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PREFACE 

The main impetus for writing this review has been 
the increasing interest in the field of nonlinear dy- 
namics, or chaos as it is commonly called, and its appli- 
cation to physiology. The approach has generated both 
excitement and concern. As new information is gained, 
research may demonstrate that some of the excitement 
is appropriate and some inappropriate. Some of the pres- 
ent concern results from overstatements or misunder- 
standings that have polarized parts of the scientific com- 
munity. We, of course, do not believe that nonlinear dy- 
namics will answer all of our questions. However, we 
suggest that this approach may help us to answer new 
questions and to rearticulate old ones. 

Presently, there are both promises and problems 
with this approach. For example, one potential promise 
is the possibility that nonlinear strategies of data analy- 
sis in combination with well-articulated theories will 
eventually illuminate qualities concerning the dynamics 
of a generating system, and in this manner venture 
beyond previous understandings of emerging neural 
patterns. On the other hand, a current technical prob- 
lem is whether the algorithms provided by nonlinear 
systems theory to detect chaos are indeed part of a revo- 
lutionary new paradigm shift or just represent another 
heuristic mathematical transformation adding little 
new information to our understanding. This is a ques- 
tion yet to be fully answered and one of the questions we 
approach in this review. Chaos is revolutionary in that 
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the overall approach requires us to adopt a different 
frame of reference which, at times, may move us away 
from previous concerns and methods of data analysis. 
For example, does a concept such as stationarity have 
the same meaning and validity in the nonlinear ap- 
proach? Some would suggest not. However, as we see in 
this review, we still must proceed cautiously. 

Although historically this new approach for under- 
standing complexity in nature has its roots in the work 
of Newton, Rayleigh, and Poincare, it has been only re- 
cently that the procedures and concepts have been devel- 
oped to a point where they are beginning to have an 
important impact on a wide variety of fields including 
physiology. This approach has drastically modified the 
manner in which physiological processes are viewed and 
described. For example, some processes formerly per- 
ceived as erratic, or random, are now viewed in terms of 
patterns and potential lawful relationships. Even the 
term chaos, itself, has changed in meaning. Previously 
the term signaled randomness, but it now connotes the 
idea of underlying structure and the potential for de- 
scribing a complex system with the aid of relatively sim- 
ple mathematical formulations. One advantage of the 
theory of chaos is its ability to define and quantify com- 
plexity on an abstract level. However, as we see in this 
review, it is imperative to determine that the processes 
described as chaotic reflect actual physiological pro- 
cesses. Thus we now see a variety of procedures for de- 
lineating whether frenetic chaotic behavior results 
from a nonlinear dynamic system with a few degrees of 
freedom, or whether it is caused by an infinite number 
of variables, i.e., noise. 

In this review, we summarize the nonlinear dy- 
namics approach and describe its application to physiol- 
ogy and neural systems. I) We present a general over- 
view of the application of nonlinear dynamical tech- 
niques to neural systems. 2) We describe the principles 
of nonlinear dynamical systems including the derived 
analytic techniques. 3) We examine the application of 
these to the cardiovascular system. 4) We approach the 
applications of nonlinear procedures to the neuro- 
sciences. 5) We overview the problems and promises of 
this approach. We have tried to make each section self- 
contained so that the reader can focus on those topics of 
greatest interest. True to our subject, we have not per- 
formed an exhaustive review of the growing literature, 
but attempted to describe the area with the important 
underlying principles. 

I. INTRODUCTION 

A. Universality of Chaos in Complex Neuronal 
Networks: an Illustration of Some General Principles 

Historically, the idea of the existence of “chaotic” 
activities in biological systems, such as the central ner- 
vous system (CNS) in particular, is not a new one. How- 
ever, when thinkers of the presocratic period in ancient 

Greece and again the first Renaissance scientists, such 
as Girolamo Cardano, approached the topic, they were 
unable to formulate mathematical rules for nonpredict- 
able events such as gambling, weather, pendulums, 
waves, and so forth. Despite the fact that some philoso- 
phers and physicists, e.g., Galileo Galilei, considered the 
presence of chaos in a variety of physical systems such 
as the weather and planet movements, the application 
of a chaotic view to biological systems has only recently 
been seen. This may have resulted partly because cyber- 
netically oriented views have had and still have a per- 
suading explanatory power in physiological regulation. 

