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1 Introduction

Over the last years, it has been realized that quantum chaos plays an important role in

the physics of black holes. The key property that makes black holes chaotic is the large

blueshift between an asymptotic and a freely falling observer. Any perturbation with a

small energy E0 experiences a boost in energy given by E = E0e
2π
β
t
, where t is the Killing

time used by an asymptotic observer and β is the inverse temperature of the black hole.

One probe of chaos in quantum systems that already has been known for a long time is

the double commutator of two generic operators V,W [1]

C(t) = 〈−[V (0),W (t)]2〉 , (1.1)

which measures the sensitivity of the operators W and V with respect to each other. For

Hermitian and unitary operators V and W , we can write

C(t) = 2− 2 Re〈V (0)W (t)V (0)W (t)〉 , (1.2)

where

F (t) = 〈V (0)W (t)V (0)W (t)〉 , (1.3)

is referred to as the out-of-time-order correlator (OTOC). Chaotic behaviour shows itself

in an exponential growth of the double commutator C(t) or, equivalently, an exponential
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decay of the OTOC F (t). In some thermal systems with a large number of degrees of

freedom N , such as holographic CFTs dual to black holes, F (t) behaves as [2–5]

F (t) = 1− f0

N
eλLt +O(N−2) ,

(
β/2π � t� λ−1

L log(N)
)
, (1.4)

such that C(t) ∼ N−1eλLt. Here f0 is a positive order one constant. The timescale when

F (t) is affected by an order one amount is known as the scrambling time t∗ = λ−1
L log(N)

and λL as the (quantum) Lyapunov exponent. The size of the Lyapunov exponent deter-

mines how fast chaos can grow and it has been argued that it obeys the universal bound [5]:

λL ≤ 2π/β. Famously, black holes saturate this bound making them among the fastest

scrambling systems in nature [6]. Any perturbation to a black hole ‘scrambles’ as fast as

possible over the horizon, making it indistinguishable from its thermal atmosphere.

Because these developments have offered a window into the microscopic description

of black holes, one might hope to similarly apply some of these tools to cosmological

spacetimes. In fact, a black hole horizon shares similarities with the cosmological horizon

of the static patch of de Sitter space. For instance, there is a large blueshift between an

observer sitting at center of the static patch and one that is freely falling through the

horizon of the first observer. Just as for black hole spacetimes, when a perturbation is

released a scrambling time (t∗ = β
2π log(S)) to the past of the t = 0 slice or earlier than

that, the boosted perturbation creates a high-energy shockwave. This observation has

led Susskind to conjecture that de Sitter space is also a fast scrambler [7]. From this

perspective, it seems natural that de Sitter space should also be maximally chaotic, i.e. it

should saturate the chaos bound.

However, there are also important differences between cosmological and black hole

horizons. One of the most important difference in this context is the fact that shockwaves

generated by matter that obeys the null energy condition (NEC) have different properties

in de Sitter space than in Minkowski or Anti-de Sitter space. Whereas geodesics crossing

a positive-energy shockwave experience a gravitational time delay in Minkowski and Anti-

de Sitter space, they enjoy a time advance in de Sitter space [8]. In this sense, a perturbation

to de Sitter space that obeys the NEC has similar properties as a traversable wormhole in

Anti-de Sitter space [9, 10], because it now becomes possible to send signals from otherwise

causally disconnected regions.

Another difference of de Sitter space as compared to black holes in Anti-de Sitter space

is the absence of a spatially asymptotic and non-gravitating boundary theory from which

we can probe the static patch. The only boundaries in de Sitter space are spacelike and

have access to a larger region than just a single static patch. Therefore, to study chaos

we restrict ourselves to a single static observer which spontaneously breaks the isometry

group of d-dimensional de Sitter space from SO(d, 1) → SO(d − 1) × R. This perspective

has previously been taken in [11, 12] to study a putative holographic dual of the de Sitter

static patch and in [13] to explore vacuum state modifications.

The main aim of this paper is to compute OTOCs in the static patch of de Sitter

space to study chaos. Although there have been previous studies of chaos and quantum

information in de Sitter space (such as the recent papers [14–17]), to the best of our
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knowledge no direct computation of OTOCs in de Sitter space has ever been published

that demonstrates chaotic behaviour. Our goal is to fill this gap. In order to do so we find

it convenient to work in 2 + 1 dimensions, making the computation rather tractable. This

allows us to calculate various OTOCs with operators inserted at the origin of different static

patches and establish that a particular single-sided OTOC exhibits Lyapunov behaviour:

it decays with a Lyapunov exponent that saturates the chaos bound. Interestingly, we find

that the OTOC does not decay precisely as in (1.4), but behaves as F (t) ∼ 1−N−2e2λLt

leading to C(t) ∼ N−2e2λLt. This behaviour of the double commutator is the same as for

black holes in Einstein gravity, but in that case this is caused by the fact that the leading

term in the OTOC is purely imaginary [3]. However, we find that in de Sitter space the

leading term in the OTOC is real. This seems to be an important distinction between

chaos in black holes and de Sitter space.

This article is organized as follows. In section 2 we remind the reader about some

of the basics of de Sitter space and discuss coordinate systems, Wightman functions and

shockwave geometries. Section 3 contains the main results of our paper, where we compute

various OTOCs in de Sitter space. Finally, we discuss the implications of our results for

de Sitter complementarity and inflation in section 4 and end with a discussion in section 5.

2 Basics of de Sitter space

2.1 Coordinate systems

De Sitter space in d dimensions can be described as a hyperboloid embedded into d + 1

dimensional Minkowski space using embedding coordinates XA=0,d:

ηABX
AXB = `2 . (2.1)

Here ` is the de Sitter length and ηAB is the Minkowski metric. A useful coordinate system

in which time translation invariance is manifest are the so-called static coordinates.

X0 =
√
`2 − r2 sinh(t/`) , (2.2)

Xd =
√
`2 − r2 cosh(t/`) ,

Xi = ryi .

