, w). 
w ~ ( ~ ,  ~, ,~, l) 

Finally we define functions H, R and F2 by 

(2.13) 

242 R. Ahlswede :  

Let I be a positive integer: 

(2.3) For ueXl ,  v~ Yl, i e X  and j s  Y let N(ilu) (resp. N(jlv)) count how often i 
(resp. j) occurs as a component of u (resp. v) and let N(i, j lu, v) count the number of 
components in which u has an i and v has a j. 

(2.4) Set Q(u, i)= {tlut=i} for u=(u 1 . . . .  , u l ) ~ X l  and i~X. 

(2.5) For veYt define a p.d. ~ on Y by ?:lj=N(jlv)t -~ for jeY. 

We define now the following sets: 

(2.6) X,(rc) = {x, lxz~X~, Ini l-N(ilxL)l < 1 for i e X ) ,  

(2.7) Y~(u,e, sz)={vlv~Yz, lN(i, jlu, v ) -  Z w(jlils')[<=el f o r i eX ,  j e Y } ,  
t~(2(u, i) 

where u~Xz(Tt), st=(s ~ . . . . .  sz)~z and e>0.  

Y~(u, ~)= U Y,(u, ~, s3, 

Y~(u, e, w)= (vlv~ Y~, IN(i, jlu, v ) -  N(ilu) w(jli) t < ~ t for i~X,  j~ Y}, 

~(~, ~, z/, I)= (wlw~, Iqj(w)-~jl <a(e+1-1) for j 6  Y}, 

Xt (v, e, re, w) 

-- {ulu~Xz(~), [N(i,j[u, v ) -  w* (it j) N(jlv)[ <=2a(e l+ 1) for i e X ,  j~  Y},  

(2.14) 

and 

(2.15) 

H(p) = - ~ Pi log Pi for a p.d. 
i=1  

p--- (pl, . . . ,  pc). 

R (Tz, w) = H (rc)- ~, q j H(w* (" I J)) 
J 

/~ = max rain R(Tz, w). 

We come now to the lemmas. The most important one of them is Lemma 1. For 
it's proof we need 4 propositions. 

Proposition 1. 

exp{H(rc)l-c(rc)1ogl}<_<_lXl(~)l<exp{H(rc)l+c(rc)logl}, for l = 1 , 2  . . . . .  

c(rc) is a function, which can be given explicitly. 

This follows immediately from definition (2.6) and Stirling's formula. 

Proposition 2. One can give explicitly a function E (e, w)> 0 which is continuous 
in w, such that for u~Xl, SlE~Sz and I---1, 2, ... : 
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P(Y~ (u, e, sz) lul st)_-> 1 - exp - t__~ 1E(~, w(. I" Id)) > 1 - exp { - E (e) 1}, 

where E (e) = rain E (e, w) > 0. 
wel~ 

It follows from definition (2.7) and Chebyshev's inequality that one can 
construct a function E(e, w) with the desired properties. E(e) is positive, because 
~ is compact and E (e, w) is continuous and positive. 

Proposition 3. For w ~ ,  ve Yt and 71 as in (2.5): 

a) I S~ (v, e, re, w)[ < exp {~ ?1j H(w*(. l j ) ) I+  g (e)I}, 
J 

b) IX, (v, e, re)[< exp {max ~, qj (w) H(w* (. [j)) 1 + ~ (e) I} for I > Co (e). 
we~: j 

g (e), ~, (e) and c o (e) are known functions and lim ~ g (e) = lira ~ ~, (e)= O. 

Proof Part a) follows from (2.11) and Chebyshev's inequality. (Compare 
lemma 2.1.6. of I-9]. The only difference between that lemma and part a) of our 
proposition is that we use w* instead of w.) We proof now part b). The set 
~(~, 7r, 71, l) can be partioned into disjoint sets ~(1), ..., ~(L) in such a way that 
for 2 matrices in ~(p); p = l  .. . .  ,L;  the corresponding stared matrices differ 
componentwise by less than e and such that L<(1/~) "b. Let w o be an element of 

* correspond to Wo, then (p) and let w e 

(2.16) U Xt(v,e, zc, w)c{u]u~Xt(rO, lN(i, jlu, v)-w*(ilj)N(j]v)l 
we~(p) 

=<(2a+ 1)(e l+  1) for i~X, j~ Y}. 
Part a) yields 

(2.17) [ U Xl(V, 5, ~)[<exp{~ ?1jH(w*(.lj))/+g*(e)l} 
w ~ ( p )  J 

where g* (e) is a known function and lim g* (e) = 0. 
e ~  0 

Since 
]Xt(v,e, rc)l<(1/~)abmaxl U Xt(v,e, rc, w)[ 

p wE~(o) 
the statement follows from (2.17) and definition (2.10). 

