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An ecological population model is presented for the purposes of exploring complex synchro-
nization phenomena in biological systems. The model describes a three level predator–prey–
resource system which oscillates with Uniform Phase evolution, yet has Chaotic Abundance
levels or Amplitudes (UPCA). We investigate the phase synchronization of two nonidentical
diffusively coupled phase coherent models (i.e. with UPCA dynamics) and extend the analysis
to study the models’ “funnel” regimes and response to noise forcing. Similar synchronization ef-
fects are reported for a two-dimensional lattice of chaotic population models coupled via nearest
neighbors. With weak coupling, a collective phase synchronization emerges yet the peak popu-
lation abundance levels are chaotic and largely uncorrelated. The synchronization patterns and
traveling wave structures found in the spatial model correspond to those observed in natural
systems — in particular, Ecology’s well-known Canadian hare–lynx cycle. We show that phase
synchronization has important applications in the study of ecological communities where the
spatial coupling of populations can lead to large scale complex synchronization effects.

1. Introduction

Synchronization is a fundamental phenomenon aris-
ing in many biological and physical contexts for
which there are two or more coupled oscillating sys-
tems. In the classical sense, and dating back at least
to Huygens in the 17th century [Huygens, 1673],
synchronization has been understood as the mutual
adjustment of periodic oscillators and the frequency
locking that results because of their (often weakly)
coupled interaction. Over the last decade, there
has been considerable progress in generalizing this
concept of synchronization to include the case of
coupled chaotic oscillators. When the interaction
of two nearly identical coupled chaotic systems is
relatively strong, one observes “complete syn-
chronization” i.e. the states of both systems be-
come practically identical, while their dynamics in

time remains chaotic [Fujisaka & Yamada, 1983;
Pikovsky, 1984; Pecora & Caroll, 1990]. This has
been extended to the case of “generalized synchro-
nization” where, although both states are quite
different, there is nevertheless a direct functional
relationship between them [Rulkov et al., 1995].

An even more recent achievement has been the
unveiling of the more subtle phenomenon of phase
synchronization in nonidentical coupled chaotic sys-
tems [Rosenblum et al., 1996; Pikovsky et al., 1997].
Weak coupling causes the different chaotic systems
to lock in phase to one another, while their am-
plitudes may remain chaotic and are, in general,
uncorrelated. In some cases the phases of the sig-
nals are locked in a simple manner but often more
complex relationships are to be expected and a sta-
tistical approach may be required for identification.
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Like many new notions, these more complex
synchronization phenomena have been demon-
strated mainly in idealized examples of simple
model systems. Phase synchronization has been
observed in mathematical models and laboratory
studies of electronic circuits [Parlitz et al., 1996]
and there are indications that it occurs in ecologi-
cal systems [Blasius et al., 1999], climate systems
[Palus, 1998] and in physiological data set, such
as the human locomotory system and the human
cardiorespiratory system [Schäfer et al., 1998; Tass
et al., 1998].

In the present paper phase synchronization is
investigated in the context of ecological and biolog-
ical systems. We first formulate a simple foodweb
model of a three species food-chain which gener-
ates phase coherent chaotic oscillations and is thus
useful for exploring the synchronization of chaotic
systems. Phase coherence guarantees that the
populations oscillate at almost constant frequency
which is characterized by a predominant peak in
the power spectrum [Farmer et al., 1980]. The
model belongs to the class of phase coherent oscil-
lators which have the property of Uniform Phase
evolution, but nevertheless cycle with Chaotic
Amplitudes (UPCA) (see Fig. 1). This type of
oscillation is well known for a number of biologi-
cal populations [Schaffer, 1984] which cycle with a
seemingly constant frequency but have erratic peak
population abundances [see e.g. Fig. 1(a)]. How-
ever, we know of no other biologically plausible
model that is capable of producing the required
UPCA oscillations.

Many examples of biological synchronization —
some of them quite startling — have been docu-
mented in the literature, but currently theoretical
understanding of the phenomena lags behind exper-
imental and field-studies [Blasius & Stone, 2000].
Since weakly coupled chaotic systems with the prop-
erty of UPCA are known to exhibit phase synchro-
nization [Rosenblum et al., 1996; Pikovsky et al.,
1997], the foodweb model provides the necessary
framework for investigating the potential impor-
tance of this synchronization in biological systems.
We proceed by coupling two foodweb models which
might represent nearby patches or interacting com-
munities. The coupled models show a whole range
of synchronization transitions which match the dy-
namics reported in natural systems. In fact, the
results of the model provides an intriguing inter-
pretation of the unusual synchronization observed
in Canada’s hare–lynx cycle. This population

oscillation has been documented for over 100 years,
with hare and lynx populations across Canada syn-
chronizing in phase to a collective 10-year cycle
that manifests over millions of square kilometers
[see Sec. 6, Fig. 10(a)]. Similar spatially synchro-
nized fluctuations have been observed across widely
separated sites for many other ecological popu-
lations [Keith, 1963; Korpimaki & Krebs, 1996;
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Fig. 1. (a) Ten-year cycle in the Canadian lynx in the
Mackenzie river area (1821–1937) after [Elton & Nicholson,
1942]. (b) Chaotic time-series of top predator, w, in the food-
web model (1). For the simulations reported here, we used
throughout the following parameters a = 1, b = 1, c = 10,
α1 = 0.2, α2 = 1, k1 = 0.05, k2 = 0, u∗ = 0, v∗ = 0,
w∗ = 0.006. f1 and f2 are taken as Holling type II and bilin-
ear Lotka–Volterra interaction terms, respectively, although
different combinations have been used successfully in other
model variants [see e.g. Eq. (3)]. (c) Time-series of z in the
Rössler system (2) for γ = 5.7. Initial transients in (b) and
(c) have been removed.
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Ranta et al., 1997] and are also prominent in the
dynamics of epidemic outbreaks as they spread be-
tween a network of neighboring cities [Levin et al.,
1997]. These examples motivate the extension of
our analysis of the two-patch model to studying
synchronization of an N × N lattice system. We
show that phase synchronization in spatial lattices
can lead to unusual spatial chaotic wave structures
that are found in natural systems.

The paper is organized as follows. In Sec. 2
we introduce and analyze the foodweb model, and
compare it to other known UPCA systems such as
the Rössler model. The phase evolution of these
models and their respective funnel regimes are in-
vestigated in Sec. 3. In Sec. 4 a study is made of the
synchronization transitions in two diffusively cou-
pled UPCA models, and we focus on the occurrence
and characterization of phase synchronization.
Methods for detecting synchronization are also out-
lined. In Sec. 5 the influence of noise forcing on
the foodweb model is investigated and we charac-
terize noise-induced UPCA oscillations as well as
the effects of noise on synchronization. In Sec. 6
we investigate how phase synchronization mani-
fests in spatially extended systems. The results are
discussed in Sec. 7.