Here yi=1,d−1 are coordinates on the unit d−2 sphere. The metric in this coordinate system

is given by

ds2 = −
(
1− r2/`2

)
dt2 +

(
1− r2/`2

)−1
dr2 + r2dΩ2

d−2 . (2.3)

This metric only covers a quarter of the global de Sitter Penrose diagram known as the

static patch, surrounded by a horizon at r = `. It will be convenient to complexify the

static time coordinate by writing tx = t + iεx. We can then cover any of the four static

patches of the Penrose diagram, which we refer to as the right (R), left (L), top (T ), and

bottom (B) patch by considering different imaginary parts as follows.

εR = 0 , εL = −π` , εT = −π
2
` , εB =

π

2
` . (2.4)
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Figure 1. Penrose diagram of de Sitter space. By complexifying the static time coordinate, we can

cover each of the four static patches. The flow of the timelike Killing vector ∂t is indicated with

arrows in each patch.

The Penrose diagram is displayed in figure 1. Another metric that we will use that provides

a global cover of de Sitter space is given by the coordinates

X0 =
`2(u+ v)

`2 − uv
, (2.5)

Xd =
`2(u− v)

`2 − uv
,

Xi =
`2 + uv

`2 − uv
`yi .

The metric in this coordinate system is given by

ds2 =
4`4

(`2 − uv)2
(−dudv) + `2

(`2 + uv)2

(`2 − uv)2
dΩ2

d−2 . (2.6)

In this coordinate system, the past horizon is given by v = 0 and the future horizon by

u = 0. The North and South pole are given by uv = −`2 and the future and past boundaries

by uv = `2.

2.2 Wightman function

We can define a particular vacuum state |Ω〉 by considering the Wightman functionW(x, y).

It is given by the two-point function of scalar fields.

W(x, y) ≡ 〈Ω|ϕ(x)ϕ(y) |Ω〉 . (2.7)
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Here ϕ is a massive scalar field described by the action

S = −1

2

∫
ddx
√
−g
(
∂µϕ∂

µϕ+m2ϕ2 + ξRϕ2
)
, (2.8)

with ξ a non-minimal coupling. For states that preserve all de Sitter isometries, the Wight-

man function can only depend on the de Sitter invariant distance

Z(x, y) =
1

`2
ηABX

A(x)XB(y) . (2.9)

In the Bunch-Davies vacuum the Wightman function is given by (see for example [18])

W(x, y) =
Γ(h+)Γ(h−)

`d(4π)d/2Γ(d/2)
2F1

(
h+, h−,

d

2
;

1 + Z(x, y)

2

)
. (2.10)

Here,

h± =
1

2

(
d− 1±

√
(d− 1)2 − 4`2m̃2

)
, (2.11)

with m̃2 = m2 + ξR. It is important to notice that the parameters h± are only purely real

for masses m̃2`2 ≤ (d − 1)2/4. The distinction between the real and imaginary regimes

of h± can be made in terms of representations of the isometry group of de Sitter space,

SO(d, 1). The range of masses 0 < m̃2`2 < (d−1)2

4 corresponds to the complementary series

representation and m̃2`2 ≥ (d−1)2

4 to the principal series representation [19, 20].

The Wightman function (2.10) is analytic everywhere in the complex Z plane except

at a branch cut along the line Z ≥ 1. For timelike separated points Z > 1 we therefore need

to regularize the Wightman function and the correct iε prescription is to send Z(x, y) →
Z(x, y) + iε sgn(x, y) [18].1 We define sgn(x, y) to be +1 when x is to the future of y and

−1 when x is in the past of y. Thus, the properly regularized Wightman function in the

Bunch-Davies vacuum is given by

W(x, y) =
Γ(h+)Γ(h−)

`d(4π)d/2Γ(d/2)
2F1

(
h+, h−,

d

2
;

1 + Z(x, y) + iε sgn(x, y)

2

)
. (2.12)

2.3 Shockwaves

Let us now focus on the R patch. The relation between static and global coordinates is

given by

u = −`e−t/`
√
`− r
`+ r

, v = `et/`
√
`− r
`+ r

. (2.13)

We then see that a time translation t→ t+ c corresponds to a boost in global coordinates.

u→ e−c/`u , v → ec/`v . (2.14)

This shows that a particle released from the origin of the static patch a time t to the past

of the t = 0 slice will be highly blueshifted when it crosses the t = 0 slice. It is therefore

appropriate to describe such a particle as a shockwave geometry.

1The sign difference of our prescription with respect to [18] comes from the different choice of metric

signature.
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Figure 2. Penrose diagram of the shockwave geometry (2.18) created by a highly boosted particle

that travels along the past horizon v = 0 (the blue line). There is a discontinuity in the coordinate

ũ by an amount α which brings the left and right static patch into causal contact with each other.

We will focus on 2 + 1 dimensions, but higher-dimensional de Sitter shockwave geome-

tries have also been constructed, see for example [21–23]. For shockwaves travelling along

the past horizon v = 0, the metric is given by (see appendix A)

ds2 =
4`4

(`2 − uv)2
(−dudv)− 4αδ(v)dv2 + `2

(
`2 + uv

`2 − uv

)2

dφ2 . (2.15)

Here φ = φ+2π and we ignored the spread of the shockwave in the transverse direction for

now. Geodesics crossing the past horizon v = 0 in this metric experience a time advance

by an amount α. This is a solution to Einstein’s equations with a stress tensor given by

Tvv =
α

4πGN`2
δ(v) . (2.16)

The null energy condition enforces α > 0. If this shockwave is generated by a particle

which in its restframe has a thermal energy given by E0 = β−1 = (2π`)−1 the parameter

α is related to the blueshifted energy by (see appendix A)

α =
GN
2
etw/` . (2.17)

Here tw = −t is the time the particle is released to the past of the t = 0 slice. The Penrose

diagram of this geometry is shown in figure 2. It will sometimes be convenient to also

consider the metric in a slightly different form by performing the coordinate transformation

u = ũ− αθ(v). We then find

ds2 =
4`4

(`2 − (ũ− αθ(v))v)2
(−dũdv) + `2

(
`2 + (ũ− αθ(v))v

`2 − (ũ− αθ(v))v

)2

dφ2 . (2.18)

Here θ(v) is the Heaviside theta function. In this metric, there is a discontinuity in the ũ

coordinate at v = 0 by an amount α. Shockwaves with positive null energy can therefore

bring opposite poles of de Sitter space into causal contact with each other [8].

