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Experimefits on Rossby waves on an azimuthal jet in a rapidly rotating annular tank reveal a 
striking barrier to mixing across the jet. A model based on the experiments assumes a two- 
dimensional incompressible flow described by a time-dependent streamfunction consisting of 
azimuthally propagating waves on a narrow jet. When there is only one wave, all Lagrangian 
particle trajectories are closed in the appropriate reference frame. When two independent 
waves are present, some trajectories are chaotic, and the size of the chaotic sea grows as the 
amplitude of the second wave is increased; however, at least one barrier to global transport- 
an invariant surface-prohibits trajectories from crossing the jet. The addition of a third wave 
is found to break the barrier only if the wave amplitudes exceed the width of the jet. In the 
experiment, the wave amplitude is typically about one-half the jet width, and the barrier to 
mixing persists even at the highest accessible Reynolds numbers. 

I. INTRODUCTION 

Associated with the appearance of Rossby waves are 
barriers to mixing in the atmosphere and oceans. An exam- 
ple of particular current interest is the polar night jet that 
surrounds the ozone depleted region above Antarctica. * 

The present study considers mixing in a simple Rossby 
wave flow in a rotating annular geometry (Fig. 1) that can 
be well controlled in laboratory experiments. An azimuthal 
jet is produced by the action of the Coriolis force on radially 
pumped fluid. The annulus rotates rapidly so that the 
Rossby number for the jet is 0.03 to 0.15, comparable to 
Rossby numbers of planetary flows.’ Experiments on 
Rossby waves in the rotating annulus reveal a striking bar- 
rier to transport, as Fig. 2 illustrates. Dye injected on one 
side of the jet rapidly mixes with fluid on the same side of the 
jet, but after 500 rotations of the tank, the dye has not 
crossed the jet. Even after 2000 rotations of the tank, little 
mixing has occurred. 

The flow is incompressible and, by the Taylor-Proud- 
man theorem, essentially two dimensional. Hence the veloc- 
ity field can be expressed in terms of a streamfunction 
$(i;e,r): U, = - r - ’ &/~//a0 and ug = d$/dr. The Lagran- 
gian trajectory [r(t],Q(t)] of a particle is given by 

di I a$ --= -y- __ 
dt ae 

(1) 

and 

de .-, a$ --or 
dt -z’ 

(2) 

We are concerned here with the behavior of tracer particles 
in velocity fields that are periodic or multiperiodic, not chao- 
tic. As is well known, particles in a regular (nonchaotic) 
Eulerian velocity field can have chaotic trajectories, a situa- 
tion called Lagrangian. turbulence or chaotic advection.’ 

” Permanent address: Department of Physics and Center for Nonlinear 
Studies, Duke University, Durham, North Carolina 27706. 

Chaotic advection has been studied for a number of sim- 
ple closed systems, including the blinking vortex, journal 
bearing flow, and cavity flo~.~ Those studies were conduct- 
ed at low Reynolds number, typically less than unity, well 
below the onset of the first instability in the Eulerian velocity 
field.’ In our study the Reynolds number is in the range lo3 
to 5 X 104, well beyond the primary instability at which there 
is a transition from an axisymmetric jet to a jet with Rossby 
waves. Another important difference between previous stud- 
ies of chaotic advection and the present study is that most 
previous studies were made on periodically forced fl~ws,~~~ 
while in our system the forcing (pumping of fluid) is time 
independent. The time dependence of our flow arises from 
the naturally occurring azimuthal waves. 

We consider the mixing properties for an Eulerian ve- 
locity field that is taken as given. The solution of the Navier- 
Stokes equation for our geometry and forcing conditions is a 
difficult problem to be addressed in the future. Even in the 
previous experiments on low Reynolds number AOWS,~ solu- 
tions for the streamfunction were often not known, or if the 
velocity field was known, it could not be integrated analyti- 
cally to obtain particle trajectories; thus insight into mixing 
properties has often been gained by analyzing experiments 
and simple models. In our study the basic question is the 
following: Does a simple model for the streamfunction, 
drawn from experimental observ&ions, yield a robust bar- 
rier to transport as observed in the experiments? The answer 
is yes. Such a barrier can be viewed as an invariant surface 
(KAM torus) in a Hamiltonian system with Hamiltonian $. 
In the atmosphere or ocean such an invariant surface could 
provide an essentially impervious barrikr to particle trans- 
port. This suggests that the tools of KAM theory could be 
exploited to gain insight into mixing in planetary type flows. 