2. An Ecological UPCA Model

Many ecological and biological populations that
cycle in time have the unusual property that their
period length remains remarkably constant while
their abundance levels are highly erratic [Schaffer,
1984]. Figure 1(a) demonstrates these features for
one of the most celebrated time-series in Ecology —
the Canadian hare–lynx cycle. The behavior is rem-
iniscent of the Rössler oscillator which has Uniform
Phase evolution but Chaotic Amplitudes (UPCA)
[Rössler, 1976; Farmer, 1981] — properties which
have been the basis for a number of recent studies
on phase synchronization [Rosenblum et al., 1996,
1997; Osipov et al., 1997].

However it is difficult to formulate or write
down new equations, other than the (ecologically
implausible) Rössler system, which exhibit UPCA,
particularly if reasonable ecological or biological
constraints are required. Our goal is to design and
investigate a simple ecological foodweb model that
exhibits UPCA. Consider the following equations

[Blasius et al., 1999]

u̇ = a(u− u∗)− α1f1(u, v)

v̇ = −b(v − v∗) + α1f1(u, v)− α2f2(v, w)

ẇ = −c(w − w∗) + α2f2(v, w) .

(1)

The model describes a standard three level
“vertical” food chain, where the resource or veg-
etation u is consumed by herbivores v, which in
turn are preyed on by top predators w. Note
that u, v and w might represent appropriately
scaled population abundances or biomass levels.
The coefficients a, b and c represent the respective
nett growth rates of each individual species in the
absence of interspecific interactions (α1 = α2 =
0). The functions fi(x, y) describe interactions be-
tween species with strengths αi. Predator–prey
and consumer–resource interactions, are incorpo-
rated into the equations via the standard Lotka–
Volterra term fi(x, y) = xy or the Holling type
II term fi(x, y) = xy/(1 + kix). We also assume
the existence of a (stable or unstable) fixed point
(u∗, v∗, w∗) in the absence of species interactions,
and expand the system linearly around this steady
state. The main difference between the present
model and other standard Lotka–Volterra models
[May, 1974; Hastings & Powell, 1991] is that here
the steady state (u∗, v∗, w∗) is not necessarily set
at the origin.

Despite its minimal structure, the equations
capture complex dynamics including equilibrium
and limit cycle behavior, as well as large pa-
rameter ranges for which there are well-defined
chaotic oscillations. Figure 1(b) provides a time-
series of a typical model run in the phase coherent
chaotic regime. Observe that the top predator, w,
oscillates at what appears to be a constant fre-
quency although the maximum or peak amplitude
of each cycle is highly unpredictable. These UPCA
attributes of the model have much in common with
the Canadian hare–lynx system as seen by compar-
ing the real and simulated population trajectories in
Figs. 1(a) and 1(b). The time-series of the foodweb
model also resembles the UPCA found in the stan-
dard phase coherent Rössler system [Rössler, 1976]
[see Fig. 1(c)]

ẋ = −(y + z), ẏ = x+ 0.2y, ż = 0.2 + z(x− γ) .
(2)

However the UPCA property alone is not sufficient
to completely describe the dynamics of the observed
data. Other factors that are of relevance include
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the peak to peak variability and the changes in the
peak to trough ratio of the cycle. For the hare–
lynx system and other mammal populations in the
boreal forests of North America, Korpimaki and
Krebs [1996] suggested that the peak to trough ra-
tio varies from 15–200 ∼ 1 : 13, a range that is very
close to that found in the above foodweb model.
In fact for the parameters given in Fig. 1(b), the
ratio ranges between 4–120 ∼ 1 : 30. However the
Rössler model with γ = 5.7 has a peak to trough
ratio that varies between 3.7−1770 ∼ 1 : 478 i.e. one
order of magnitude larger. In this respect the z
variable of the Rössler system gives a rather poor
description of the observed population cycles be-
cause its variablity is much too high. Furthermore,
there is no straightforward method to reduce the
variability in the Rössler system without introduc-
ing other unrealistic features. For example, while a
reduction in the bifurcation parameter γ reduces
the peak to trough ratio, the peaks of the chaotic
cycle become less uniformly distributed and instead,
begin to resemble a periodic cycle. By lowering γ
below γ = 5.7, the periodic regime of the Rössler
systems is approached and the model cycles chaot-
ically between a set of 2n small bands where the
integer n decreases with γ [Farmer, 1981].

Figure 2(a) shows the phase coherent attrac-
tor of the foodweb model projected onto the (u, v)-
plane. The attractor is very similar to that of

the Rössler equations (γ = 5.7), and the regular
cycling in the (u, v)-plane indicates strong phase
coherency. As in the Rössler system, slight changes
in parameter values can drive the foodweb model
into a so-called “funnel regime” [Fig. 2(b)] [Farmer,
1980; Stone, 1992] which has a more complicated
phase plane structure consisting of small and large
loops, and weaker phase coherence.

The mechanism giving rise to UPCA dynamics
is almost the same for both the Rössler and food-
web model as can be seen by comparing the two sys-
tems as follows. The simplest form of the foodweb
model (1) that results in UPCA oscillations requires
only Lotka–Volterra interactions, (ki = 0) (e.g. take
a = 1, b = 1, c = 10, α1 = 0.1, α2 = 0.6, u∗ = 1.5,
v∗ = 0, w∗ = 0.01, see [Blasius & Stone, 1999]).
Now rewrite Eqs. (1) and (2) in the following way

ẏ = x+ 0.2y u̇ = u(a− α1v)− au∗

ẋ = −y + z; v̇ = −v(b− α1u+ α2w)

ż = −z(5.7− x) + 0.2 ẇ = −w(c − α2v) + cw∗ .