Proposition 4. I f  ueXz(zc ) and v~ Yl(u, e), then 

U 
we~(e, rc,71, l) 

and 

b) u E X l (v, e, lr). 

Proof v~ Yz(u, e) and (2.8) imply v~ Yz(u, e, st) for some st~Sl. Introduce a matrix 
~ ( ' ! ' ) ~  by 

(2.18) 7v(jli)=N(ilu) -~ ~ w(jli]s') for i e S ,  j eY .  
teQ(u,i) 

From (2.7), (2.9) and (2.18) one obtains 

(2.19) Yt(u, e, sz)= Yl(u, e, ~) 

Since u s Xt (re) one can conclude that 

(2.20) Y~(u, e, st)= {v*] IN(i,j] u, v*)-@(j] i) ~rl ll_-__e l+  1 for i~X , j~  Y}. 
1 7a Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 25 
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Since N(jlv)= ~ N (i, jlu, v) for j~  Y, we obtain from (2.20) that 
i 

(2.21) [g(jlv)-qj(fv)ll<a(el+l) for jeY.  

This and the definition of ~/yield 

(2.22) I?t~-qj(fv)l<a(e+1-1) for je  Y 

and therefore we have #e~(~,  re, ~, 1), which proves part a). 
It is clear from the definition of Xz (v, e, n) and from a) that in order to establish 

b) it suffices to show that for any w e ~  and u~Xt(rc) the following relation holds: 

(2.23) ve Yl(u,e, w) implies ueXl(v,~, rc, w). 

From usXl(rc) and v~ Yl(u, e, w) we obtain for iEX, je  Ythat 

IN(i, jlu, v)-Thlw(jli)l<=~l+l, ]N(j lv)-qj l l~a(el+l)  

and finally that [N (i, jlu, v ) - N  @lv) w*(ilJ)l <~(a + 1)(e I+ 1). Hence, ueXl(v,e,~,w ) 
and b) is proved. 

The system (Xz(r0, {Xl(v, e, rc)l ve Yl}) can be interpreted as a list code for 
~[. Xl(70 is the set of code words and Xz(v, e, ~z) is the list of code words the receiver 
decides upon, if he has received v. For any list code denote by N its length, by L 
its maximal list size and by 2 its maximal error probability for channel ~1. In 
this case: N =  IXl(Tt)l, L = m a x  IX(v, e, rt) I. 

1) 

Lemma 1. One can give explicitly a function q(e) such that for l>q(e) the 
list code (Xz(~z), {Xz(v, e, rc)[ ve Yl}) for ~l has the following properties: 

a) exp {H (zt)/+gl(e)l} > N > e x p  {H(rc)l-g~(~)l}, 
b) L < e x p  { m a x ~  qj(w) H(w*(.lj))l+ga(e)l}, 

w s ~  j 

c) )~<-exp{--E(e)l}. 

E (5) and gl (e) are known positive functions and lira gl (e)= 0. 
~ 0 

Pro@ a) is clear from Proposition 1, and b) follows from Proposition 3, b). 
c) is a consequence of Proposition 2 and Proposition 4, b). 

For the channel 92~y we can choose S as a finite set. Define ~(" 1") by 

(2.24) ~(j] i )= ISl-a~ w(jlils) for ieX; je  Y; and define a d.m.c. ~ as in (1.1). 
s e S  

Denote this channel by Ns in case of feedback. 