The barrier to mixing revealed by our experiments 
differs from the barriers found in most previous systems 
studied,4 where barriers dividing the flow into two separate 
regions were not generally observed.’ The persistence of the 
barrier to global mixing that we have found when the flow is 
multiperiodic and the wave amplitude is large was unexpect- 
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FIG. 1. A cross section of the tank used to conduct the experiments. The 
working basin, a rigid annulus with a sloping bottom and a flat lid, has an 
inner diameter of 21.6 cm and an outer diameter of 86.4 cm. The depth 
increases from 17.1 cm at the inner radius to 20.3 cm at the outer radius; 
thus the conical bottom has a slopes = - 0.1. The rotation rate Cl ranges 
from 0 to 25 rad/sec. Fluid is pumped through ports in the bottom of the 
tank: the arrows indicate the pattern ofinlets (1) and outlets (0) used in the 
present experiments. The radial distance d between the ports is 8.1 cm. 

ed, while the rapid mixing that we observe to either side of 
the jet is similar to that found in previous studies. We are 
concerned here with nonchaotic Eulerian velocity fields, but 
we should mention that even at high Reynolds number 
(- 104) where the velocity field is chaotic, we observe that 
the barrier to mixing persists. 

II. EXPERIMENTS 

The rotating annulus (Fig. 1) has a sloping bottom that 
mimics the atmospheric latitudinal gradient in the Coriolis 
force (thefieffect), with aficoefficient given by/? = 2LXs/%, 
where h is the mean depth of the tank and s is the slope of the 
bottom.7-9 A corotating jet was produced by the action of 
the Coriolis force on fluid pumped radially inward from a set 
of six outlets located on the bottom of the tank at a common 
radius to a set of six inlets at a smaller radius. The ports at 
each radius were uniformly spaced azimuthally and posi- 
tioned so that for each inlet there was an outlet along the 
same radius. The azimuthal velocity of the jet was typically 
two orders of magnitude larger than the the radial velocity 
from the pumping. The velocity field was determined with 
respect to the rotating annulus by measuring the length of 
particle streaks in time exposure photographs obtained with 
a camera that was corotating with the annulus.‘,’ 

Ill. MODEL 

We model the flow with a streamfunction based on ex- 
perimental observations: (i) The measured radial depend- 
ence of the azimuthal component of the velocity for Reyn- 
olds numbers 0( 104), as in the present experiments, has the 
form sech’[ (Y - 7)/L 1, where L and Tare, respectively, the 
measured values of the width and mean radial position of the 
jet.Y Hence the streamfunction has the tanh form. (ii) Four- 
ier transforms of the azimuthal component of the velocity 
indicate that there are at least two azimuthal modes in the 
parameter range of the experiment: a dominant mode [with 
five waves in the examples in Figs. 2 and 3 (a) ] and one or 

FIG. 2. (a) Particle streak photograph showing the local velocity field, re- 
vealing the presence of Rossby waves. (b) A dye photograph showing the 
barrier to mixing between the inner and outer parts of the tank. Dye was 
injected in the outer part ofthe tank after the flow was well established. Five 
hundred tank rotations after the dye injection, nearly complete mixing has 
occurred in the outer region ofthe tank, but alm~ost no dye has penetrated to 
the inner region, except for the small tongues that rapidly carry small 
amounts of fluid across the jet. The dominant wave number in this case is 
m, = 5. The parameters for (a) are 0 = 12.5 rad/sec; F, the total pumping 
rate, is 137 cm’/sec: Ro = 0.039; and Re = 7000. in (b) 61= lg.8 rad/sec, 
F= 90 cm’hec, Ro = 0.038, and Re = 7990. 

more weaker modes [with three and six waves in Figs. 2 and 
3 (a) 1. Thus the streamfunction has the assumed form 

$=.LU, $, t,[tanh( 
Cr-~~-~cos[mj(6,-wit,]} 

L I - , 

(3) 
where ZQi = 1, U, is the maximum possible velocity, and wi 
is the azimuthal wave speed (measured with respect to the 
rotating annulus) of the mode with mj waves. 