(3)

The heart of the chaotic Rössler system is the
neutrally stable harmonic cycle ẏ = x, ẋ = −y in
the (x, y)-plane, which is made unstable by the lin-
ear negative damping term 0.2y. The variables x
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Fig. 2. Trajectories of the foodweb model (1) in the (u, v)-plane. (a) Phase coherent attractor for c = 10; (b) “funnel”
attractor for c = 12.3. Other parameters as in Fig. 1(b).
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and y oscillate taking both positive and negative
values, a feature that is unsuitable for a popula-
tion model where variables should be strictly non-
negative. Similarly, the basis of the chaotic foodweb
model is the neutrally stable Lotka–Volterra cycle

u̇ = u(a− α1v), v̇ = −v(b− α1u) . (4)

With positive initial conditions, the solution will
always lie in the positive quadrant as required for
a population model. In analogy to the Rössler
system, instability (as may be evaluated through
fixed point linearization) may be introduced into
the Lotka–Volterra cycle. The two simplest
methods we found required: (a) incorporating the
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Fig. 3. Dynamics of the foodweb model (1) in the phase coherent regime (c = 10) as a function of the control parameter b.
(Other parameters as in Fig. 1(b).) (a) Bifurcation diagram; (b) largest Lyapunov exponent λ; (c) numerically determined
mean frequency Ω0 (solid line). The approximation of the mean frequency Ω0(b) =

√
b (dotted line).
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constant au∗ in Eq. (3); or (b) incorporating a
saturation in the consumption rate in the predator–
herbivore (u, v) interaction, e.g. by replacing the
simple Lotka–Volterra coupling with the more eco-
logically realistic Holling type II interaction [Blasius
et al., 1999].

The above discussion was concerned with only
the first two equations of the Rössler and food-
web models. The third equation of the Rössler
system, which describes the excursions of a (pos-
itive) spiky variable extending into the direction of
a third (z) axis, causes folding within the attractor
— a prerequisite for chaotic dynamics. Upon ex-
amining Eqs. (3) one sees that the third equation
of the Rössler system is in fact identical in struc-
ture to its counterpart in the foodweb model. The
manner in which the third variable w feeds back
into the (u, v)-plane of the foodweb model is again
similar to the Rössler equations but modified to a
Lotka–Volterra term, −α2vw, typical for ecological
predator–prey interactions.

In Fig. 3(a) we provide a bifurcation dia-
gram of the foodweb model where the herbivore
growth rate b is used as a control parameter. The
diagram is constructed by plotting only the max-
ima of the predator variable, w, and makes clear
a period-doubling route to chaos followed by a
period-doubling reversal [Stone, 1993] as the control
parameter b is increased. In Fig. 3(b) the largest
Lyapunov exponent (LE) is plotted for the food-
web model, as a function of the control parame-
ter b. The LE is positive and hence the dynamics
chaotic, in exactly the same regions predicted by the
bifurcation diagram. The frequency of the foodweb
model’s cycle [as calculated below via Eq. (8)] is
a monotonically increasing function for almost the
entire range of the control parameter examined, as
indicated in Fig. 3(c). In fact, the frequency of the
foodweb model is largely determined by the under-
lying Lotka–Volterra cycle in the (u, v)-plane, given
by Eq. (4), whose intrinsic frequency Ω0 =

√
ab.

Figure 3(c) shows that this simple formula esti-
mates well the mean frequency of the chaotic three
variable system.

3. Phase Evolution of the
Foodweb Model

In order to study the phase synchronization of
complex systems, it is important to develop a means
for decomposing a chaotic signal into its phase

and amplitude components. This is nontrivial for
chaotic systems where often there is no unambigu-
ous definition of phase. One general approach has
been based on the analytical signal concept where
the phase of a signal is obtained by the Hilbert
transform [Gabor, 1946; Yalcinkaya & Lai, 1997;
Rosenblum & Kurths, 1998].

For phase coherent models, the phase can be
computed from geometric considerations using the
formula φ(t) = arctan [(v(t)− ṽ)/(u(t)− ũ)], where
(ũ, ṽ) is a conveniently chosen point (e.g. unstable
fixed point) interior to the coherent cycle in the
(u, v)-plane. The shortcoming of this approach is
that it is difficult to implement on measured scalar
time-series of a single variable. In such applica-
tions attractor reconstruction techniques [Takens,
1981] are required to generate a second variable.
Furthermore, if the data is spiky, as is the case
of w in Eq. (1) (see Fig. 1), it becomes difficult
to reconstruct (e.g. by time-delay coordinates or
Hilbert transform) the smooth circular phase–plane
structure required to define the phase by the above
formula. Log-transforming the time-series may re-
duce this difficulty, but in practice this can lead to
spurious results for “spiky” signals, especially if the
data is chaotic.

We therefore make use of an alternative method
that allows analysis and comparison of both model
and observed data-sets even if the signal is “spiky”.
In this scheme the instantaneous phase φ(t) is de-
fined from a knowledge of the time intervals between
the spikes or maxima of, say, the top predator pop-
ulation w. Since we know the time tn at which the
top predator w reaches its nth maxima, and since
the phase increases 2π between successive maxima,
linear interpolation can then be used to obtain the
phase for intermediate times [Pikovsky et al., 1997].
Thus

φ(t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn < t ≤ tn+1 . (5)

Formula (5) gives a continuous piecewise-linear
description of the phase. For purposes of study-
ing long-term phase evolution and synchronization
effects it is often sufficient to analyze the phase
and amplitudes at discrete time intervals. In this
case, it is useful to define the series of phases
φn = φ(tn) = 2πn so that the phase dynamics are
obtained directly from times tn of the maxima. The
discrete amplitudes An are defined as the values of
w at these maxima i.e. An = w(tn). The period
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lengths between successive maxima are then given
by Tn = tn+1−tn and instantaneous frequencies can
be defined as Ωn = 2π/Tn.

In Fig. 5(a) we make use of Eq. (5) to evalu-
ate the instantaneous phase of the foodweb model
(1) and of the Lynx data (Fig. 1). In both cases
we find an almost linear growth in the phase evo-
lution. Nevertheless, small irregular fluctuations
from the mean growth can be seen. Monitoring the
phase evolution in this way is proving to be a very
useful technique for analyzing biological time-series
[Rosenblum & Kurths, 1998; Blasius et al., 1999].

Our numerical simulations show that in terms
of the discrete variables An and Tn, the dynam-
ics of the foodweb model are well described by a
two-dimensional discrete map [Farmer, 1981]

An±1 = F (An)

Tn = G(An) .
(6)

Here F is the usual return map for the model’s
peak amplitudes An. The function G relates the
peak amplitude to the period length Tn of the
following cycle, thus providing some indication of
how the amplitude dynamics of the chaotic model
affects the phase dynamics. After numerically cal-
culating An and Tn from time-series produced by
the foodweb model, the functions F and G, were
reconstructed, as shown in Fig. 4 for the model’s
phase coherent and funnel regimes. The functions
F andG were also numerically derived for the phase
coherent and funnel Rössler system and closely re-
sembled the maps of the foodweb model. Note
that F is a smooth single humped map and can be
very well approximated with the well-known Ricker
equation An+1 = CAn exp (r(1−An)) [r = 6.2, C =
0.04 in Fig. 4(a)]. The close similarity between the
peak to peak map of the foodweb model and the
Ricker map is very interesting, since the Ricker map
is a standard model used to describe chaotic popula-
tion fluctuations. The tail like structure of the map
at high amplitudes Ai leads to the period-doubling
reversal seen in the bifurcation diagram [Fig. 3(a)]
[Stone, 1993].