While the classical “phenomenological” definition 
of “chaos” means absence of order and unpredictability, 
the modern definition of chaos is based on nonlinear 
mathematics whose principles were anticipated during 
the late 19th century by Poincare but made mathemati- 
cally accessible by Lorenz in 1963 in a paper in the Jour- 
nal of Atmospheric Sciences with the title “Determinis- 
tic nonperiodic flow” (161). Today, chaos is defined as 
unforeseen behavior in a deterministic system or to say 
it in a more colloquial form: Chaos is apparently lawless 
behavior totally ruled by (deterministic) laws. In 1987, 
Skarda and Freeman (248) brought the definition down 
to one phrase when they described chaos as “pseudoran- 
dom noise.” Generally the word chaos refers to a low-di- 
mensional aperiodic signal, while the term noise is used 
to describe behavior resulting from very many degrees 
of freedom. We shall present the mathematical defini- 
tion and applications and examples of this definition to 
physiology later in the review. Before turning to specific 
examples, some general remarks seem to be justified 
where the new principles of deterministic chaos depart 
from or modify our traditional way of thinking about 
physiological systems. 

1. Sensitive dependence on initial conditions 

Poincare suggested in 1903 that “small differences 
in initial conditions produce very great ones in the final 
phenomena.” This important fundamental characteris- 
tic of a chaotic system is referred to as sensitive depen- 
dence on initial conditions. This sensitivity to initial 
conditions also carries with it the dramatic implication 
of the impossibility of long-term prediction of the sys- 
tem as arbitrary small perturbations may or may not 
have a consequence. Graphically, this phenomenon also 
can be viewed as a loss of neighborhood in terms of loca- 
tion. Sensitivity in this case refers to the situation in 
which two systems are started initially with two arbi- 
trarily close numbers. Following this, their dynamical 
states will diverge from each other quickly in the phase 
space such that each has a completely different time 
series x(t) and represent two separate systems. Thus, in 
the process of successive iterations, any small difference 
“explodes” exponentially. To say it mathematically, the 
image of any finite subinterval will eventually shadow 
the whole interval. Even if we know the system’s equa- 
tions exactly, the limited precision by which we can spec- 
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ify the present condition will snowball over time and 
soon render predictions useless. Furthermore, even if 
we could know the initial conditions with infinite preci- 
sion, the computation of the next iteration of the sys- 
tem’s equation must lead to minimal errors, which then 
would grow again exponentially and ultimately destroy 
long-term prediction. The everyday implications of this 
principle guarantee that even with the most modern me- 
teorological advances, we will still continue to discuss 
the weather and its unpredictability. Similarly, we must 
also realize the limitations of predicting cortical activ- 
ity or human behavior. However, we may come to a bet- 
ter understanding of the underlying dynamics. 

2. Chaos and homeostasis 

Nonlinear process models, such as the model of ol- 
faction by Freeman and co-workers (69-71, 75, 82), do 
not necessarily replace classical feedback or reflexology 
models; they complement them in some very significant 
ways. No one would deny that self-preservation of living 
organisms in evolution can be described by positive- and 
negative-feedback systems. In this sense self-preserva- 
tion can be seen as the main selection mechanism to 
keep the energy output of physiological systems within 
tight limits. In this model, the body is thought to main- 
tain a steady-state equilibrium in its critical variables 
(e.g., blood pressure, lymphocyte activity) and to re- 
spond to perturbations to restore this equilibrium. 
From this perspective, the elimination of noise can be 
seen as the main purpose of equilibrium-oriented sys- 
tems. This is also particularly true for devices using neg- 
ative feedback to stabilize output, such as thermostats 
that keep temperature constant by negative feedback. 
Because irregular behavior of some machines could be 
disastrous, it is an essential ingredient that mecha- 
nisms exist for elimination of noise. 

The obvious analogy between machines and organ- 
isms blurred our view for mechanisms in adaptive sys- 
tems such as the CNS which run contrary to homeo- 
static ones. Adaptive brain processes have to produce 
body movements oriented toward the anticipation of 
goals to achieve self-preservation, promote reproduc- 
tion, and engage in social interaction. To achieve these 
ultimate aims, organisms have to search, orient, attack, 
relate, and so forth often under totally new unlearned 
circumstances. To manipulate the environment, homeo- 
static and deterministic systems have to be “destabi- 
lized” (e.g., Refs. 77, 248) at times to produce entirely 
new activity patterns (new ideas, creative thoughts, new 
form of behavior). Although there have been various 
speculations in terms of anatomy (e.g., Refs. 27, 227), a 
complete theory must account for the manner in which 
the chaotic interruption of “old” overlearned activity 
patterns together with the deterministic formation of 
new expectancies prepares the sensory and motor sys- 
tem to respond to new environmental demands. A simi- 
lar question guided Freeman and co-workers’ analysis 
of the olfactory system (69-71, 75, 82), particularly the 

entorhinal cortex. In any ambiguous or new situation, 
the brain has to self-produce new activity patterns be- 
fore it settles down to old (deterministic) ones. Regu- 
larly oscillating physiological rhythms are one source 
for rhythmic changes in motivated behavior (such as 
eating and drinking cycles). These have been incorpo- 
rated into homeostatic thinking without particular con- 
ceptual problems. The same will also be true for the 
incorporation of the idea of chaotic oscillations within 
and across neuronal systems. Even in the context of 
feedback models, chaos would be expected in highly in- 
terconnected and tightly coupled feedback loops found 
in biosystems. Glass and co-workers (86, 89, 91) found 
that systems with mixed feedback (both positive and 
negative feedback) and multiple feedback with different 
time constants are sources of chaos. An der Heiden (10) 
describes the organism as a dynamical system with the 
classical equilibrium as a special case of an attractor. 
Healthy and pathological states become interpretable 
as different types of attractors, which may be converted 
from each other by bifurcations or critical perturba- 
tions. 