At the inner and outer walls of the rotating annulus the 
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FIG. 3. (a) Contour plot of 
streamlines deduced from a 
particle streak photograph 
of the flow with 
b/L=0.55, LL7.1 cm, 
fL = 12.5 rad/sec, F= 110 
cm”/sec, Ro = 0.042, and 
Re = 5600. (b) Contour 
plot of streamlines for the 
model streamfunction (3) 
with two waves, for param- 
eter values b/L = 0.55 cm, 
L = 7.1 cm, E, =0.83, 
62 = 0.17, et = 0, m, = 5, 
ml = 4, w, = 0.1 rad/sec, 
and o2 = 0.168 03 rad/sec. 
In both (a) and (b) the 
contour intervals are 8 
cm’/sec, and the largest r+J 
contour (inside the five 
large outer islands) is 25 
cm’/sec. 

velocity field given by (3) is small but nonzero; thus it satis- 
fies neither the impenetrable boundary condition nor the no- 
slip boundary condition. We have examined several modi- 
fied forms of (3) that satisfy the boundary conditions at the 
walls and have found that our results for the mixing proper- 
ties of the flow are insensitive to the particular form of the 
modification. In most of the simulations presented here, the 
narrow boundary layer is accounted for by multiplying the 
argument of the tanh function by g(r) = 1 + h(r), where 
h(r) is approximately zero, except in the boundary layer, 
where it diverges:” 

h(r)-1-k [(A( r, - ri)/(r- ri)(ro - r,14. (4) 

Here r, and r, are, respectively, the inner and outer radii of 
the annulus, and ;I characterizes the boundary layer thick- 
ness. With h(r) as a factor in the argument, the tanh func- 
tion approaches + 1 at the outer boundary and - 1 at the 
inner boundary. For a Stewartson boundary layer the thick- 
ness is’ [ (V/C!) “‘h ] 1’2, which is typically 0.6 cm in our 
experiments (Y is the kinematic viscosity). Again, we em- 
phasize that our ad hoc form for the boundary layer was 
chosen for convenience since our results for the mixing were 
found to be insensitive to the shape of the boundary layer. 

If only one wave were present in the streamfunction, say 
the one subscripted 1, then the particle trajectories would 
necessarily be regular, as can be seen by changing to a set of 
coordinates moving with the wave speed w, . That is, if we 
transform to a new set of polar coordinates (Y,$) in which Y 
is unchanged, and 

q5=0-ti,t, (5) 
then the streamfunction becomes 
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$‘(r,+,tj = U,L [~itanh{[r--T- bcos(m,q5)]/L} 

+eZ tanh({P-?-bcos[m,(4 

-s%f)]l/L)+ **-I -aw,r2/2, (6) 
where Swj = wj - w, . Then, the time evolution of polar co- 
ordinates for a fluid particle is given by 

(7) 

and 

(8) 

In the remainder of this work we will consider flows (which 
will contain two or three waves) in the (r,$) frame, in which 
the primary wave is stationary. 

A last point concerns an additional connection to Ham- 
iltonian dynamics. If the Hamiltonian His defined in terms 
of any streamfunction $(x,y,t) by 

H(x,YP,P, > = tCl(x,~,a) + ~a 2 (9) 

then the equations of motion for the Lagrangian coordinates 
and the newly introduced momentum pa and its conjugate- 
generalized coordinate (7: form an autonomous Hamiltonian 
system that is identical to the original time-dependent 
streamfunction equations ( 1) and (2), and His a constant of 
the motion. This justifies the use of the machinery of Hamil- 
tonian dynamics, and in particular the concepts developed to 
describe the breakup of invariant surfaces as some parameter 
passes through a critical value.“,” In the original stream- 
function formulation, trajectories evolve in the three space 
(xy,t). In the Hamiltonian description, trajectories evolve 
in a four-dimensional space (x,y,a,p,), but the constraint 
H = const yields trajectories in (x,y,a) space that are identi- 
cal to those in (x,y,t) space. An invariant surface isolates one 
region of (r,~$,cr) space [or (r&t) space] from the remain- 
der. I3 