– 6 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
2

3 Out-of-time-order correlators

OTOCs are specified by their analytical continuation from Euclidean four-point functions,

but they still have a freedom that corresponds to moving the operators along the thermal

circle, see e.g. figure 2 of [3]. These different configurations are all related by analytical

continuation, but as we will see this does not mean that they all show chaotic behaviour.

To assess chaos, we will focus on two different configurations. The first configuration that

we study is obtained by moving one of the operators halfway along the thermal circle. This

corresponds to the double-sided correlator 〈WRVLVRWR〉. The second configuration is the

purely single-sided configuration 〈WRVRVRWR〉. The subscripts here refer to either the

left or right static patch of the de Sitter Penrose diagram, as indicated in figure 1. We will

now compute the different OTOCs.

3.1 Geodesic approximation

First, we will calculate the following OTOC that was previously considered in the context

of black holes by Shenker and Stanford [2].

F (t) = 〈WR(t)VL(0)VR(0)WR(t)〉 . (3.1)

We will evaluate this correlation function in the Bunch-Davies state. The operators WR

and VL,R correspond to massive scalar fields inserted at the origin of a static patch indicated

by the subscript. Alternatively, we can see it as a purely right-sided correlator where we

evaluate the operator with subscript L at time −iπ` to move it to the left side. Notice that

this particular ordering is only equal to 〈VL(0)WR(t)VR(0)WR(t)〉 when VL and WR are

spacelike separated. To calculate this correlation function, we will make use of a geodesic

approximation. We can view F (t) as a two-point function in the shockwave background

which is given by a path integral over all possible paths connecting the two operators. For

earlier work exploiting the geodesic approximation in the context of AdS/CFT, see [24–29].

In the limit of large mass m`� 1 of the V operators, the path integral is solved by a saddle

point approximation in which the two-point function localizes to a sum over geodesics with

the location of the operators as the end points:

F (t) '
∑

geodesics

e−mD . (3.2)

D is the (renormalized) geodesic distance, which in a de Sitter background is given by

cos

(
D(x, y)

`

)
= Z(x, y) . (3.3)

We should proceed with some caution, because (3.2) is only unambiguous for operators

in a geometry with a real analytic continuation. In that case, the geodesic distance can

straightforwardly be computed in Euclidean signature and the Lorentzian correlator is ob-

tained by analytical continuation. However, we are in a situation where this condition is

not true since the shockwave induces some non-analyticity in the metric. Nonetheless, see-

ing the shockwave as a small perturbation to the background geometry we expect that (3.2)

– 7 –
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VL(0 ) VR(0 )

WR(t)

α
D1 D2

Figure 3. The geodesic (green) connecting the operators VL(0) and VR(0) in the shockwave

geometry (2.15) created by the operator WR(t). Due to the shockwave (blue) the geodesic is shifted

by an amount α along the past horizon.

still gives the dominant contribution, just as in [2]. A more careful treatment would be

to introduce an auxiliary spacetime that has a real analytical continuation and a limit in

which it reduces to the Lorentzian shockwave geometry, such as was done in [30].

Putting this subtlety aside for now, we will proceed to calculate the geodesic distance

between the VL operators in two parts. Using the embedding coordinates (2.5), we first

calculate the distance D1 between VL(0) and the shockwave at v = 0. Then, we add to it

D2: the distance from the horizon v = 0 to the operator VR, see figure 3. We find

cos

(
D1

`

)
=
u

`
, cos

(
D2

`

)
=
α− u
`

. (3.4)

Thus, the total geodesic distance is given by

D = D1 +D2 = ` arccos
(u
`

)
+ ` arccos

(
α− u
`

)
. (3.5)

Extremizing over u, we find that u = α/2, which leads to

D = 2` arccos
( α

2`

)
. (3.6)

This results in a correlation function given by

F (α) = e−2m` arccos( α2`) . (3.7)

Expanding for α� 2`, normalizing, and writing the result as a function of tw we find

F (tw) = 1 +
mGN

2
etw/` +O

(
GN
`
etw/`

)2

. (3.8)
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Figure 4. The OTOC F (tw) calculated using the geodesic approximation which is valid for m2`2 �
1. It develops oscillations after the scrambling time t > t∗ = ` log(SdS). To plot the figure we took

GN = ` = 1 and m2`2 = 10.

This expansion is valid for times

tw � ` log

(
4`

GN

)
. (3.9)

We recognize this as the scrambling time tw � t∗ = ` log(SdS) up to a constant that is

subdominant when SdS � 1. Here SdS = π`/2GN is the de Sitter entropy. Notice that

unlike the OTOC in black hole backgrounds (3.8) does not decay, but grows exponentially.

This is not unexpected, since we know that the effect of a positive energy shockwave is to

causally connect the L and R patches. This can be seen from the geodesic distance. The

operators VL and VR are only spacelike separated when α < 2`, become null separated

at α = 2`, and timelike when α > 2`. For timelike separation (α > 2`), the correlation

function picks up an imaginary part and starts to oscillate.

Re(F (tw)) = + cos

(
2m`

∣∣∣∣arccos

(
GN
4`

etw/`
)∣∣∣∣) , (3.10)

Im(F (tw)) = − sin

(
2m`

∣∣∣∣arccos

(
GN
4`

etw/`
)∣∣∣∣) .

We show the behaviour of the complete OTOC in figure 4. So clearly, the particular

OTOC (3.1) which displayed chaotic behaviour (exponential decay) in a black hole back-

ground does not do so in de Sitter space. As we just mentioned, this should not come as

a complete surprise due to the different nature of positive energy shockwaves in de Sitter

space. The oscillating behaviour after the scrambling also seems to be explained by this,

because already the Wightman function in a pure de Sitter background oscillates for masses

m̃`� 1, which is the regime where the geodesic approximation is valid. Such heavy fields

correspond to the principal series representation of SO(3, 1). In contrast, the Wightman

function for light fields m̃` < 1 that fall into the complementary series representation does

not exhibit oscillations and we expect qualitatively different behaviour of the OTOC in

– 9 –
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that case. In the next section, we will study the OTOC in more detail by going beyond the

geodesic approximation and focussing on conformally coupled scalar fields m̃2`2 = 3/4. As

we will see then, the oscillations present in the OTOC for heavy fields are indeed absent

and the fact that the OTOC picks up an imaginary part has a nice interpretation in terms

of information being exchanged between the left and right static patch. Moreover, we find

that the purely single-sided OTOC does display Lyapunov behaviour.