3. Efects of weak perturbations 

One of the most important aspects of chaotic behav- 
ior of physiological processes in the face of new environ- 
mental demands is the very fast, often instantaneous, 
reduction of excitatory thresholds of masses of nerve 
cell populations not excited in that particular combina- 
tion before. This phenomenon is referred to as “bifurca- 
tions” or a type of “rapid state changes” in determinis- 
tic chaos theory. Rapid state changes and bifurcations 
are characteristic of networks that are sensitive to very 
weak initial conditions that lead to wide-spread changes 
in the whole system. On a psych .ological level, not only 
the unexpected original i .dea but also the sudden unpre- 
dictable onset of an epileptic seizure in pathophysiology 
constitute examples of chaotic behavior of neuronal 
nets. Even a whisper can turn on a full-blown paranoid 
delusion within a fraction of a second, causing physiolog- 
ical and psychological changes of the whole brain. 

Behavioral neuroscience traditionally has had dif- 
ficulties explaining the formation of new and unlearned 
concepts and percepts (such as responses to new odors) 
in the CNS. In a feedback-controlled deterministic sys- 
tem, the appearance of totally new activity patterns out 
of the existing patterns cannot be described adequately. 
Naturally, the mathematical approximations used in 
nonlinear dynamics and the physical models of turbu- 
lence cannot predict the exact departure of bifurcations, 
but these models may help us to determine how many 
explosive changes can be expected in a time series to 
particular stimulus conditions. The “basin” of an at- 
tractor’ of a dynamic system allows the definition of the 

’ The attractor basin is defined as the set of all initial points (i.e., 

the set of all those initial conditions) that reach the attractor after a 
high enough number of iterations. The trajectory that leads from the 
initial conditions to the region described by the attractor is accord- 
ingly a transient. 
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me at which the system suddenly changes its systems equations. Prominent examples are Cheyne- 
an attractor is the “frozen” graphical repre- Stokes respiration (a special kind of irregular breathing 
of its activity pattern; for the mathematical pattern) and fluctuations in peripheral white blood cell 
and examples see Ref. 243). This allows the counts in chronic granulocytic leukemia. For both of 

physiological investigation of critical time regions that 
may cause unpredictable new behavior of the system. 
Perceptual phenomena such as the sudden jump of the 
Necker cube between foreground and background (52), 
as well as the perception of new odors (248), are exam- 
ples of such rapid state changes and become accessible 
to a more detailed physiological analysis by using the 
graphical representations of the relevant chaotic series, 
which we describe in section ~45. 

4. Nonlinear systems theory and the 
normal and abnormal functioning 

relation between 

Recently, several authors (92,93,205,252) have dis- 
cussed the question of whether chaotic behavior consti- 
tutes evidence for pathology of a system or whether 
chaos indicates healthy variability universally found in 
living organisms and the whole of nature in general. 
Glass and Mackey (90) described the change from order 
to disorder as “dynamical diseases,” thus seeing chaos 
as a sign of pathology. Dynamical disease denoted situa- 
tions in which control had been lost and was defined as 
“a disease that occurs in an intact physiological control 
system operating in a range of control parameters that 
leads to abnormal dynamics and human pathology” (90). 
On the other hand, Goldberger and West (92) proposed 
the hypothesis that the dynamics of a healthy physiolog- 
ical system would produce apparently highly irregular 
and highly complex types of variability, whereas disease 
and even aging is associated with less complexity and 
more regularity. Indeed, Kaplan et al. (140) have re- 
ported that the complexity of heart rate and beat-to- 
beat blood pressure measures is reduced with aging. 
Skinner (249, 256) has shown, in both animals and hu- 
mans, that transient decreases in heartbeat complexity 
are harbingers of imminent lethal cardiac arrhythmias. 