IV. RESULTS 

Some examples of the experimental parameters on 
which the model calculations were based are given in Table 
I. The principal observation is that there exists a barrier to 
mixing even at the highest Reynolds numbers accessible in 
our experiments. The viscous dissipation (Ekman) time, 
typically 30 set,* is long compared to the time required for 
mixing on either side of the jet, yet the barrier to mixing 
across the jet persists for much longer times, even thousands 
of seconds (cf. the rotation period of the tank, typically 0.25 
set). Typical values for b /L were 0.6; for E, ,0.6; for ~~ and 
Ed, 0.1-0.3. Our analysis of streak photographs yields the 
instantaneous velocity field but no information on the time 
evolution of the velocity. 

Using a standard Runge-Kutta algorithm, we have nu- 
merically integrated (7) and (8) for the coordinates (r,$) of 
fluid particles in the frame of the first wave. In Fig. 4 we 
show a series of PoincarC sections for the case of two waves. 
These sections were obtained by strobing the trajectories at 
times t, = 27~/&+. For c?. small enough, most trajectories 
appear regular over a long period of time. However, as E, 
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TABLE I. Values of parameters for three experimental runs with different 
principal wave numbers m, . Run 2 with m, = 5 is illustrated in Fig. 2(b). 
The total rate of fluid pumped through the ports is given by F. The Reynolds 
number and Rossby number are given, respectively, by Re = UJ /Y, 
where vis the kinematic viscosity, and Ro = &,/2fIL. 

Run1 Run2 Run 3 

ml 4 5 6 
4 8 3 5 
m, 3 5 7 
61 0.64 0.64 0.59 
% 0.18 0.18 0.29 
CT 0.18 0.18 0.12 
fI (rad/sec) 25.1 18.8 
F(cm’/sec) 

25.1 
350 90 90 

U, (cdsecf 47.3 10.1 28.3 
L (cm) 7.8 7.1 6.3 
b/L 0.58 0.55 0.46 
Re 40 900 1990 19 700 
Ro 0.12 0.038 0.090 

becomes larger, the size of the chaotic region increases, and 
the closed orbits in therPoincarC sections are increasingly 
replaced by chaotic seas. However, even for two waves of 
equal streamfunction amplitude, there remains a barrier 
between the inner and outer parts of the annulus, as seen in 
Fig. 4(d). An issue that is not currently resolved is whether 
any chaotic trajectories exist for arbitrarily small secondary 
wave amplitudes. 

Figure 5 illustrates the transition from a regular to a 
chaotic particle trajectory for a particle initially just outside 
the center of the jet. As .s~ grows, the time series becomes 
multiply periodic and then chaotic. 

In the experiment we have not observed b /L values larg- 
er than about 0.6. Neither the experiment nor the model 
(with parameters deduced from experiment) yield rapid 
global mixing for quasiperiodic flows. Even at large Reyn- 
olds number, where the Eulerian velocity field becomes non- 
periodic and there is wave breaking, rapid global mixing is 
not observed in the experiments. In this regime the model is 
clearly inadequate. However, as a guide to future experi- 
ments, we have explored the behavior of the model for b /L 
values well beyond those observed, to see how large b/L 
must be for rapid global mixing to occur. In this exercise we 
take b/L to have the same value for all three waves; very 
likely b /L has different values for the different modes, but 
h /L has been determined only for the total jet, not for the 
individual modes. We have found global mixing in the model 
only for three waves with b/L > 1; global mixing was not 
found with only two waves, even with b /L = 1.2, far beyond 
the observed value. The onset and growth of leakage across 
the final barrier with increasing b /L is illustrated in Fig. 6. 
For b /L < 1, no leakage across the final barrier was found for 
any eZ and e3. For b /L > 1, leakage across the barrier oc- 
curred as E, and E, were increased. The largest observed 
leakage for b /Lz 1 was for E, = 0.77, eT = 0.15, and 
ej = 0.08; further increases in eZ and E, led to a decrease in 
leakage across the barrier, which is not entirely understood. 