The discrete amplitude dynamics of the phase
coherent and funnel regimes are very similar except
that for the funnel, the tail of the map F (i.e. at
large amplitudes) is characterized by a regime with
a gently increasing slope. This is the signature of
the distinctive small loops that appear in the funnel
attractor [see Fig. 2(b)], which are triggered when-
ever the amplitude is larger than a certain threshold

level. These large amplitude levels do not arise in
the phase coherent regime.

The most important difference between the
phase coherent and the funnel regime is found in
the phase dynamics. The function G associated
with the funnel, is bimodal and characterized by
two dominant period lengths that are to be asso-
ciated with the large and small loops seen in the
phase plane dynamics of Fig. 2(b). In the fun-
nel regime G can be crudely approximated with a
Heaviside step function [Tn = 7.1− 4.1H(An − 2.1)
in Fig. 4(d)]. In the phase coherent regime G is a
gradually decreasing function [Fig. 4(c)] that can be
well approximated by a cubic function. If the os-
cillations were perfectly phase coherent, Tn would
be a constant and G a horizontal straight line. The
deviation of G from the horizontal is thus an indi-
cation of phase coherency and the strength of the
interaction between amplitude and phase.

As seen from Fig. 4, the maxima Ai define in
a unique way the period length of the following cy-
cle Tn through the map G. This relationship can
be used to calculate the period length of the pre-
ceeding cycle Tn−1 = G(F−1(An)). However, the
latter relationship is not well defined since here F
is not an invertible function. It is thus impossible to
directly predict the preceeding period Tn−1 from
An, even if the maps F and G are known in
advance.

In the case of the phase coherent foodweb
model (1), G is an invertible function. This can
be taken advantage of when deriving a return map
for the periods Tn

Tn+1 = H(Tn) = GFG−1(Tn) . (7)

Hence, in principle, it is possible to replace Eqs. (6)
with two return maps An+1 = F (An) and Tn+1 =
H(Tn) for the amplitudes and phases, and clearly
demonstrates that the amplitude and phase dynam-
ics can be decomposed in the foodweb model. Our
numerical investigations of many different systems,
including for example the Rössler system (2), have
shown that, in general, the map G is not invert-
ible and the dynamics cannot be decomposed in
the same way. In these systems Tn+1 cannot be
calculated from Tn without additional knowledge
of the amplitudes. Nevertheless, we cannot rule out
the possibility that different decomposition schemes
(e.g. via other Poincaré maps) might be more
successful in these cases [Stone, 1992].

Given the sequence tn, the times of peak
amplitudes or maxima, the mean frequency Ω0 can
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Fig. 4. Return map, Ai+1 = F (Ai), (top) and amplitude dependence of period length, Ti = G(Ai), (bottom) of the foodweb
model (1). Left column: phase coherent regime, c = 10; right column: funnel regime, c = 12.3.

be simply defined as

Ω0 = lim
N→∞

2π
N − 1

tN − t1
=

2π

〈Tn〉
. (8)

The formula is used to calculate the mean frequency
of the foodweb model as a function of b, as plotted
in Fig. 3(c). Note that Ω0 also describes the mean
phase growth of the foodweb model and corresponds
to the slope of the phase evolution seen in Fig. 5(a).
The small irregular deviations from the mean phase
growth are also apparent and are a consequence of
imperfect phase coherence. Equation (8) is also use-
ful for analyzing measured data. For the Canadian
Lynx cycle [Fig. 1(a)] we find a mean frequency of
Ω0 = 0.66y−1, which corresponds to a mean period
of T0 = 9.5 years.

We turn now to examine ways of characterizing
the degree of phase coherency in UPCA models. A

convenient measure is σT , the standard deviation
of the time-intervals Ti as a percentage of the mean
i.e. σT = 100 · σ(Ti)/〈Ti〉. For the parameterization
used in Fig. 1 the series Ti has σT = 8.4% for the
foodweb model and σT = 7.99% for the Rössler sys-
tem. These large fluctuations of the period length
with deviation of nearly 10% seemingly stand in
contrast with our notion of uniform phase evolution.
However, a calculation shows that the standard
deviation, στ , of the two consecutive cycles τi =
Ti+1+Ti = ti+1−ti−1 is much smaller than σT . Note
that if Ti and Ti+1 were independent random vari-
ables we would expect στ =

√
2σT . In fact we find

στ = 3.99% for the foodweb model and στ = 4.13%
in the Rössler system. This low variability is due to
an unusual compensation effect that acts to main-
tain uniform phase evolution. As Fig. 4 reveals,
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Fig. 5. (a) Phase evolution [determined by Eq. (5)] of the
Canadian Lynx cycle (Fig. 1) (filled circles) and of the food-
web model (1) (open circles). The circles indicate the discrete
phases φn at times tn. (b) Phase diffusion. Time evolution
of the variance of φn, Eq. (9), for (i) the Rössler system
(2); (ii) the phase coherent foodweb model (1) with c = 10;
(iii) the noise forced foodweb model (D = 0.06) parameter-
ized on the limit cycle (b = 0.2, c = 10); and (iv) the funnel
regime of the strict deterministic foodweb model, c = 11.8.

a high amplitude Ai will always be accompanied by
a short period Ti [see Fig. 4(a)] and yet, will also
lead to a small peak Ai+1 [Fig. 4(b)] with corre-
sponding large period length Ti+1. Short periods
are thus typically followed by long periods and vice
versa which results in a more uniform phase evo-
lution than the standard deviation of Ti suggests.
The compensation is a result of the folding in the
geometry of the Rössler-like attractor.