There has been increasing evidence to support the 
case that chaos plays a positive role in the physiology of 
the organism. Goldberger and co-workers (92,93) stated 
that chaos should be healthy because it provides the 
organism with an “information-rich (broadband) state” 
and “spectral reserve.” Patients with severe heart fail- 
ure, for example, show a loss of sinus rhythm (heart rate 
variability) (255). Likewise, it has been shown for an 
epileptic seizure that the degree of chaos is significantly 
changed both before and during a seizure (12, 94, 237). 
Most examples given in the following review seem to 
indicate that chaotic behavior is a necessary ingredient 
of normal functioning. However, there are exceptions 
found in a variety of fields including our own magne- 
toencephalogram (MEG) studies of tinnitus (148). With 
progress in the field, more exceptions will most likely be 
brought forth. 

However, it is also possible to demonstrate how dif- 
ferent kinds of behavior emerge from the same set of 

these processes there exist mathematical models that 
show how the system is able to change its pattern. In the 
future it may even be possible to devise therapies for 
disease by manipulating control parameters back into 
the normal range. 

The broad answer to the larger question of chaos 
and disease depends on our understanding and interpre- 
tation of a particular physiological or behavioral sys- 
tem. Neither nonlinear theory nor conventional homeo- 
static analysis can, nor should, free us from our scien- 
tific logical analysis of the observed data. Chaos 
procedures do not automatically create the correct 
theory. Therefore, it will not be surprising to find cha- 
otic processes in the behavior of both abnormal and 
healthy systems. 

5. Analyzing time series 

Research in physiology often involves the interpre- 
tation of signals reflected in time series that are irregu- 
lar. One source of continuing frustration has been our 
ability to visually recognize patterns within these irreg- 
ular time series which have proven impossible to system- 
atically detect with our current statistical techniques. 
In the 198Os, one answer was presented to this problem. 
It was suggested that this discrepancy was the result of 
examining the time series in terms of static rather than 
dynamic behavior. That is to say, our techniques had not 
taken into account nonlinear relationships. Traditional 
signal-processing procedures decompose, through Four- 
ier analysis or a similar technique, the component fre- 
quencies in the signal and thus reflect a limited amount 
of information (one dimensional). In contrast, the dy- 
namic view suggests that a time series may be seen to 
reflect the marks of all other variables participating in 
the dynamics of the system. Overall, the theoretical 
aspect of this possibility is based on a variety of mathe- 
matical theorems (262). Given that complex dynamic 
systems (such as the human nervous system) have an 
enormous number of interrelated dependent variables 
that are impossible to measure directly, the theorems 
suggest that if we can measure any single suitable vari- 
able with sufficient accuracy, sufficiently often, and for 
sufficiently long periods of time, then it is possible to 
make quantitatively meaningful inferences about the 
dynamic structure of the entire system from the behav- 
ior of that single variable. From this perspective we 
have a theoretical foundation to explain why the nonlin- 
ear dynamical or chaotic approach may well offer a char- 
acterization of behavior that is far richer than that ob- 
tained by classical measures (218). Of course, there ex- 
ists considerable discussion concerning parameters 
such as what would constitute sufficient accuracy, how 
often the signal should be sampled, as well as how long 
data segments should be. 
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One breakthrough has been the ability to project 
the dynamics of a system (i.e., a state space) onto a 
static diagram (e.g., a phase-space diagram). Although 
we describe this procedure in greater detail in section II, 

let us conceptually overview this procedure as well as 
introduce some important terms that we discuss later in 
this review. The initial question we wish to ask is: What 
are the underlying dynamics that are produced by this 
system? To answer this question we follow the Newton- 
ian idea of creating a phase space, a space which is 
spanned by the system’s variables. As is usually the case 
in physiology, we do not know the system’s variables; 
thus we must reconstruct the phase space from the time 
series observed. A point in this space represents a mo- 
mentary state of the system. A sequence of such states 
followed in time defines the phase-space trajectory. If 
the dynamics of the underlying system can be reduced to 
a set of deterministic laws, then the phase-space trajec- 
tory may converge toward a subset of the phase space. 
This invariant subset is referred to as an attractor. 
Given a particular time series, the initial question one 
asks concerns the possibility of identifying an attractor. 
If the answer is yes, then it is possible to view the series 
as a manifestation of a deterministic dynamic system 
(albeit possibly a very complex one). An important mea- 
sure of interest is dimensionality, referred to as D. A 
periodic oscillation (e.g., a sine wave) would have a di- 
mension of one. A quasiperiodic oscillation (e.g., 2 incom- 
mensurate frequencies) would result in a dimension of 
two. If the system has a dimension larger than two and 
is not an integer (i.e., it is a fraction), then we would 
expect the system to exhibit chaotic oscillations (e.g., 
the Lorenz attractor with a dimension of ~2.08). One 
further asks about the minimal dimensionality of the 
phase space within which the attractor is embedded, 
which defines the minimum number of variables that 
must be considered in the description of the underlying 
dynamics. If the evolution of a system is dominated by a 
strange attractor with fractal dimension D, then the 
minimum number of ordinary differential equations 
needed to describe the system’s evolution is the smallest 
integer greater than D. 