3.2 Beyond the geodesic approximation

Another way of computing the OTOC was put forward by Shenker and Stanford in [3].

We skip the full derivation here and simply highlight the main ingredients going into the

derivation. We do so for completeness, so that we can later compare this with our results

of the OTOC in de Sitter space. In [3], the four-point function was viewed as the overlap

between an ‘in’ state and ‘out’ state created by perturbing the thermofield double state

with the operators V,W . These states are then given by

|Ψ〉 = VR(t3)WL(t4) |TFD〉 , |Ψ′〉 = WR(t2)†VL(t1)† |TFD〉 . (3.11)

For large time separation |t2 − t1| there is a large relative boost between the energies

of the W and V particles. This implies that in an appropriate frame the W particle

can be viewed as a shockwave travelling close to the horizon and computing the overlap

between |Ψ〉 and |Ψ′〉 becomes a high-energy scattering problem. We can now represent

the ‘in’ and ‘out’ states as Klein-Gordon wave functions which are represented in terms of

longitudinal momentum and transverse separation. In an elastic Eikonal approximation,

the full overlap is simply given by the overlap of the wave functions weighted by the Eikonal

phase eiδ(s,|x−x
′|), which is a function of the center-of-mass energy s = 4pu1p

v
2 and transverse

separation |x− x′|.
Following this procedure, the final result for the four-point correlation function is then

given by [3]

〈Vx1(t1)Wx2(t2)Vx3(t3)Wx4(t4)〉 (3.12)

=
16

π2

∫
Deiδ(s,|x−x′|) [pu1ψ

∗
1(pu1 , x)ψ3(pu1 , x)]

[
pv2ψ

∗
2(pv2, x

′)ψ4(pv2, x
′)
]
.

The measure in this integral is given by D = `dxdx′dpu1dp
v
2 and the wave functions ψi are

given by

ψ1(pu, x) =

∫
dve2ipuv 〈V (u, v, x)Vx1(t1)†〉

∣∣∣
u=0

, (3.13)

ψ2(pv, x) =

∫
due2ipvu 〈W (u, v, x)Wx2(t2)†〉

∣∣∣
v=0

,

ψ3(pu, x) =

∫
dve2ipuv 〈V (u, v, x)Vx3(t3)〉|u=0 ,

ψ4(pv, x) =

∫
due2ipvu 〈W (u, v, x)Wx4(t4)〉|v=0 .

– 10 –
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The expressions derived in [3] are appropriate for planar black holes (although similar

expressions have been derived for black holes with different topologies, see e.g. [31–33]) in

asymptotically Anti-de Sitter spacetimes. To apply (3.12) to de Sitter space we need to

make some modifications. In the Anti-de Sitter case, the expectation values appearing in

the wave functions are bulk-to-boundary propagators. Since we are interested in studying

scattering of particles that are released from the center of a static patch of de Sitter space

we have to replace these expectation values by Wightman functions in the Bunch-Davies

vacuum. Furthermore, the transverse direction in our case is a compact circle instead of a

line. Thus, the integration measure is now given by D = `3dφdφ′dpu1dp
v
2.

Now that we have spelled out the main differences, we compute the wave functions in

de Sitter space by taking the Fourier transform of the Wightman function. Unfortunately,

because of the rather complicated form of the Wightman function in terms of a hyperge-

ometric function, it is not easy to evaluate the integrals (3.13) analytically for arbitrary

masses. Instead, we will consider the more tractable situation in which all particles are

conformally coupled, i.e. m̃2`2 = 3/4. The Wightman function then greatly simplifies to

W(x, y) =
1

4
√

2`3π

1√
1− Z(x, y)− iε sgn(x, y)

. (3.14)

We can now explicitly perform the Fourier transforms to find

ψ1(pu) =
c√

4π`5pu
exp

(
2i`puet

∗
1/` +

t∗1
2`

)
, (3.15)

ψ2(pv) =
−c√

4π`5pv
exp

(
−2i`pve−t

∗
2/` − t∗2

2`

)
,

ψ3(pu) =
c√

4π`5pu
exp

(
2i`puet3/` +

t3
2`

)
,

ψ4(pv) =
−c√

4π`5pv
exp

(
−2i`pve−t4/` − t4

2`

)
.

Here c is an unimportant constant that obeys |c|2 = 1. Notice that the dependence on

the transverse direction has dropped. We are now interested in computing the correlation

function

F (t) =
〈V (iε1)W (t+ iε2)V (iε3)W (t+ iε4)〉
〈V (iε1)V (iε3)〉 〈W (iε2)W (iε4)〉

. (3.16)

The denominator of this expression is given by the general formula (3.12), with the Eikonal

phase δ set to zero. Plugging the expressions for the wave functions (3.15) into the general

formula (3.12) we find

〈V (iε1)W (t+ iε2)V (iε3)W (t+ iε4)〉 = (3.17)

1

16π4`10
e∆12+∆34

∫
Deiδ exp

(
−2`puε13 − 2`e−t/`pvε∗24 − t/`

)
.
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Here we introduced the notation

εij = i
(
eiεi/` − eiεj/`

)
, (3.18)

∆ij =
i

2`
(εi − εj) .

To evaluate this integral, the last piece of information we need is the Eikonal phase δ,

which is given by the classical action [3, 33]

δ =
1

2

∫
d3x
√
−g
[

1

16πGN
huuD2hvv + huuT

uu + hvvT
vv

]
. (3.19)

Here huu, hvv are the metric components corresponding to a perturbation to a pure de Sitter

geometry by two shockwaves travelling along the future and past horizon. Tuu, Tvv are

the corresponding stress tensor components. To evaluate this integral, we can use the

expressions from appendix A. The stress tensor and metric components that solve the

linear Einstein equations are given by

huu = −4πGNp
v`δ(u)b(φ− φ′) , Tuu =

pv

4`
δ(u)δ(φ− φ′) , (3.20)

hvv = −4πGNp
u`δ(v)b(φ− φ′′) , Tvv =

pu

4`
δ(v)δ(φ− φ′′) .