This motivates measuring the coherence of
phase evolution by examining the variance of tn =∑n
k=1 Tk [Farmer, 1981], which is, up to a factor,

directly related to the variance of φn. As shown
in [Farmer, 1981], the phase undergoes a random
walk about the steady drift Ω0t with a variance
〈(φ − 〈φ〉)2〉 that increases linearly with t. The
linear increase is measured by a diffusion constant
Dφ. In terms of the discrete phases

〈(2πn− Ω0tn)
2〉 = 2πDφtn . (9)

In Fig. 5(b) we compare the growth in the variance
of the phase evolution for the phase coherent and
“funnel” systems using the dimensionless scaled dif-
fusion constant D̃φ = Dφ/Ω0. Very small values of
phase diffusion were found in both the phase co-
herent foodweb model (c = 10) with D̃φ = 0.004,

and Rössler system with D̃φ = 0.0012. In con-
trast, the funnel regime of the foodweb model had
much larger phase diffusion with D̃φ = 2.55 (not

plotted) when c = 12.3, and D̃φ = 0.406 for
c = 11.8 (plotted). Thus the “funnel” regime has a
phase diffusion which is some three to four orders
of magnitude larger than that of the phase coherent
regime.

4. Phase Synchronization in
Two Coupled Systems

The foodweb model accounts for the UPCA dynam-
ics of a single community. Our goal is to understand
if and how two coupled oscillating foodweb models
will synchronize. In this scenario, the two foodweb
models might represent different patches or commu-
nities coupled together via diffusive migration. We
suspect that the migration should act as a powerful
synchronizing agent between populations which are
spatially structured in patches or local assemblages.
Previous modeling efforts have borne this out for
simple systems with identical population dynam-
ics. However, very little is known about the syn-
chronization of chaotic and nonidentical population
models. We first write down the equations for an
arbitrary number of coupled patch models although
in this section the analysis will be restricted to the
case of two coupled systems. The coupled system
(1) reads as follows:

u̇i = a(ui − u∗)− α1f1(ui, vi)

v̇i = −bi(vi − v∗) + α1f1(ui, vi)

−α2f2(vi, wi) + ε
∑
j

(vj − vi)
(10)
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ẇi = −c(w − w∗i ) + α2f2(vi, wi)

+ ε
∑
j

(wj − wi)

where ui, vi and wi represent the vegetation,
herbivore and predator populations in patch-i, and
ε sets the magnitude of diffusive migration summed
over a predefined set of local nearest neighbors {j}.
For biological reasons we allow migration for the
mobile animal species only and consequently cou-
ple the vi and wi variables, although similar results
are obtained if the ui variables are also coupled. On
the other hand if the top predators, wi are coupled
alone or with different coupling strength compared
to the migration between the other species (ui and
vi), very complicated transitions to synchronization
can arise [Blasius et al., 1999]. The systems are as-
sumed to be nonidentical and to cycle with different
natural frequencies, which are determined by the
coefficients bi.

A simple but very useful index that helps in
identifying synchronization in the coupled foodweb
models is the relative frequency difference, ∆Ω. If
the two foodwebs oscillate with frequencies Ω1 and
Ω2 then ∆Ω = 2[(Ω2−Ω1)/ (Ω2 +Ω1)], which is the
frequency difference as a percentage of the average
mean frequency. Naturally, if the two systems are
frequency locked Ω1 = Ω2 and ∆Ω = 0. Note that
∆Ω = ∆Ω(ε), is a function of the coupling parame-
ter ε. In practice, ∆Ω(ε) may be found numerically
by first integrating out the patch models for a given
coupling ε, using Eq. (8) to calculate the mean fre-
quencies (Ω1, Ω2), and this directly yields ∆Ω(ε).

First we study the synchronization of two cou-
pled patch systems in the phase coherent regime
(c = 10). Growth rates of consumers v1,2, are
given by b1,2 = b0 ± ∆/2, where b0 = 0.86 and
the models are deep in the chaotic regime when
∆ = 0, and reasonably far from the relatively large
periodic windows of short or moderate periods [see
Fig. 3(b)]. In the case of no coupling or migration
the relative frequency difference, can be approxi-
mated by ∆Ω0 ≈ ∆/(2b0). In our simulations we
used ∆ = 0.03 which leads to a frequency mismatch
of ∆Ω0 ≈ 1.7%.

Figure 6(a) plots the relative frequency dif-
ference ∆Ω(ε) for the two patch UPCA system
(solid line). As ε increases, the frequency differ-
ence between the two patches reduces sharply and
reaches zero at the critical coupling εc = 0.016. At
this point one to one frequency locking is achieved
and the two systems are phase synchronized.
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Fig. 6. Transition to phase synchronization for two coupled
nonidentical foodweb systems (b1 = 0.875, b2 = 0.845), as
a function of the coupling ε. (a) Relative frequency differ-
ence, ∆Ω, (solid line); phase lag, τ , (rel. time units) (dashed
line); correlation, r, between peak predator abundances (dot-
ted line); calculated after initial transients removed. (b) The
four largest Lyapunov exponents of the coupled two-patch
system as a function of coupling ε.

The scaling of ∆Ω is very well approximated by the
beat frequency of two diffusively coupled periodic
oscillators

∆Ω(ε) =

∆Ω0

√
1− ε2/ε2

c , ε ≤ εc
0, ε > εc

. (11)

It is impossible from an examination of ∆Ω alone
to discern at which point in the frequency locked
regime full synchronization is achieved (i.e. where
the amplitudes of the two systems are identical or
highly correlated). For this reason the correlation r
between the two predator time series w (i.e. the dis-
cretized maxima An) is also plotted as a function of
migration ε (dotted line). The figure shows that for
migration larger than ε & εf = 0.07, the patches are
fully synchronized in phase and amplitude for both
r = 1 and ∆Ω = 0. Note that for intermediate cou-
pling levels (εc < ε < εf ) there is a distinct regime
of phase synchronization where ∆Ω = 0, but the
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amplitudes of the two time-series are only weakly
correlated.

In Fig. 6(a), we also plot the time lag (dashed
line) between the two synchronized patches as a
function of migration ε. The time lag appears
with the creation of phase synchronization and
tends to decrease with ε as full synchronization
is approached. The region of full correlation be-
tween peak amplitudes (r = 1) which are separated
by time lags has been termed lag synchronization
[Rosenblum et al., 1997].