Dimensionality is one of the basic quantitative 
measures of a complex dynamical system. The classic 
definition of dimension refers to the minimal number of 
independent variables (or directions) in a set. This defi- 
nition has been generalized to include both higher di- 
mensions and fractal dimensions. Although beyond the 
scope of this brief introduction, it should be pointed out 
that in this newly developing literature, the term di- 
mension does not always have an absolute technical 
meaning. For example, when different mathematical 
procedu res used to compute the fracta 
applied to the sam e data set, di fferent 
sult. These differences m ay res ult because the d ata are 
finite, and the measures presu me infinite data length, 
or the data are nonstationary, and the measures pre- 
sume that the data generator does not change. There- 

dimen sion are 
values may re- 

practical interest than any inaccurate estimate of the practical interest than any inaccurate estimate of the 
absolute value. Another important measure that we de- absolute value. Another important measure that we de- 
scribe in section II is entropy. This is a measure of com- scribe in section II is entropy. This is a measure of com- 
plexity which reflects loss of information or inversely plexity which reflects loss of information or inversely 
the amount of information needed to describe the future the amount of information needed to describe the future 
state of a system. The more complex the system (with state of a system. The more complex the system (with 
noise being the most complex), the greater the entropy. noise being the most complex), the greater the entropy. 
As valuable as these techniques are proving to be, there As valuable as these techniques are proving to be, there 
are many additional questions that should be considered are many additional questions that should be considered 
in applying such measures to actual physiological sys- in applying such measures to actual physiological sys- 
tems. tems. 

To briefly summarize, the major feature of a cha- To briefly summarize, the major feature of a cha- 
otic system is the sensitivity to initial conditions, which otic system is the sensitivity to initial conditions, which 
implies intrinsic unpredictability. The butterfly-shaped implies intrinsic unpredictability. The butterfly-shaped 
Lorenz attractor illustrates this condition. The exact Lorenz attractor illustrates this condition. The exact 
trajectory (depending on initial conditions) is different trajectory (depending on initial conditions) is different 
each time it is generated (see Fig. 3). It is impossible to each time it is generated (see Fig. 3). It is impossible to 
predict when a shift from one side of the Lorenz “but- predict when a shift from one side of the Lorenz “but- 
terfly” to the other will take place. Chaos theory offers a terfly” to the other will take place. Chaos theory offers a 
means of measuring and quantifying complexity means of measuring and quantifying complexity 
through such measures as those of dimensionality and through such measures as those of dimensionality and 
entropy. Although these measures work within strict entropy. Although these measures work within strict 
mathematical contexts, the broad question exists as to mathematical contexts, the broad question exists as to 
whether it is appropriate and if so, under what condi- whether it is appropriate and if so, under what condi- 
tions, to apply these models to a physiological system. tions, to apply these models to a physiological system. 
The potential benefit of such an application is that de- The potential benefit of such an application is that de- 
terministic measures of a deterministic (especially of a terministic measures of a deterministic (especially of a 
chaotic) system may be inherently more accurate in chaotic) system may be inherently more accurate in 
tracking the output of the system. Before considering tracking the output of the system. Before considering 
the measures themselves, let us delineate a variety of the measures themselves, let us delineate a variety of 
successful applications. successful applications. 

B. Sinusoidally Forced Squid Membrane: an 
Illustration of Deterministic Chaos 

Although they may not be governed by very compli- 
cated laws, neurons in general are prominent candi- 
dates for producing complex patterns because of their 
pronounced nonlinearity. One of the most investigated 
of these neurons in physiology is the giant axon of the 
squid Doryteuthis bleekeri, which is known for the rapid 
transmission of solitary action potentials. If we view the 
axon of a single neuron as a structure specialized for the 
transmission of information over a distance, we can fur- 
ther inquire as to the dynamical mechanisms generat- 
ing these signals and how these vary parametrically in 
terms of input. In 1952, Hodgkin and Huxley (123) pre- 
sented their well-known model of the squid axon. Using 
four simultaneous, first-order differential equations, 
Hodgkin and Huxley (123) described the time course and 
voltage dependence of the membrane ionic currents 
flowing in the giant axon of the squid and thus provided 
a quantitative model for action potential generation. 
This model involves three voltage-dependent gating 
variables, the sodium and potassium activation vari- 
ables and the sodium inactivation variable, and a fourth 
variable involving the membrane potential. 

fore, relative differences in dimension between condi- Although the isolated giant axons of the squid are 
tions, or within the same condition, may be of more silent, it is possible to introduce a self-sustained peri- 
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odic activity by choosing a mixture of natural seawater 
and 550 mM NaCl (e.g., 93) as the external medium 
surrounding the axon. In this solution the axon behaves 
as a nonlinear neuronal oscillator with natural fre- 
quency cf,). The membrane potential can be recorded 
through a pair of glass pipette Ag-AgCl electrodes (see 
Ref. 4, p. 251). 