,/ 

,/e-=-&y 
,fy' ..r,'Z I.;., ., 

,,,<..:-*'t;a~ I .r::, ,. '.* !f;:'-- - 'x-. ‘z. '.. 
,.. . i; a_.- 

/: ; '..? :.>; 

; YzIj 

\ 

1; :,,r I 
',I i 'r 

j&$t) ;;I 
. . . *: : 

y., i;: ., ., f'.y 4;;. : 
\'<. (&..;-J r-,1 ,., i:.: 

,,/ 
y '\.&x: -",. i .,.. :- 

yi: .:. 
'I 

J 

,. >- ,; 1 
. . _ ,. :..': ,, - 
\ .: --d. :?'~~~.~~~,.. .; 

'L---bQa,. ,.;j. -c- 

FIG. 4. Poincare sections for the model with two waves for increasing am- 
plitude of the second wave: (a) E, = 0.99, l I = 0.01; (b) E, = 0.91, 
E, - 0.09; and (C)-E, = 0.67, eI = 0.33. Each Poincare section shows re- 
sults generated from 15 particles initially equally spaced along a radial line 
at C$ = 0. The isolating surface for the case ez - 0.50 is clear in the Poincare 
section in (d) E, = 0.50, e2 = 0.50, where the trajectories were generated 
for 15 particles initially in the inner region equally spaced in azimuth at 
Y = 12.0 cm. In all cases b/L was 0.55, and the elapsed time was lo4 sec. 
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FIG. 5. Time series showing theonset ofchaos in the Lagrangian trajectory 
of a fluid particle as the secondary wave grows in amplitude. (a) E, = 1.0, 
er = 0; (b) E, = 0.95, er = 0.05; (c) E, = 0.91, .s2 -0.09; and (d) 
E. = 0.83, ez = 0.17.Inallcases CJ,, = 2Ocm/sec, b/L = 0.55. L = 7.1 cm. 
-’ and the initial position is r = 31.0 cm, 6 = 0.628. 
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For b /L < 1 many trajectories on either side of the core of the 
jet are chaotic, but if a trajectory begins in the inner (outer) 
part of the tank it always remains in the inner (outer) part of 
the tank. For instance, Fig. 6(a) for b /L = 0.9 shows a Poin- 
cari section for 15 trajectories all initially in the inner region; 
no trajectories reach the outer region, even after 5000 sec. 
However, for b /L > 1 there is appreciable diffusion of trajec- 
tories across the former barrier in a relatively short time, as 
seen in Fig. 6 (c), where b /L = 1.1. Figure 6 (b) shows the 
intermediate case b/L = 1; after a long time some of the 
trajectories have crossed the barrier. However, our ability to 
quantify the rate of global mixing for 1 (b /L) 1 PI 1 was limit- 
ed by numerical error. 

Capturing the details of how the trajectories cross the 
remnants of the last isolating surface is beyond the scope of 

FIG. 6. PoincarC sections of5000 set showing the breakup of the last invar- 
iant surface with increasing b/L: (a) b/L = 0.9, (b) b/L = 1.0, and (c) 
b/L = 1.1. Here, E, , Ed, and 6 have fixed values of 0.77, 0.08, and 0.15, 
respectively. Each Poincart! section follows 15 trajectories with starting co- 
nrdinates uniformly spaced on a 12 cm radius circle. 

the present work. However, we can estimate the average rate 
at which trajectories move across the final barrier as follows. 
Let yli (t) and n, (t) be the number of members of a large 
ensemble of trajectories that are, respectively, “inside” and 
“outside” the remnants of the last isolating surface. [Such a 
surface is approximately given by the outer boundary of the 
points in Fig. 6 (a). ] We expect that for a large ensemble, nj 
and n, will approach steady values as t approaches infinity, 
regardless of the initial values n, (0) and n, (0). We estimate 
the dynamics of the approach to steady populations by the 
equations 

and 

(10) 