Using these expressions we find that the Eikonal phase is given by

δ = −1

4
πGN`p

upvb(φ′ − φ′′) , (3.21)

where b(φ−φ′) = cos(φ−φ′) with φ−φ′ ∈ [−π/2, π/2]. Plugging this into (3.17) we obtain

〈V (iε1)W (t+ iε2)V (iε3)W (t+ iε4)〉 = (3.22)

1

16π4`10
e∆12+∆34

∫
D exp

(
−iπGN`pupv cos(φ− φ′)− 2`puε13 − 2`e−t/`pvε∗24 − t/`

)
.

This integral can be solved analytically in terms of special functions, which gives the result

F (t) = g
(
πH0(2g) + 2F(g2) + 2 log (−g) J0(2g)

)
. (3.23)

Here Hn(z) is the Struve function, Jn(z) the Bessel function of the first kind and we defined

the function

F(z) = lim
a→1

∂a

(
0F1(a,−z)

Γ(a)

)
, (3.24)

as a limit of the confluent hypergeometric function. The argument g(t) is defined by2

g(t) = sgn(arg(ε13))
8`ε13ε

∗
24e
−t/l

πGN
. (3.25)

2The limit arg(ε13)→ 0 is to be taken from below.
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Figure 5. The out-of-time-order correlator 〈VL(0)WR(t)VR(0)WR(t)〉 for |g(t = 0)| = 10, ` = 1.

To compare this result to the geodesic approximation,3 we need to send one of the V

operators to the L patch. We can do this by taking ε1 = −π`, ε3 = 0 which sends ε13 → −2i.

Next, we would like to send ε24 → 0, but in this limit the correlation function vanishes. As

was explained in [3, 4] this is due to the high-energy nature of the W operators, which we

are trying to evaluate at the same point. This behaviour can be regulated by smearing the

operators over a thermal length β before sending ε24 → 0. Instead of doing this explicitly,

we will instead leave ε24 finite just as was done in [3, 4] and think of ε24 ∼ O(1). Explicitly,

we will take ε4 = −ε2 = τ` > 0, which sends ε24 → 2 sin τ . For these values of εij , the

correlation function is shown in figure 5. For early times we find that, just as in the

geodesic approximation, the real part of the correlation function increases. For later times

however, the correlation function decreases and goes to zero. This should be contrasted

with the behaviour of the OTOC in the geodesic approximation (3.10) which oscillates.

As mentioned before, this qualitatively different behaviour can likely be attributed to the

different regime of mass that we are considering.

Because a geodesic crossing a shockwave with positive null energy in de Sitter space

experiences a time advance, it becomes possible to send signals from the left patch L to the

right patch R. In this sense, de Sitter space shares similarities with traversable wormholes

in Anti-de Sitter space [9, 10], with the important difference that there is no need for a non-

local coupling between the poles. To confirm traversability, we can consider the response

of an operator VR(0) to a perturbation to the left static patch by an operator eiεLVL(0) once

we include the particle WR(t) that creates a shockwave. For W,V Hermitian operators this

response is given by [10]

〈e−iεLVL(0)WR(t)VR(0)WR(t)eiεLVL(0)〉 = (3.26)

〈WR(t)VR(0)WR(t)〉+ 2εL Im(〈VL(0)WR(t)VR(0)WR(t)〉) +O(ε2L) .

3Strictly speaking, we can only compare at times earlier than the scrambling time, since the operators

WR and VL are spacelike separated in that case and 〈WRVLVRWR〉 = 〈VLWRVRWR〉.
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Figure 6. The out-of-time-order correlator 〈VR(0)WR(t)VR(0)WR(t)〉 for |g(t = 0)| = 10, ` = 1.

An imaginary part of the OTOC

F (t) = 〈VL(0)WR(t)VR(0)WR(t)〉 , (3.27)

therefore shows that a signal has been exchanged between the left and right static patch,

because the expectation value of VR(0) in the shockwave background depends on the left

perturbation εL. This is precisely the correlator that has been plotted in figure 5, showing

that the wormhole connecting the left and right static patch opens up due to the shockwave.

It is also interesting to consider OTOCs with operators inserted at different points.

For example, we can also consider a purely single-sided correlator. Since both the W and

V operators are inserted at the same point, we have to regulate this correlation function.

This can be done by taking ε4 = ε3 = −ε2 = −ε1 = τ` > 0. The resulting OTOC is

displayed in 6. Expanding for |g(t)| � 1 (and setting 2 sin τ = 1) we now find

F (t) = 1−
(
GNπ

8`
et/`
)2

+O
(
GN
`
et/`
)4

. (3.28)

We therefore see that at times ` � t � ` log(SdS) this correlator decreases exponentially.

Notice that the second term of (3.28) comes with a square, which is different than in

the black hole case. Nonetheless, the timescale where the OTOC is affected by an order

one amount is the same and given by the scrambling time t∗ = β
2π log(S). The fact that

the leading term in the OTOC proportional to the entropy goes as 1/S2 instead of 1/S

(as in black holes) might be an important hint about the different microscopic structure

of de Sitter space as compared to black holes. In any case, we find that the Lyapunov

exponent of the purely single-sided OTOC is given by λL = 2π/β. This shows that the

de Sitter horizon space is a ‘fast scrambler’ that saturates the chaos bound [5].

3.3 Stringy corrections

Because of the large blueshift perturbations experience, the scattering process of pertur-

bations with rest energy E0 necessarily involves transplanckian energies when they are
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released with a time separation greater than t = ` log(mp/E0), where mp is the Planck

mass. For thermal quanta with rest energy E0 ∼ 1/` this is proportional to the scrambling

time. As such, one can wonder about the validity of our computation of the OTOC.

For black holes in Anti-de Sitter space it turns out that such quantum gravity correc-

tions are surprisingly mild [3]. The main corrections are due to the softer UV behaviour

of string amplitudes, as the Eikonal phase grows with the center-of-mass energy s as

δ ∼
∑
J

GNs
J−1 . (3.29)

Here, J is the spin of the particles that contribute. In Einstein gravity, this is dominated

by the graviton (J = 2) leading to a linear dependence on s. In string theory on the other

hand we need to sum over an entire tower of higher-spin states leading to a slower growth

of [34]

δ ∼ GNsJeff−1 , (3.30)

where

Jeff = 2− d(d+ 1)
`2s
`2
, (3.31)

with ` the AdS length and `s the string length. This implies that chaos develops slower

leading to a scrambling time of [3]

t∗ =
β

2π

(
1 +

d(d+ 1)

4

`2s
`2

+ . . .