The standard method of analyzing the signal-han- 
dling characteristics of such a system is to apply a cyclic 
sinusoidal driving function with A sin (2n;fst), where A is 
amplitude& is stimulating frequency, and t is time, be- 
ing the simplest case of a repetitive input. A spike train 
gives similar results in most cases. Differential results 
can be found in both the model and the axon preparation 
by varying two parameters, A and& of the driving func- 
tion. In principle, five types of dynamic behavior can be 
observed and distinguished: periodic oscillation, quasi- 
periodic oscillation, intermittency, chaotic behavior, 
and stochastic behavior. 

The simplest case of the system’s reaction to peri- 
odic entrainment is given whenf, is close tofn, or com- 
bined frequencies having the ratio of 23 or 3:4, and so 
forth. In this case, the system mode locks to f,. This 
results in the action potentials always occurring at spe- 
cific phase angles of the forcing cycle. Again, iff, and& 
are different but approximately commensurable, i.e, a 
pair of integers m and n exists with m > n such thatf, = 
F(m,n>f,, the result will be n action potentials being 
generated at locked phases during m cycles of the sinu- 
soidal forcing function. Figure IA shows a motion 
(which could be also intermittent), close to a one-fourth 
synchronized oscillation in squid giant axons. A similar 
phenomenon can be observed in the Hodgkin-Huxley 
model (Fig. 1B; Ref. 5). 

It is possible to describe the time evolution of a sys- 
tem by making observations at discrete times with the 
period T, (= l/f,), similar to stroboscopic illumination. 
Starting with an initial point represented by P,, the suc- 
cessive points obtained by the stroboscopic representa- 
tion can be denoted by Pi (i = 1,2,. . .), and the transfer 
function Pi versus Pi+l can be plotted (Ref. 138, p. 57; Fig. 
IB). Viewing a plot in which one point is identical to the 
next (i.e., perfect synchronization in which f, = f,), we 
would expect the behavior to be frozen. Similarly, a lim- 
ited set of m points in the plot implies that after m 
periods of the forcing function, the values of the system 
will repeat such that we have a F(n,m) synchronized 
periodic system. (The value of n cannot be determined 
from such a plot.) 

When the frequenciesf, andf, are irrationally re- 
lated, the resulting type of behavior is a quasiperiodic 
oscillation. Its prominent feature is a never-repeating 
time series [Fig. X(2) for the giant axon and Fig. ID (5) 
for the model]. Thus the system will always produce new 
and different points, and consequently, the transfer 
function (Fig. ID; Ref. 5) in principle consists of an infi- 
nite number of points. However, these points are vi- 
sually ordered in a simple fashion in that they all lie on a 
closed curve. 

Until the 198Os, the well-known phenomenon that 

under certain periodic forcing conditions the axon re- 
sponds with an irregular behavior (Fig. lE, Ref. 173) 
was discussed in terms of “irreducible noise compo- 
nents” in the system (124). Matsumoto et al. (173) were 
the first to show that this peculiar behavior results 
from a deterministic system. The complicated structure 
in Figure 1E is obviously different from both the picture 
of a quasiperiodic motion (which is a simple closed 
curve, Fig. Ilo) and the picture of a stochastic motion 
(which will fill the plane without a structure). As with 
the real axon, the model also behaves in a chaotic fash- 
ion under certain conditions (Fig. l& see also Ref. 5 and 
Fig. 9, A and C, therein). 

Let us now summarize two important points: I) the 
irregular behavior of the axon is not due to a noise com- 
ponent in the membrane but results from a determinis- 
tic system, and 2) for the giant axon of the squid there 
exists a powerful model (the 4 Hodgkin-Huxley equa- 
tions) that is able to generate all the types of oscillations 
known from the experimental observations of the axon. 
Even specific ways to move the system from regular to 
chaotic behavior (so-called “routes to chaos”) can be 
identified in both actual axon behavior and the model 
(Z-4,6). Thus the Hodgkin-Huxley model can be seen as 
a prototype of a new strategy of investigation, that of 
modeling the dynamical behavior of a system. However, 
because these self-sustained oscillations were induced 
experimentally in a nonnatural solution, there still ex- 
isted the crucial question as to whether the chaotic 
oscillation could also exist in naturally occurring physio- 
logical systems. This was answered in 1987 by Matsu- 
moto and co-workers (174,176) when they demonstrated 
chaotic oscillations by applying periodic trains of 
current pulses to the silent axon immersed in normal 
seawater. Thus it became clear that axons in particular 
and neurons in general could produce chaotic behavior 
under natural conditions. 