Lemma 2. For any 2, 0 < 2 < 1, we have: 
a) an (n, N, )0 code for 9.11 is an (n, N, ~) code for ~--I s, and conversely, 
b) an (n, N, 2) code for 9.1j r is an (n, N, o) code for ~I, and conversely. 
Proof Any element w(.[ . [g)e~ can be approximated arbitrarily closely by 

expressions of the form 
~r(slg) w('l'ls), 

where r('l~) is a finite p.d. on S. Set 

r(.[~,)= I~r(-[~ t) for ? ,=(~ , . . . , g" ) .  
t = l  
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Any element P(.  1"~,)~,  can be approximated arbitrarily closely by expressions 
of the form 

Y~ r(s , l~,)P( ' l"  I~=). 
snESn 

Therefore, for every y,~ Y, and m~M, P(y , l ( f~ , fZ(y ' ) ,  ... , f~(yl ,  ... ,y,-1)) I ~,) can 
be approximated arbitrarily closely by expressions of the form 

E r(s, ls,)P(y,(U~, ... ,f,~'(y: . . . .  , y"-l)) [ s,). 
Sn 

Hence, P(Am If, (m)l s,)> 1 - 2  for m e m  and s=GS, implies 

P(A=lf,(m)[:,)> l -  2 for m e M ,  

~=eS,. The converse implication is obvious. This proves part a) of the lemma. 
If {(fn(m), A,,)[m= 1, ..., X} is an (n, N, 2) code for 961i , then 

P(AmIL(m)Fs,)> I - 2 > O  for m e M ,  s, eS, .  

Since ~ contains only 0-1-matrices,  we conclude that P(Amlf , (m)ls , )=l  for 
mere,  s, eS, .  Since N(-[-)e~, part a) implies /5(A,,lf,(m))=l for m e m .  The 
converse implication is immediate from the definition of ~. It was proved in [7] 
that 9.1 (resp. ~[ or ~)  has a positive rate if and only if the following condition 
(K. W.) holds: 

there exists an i e X  and an i ' e X  such that T(i) c~ T(i')=JJ. For a.v.ch, f. we bave 

Lemma 3. a) (K. W.) is sufficient for ~ I  to have a positive rate 1. 
b) (K. W) is necessary and sufficient for 9.I t l(resp, ff-Ia l or ~Il l) to have a positive 

rate. 

Proof Part a) follows from the result quoted above. It remains to show that 
(K. W.) is necessary in case b). If (K. W.) does not hold, then any two row-vectors 
of N have a common support and hence the zero-error capacity Col of ~ I  equals 0. 
(This was noticed in [8], p. 17.) It follows now from Lemma 2 that gIly and conse- 
quently also ~ l s  and ~[1~ have capacity 0. 

Lemma 4 (see [4], Lemma 4). 

_~ = max rain R (~, w) = mi__n max R (7:, w). 
7C WG~ VCG{~ 

Proof It is known that R(r~, w) is concave in 7: for each w and convex in w for 
each re. ~ and {1:} are norm compact convex sets and R(rc, w) is norm continuous 
in both variables. Therefore the minimax theorem is applicable and yields the 
equality. 

3. The Capacity for 9.1 s and an Optimal Coding Scheme 

In [1] we presented an optimal coding scheme for the d.m.c.f. The scheme 
is not sequential (encoding functions of variable length) and consists in an iterative 
procedure to reduce the list of possible messages on the receiver's side. The 
iteration is made possible because of the feedback. The present results for ~[or 

1 U. Augustin has informed us about an example which shows that the condition is not necessary in 
this case. 

17 b Z. Wahrscheinlichkeitstheofie verw. Geb., Bd. 25 
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concern again codes of fixed block length as defined in (1.4) and they are obtained 
by the very same iterative approach as described in [1]. The bounds on N, L and 
2 of Lemmas 1, 2, and 3 of [-1] are now replaced by those in our Lemma 1. In 
order to make this paper a self-entity repition of parts of [1] cannot be avoided. 
Before we come to the coding scheme we derive first an upper bound on CI" 

Lemma 4 yields that ~ equals min max R(n, w). Let w' be such that /~= 
w~lg  r~ 

max R (n, w'), let @} be the d.m.c.f, corresponding to w', and denote it's capacity 

by C~. The strong converse of the coding theorem for @~ (Kempermann [-6] and 
Kesten (oral communication), published also in [9]) says that" 

(3.1) for 6 > 0 and any 2, 0 < 2 < 1, there does not exist a code (n, exp {(C) + 6) n}, 2) 
for all sufficiently large n. 

Since w'~ ~ and since C} = max R (re, w')= K, we obtain that 

(3.2) ~ y < ~ .  