)
log(S) , (3.32)

where the dots denote terms higher order in `2s/`
2.

In de Sitter space, we would like to make a similar argument. An additional compli-

cation however is that in de Sitter space there exists a bound on the mass of higher-spin

states to fall into unitary representation of the isometry group. This bound, known as the

Higuchi bound, is given by [35]

m2`2 ≥ (J − 1)(d− 4 + J) . (3.33)

As a consequence, for a linear Regge trajectory m2`2s = J the Higuchi bound is violated in

three dimensions at spin [36, 37]

J &
`2

`2s
. (3.34)

If gravity is UV completed by the leading Regge trajectory in a weakly coupled regime, we

need a sufficiently large number of higher-spin states at energies ms < E < Λ, where ms is

the string scale and Λ the cutoff of the theory. This implies that the mass of the maximum

spin state consistent with the Higuchi bound should be above the cutoff. Taking the cutoff

to be the Planck scale Λ = mp this implies a bound on the Hubble parameter H = 1/`.

H .
m2
s

mp
. (3.35)

If this bound is satisfied the UV behaviour of the scattering amplitude is softened and

we expect the scrambling time to increase by including stringy effects. In that case, the

scrambling time we derived in Einstein gravity should be viewed as a lower bound.
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4 Consequences for complementarity

After studying chaos in de Sitter space, we now turn to discuss the consequences of our

results for observer complementarity. In the context of black holes, observer complemen-

tarity [38] (see also [39, 40]) suggests that the infalling and asymptotic observer might have

a completely different, but complementary experience. While the asymptotic observer sees

the infalling observer blueshift and reach a Planckian temperature, the infalling observer

would report that nothing dramatic happened when she crossed the horizon. These two

different perspectives are ‘complementary’, because the two observers are never able to

meet up again and report on their experience.

For black holes, this idea can be challenged by considering a thought experiment [6, 41]

in which the infalling observer (Alice) carries a qubit and immediately sends it parallel to

the future horizon after crossing it, see figure 1 of [6]. At the moment that Alice has crossed

the horizon, the black hole contains this qubit of information and will eventually reemit

it in the form of Hawking radiation. The asymptotic observer (Bob) waits until he has

collected enough radiation to decode Alice’s qubit and then jumps into the black hole after

her. If the time it takes for Bob to decode Alice’s qubit is short enough, he will be able to

receive Alice’s qubit directly from her before it is destroyed by the singularity. Thus, he

will observe the same qubit twice in violation of quantum no-cloning and complementarity.

The resolution to this paradox comes from the fact that the minimum amount of time

it takes for Bob to decode Alice’s bit is the scrambling time t∗ = β
2π log(S) [6, 41], which

is just long enough to prevent an observable violation of no-cloning. Still, it leads to the

perhaps unsatisfactory point of view that the message itself is cloned, although there is no

observer to witness it. Traversable wormholes in Anti-de Sitter space [9, 10] have put a

new perspective on this. If Bob collects a large amount of Hawking radiation and collapses

it to a black hole that is maximally entangled with Alice’s black hole, he has created the

thermofield double state. Then, as explained in [10] the action of Bob decoding Alice’s

qubit essentially corresponds to the situation where the qubit traverses the wormhole and

moves from one boundary to the other. At all times, there is just one copy of Alice’s qubit

in the system.

Now let’s turn our attention to de Sitter space. In de Sitter space, it is reasonable

to expect that a similar notion of complementarity should exist between a static observer

(Bob) and a freely falling observer (Alice) [42–47]. However, as was highlighted in [47] in

de Sitter space it is not possible for Bob to decode even one bit of information from the

Hawking radiation.4 In four dimensions, this is essentially due to the finite volume of the

static patch, which causes Bob’s patch to collapse to a black hole when he tries to do so.5

But the situation is different when we allow for perturbations to de Sitter space. As

we discussed in section 2, positive energy perturbations that are released from the South

4The situation is different for inflationary spacetimes in which the exponential expansion ends (lo-

cally) [48–52]. In that case, information about the inflationary past of the universe can be retrieved at late

times.
5The amount of quanta that need to be collected is SdS/2 [53], but the maximum amount of entropy

that can be stored in a single static patch is given by the Nariai black hole which in four dimensions has

an entropy of SdS/3.
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BobAlice

Figure 7. Bob is sitting at the South pole of de Sitter space and creates a positive energy shockwave

(blue). As a result, Alice can send a message (red) to Bob at the North pole.

pole lead after a scrambling time to a geometry in which the left and right static patch

of the global de Sitter Penrose diagram are causally connected. If Alice sits at the North

pole in such a geometry, she can send a message to Bob at the South pole, see figure 7.

However, it should not be possible for Alice to send arbitrary large amounts of information

to Bob. Complementarity suggests that Bob should have access to SdS bits of information

at most, so what prevents Alice from sending more information? The proper time that the

wormhole is open is given by

∆τ =
2`2

`2 − uv
√

∆u∆v . (4.1)

Close to the horizon (v = 0) this leads to ∆τ = 2α, where α is related to the energy of the

particle generating the shockwave.

α = πGN`p
u . (4.2)

Here, pu is the energy of the shockwave. If the shockwave is generated by a particle with a

thermal energy E0 = β−1, in the restframe of the shockwave the wormhole is only open for

a Planckian proper time: ∆τ = GN . Nonetheless, as stressed in [54] this does not imply

that Alice needs to finetune the timing of her message to make sure it passes through the

wormhole and reaches Bob. From her perspective, the wormhole is open exponentially

longer due to a large time delay between a clock at the horizon and Alice’s clock. There

are two conditions that need to be satisfied for Alice’s message to reach Bob [54]. First

of all, we would like the energy of the message to be small enough such that it does not

backreact strongly on the background geometry. This translates to the condition

ptot <
1

GN
, (4.3)
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where ptot is the total energy of Alice’s message. At the same time, for the message to

fit through the wormhole its wavelength should be sufficiently blueshifted. Denoting the

energy of a single bit N of Alice’s message by pv such that ptot = Npv, this amounts to

satisfying pv > 1/α. Using the rest frame energy of the shockwave, this becomes

pv >
2

GN
. (4.4)