C. Chaotic Homeostasis: Why Nonlinear Systems 
Analysis Might Prove to be a Useful Tool in Physiology 

Traditionally, physiological control systems have 
been viewed as governed by homeostasis. In such a view, 
the body is thought to maintain a steady state in each of 
its critical variables. When perturbations are experi- 
enced, the body responds to this change by restoring 
equilibrium. This concept of homeostasis has emerged 
from negative-feedback models popular in engineering 
that suggest a machine only works well by maintaining 
critical values. In such a system oscillations or erratic 
behavior are viewed as disastrous. The traditional math- 
ematical approach describes this system in a linear 
manner, such that the number and frequency of oscilla- 
tors can be adequately determined from the peaks in the 
power spectrum. 

It has now been realized that this concept may be 
inappropriate when modeling biological systems, such 
as the example presented in the previous section. Using 
such a model with physiological variables that are gener- 
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Model for a forced Hodgkin-Huxley Oscillator 

FIG. 1. A: a subharmonically synchronized oscillation [the naturally oscillating frequency cf,) = 180 Hz, the 
stimulating frequency (f,) = 254 Hz, and the amplitude (A) of the stimulating current = 2 mA]. Waveform of 
membrane potential (top trace) and that of stimulating current (bottom trace) are shown. Length of bar corresponds 
to 80 mV, 4 mA, and 20 ms for membrane potential, the stimulating current, and time, respectively. [Adapted from 
Aihara et al. (5).] B: one-third synchronization in the forced Hodgkin-Huxley oscillator (A = 40.0 mA/cm3,f, = 500.0 
Hz). Left: waveform of membrane potential (top trace) and that of stimulating current (bottom trace). Right: transfer 
function consisting of 3 points. C: quasiperiodic oscillation in forced squid giant axons;f, = 187 Hz,.& = 800 Hz, and 
A = 2 mA. Waveforms of membrane potential (top trace) and stimulating current (bottom trace) are shown. Length of 
bar corresponds to 60 mV, 12 mA, and 15 ms. D: quasiperiodic oscillation in forced Hodgkin-Huxley oscillator (A = 
100 mA/cm’ and.& = 1 kHz). Left: waveforms of membrane potential (top trace) and stimulating current (bottom 
trace). Right: transfer function forming a closed curve asymptotically. E chaotic oscillation in forced squid giant 
axons cf, = 228 Hz,.& = 332 Hz, and A = 4 mA). Waveforms of membrane potential (top trace) and stimulating current 
(bottom trace) are shown. Vertical bar stands for 20 mV and 4 mA. Horizontal bar denotes 10 ms. Ri.ght column in F 
shows corresponding transfer function, which is a complicated structure. F: chaotic oscillation in forced Hodgkin- 
Huxley oscillator (A = 40 mA/cm’ andf, = 100 Hz). Left: waveforms of membrane potential (top trace) and stimulat- 
ing current (bottom trace). Right: a transfer function forming a complicated portrait. 

ally oscillatory (body temperature, blood pressure, lev- 
els of hormones and transmitters), we would expect that 
interoceptors would habituate to a constant environ- 
ment, and thus the result would be a drift rather than a 
constant range of the variable under control (45). Be- 
cause nonlinearity is ubiquitous in living systems, it is 
now apparent that complex dynamical systems better 
describe biological regulation. If this is the case, then we 

must utilize tools specialized to detect nonlinear rela- 
tionships. 

Apart from the analysis of normal states, nonlinear 
systems theory may also provide new insights into dis- 
turbances of dynamical behavior as reflected in patho- 
logical processes. As previously illustrated with the 
squid membrane, the same system can exhibit very dif- 
ferent kinds of behavior, ranging from the normal to the 
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dysfunctional. Because it is the environment of a system 
that determines the particular mode via the control pa- 
rameters, abnormal oscillations may not result solely 
from pathological systems; rather, some unexpected 
change in the environment may cause an intact system 
to switch to a qualitatively different dynamical pattern. 

As discussed previously, whether chaos indicates 
pathological or normal functioning has been debated 
vigorously. While the initial introduction of the term 
dynamical disease in 1977 equated chaos with illness, 
more recent evidence suggests that chaos may play a 
positive role in the survival of the organism. As we can 
see, chaos implies unpredictability, which in turn can be 
an important feature in animal and human behavior. 
For example, the flight of a butterfly or the zig-zag of a 
rabbit must be unpredictable to avoid being caught by a 
predator. Likewise, cognitive functions such as search- 
ing in memory for a concept or the creative solution of a 
problem cannot be described in a linear fashion. Free- 
man (77) speculates that chaos underlies the brain’s abil- 
ity to respond flexibly to the external world and that 
these novel brain patterns are experienced as “fresh 
ideas.” Chaos may also help us to understand how the 
brain is able to organize itself and be directed by that 
organization. To adequately describe these processes, 
models involving simple oscillations do not provide 
enough flexibility. 