The Lyapunov spectra gives further insight into
the synchronization transitions of chaotic systems
[Rosenblum et al., 1996, 1997]. Recall that since the
uncoupled foodweb model is a three-dimensional
dissipative chaotic system, it must have one posi-
tive, one negative, and one zero Lyapunov exponent
(LE). In Fig. 6(b) we have plotted the four largest
Lyapunov exponents for two coupled foodweb mod-
els [i.e. Eqs. (10)] as a function of the coupling
strength ε. For this range in coupling, the food-
webs remain chaotic and the largest LE is always
positive while the LE associated with the phase co-
ordinate is zero. For weak coupling (ε < 0.011),
the two foodweb models are unsynchronized and
there are two positive, two negative and two zero
LE’s. As the coupling is increased phase synchro-
nization sets in at ε = εc and one zero LE becomes
negative corresponding to a stable relationship be-
tween the phases of the two foodwebs. As coupling
is increased even further, there is a transition to
“full synchronization” which is characterized by a
zero crossing of one of the positive exponents at
ε = 0.062. The remaining single positive LE en-
sures that the amplitude dynamics are chaotic. The
two negative LE’s, on the other hand, indicate that
now there is “full synchronization” in both phase
and amplitude; the dynamics of the two oscillators
have become almost, if not identical, to one another.
The large dips in the LE spectra [Fig. 6(b)] at the
transition to phase synchronization are due to the
creation of periodic windows [Rosenblum et al.,
1996].

We also examined the more complicated phase
synchronization of coupled “funnel” oscillators
[Osipov et al., 1997]. Recall that the small and
large loops of the funnel attractor [Fig. 2(b)] may
be associated with their own characteristic period
lengths [Fig. 4(d)]. The smaller loops (which do
not occur in the phase coherent attractor) are in-
duced whenever the peak value of w increases above
a certain threshold level Ath = 2.1 for the parame-

terization of Fig. 4(d). These above threshold peaks
have the potential to interfere with the synchroniza-
tion as shown in Fig. 7(a), where the time-series of
two nonidentical systems (funnel regime) are plot-
ted for a relatively large coupling (ε = 0.75). Here
we use values of b0 = 0.935 and ∆ = 0.03 so that
the funnel oscillators are far away from any periodic
windows. As long as both systems have compara-
ble periods the two systems remain synchronized.
But occasionally, the amplitude in one oscillator ex-
ceeds the threshold level Ath, while the amplitude of
the other oscillator is subthreshold [indicated by the
arrow in Fig. 7(a)]. This leads to a large difference
of the period length and instantaneous frequency
of the two systems in the following cycle; a situa-
tion which drives the two systems out of synchro-
nization. After a short transient of some cycles,
in which the two systems are clearly not locked,
synchronization is returned once again. This short
desynchronization event leads to a phase-slip of
2π between the phases. Hence the two coupled
“funnel” oscillators may be phase synchronized for
extended periods of time, but these bouts of syn-
chronization are repeatedly interrupted by short
segments of desynchronization.

As in the phase coherent regime, we again plot
the Lyapunov spectra of the two coupled funnel
systems as a function of the coupling [Fig. 7(b)].
Since the LE are independent of a particular choice
of phase variable, this method should provide an
appropriate measure to characterize the synchro-
nization even in the less phase coherent funnel
regime. Figure 7(b) shows that the Lyapunov spec-
tra change with the coupling parameter exactly as
is typical for the transition to phase synchroniza-
tion [compare with Fig. 6(b)] [Rosenblum et al.,
1996]. Thus, in analogy to the phase coherent
regime, one might expect that the zero crossings of
the LE’s indicate the onset of phase synchronization
(ε = 0.035) and full synchronization (ε = 0.115).

However this proves not to be the case. For
coupling of strength ε = 0.075, for example, the
Lyapunov spectra might predict perfect phase syn-
chronization. But, the corresponding time-series
generated with ε = 0.075 [Fig. 7(a)], clearly reveals
the existence of segments with desynchronization
events where phase synchronization breaks down.
Thus the method of calculating Lypapunov spec-
tra is not able to resolve the frequent desynchro-
nization events that occur in the funnel regime,
and so it can be a problematic guide for detecting
phase synchronization. The problem stems from the
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method of calculating Lyapunov exponents which
averages over synchronized and unsynchronized
trajectories.

We also plot the growth in the instantaneous
phase difference ∆φ (Eq. 5) of the funnel oscillator,
for different couplings [Fig. 7(c)]. In the uncoupled
case (ε = 0), the phase difference performs a ran-
dom walk-like motion. For small levels of coupling
(e.g. ε = 0.035), regimes of phase-locking are initi-
ated and the phase difference shows plateaus which
are interrupted by phase slips. Stratanovich [1963]
developed a method to investigate phase-locking in
stochastic systems from the statistical distribution
of the relative phase differences τ = ∆φ mod 2π.
Stratonovitch [1963] observed that synchronization
appears as a peak in the distribution of the phase
lags τ . The same method is appropriate for study-
ing the synchronization of the coupled funnel os-
cillators which appear to phase synchronize inter-
mittently. For the case of no coupling (ε = 0) and
thus in the absence of synchronization, the lags τ
are uniformly distributed [Fig. 7(d)]. For the higher
coupling (ε = 0.035) a peak is seen in the distribu-
tion of τ [Fig. 7(e)]. For even stronger coupling
(ε = 0.075) the amplitudes become highly corre-
lated, and the chance that the amplitude of only
one of the systems increases above the threshold is
very small. As a result the phase slips become more
and more rare [Fig. 7(f)]. A deeper understand-
ing of this “imperfect” phase synchronization can
be obtained by an analysis of the unstable periodic
orbits [Zaks et al., 1999].

5. Influence of Noise

The deterministic foodweb model Eq. (1) should be
viewed as a mean field approximation of averaged
variables in a stochastic and homogenous mixing
population. But even though the equations are de-
signed to simulate the stochastic scenario, the mean
field approximation can break down when popula-
tion levels reach low values. In these circumstances,
it is useful to insert additive demographic noise to
those variables which reach critically low levels (see
[May, 1974]). The equations with this demographic
stochasticity read as follows:

u̇ = a(u− u∗)− α1f1(u, v) + η1

v̇ = −b(v − v∗) + α1f1(u, v)− α2f2(v, w) + η2

ẇ = −c(w − w∗) + α2f2(v, w) + η3 .
(12)

Additive noise ηi is applied simultaneously to
all variables. Here η is taken from a normal dis-
tribution with 〈ηi〉 = 0 and 〈ηi(t1)ηi(t2)〉 = D2δ×
(t2−t1), but in order to obtain strictly positive pop-
ulation numbers, the noise is restricted, so that at
any time η3(t)+w(t) ≥ 0. The stochastic equations
are numerically solved using an Euler scheme with
a step size of dt = 0.001.