(11) 
dt \r/ . \r/ _ 

Here, r is some characteristic time for the “diffusion” across 
the barrier. The quantities& and A are 0( 1) quantities re- 
flecting the relative phase space volumes “inside” and “out- 
side” the surface. The solution of these equations is easily 
obtained and consists of an exponential relaxation toward 
steady state populations given by 

n, ( e.3 )/ni ( co ) =A&,, (12) 

and 

n,(co) +n,(w) =n,(O) +ni(O). 
The relaxation time for this process is 

(13) 

T= r/G +A). (14) 
We have estimated the time scale T for b /L = 1.2, e1 = 0.77 
E2 = 0.08, and E) = 0.15 by studying the Poincare sections 
for 60 trajectories. The initial positions of these trajectories 
are distributed uniformly in 4 at the radius Y = 12 cm, well 
inside the remnant of the last isolating curve. Thus 
12, (0) = 0, and ni (0) = 60. We counted the number of 
points 

N,(t) =n,(t,) +n,(X) +n,(3t,) + a-* +n,(t) 
(!5) 

in each Poincare section lying outside the former isolating 
curve, as estimated from a PoincarC section with b /L = 1 .O. 
Here t, is the strobe time of the Poincare section. Typically, 
iV, (t) is an increasing function of time. In practice it is easier 
to determine 

A~,(t,t,,,)=NJt) -N,(t-- tabs), (16) 
where tabs is a convenient observation time ( lo3 set) and 
& > t,. A straightforward analysis using n, (0) = 0 yields 

1 -AN,(t,t,,,)/[(t,,,,/t,)n,(co)] 

-[exp(+)][l -exp(f”br)]/(&./T). (17) 

Results for UN, are shown in Fig. 7 and are consistent with 
an exponential falloff with T = 8500 set for times up to lo4 
sec. Note that T also determines the amplitude 
[ 1 - exp( - tobs/T)]/(to,/T) intermsoft,,,/T.Theline 
in Fig. 7 uses this expression with T/t,,, = 8.5. The agree- 
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we have explored the behavior of the model in the context of 
chaotic advection. The model streamfunction does not con- 
serve potential vorticity, but neither does the flow in the 
annulus for times long compared to the Ekman time’ be- 
cause of dissipation and forcing. In the experiments, rapid 
mixing on either side of the jet is observed for quasiperiodic 
(low Reynolds number) flow, but no significant transport is 
observed across the jet under any conditions, even at high 
Reynolds number, where the velocity field is turbulent. The 
model provides a reasonable description of the flow in the 
quasiperiodic regime. However, the model is not a realistic 
description of high Reynolds number flow where there are 
many excited modes and there is wave breaking. We have 
examined the model to see if transport across the jet occurs 
for any parameter values; such transport was found only for 
nonphysical values of b/L (values about twice as large as 

FIG. 7. An estimate for 1 - AN,, (t) / [ (r,, /t, ) n, ( m ) ] vs f. The slope of 
those observed). 

this plot yields the characteristic time T for the diffusion of trajectories. 
Our analyses of particle streak photographs have yield- 

1 ed detailed information on the velocity field but no informa- 
tion on the time evolution of the velocity field. Future experi- 
ments will examine the dynamics of the velocity field, which 
should lead to an improved model streamfunction. Future 
analyses of transport for streamfunctions deduced either 
from experiment or from direct solution of the Navier- 
Stokes equation should exploit tools from Hamiltonian dy- 
namics such as the Chirikov overlap criterion” to gain in- 
sight into both local and global mixing. 16,17 

ment over the initial time range is excellent. For higher 
times, this simple scenario does not describe the results very 
well, but we do not know whether this is due to too simplistic 
an approach or to limited statistics. 

Future experiments will be conducted to see how large a 
value of b /L can be obtained by varying control parameters, 
and b /L will be determined for the individual modes. These 
experiments will be conducted with a refined apparatus, now 
being developed, which will provide axisymmetric rather 
than sixfold forcing. We will obtain information on the time 
dependence of the velocity from hot film probes and particle 
tracking measurements. These detailed measurements of the 
dynamic as well as static properties of the flow should lead to 
a much improved model and should provide insight into 
mixing on either side of the jet as well as the possible breakup 
of the global barrier to mixing. 
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