Assume now that C I >  0 and hence k > 0. (Example 1 below shows that 
can be positive and still C I=0 .  ) Choose rc such that K=mi_n R(rc, w). Abbreviate 

w ~  

H(Tc) as H and max ~ qj(w)H(w*('lj)) as H. With this notation we can write 
K as H - / ~ .  w~ j 

We describe now our coding scheme. Let r be a positive integer and let M1 = 
{1, ..., a r} be a set of N=a r messages. Choose 11 as the smallest integer for which 
]Xz~ (n)l > a r. It follows from Lemma 1, a) that for 11 > c1(0: 

(3.3) H -  1 log a.  r + g2 (5) r > l 1 > H -  t log a .  r - g2 (5) r, 

where g2 (5) can be given explicitly and lira g2 (5)--0.  
g ~  0 

We now map M1, one to one into Xl~(rr) and call the image Xt~(rc). Let u=  
(f~, ... ,f~) be the image of m, meM1. For meMa and t = 1, 2, . . . ,  I~ we now define 
f~ (Z ~ . . . .  , Z t - 1) by 

(3.4) f~ (ZI, ..., Z ' -  1) = f~. 

Suppose the sender is sending message m and he has already sent the letters 
f~, . . . ,f~'.  The receiver has received a sequence v=(v 1 ..... vl~) ~ Yh and decides 
on the list M 2 -- X h (v, e, g). It follows from Lemma 1 that u is on this list with a 
probability 1 - 2~ > exp { - E (e) l~} and that IX h (v, 5, re) < exp {H + g~ (5) 11} for 
l~ >ca(z). The v received and therefore also the list M2 is known to the sender, 
because we have feedback. If u is not on the list, then we count this as a decoding 
error and it is irrelevant how the sender continues the transmission (over the fixed 
block length n, to be determined later). If u is in Me,  then we iterate the procedure 
as follows. Let 12 be the smallest integer such that [Xz~ (rc)[ > exp{H +el(e)l~}. It 
follows from Lemma 1 that 

~q 
(3 .5 )  (--~--g3(e)) l,<12<(~HH-+g3(e)) l, for l,>=c2(e)>ca(e), 

where ga (5) and c2 (5) are known functions and !im ~ g3 (5)= O. 
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H is positive, because K = H - H > 0  by assumption. Moreover, 0 < - ~ - <  1. 

We now map M 2 one to one into X~2 (re) and call the image Xl2 (re). This mapping 
depends on v, is otherwise arbitrary and is known to sender and receiver. Let 
(f~l + 1, ..., f~l + ~2) be the image of(fm~,..., f~)  E M 2 . For  m E M and t = 11 + 1 . . . . .  11 -/- l 2 
we define f t  ( Z1 Z t - l )  by 

J ~ \  , � 9  

(3.6) f , , ( Z  l, t - l _  t . . . , Z  ) - f ~ .  

After these 12 letters have been sent we come up with a set M3, defined analogously 
t o  M 2 . For  l 2 ~ C 2 (~) the image of m is contained in M3 with a probability 

1 - - 2  2 ~ 1 --exp { - E ( e )  12}- 

Set K ( e ) = - f f - + g 3 ( s  ) and K ( e ) = - ~ - - g 3 ( e  ). By iterating the procedure for 

s = 3, 4 . . . .  we obtain 

(3.7) K(e)  l s _ l < l s < K ( e )  ls_l for all s with I s_ l>c2(e) .  

Since K(e)< 1 for e sufficiently small, we thus constantly reduce the number of 
possible messages on the receiver's side. However, the inequality. Is_a>C2(e) 
imposes a bound on the number of steps we can take in the described way. 

Let D be the smallest integer such that 

(3.8) l o < c z (e) < l o_ 1. 

Since K (e)/)- 1 ll < lD < C2 (e) ~ l o_ 1 < K (e) ~  2 11 ' we obtain 

(3.9) ( D - 1 ) l o g K ( e ) + l o g l x < l o g c e ( e ) < = ( D - 2 ) l o g K ( e ) + l o g l  1 

and from the last inequality that 

(3.10) D < g 4 ( e ) l O g l l  for 11>c3(e)>c2(~),  

where g4 (e) and c3 (e) can be given explicitly. 

If we would follow the scheme up to s = D, then we would be left with fewer 
than a t~' messages on the receiver's side. Later we shall discuss how to seperate the 
message m sent from a "small"  set of messages. Presently we are concerned about 
the error probabilities 2s(s= 1, ..., D) involved in the scheme. Since the l~'s are 
decreasing the error probabilities 2~ increase with s. In order to keep them small 
two changes are necessary in the scheme above. First of all we want to exclude 
that 2, exceeds �89 Therefore we define for any constant/3, 0 </~ < �89 an integer D1 
as the largest integer smaller than D for which 

(3.11) exp - {E (e) Iol } < fl 

and we restrict s to the set {1 . . . . .  D1}. We assert 

(3.12) lo, < L(e) = min (I log fi[ [E (e) _K (~)] - 1, c2 (e)). 