Now, combining (4.3) and (4.4) we find that the number of bits Alice can successfully send

is bounded by

N . 1 . (4.5)

So Alice can only send an O(1) number of bits! The prospects for information exchange be-

come better if Bob uses a large number K � 1 of light species to create the positive energy

shockwave. In this case, the amount of energy and therefore the time that the wormhole

is open is enhanced by a factor of K [54]. At the same time, the probe condition (4.3)

remains unchanged, such that the total number of bits is now bounded by

N . K . (4.6)

Of course, K cannot be arbitrary large, because a large number of species changes the

cutoff to `UV & GNK. For a semi-classical description we have to impose `UV � ` and the

maximum amount of bits becomes bounded by

N .
`

GN
' SdS . (4.7)

The same result can be obtained by viewing the effect of introducing K light species as

a renormalization of GN , while keeping the cutoff fixed.6 In any case, this bound agrees

with the intuition that Bob should have access to SdS bits of information at most. At the

moment Alice tries to send more, her message either does not fit through the wormhole,

or backreacts. Similar observations have been made in [55].

4.1 Implications for inflation

Although the main results of this work were derived in the context of (perturbations to)

pure de Sitter space, we will now briefly speculate how these results might have conse-

quences for inflationary scenarios in which the Hubble parameter slowly evolves with time.

Despite the different global structure of inflationary spacetimes, which only cover half

the Penrose diagram, we expect that at least some of the features we observed in de Sitter

space carry over to inflation. In particular, it is well known that an observer in quasi-de Sit-

ter space is surrounded by a horizon that can be attributed thermodynamic properties just

as in pure de Sitter space [56]. One of the consequences of this is that we still expect that

the time it takes for a perturbation to the horizon to be indistinguishable from its thermal

atmosphere is given by t = ` log (S), i.e. the scrambling time. This is of interest, because

the scrambling time recently made its appearance in cosmology via the papers [57, 58].

6We thank Antonio Rotundo for helpful discussions regarding this point.
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There, it was suggested that an inflationary fluctuation should always have a wavelength

longer than a Planck length which puts a bound on the number of e-folds of inflation, given

by Ne < log(mp/H). We should stress that we don’t yet have a compelling argument in

favor for this conjecture, but if the fundamental timescale governing it is the scrambling

time (as hinted upon in [58]) this bound should instead read7 Ne < log(SdS), where SdS
is the de Sitter entropy. This seems like a minor modification, but in four dimensions the

de Sitter entropy scales as SdS ∼ m2
p/H

2 effectively doubling the number of e-folds allowed.

Furthermore, we also expect that the observation that a perturbation to pure de Sitter

space leads to a traversable wormhole can be given an interpretation in quasi-de Sitter

space. To do so, we consider two observers in different Hubble patches that have been

generated during inflation. We then assume that the quantum state of these two patches

is (approximately) described by a maximally entangled state. This is a strong assumption

that we intend to explore further in future work, but one that seems natural: it is well

known that in order to have a smooth horizon, (maximum) entanglement between regions

separated by a horizon is key. If this assumption holds, these two Hubble patches are

effectively described by two static patches, just as in pure de Sitter space. A shockwave

that connects the two patches can now arise as follows. During inflation there is a positive

energy flux out of the horizon due to a slowly decreasing Hubble parameter. As long

as the Hubble parameter is evolving slowly, the amount of energy flux is given by the

thermodynamic relation dE = TdS [56]. In four dimensions, we can write this as

Ė =
ε

GN
, (4.8)

where ε = −Ḣ/H2 is the first slow-roll parameter. Here the dot denotes a time derivative

with respect to the cosmological time t, as measured in the metric

ds2 = −dt2 + e2H(t)d~x2
3 , (4.9)

Taking ε � 1 to be constant, the energy flux that leaves the horizon in a Hubble time

t = 1/H is given by

E =
ε

GNH
. (4.10)

This is appropriately described as a positive energy shockwave when the energy in the rest

frame of the flux is given by E ≥ H, leading to

ε ≥ H2

8πm2
p

. (4.11)

At the same time, for inflation to be semi-classical we need to impose H/mp � 1. This

also ensures that the classical growth of the horizon is negligible during a Hubble time.

Combining these bounds we find that the energy flux leaving the horizon during inflation

can be appropriately described by a shockwave in the regime

H2

8πm2
p

≤ ε� 1 . (4.12)

7The conjecture of [57, 58] is phrased in terms of the ‘inflationary’ time coordinate in the metric (4.9),

whereas the scrambling time is given in terms of the static time coordinate in the metric (2.3). However,

at the center of the static patch these two different notions of time coincide.
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The lower bound on ε also prevents a transition to (slow-roll) eternal inflation. In this

regime of parameters it becomes possible for information to enter a Hubble patch from a

previously causally disconnected patch after the positive energy has sufficiently blueshifted

to form a shockwave. This happens after Ne = log(SdS) e-folds of inflation. If only a single

field contributes to the positive energy of the shockwave, the bound (4.5) applies and at the

moment that more than O(1) bits of information enter, this information flow will lead to

backreaction. If, on the other hand, a large number of light fields contributes (4.7) applies

and we can ignore backreaction until O(SdS) bits have entered. If we assume that there is

roughly one bit of information that enters per e-fold,8 this implies that backreaction effects

can safely be ignored for Ne . log(SdS) when a single light field contributes or Ne . SdS
when the maximum allowed number of fields contribute. We should stress however that

we are not suggesting that inflation terminates after this time. Our results only give a

criterium when backreaction effects become important if information enters the Hubble

patch by crossing the shockwave. If this does not happen, such a bound does not apply.

5 Discussion

In this paper, we studied chaos in de Sitter space by computing several out-of-time-order

correlators (OTOCs) of scalar operators inserted at the center of the static patch. One of

our main results is the observation that the purely single-sided OTOC consisting of four

conformally coupled scalar fields exhibits maximal chaos. It decreases exponentially with a

Lyapunov exponent that saturates the chaos bound λL ≤ 2π/β. An interesting difference

between black hole and de Sitter chaos is the fact that the leading term in the de Sitter

OTOC is proportional to 1/S2
dS and it would be satisfactory to better understand the

underlying reason for this.