We have observed a number of noise-induced
phenomena that arise in Eqs. (12). Of particular in-
terest is the manner in which demographic noise in-
duces UPCA-like oscillations for parameter regimes
that would otherwise be periodic, thus significantly
broadening the range in parameter space for which
there is UPCA. To demonstrate this, the model was
parameterized to give limit cycle behavior in the
absence of noise by reducing b from b = 1 (UPCA
chaos) to b = 0.2 [limit cycle, see bifurcation dia-
gram Fig. 3(a)].

Initially the equations were integrated without
demographic noise and, as Fig. 8(a) displays, the
predator population (w) oscillates periodically. At
t = 50, however, demographic noise with strength
D = 0.04 was switched on, causing the appear-
ance of strong chaotic fluctuations in the ampli-
tudes. The noise-induced oscillations are phase
coherent and have characteristics associated with
UPCA. Similar noise induced UPCA has been pre-
viously observed with the introduction of environ-
mental (multiplicative) noise [Blasius et al., 1999].

We investigated the noise dependence of the
UPCA-like oscillations by plotting the variance, σ,
of the maxima of w and the diffusion constant, Dφ,
as a function of noise-strength D. Figure 8(b) shows
that the UPCA dynamics is induced smoothly with-
out any threshold effect (soft induction) [Deissler &
Farmer, 1992]. The noise-induced variance in the
peak amplitudes saturates at noise levels of about
D = 0.04. In Fig. 5(b) the phase diffusion of the
noise forced model is compared with strictly deter-
ministic systems. The phase coherency induced by
a noise level of D = 0.04 corresponds roughly to
the phase coherency found in the “funnel” regime.
Hence one should expect to find similar transitions
to synchronization for these two different types of
systems.

The effects of noise on synchronization of two
coupled UPCA models are explored by monitoring
the growth in phase difference between two coupled
foodweb models (Fig. 9). The noise level D was
set at 10% of the population mean, which in the
case of the predator population w corresponds to
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Fig. 8. Noise-induced UPCA in the foodweb model (1). The system is parameterized on the limit cycle regime with b = 0.2.
(a) At t = 50 additive noise is introduced with strength D = 0.04 and UPCA oscillations result. (b) Standard deviation of
peak amplitudes, σ, and phase diffusion, Dφ, Eq. (9) as a function of noise strength D.

D = 0.08. This has been done for the couplings of
ε = 0, ε = 0.05 and ε = 0.1 as well as for the refer-
ence case of an uncoupled (ε = 0) system without
noise which gives an almost linear phase growth in
phase difference. One clearly observes that without
coupling, the noise forced trajectory follows a ran-
dom walk about the linear growth associated with
the zero noise reference. For higher coupling phase
locking is initiated and the phase growth tends to
be stationary but is erratically interrupted by phase
slips where the phase jumps up or down by 2π. One
sees from Fig. 9(a) that the higher the coupling, the
smaller is the rate of occurrence of phase slips.

It is possible to check the influence of noise
forcing on the phase synchronization from an ex-
amination of the statistical distribution of the

relative phase lag τ between the closely (but not
perfectly) locked populations [Tass et al., 1998] (as
in Sec. 4 for the funnel attractor). Recall that for a
purely deterministic synchronized system the pop-
ulations cycle are separated by a stable phase lag
τ0. In the absence of synchronization the distribu-
tion of the phase lag τ between two noise forced
patch populations is that of a uniform random vari-
able [Fig. 9(b), ε = 0.0]. In contrast, phase syn-
chronization is characterized by a distribution that
is peaked at the phase lag τ = τ0 and τ has the
tendency to remain close to the “preferred” mean
value τ0 [Fig. 9(c), ε = 0.05]. With higher cou-
pling [Fig. 9(d), ε = 0.1] the peak in the frequency
histogram becomes even sharper. The statisti-
cal approach for detecting phase synchronization is
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Fig. 9. (a) Growth of phase difference ∆φ of two coupled noise forced foodweb models in the phase coherent chaotic regime
for (b1 = 0.875, b2 = 0.845). Additive demographic noise with standard deviation set at 10% of population mean. “Blue
reference line” represents linear phase growth ∆φ for uncoupled purely deterministic foodweb models. Phase growth with
demographic noise forcing: (i) ε = 0 (black line) — random walk that hovers about “blue reference line”; (ii) ε = 0.05 (red
line) — the noise introduces phase slips which erratically increase ∆φ; (iii) ε = 0.1 (green line) — the increased coupling
suppresses phase growth despite the additive noise. (b)–(d) A statistical description of synchronization is provided by the
distribution of relative phase lags τ .

thus successful for both noise forced phase coherent
systems as well as weakly coherent systems such as
the “funnel” attractor (as shown in Sec. 4).

6. Phase Synchronization in
Spatially Extended Systems

We now study the synchronization of an ensem-
ble of nonidentical foodweb systems which are
coupled by diffusive migration. Here we are moti-
vated by the unusual spatiotemporal synchroniza-
tion observed in the Canadian hare–lynx cycle.
Figure 10(a) shows the remarkably synchronized
cycles of the lynx fur records in six geographically
distinct regions in Canada. This is but a glimpse of
a much larger picture in which hare and lynx popu-
lations across Canada synchronize in phase to a col-
lective cycle that manifests over millions of square
kilometers. Similar spatially synchronized fluctua-
tions have been observed for many other ecological
populations [Keith 1963; Korpimaki & Krebs, 1996;
Ranta et al., 1997].

To examine spatial synchronization, we con-
structed a lattice of N × N patches, each patch
consisting of the previously described three-trophic
(vegetation–herbivore–predator) population model.

The model foodwebs were nonidentical, having ran-
dom natural frequencies that act as spatial inhomo-
geneity over the lattice. In order to achieve this, the
consumer growth rates bi were taken from a uniform
distribution within 10% (solid line Fig. 11) or 5%
(dashed line Fig. 11) from the mean 〈bi〉 = 1. Each
patch was connected to its eight nearest neighbors
to take into account local migration ε. We per-
formed a series of lattice simulations with free and
periodic boundary conditions, and for lattices with
N = 20, 50, 100 and 200, and with coupling to four
or eight nearest neighbors. All our main results
were found to be robust to these changes in model
configuration.