The inequality clearly holds for D 1 = D because of (3.8). For  D~ < D we conclude 
from (3.11) that lo~ > I log fl [ E (e)- ~ > lox + 1. 

This and 1D~ + 1 > K (e) Io~ imply the inequality in this case. 
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Secondly, in order to keep the error probability of the scheme-which is 
bounded by the sum of the error probabilities at each s tep-small ,  we iterate 
only d = d(ll) times, where d is the largest integer such that 

(3.13) l,~>l} for ll>e4(O=max(c2(O, L2(O). 

This definition and (3.12) imply that d < D1. The decoding error probability after 
d 

d steps is bounded by ~ 2~, which is smaller than dexp{-E(e) ld} .  This, d<D1 
and (3.13) imply ~=1 

d 

(3.14) ~ 2~<D1. exp{-E(e)l~} for /~>c4(e). 

For the remaining steps (s = d + 1, ..., Da) we have by definition of d: 

(3.15) l~ < l~. 

We achieve small error probabilities for these steps by repeating each step [/~] 
times. To be more specific, let us assume that at the step s = d + 1 the sender has 
sent the sequence u.=(f~+...+t,,+l,...,.,,,,fh+...+/,+t~+l~, and the receiver has 
decided according to the scheme on Me + z = Me+ 2 (1) as list of possible messages. 
Now the sender sends the same u* again and he keeps doing this [/~] times. At 
instant v; v = 1, ..., [/~]; one obtains a list of messages Me+ 2 (v), say. All messages, 
which occur on more than half of the lists, shall form the final list Md+2 at step 
s = d + 1. Thus 

Md+ 2 = {u I u ~ Me+ 2 (v) for more than �89 E/t] of the v;}. 

In so far we have used only k > 0. In order to "seperate" message m from the 
remaining elements in MD1 we need now the assumption that C I > 0. This assump- 
tion implies that there exists a (lo (e), a ID1, ca) code for ~I I ,  where 0{1 <�89 If we send 
every codeword of this code [/~] times, then we decrease the error probability_to 
0{ 2 <exp { - H ( e l ,  1 -  ~)l~-}. This concatenated code can be used to reduce Mot 
to one element. 

(3.16) 

Obviously, 

(3.17) I-Ma+2l-< 2max IMa+2(v)l. 

For any v; v= 1, ..., [/~]; u* is contained in Ma+2 (v) with a probability 0{ greater 
than 1-2a+1 > 1-/~>�89 Since the channel is memoryless, we obtain that u* is in 
Ma+ 2 with a probability 1 -,~a+ 1, where 

x 

(3.18) 1-2a+1> ~LI ([l~]/~(1-~)t'h-~>--1-exp{-H(~,l-0{)/~}. 

We apply now the same proceduje to the steps s = d + 2, s = d + 3 . . . . .  s = D1 and 
thus finally come up with a list MD1, where 

(3.19) [M~ol I < a~~ 
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The probability 2 that this is not an image of message m satisfies 

d D~ 
2 < ~ 2 ~ +  Z 2~+e2--<D~exp{-E(8) l~} 

(3.20) ~= 1 ~= a + 1 

+ D1 exp { - H(e, 1 - e) l~} + exp { - H(cq, 1 - el) l~}. 

The total number n of letters sent is less than 

11 (1 -~- 1 ( 8 )  -I'- K 2 (8) - t - . . . )  -~- l 1 l 1 g4  (8) l o g  I 1 + l o (e) l~ 

and therefore 

(3.2l) n<_li( l+gs(e))(1-K(e))  -1 for l~>cs(e), 

where g5 (8) and cs (8) are known functions and lim gs (8)=0. 
,s--* 0 

Consequently, l 1 ~> ( l  - -  1(8)(1 -'}- g5 (8)) -1  n. This, K(g) = ~-  + g3 (e), and (3.3) imply 

(3.22) r>(H  -~ log a +g2 (e)) -1 ll > log  -1 a ( H - _ H -  g6 (8)) n, 

where g6 (e) is a known function and lira g6 (8) = 0. 
e~0 

Since N = a r and since K = H - H ,  we finally obtain 

(3.23) N = exp {r. log a > exp {• n - g6 (8) n} 

for n > c6 (e), a known function. 