We should mention that our conclusion that the de Sitter horizon is maximally chaotic

is different than [14]. In that paper, the OTOC these authors calculated did not show

Lyapunov behaviour, but exhibited oscillations. It should be kept in mind however that

their setup is slightly different. Firstly, the OTOC that [14] considered does not correspond

to the purely single-sided configuration that we found displays maximal chaos. Secondly,

we focussed on an OTOC with conformally coupled field, whereas [14] considered massless

perturbations. Massless fields might behave qualitatively different, since there is no vacuum

state for a massless scalar field in de Sitter space that is invariant under the full isometry

group [59].

We also computed an OTOC where one of the operators is moved to the other pole

of de Sitter space and found that it behaves differently: it initially increases and develops

an imaginary part. We explained that this behaviour can be attributed to the fact that

shockwaves that satisfy the null energy condition in de Sitter space bring opposite poles into

causal contact, making the wormhole connecting the left and right static patch traversable.

We discussed our results in the context of de Sitter complementarity and found that it

8If we view the de Sitter horizon as encoding one bit per Planck area, inflation typically generates one

bit of information per e-fold [49].
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is possible to send at most SdS bits of information through the wormhole. Sending more

information than this leads to backreaction.

These results might have implications for inflation. Since in an inflationary phase

positive energy is leaving a Hubble patch, this energy can be appropriately described

by a shockwave in a certain regime of parameters that we specified. When this happens,

information from a previously causally disconnected part of spacetime can enter the Hubble

patch. If this amount of information becomes too large, backreaction cannot be ignored.

Although this does not directly put a bound on the number of e-folds of inflation, such as

in [57, 58], it does clarify the meaning of the scrambling time in an inflationary spacetime.

In future work, it would be interesting to consider OTOCs not only for conformally

coupled fields but for arbitrary masses. Since the structure of the Wightman function is now

much more complicated it might not be possible to do this analytically and one would have

to resort to numerics. Related to this, using the recent developments in the cosmological

bootstrap [60–64] one might be able to directly write down four-point functions for fields

with arbitrary masses. If it can then be confirmed that after an appropriate analytical

continuation the OTOC also displays maximal chaos for very light fields (such as the

inflaton), one can study the implications of maximal chaos on inflation. We hope to come

back to some of these questions in a future correspondence.
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A Derivation of the shockwave geometry

Here we derive the shockwave geometry created by a particle that is released from the center

of the static patch of de Sitter space. The approach we will take is adapted from [21]. We

start with the metric for a point particle in de Sitter space and perform a boost to generate

the shockwave geometry. The three-dimensional Schwarzschild-de Sitter solution in static

coordinates is given by [65]

ds2 = −
(

1− 8GNm−
r2

`2

)
dt2 +

(
1− 8GNm−

r2

`2

)−1

dr2 + r2dφ2 . (A.1)

This metric has a single horizon at r =
√
`2 − 8GN`2m and describes a point particle at the

origin of the static patch. Expanding for small GNm and writing the metric in embedding

coordinates, we find

ds2 = ds2
0 +

8GN`
2m

(X2
0 −X2

3 )2

(
(X0dX3 −X3dX0)2 + `2

(X0dX0 −X3dX3)2

`2 +X2
0 −X2

3

)
. (A.2)
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Here ds2
0 is the unperturbed de Sitter metric. We now perform a boost along the X1

direction, which sends

X0 →
1√

1− β2
(X0 − βX1) , (A.3)

X1 →
1√

1− β2
(X1 − βX0) ,

m→ p
√

1− β2 .

Taking the ultrarelativistic limit β → 1 the perturbation vanishes everywhere except at

−X0 +X1 = 0. The terms that are non-zero in this limit are

ds2 = ds2
0 +

8GN`
2p√

1− β2

X2
3(

(X0−βX2)2

1−β2 +X2
3

)2 (dX0 − βdX1)2 . (A.4)

We now make use of the following representation of the limit β → 1 [21].

lim
β→1

1√
1− β2

f

(
(X0 − βX1)2

1− β2

)
= δ(X0 −X1)

∫ +∞

−∞
dx f(x2) . (A.5)

Evaluating the integral we then find the following metric.

ds2 = ds2
0 + 4πGN`

2p
δ(X0 −X1)

|X3|
(dX0 − dX1)2 . (A.6)

We can write this metric in a more familiar form by picking coordinates in which de Sitter

space has flat spatial slices.

X0 =
`2 − η2 + (ρ cosφ− `)2 + ρ2 sin2 φ

2η
, (A.7)

X1 =
`

η
(ρ cosφ− `) ,

X2 =
`

η
ρ sinφ ,

X3 =
`2 + η2 − (ρ cosφ− `)2 − ρ2 sin2 φ

2η
.

In these coordinates the metric becomes

ds2 =
`2

η2

(
−dη2 + dρ2 + ρ2dφ2

)
− 4πGN

p`

| cosφ|
δ

(
η2 − ρ2

2η

)
(dη + dρ)2 . (A.8)

Transforming to global coordinates (u, v) (defined in (2.5)) we obtain

ds2 =
4`4

(`2 − uv)2
(−dudv)− 4πGN

p`

|cosφ|
δ(u)du2 + `2

(
`2 + uv

`2 − uv

)2

dφ2 . (A.9)
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This metric describes a shockwave travelling along the u = 0 horizon and is a solution to

Einstein’s equations with a stress tensor given by

Tuu =
p

4`
δ(u)f(φ) , (A.10)

where the transverse profile f(φ) is given by

f(φ) =
2

|cos3 φ|
. (A.11)

The transverse profile can be approximated by two delta functions such that

f(φ) = δ(φ− π/2) + δ(φ+ π/2) . (A.12)

In the metric, this results in

huu = −4πGNp
u`δ(u)b(φ) , (A.13)

where b(φ) obeys

b′′(φ) + b(φ) = δ(φ− π/2) + δ(φ+ π/2) . (A.14)

This has a particular solution

b(φ) = cosφ (θ(φ+ π/2)− θ(φ− π/2)) , (A.15)

which can be written as b(φ) = cos(φ), where we restrict φ ∈ [−π/2,+π/2]. We can also

consider a shockwave travelling along the v = 0 horizon, simply by interchanging u↔ v.
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