In Fig. 11 we examine synchronization of the
20 × 20 lattice as a function of migration ε, sim-
ilar to Fig. 6(a) for the two patch system. Now
∆Ω measures the standard deviation of the fre-
quencies Ωi of all 400 patches as a percentage of
the mean frequency. With no migration between
patches (ε = 0), the populations display indepen-
dent chaotic oscillations, and frequencies vary with
standard deviation ∆Ω = 0.28%. However, with
increasing coupling ∆Ω drops sharply. Finally, at
εc = 0.025 (solid line), the frequency difference,
∆Ω, between all patches reaches zero. At this small
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Fig. 10. (a) Time-series of Canadian lynx in six different regions in Canada after [Elton & Nicholson, 1942]. (b) Time-series
of predator w in a 20× 20 lattice with next neighbor coupling (ε = 0.035) and periodic boundary conditions. Time-series for
seven patches spaced along the lattice diagonal.

level of migration, the whole lattice becomes glob-
ally phase synchronized to a common frequency. If
the coupling is weak enough, the “peak amplitudes”
of patch populations remain weakly correlated [see
Fig. 10(b)].

It is this regime of strong phase-locking, but
weakly correlated amplitudes, which resembles
natural systems. In Fig. 10 we compare our
lattice simulations with the synchronized oscilla-
tions in Canadian lynx. Similar to the real data,
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Fig. 11. Frequency difference from the mean in a 20 × 20
lattice of foodweb models as a function of the coupling ε.
Here ∆Ω measures the standard deviation of frequencies Ωi
for all 400 patches as a percent of the mean frequency. The
consumer growth rates bi of the foodwebs were uniformly dis-
tributed in the interval [0.9, 1.1] (solid line) and [0.95, 1.05]
(dotted line).

despite the strong phase-locking, the amplitudes of
patch populations remained only weakly correlated
(r < 0.2).

Note that for spatially extended systems full
synchronization leads only to trivial spatial pat-
terns, since phase and amplitude dynamics are
then identical across the entire lattice. In the
region of phase synchronization, however, synchro-
nized patch populations are typically separated by a
phase lag τi [as seen in Fig. 6(a)]. When viewed over
the whole lattice the time lags can show a character-
istic “U” shape. In Fig. 12 we plot the convergence
to the U-shape steady state as expressed through
the time delay τi between patches along the diago-
nal of the 20×20 patch lattice system. Even though
phase synchronization is almost immediate, relax-
ation to the U-state can take some 100 full cycles
(t ≈ 700) to achieve.

The distribution of the phase lags gives rise
to complex spatiotemporal patterns. Most re-
markably, we find a coherent regular traveling
wave structure where population abundances re-
main chaotic, but unusual circular waves form
and spread in time across the spatial landscape
(Fig. 13). The wave pattern repeats in an end-
less cycle, with patches having chaotic amplitudes,
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Fig. 12. Convergence to the U-shape steady state as expressed through the phase lag τ between patches in the 20×20 lattice
parameterized as in Fig. 10. Each successive figure (a) to (f) is a snap-shot of the lattice phase relationship after running the
model for 40 population cycles. Horizontal axis represents patch 1–20 along the lattice diagonal. Vertical axis τ represents
the fixed phase lag (with respect to the central patch) determined after the lattice has reached global phase synchronization.
Note that the phase lag is plotted in units of 2π (i.e. τ = 1 corresponds to a lag of 2π).
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Fig. 13. Evolution of a chaotic ring wave. Snapshots of predators vi (left column) and top predators wi (right column) in a
20×20 lattice [see Fig. 10(b) legend] for three consecutive time steps. Abundance levels are color coded.



Phase Synchronization in Ecology 2379

making each cycle different from the next. In Fig. 13
we compare typical waves which arise in the smooth
varying v-variable (left column) with the more spiky
w-variable (right column). One sees that the sharp
spike train of w in time translates as a sharp struc-
ture in the spatial domain. In our numerical investi-
gations, we found the chaotic ring waves only in the
regime of global phase synchronization with weakly
correlated patch amplitudes. Recent ecological field
studies have reported similar traveling wave struc-
tures with spatially distributed U-shaped phase lags
[Ranta & Kaitala, 1997].

7. Discussion

We have presented a simple biologically realistic
foodweb model that exhibits UPCA dynamics sim-
ilar to that found in the chaotic Rössler system.
The regular frequency of the population oscillations
combined with the chaotic amplitudes of each cycle
are properties that should be relevant for describing
many ecological and biological scenarios. Similar
UPCA-like oscillations are also induced by external
noise for parameter regimes that would otherwise be
periodic, thus significantly broadening the biologi-
cally relevant range in parameter space. Further-
more, the minimal structure of the model suggests
that there exists a larger class of related systems
which can qualitatively reproduce similar chaotic
UPCA dynamics.

It was possible to capture the complex dynam-
ics of the continuous time UPCA models with only
two simple discrete maps; the first F , describing
the amplitude dynamics, and a second, G, which
describes the phase evolution through its depen-
dence on amplitude. The map G allows classifica-
tion of different types of UPCA (e.g. phase coherent
versus “funnel”). In addition, given the two maps
it is possible to directly calculate many interesting
quantities without having to numerically integrate
the foodweb model directly. Our future goal is to
explore whether the synchronization properties of
the continuous time model can be understood from
the discrete maps alone. If so, the synchronization
of different types of systems (e.g. phase coherent
systems, two frequency systems . . .) may be derived
from the maps without having to deal with the
continuous time equations.

We have attempted to investigate the spatio-
temporal dynamics of synchronization in higher
dimensional lattices of nonidentical chaotic systems
— an area that to date is almost completely unex-

plored. It was found that phase synchronization in
two-dimensional lattices of coupled foodweb oscil-
lators manifests spatially as regular circular travel-
ing waves in which oscillator amplitudes are chaotic
and poorly correlated. Similar chaotic waves have
also been noted in one-dimensional circular lattices
[Blasius et al., unpublished], for different parame-
terizations of the foodweb model (e.g. for Lotka–
Volterra or Holling type II interaction), and also
in coupled Rössler systems. Thus the phenomenon
is robust and one could expect that it emerges in
a generic way. The chaotic traveling waves do not
appear to have been noted in the literature pre-
viously. We now believe that the conditions in
which they arise depend crucially on the spatial fre-
quency “inhomogeneity,” as will shortly be reported
[Blasius et al., unpublished]. The chaotic waves
pose many other questions. Are there regimes in
which different wave forms arise such as spiral or
planar waves? Can one characterize the waves in
terms of wavelength, velocity, dispersion relations,
wave front width etc., and study their dependence
on initial and boundary conditions? Then there
are ecological concepts that may be addressed. For
example, we are led to believe that these wave
structures, and more generally spatial phase syn-
chronization, plays an important role in preventing
species extinctions. Yet conventional wisdom dic-
tates that the synchronization of populations leads
to an increase of extinction risk. These and many
other exciting themes are waiting further explo-
ration with the chaotic foodweb model described
here.
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