Assuming that condition (K.W.) holds one can easily construct a code 
(lo (8), a ID1, 81) for ~[ and hence for ~[z. Thus the final step of our coding procedure 
is also constructive. We summarize the results in the following theorem. 

Theorem. Suppose that T( i )n  T(i ' )=g for some i, i' ~X,  then 

a) The capacity Cf of ~l I is positive and equals F2. 

b) Given R, 0 < R < K, then one can compute an E (R) and an n o (R) such that for 
every n > n o ( R) one can give explicitly a code of length N = e R" such that the decoding 
error probability 2 is smaller than exp { -E (R)  n}}. 

The following two examples supplement the results. 

(0 00) (ili) Example l. Let w( ' l ' [1 )=  1 O ,  w(.[ '12)= 0 and let (s 
{w( ' l ' l s ) l s=l ,2}  \ o  o 1 o 

One easily verifies that in this case g = l o g  3>0.  However, it follows from 

Lemma 3, b) that CI = 0. If we replace w(" [" [ 2) by 0 , then T(1) c~ T(2) = ~J 

0 
and the theorem yields for the capacity ~CI of the new channel: ~ I > 0  and 
lim , C I =  log ~-. This shows that CI is discontinuous as function of the matrices 
~:--+ 0 
(in canonical topologies). 
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Example2. Let w( . [ - I1)=(  1 ~) (~ ~) ! • �89 , w( ' l ' [ 2 )=  , S={1,2} and let ~ =  

{w(.[.[s)lseS }. Since (21 ~ ) s~ ,  Cy=O. Let n = 2  and define two encoding func- 
\ ] 

tions fz (1) = i f1 ,  f 2  (Z~)] and f2 (2) = [f~, f~  (Z1)] by 

f~l=f lz(o)=o,  f z ( 1 ) = l ;  f ~ = f 2 ( O ) = l ,  fzz(1)=O. 

We describe the transmission probabilities for all s2 = (s 1, s 2) e $2 

a) s2=(1,1) b) sz=(1,2) 
00 01 10 11 0 0 0 1  10 11 

0 0  0) 
1 1 �88 f2(2) �88 �88 �89 f2(2) 2 4 

c) s2=(2,1) d) sz=(2 ,2  ) 

0 0 0 1  10 11 00 01 10 11 

(o ol (o 1t f (1) 1 o �88 1 f2(1) �88 o 

f2(2) 0 1 f2(2) 0 �89 

We show that T(f2 (1)) r~ T( f  2 (2))= O. 
A vector in T(f2 (1)) is in it's first component >�88 equality holds only for the 

vector (�88 �88 0, �89 The only vector in T(f2(2)), which has a first component not 
smaller than �88 is 1 1 (~, ~, �89 0). But the 2 vectors are different. ~ I  has a positive rate. 

has capacity 0, because T(1)~ T(2)4:~(. Thus, feedback increases the capacity 
and CI and Cy are not equal. 

Remark. We provide some justification for limiting ourselves to the channel ~[y. 
A. v. ch. are a model for a transmission system which has several states and varies 
arbitrarily from one state to another. In a so called "finite state channel" the 
changes of states are assumed to follow probabilistic laws. Whenever changes of 
states are not governed by a probability distribution or if this distribution is not 
known, then one can describe the situation by an a. v. ch.-model. There are two 
essentially different ways in which the system can operate: 

1) The sequence of states s, = (sl, ..., s") is selected arbitrarily but independent 
of the messages to be transmitted and the letters to be sent. 

2) At every instant t s t may depend on all letters sent up to t - 1 and eventually 
also on the letter to be sent at instant t. 

In the second case we have an unrestricted variability of states and it seems to 
us that this is the case closer to applications. It was shown in [5] that in case of maxi- 
mal errors and no feedback the coding problems for the two cases are mathemati- 
cally equivalent. In case of feedback those problems are no longer equivalent. 
~ly is the appropriate model for situation 1). In situation 2) s t may now--because 
of the feedback--depend not only on the message to be sent, but also on the letters 
received up to t -  1. Let us denote this channel by ~y ,  without having stated the 

transmission functions formally. ~[y is different from ~Iy. In the later channel the 
s, may depend on the messages, but not on the letters actually sent. This channel 
is simply of type ~ y  with an enlarged class of matrices. Every (n, N, 2) code for 
~I s is certainly an (n, N, 2) code for ~[I. The converse is not true as can be seen 



Channels  with Arbitrarily Varying Channel  Probability Functions 251 

from footnote 1.) and (3.24) below. However, our coding scheme works for ~I~ as 
well, because Lemma 1 is independent of feedback and still applies. Therefore 
condition (K.W.) is also sufficient for ~[I to have positive rate. Moreover we have: 

(3.24) (K.W.) is necessary for ~I I to have a positive rate 2. This can be seen as 
follows. 

Suppose that for every i, i 'eX: T(i)c~ T(i')+~. Then for every i, i' there is a 
s(i, i ' )~SecS  such that w('li ls(i ,  i ' ))=w('li ' ls(i ,  i')). Let 

f , ( m ) = ( f  2, . . . , f 2 (Z  1 . . . . .  Z"-I)) and f,,(m')=(f2,, . . . , f2 , (Z 1 . . . .  , Z"-I))  

be any two encoding functions of any code. Choose s 1 such that w(. l f2Is l )  == - 
w(" I f~, ] sl) and define s t, t--2, ..., n, inductively as follows. Suppose any sequence 
yl . . . . .  yt has been received and f~+ 1 (yl . . . .  , yt) = x t + t, f~+ 1 (yl, ..., yt) = x,t + 1. Then 
set s t+l =s (x  t+l, x't+l). Clearly, the code's probability of error cannot be made 
smaller than 1. 

4. The Proof of a Conjecture of Shannon 

Let ~ I  be a d.m.c.f, given by a stochastic a x b-matrix w. We denote it's 
zero-error capacity by Coi(w). The following result is due the Shannon ([8], 
Theorem 7). 

Theorem S. For jE Y define Sj = {i[ i~ X,  w(j[ i) > 0} and set rc o = rain max ~ rcl. 
T h e n  ~ J ieS j  

a) Col (w)-- log zco 1 if Co I (w) > O, 
b) Cos(w)=O if and only if no 2 row vectors in w have disjoint support. 

Define a set of  matrices V(w) by 

(4.1) V(w)={w'[w'  stochastic, for any pair (i,j): w'(j[i)=O if w(j[i)--O} and set 
Cmin=max rain R(rc, w'). 

r~ w'eV(w) 

Shannon conjectured ([8], p. 19) that 

(4.2) Cos(W) = C~i, if Co~(W) > 0. 

The similarity between the formula for Cmin and the formula for K [see (2.15)] 
is apparent. Define ~ = ~ (w) by 

(4.3) ~ = {w'] w' stochastic 0-1-matrix, for any (i, j): w'(j[ i) = 0 if w (Jl i)-- 0}. 

One easily verifies that 

(4.4) ~ = V(w). 

Therefore the conjecture (4.2) can be restated as 

(4.5) ~o j (w)=maxmin  R(zc, w'), if C%(w)>0.  

We prove now (4.5). The result is an immediate consequence of our Theorem 
and Lemma 2. Two matrices w and # are said to be adjacent, if for any (i, j): 
w(j(i)>O when and only when # ( j l i )>0 .  It is easy to see that d.m.c.f.'s which 
correspond to adjacent matrices have the same zero-error capacities, that is 

2 This observation was made by the reviewer, to whom our thanks  are due. 
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Co~(W)= Col(#) (see [8]). For ~ as in (4.3) define ~, Ee, S e, ~I~S ' ~[lr, C~I and Cl l  
as in section 1. S e is finite and Ee= E. 

Let we( . 1") be a stochastic matr ix  given by 

(4.6) we(jli)=lSe[ -1Y', w(jlils) for i~X, jeY. 
S E S  e 

It follows f rom the definition of ~e and f rom (4.6) that  w and w e are adjacent.  

Therefore 
(4.7) Col (w) = Col (we) �9 

It follows from Lemma 2, b) that 

(4.8) Coe (w e) = C~y. 

Since ~e = ~, we obtain from Lemma 2, a) that 

(4.9) C~s = C:s" 

(4.7), (4.8) and (4.9) yield 

(4.10) Co,(W)= ~1," 
(4.5) follows now from (4.10) and the Theorem. We thus have proved the con- 
jecture. 
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