II. BASIC PRINCIPLES OF THE THEORY 

OF DYNAMIC SYSTEMS 

A. What Comes Next?: the Difference Equations 

By definition with linear systems, the output is pro- 
portional to the input; that is, by manipulating an input 
variable by a certain amount leads to a change in the 
output variable proportional to that amount. These situ- 
ations can typically be described by simple equations 
that result in simple graphic plots. Thus, in the case of 
linear systems, we always know what comes next. This 
is not the case with nonlinear systems. Although the 
equations that describe the dynamical system may at 
first appear simple, the result may not be so. In this 
section we point out how even a simple equation can be 
used to describe an immensely rich process in which we 
cannot know what comes next. Unlike linear systems in 
which stability is produced, nonlinear models produce a 
variety of outcomes that in the physical world can result 
in qualitatively different behaviors. In this manner we 
want to underscore that this is true not only for mathe- 
matical systems but for also a variety of phenomena 
from physics to physiology. 

In 1845, P. F. Verhulst examined the question of 
how the population of a single species in a closed well- 
defined environment might change over generations. In 
his first model, he required that generations not overlap 

as would be the case with seasonally breeding insects. 
Two constraints characterize the model. The first is that 
the (relative) number of the individuals (x,) in the year t 

should give rise to a proportional number of offspring in 
the next year.2 We can think of this proportion as 
birthrate, which we refer to as r. For example, if r were 
2, then a population of 100 would be followed the next 
year by a population of ZOO, then the next year by a 
population of 400, then 800, and so on. The second con- 
straint is a control factor (e.g., depletion of feeding 
grounds), which would restrict unlimited growth; that 
is, there should be a restriction of the population pro- 
portional to the remaining area (I - x,). In the resulting 
equation, x is normalized such that it lies between zero 
and one. Thus x is expressed as a fraction and represents 
the maximal number of individuals that the resources 
could maintain. Given x,, we now can calculate the num- 
ber of individuals in the next generation 

X,+1 = rxt(l - x,) (1) 

Equation 1 shows the mathematical model, known as a 
“logistic” or “quadratic” map, and is one of the simplest 
nonlinear difference equations (177). The control param- 
eter r is determined by the biological system (i.e., it de- 
pends on fertility, on available resources) Mathemati- 
cally, we know that if we multiply x, times (I - x,), then 
we arrive at the resultant x, minus (xJ2, which graphs as 
a parabola. Thus, as a function of x,, xt+l is simply a 
parabola (Fig. 2A) attaining a smooth round maximum 
value of r/4 at x = l/Z, with the parameter r controlling 
the height and steepness of the hump. The variable r 
must remain in the interval 0 < r 5 4 or the time series 
will “explode” to infinity. 

Using traditional linear thinking in determining 
the population, one might expect that the built-in feed- 
back mechanism forces the population toward a prede- 
termined size. This, however, is not necessarily so. De- 
pending on the value of r, simple nonlinear models are 
capable of producing an astonishing variety of qualita- 
tively different behaviors. If r < 1, as can be easily de- 
rived from Equation 1, subsequent x values will become 
smaller and smaller, and the species will quickly vanish. 
In this case, all trajectories are attracted to x = 0, the 
only stable fixed point. A fixed point (fp) is defined as 
X fp = f(Xf,>. Wh a t ever starting point is chosen (after a 
transient phase), the population reaches a constant 
nonzero value only when 1 < r < rl, with r1 = 3 for the 
quadratic map (Eq. 1). That is to say, if we chose the 
birthrate to be below three (but above one), we find that 
the resulting population moves toward two-thirds the 
size of the original population. Because any number we 
chose in the one to three range will result in the same 
population size, we can see the value of two-thirds of the 
original population as an attractor on our map. Thus, 

2 In general, we can write x,+~ = f(q), meaning that the popula- 
tion at time t+l is strictly determined by the population at time t. 
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starting at any value that differs from the fixed point, 
the population will follow a spiraling pattern with the 
point of intersection of the parabola with the line x, = 
x~+~ = y (Fig. 2%). Using Equation 1, we obtain this point 
of intersection x = l-l//r (i.e., it increases with increas- 
ing r). For r somewhat greater than three (3 < r < 4), the 

SYS tern loses its stability. In this case, two new initially 
stable points of period two are born in an act called 
pitchfork bifurcation, i.e., the population quantity oscil- 
lates between two different values. Then a cycle of pe- 
riod four is reached, and further slight increases in r 
yield cycles of period 8, 16, and so on.” This is also re- 
ferred to as period doubling. However, we should note 
that if r were set at -3.8, the population would increase 
for the first 2 yr and decrease in the third in a predict- 
able manner. Such periods of stability in the midst of 
chaos are referred to as “intermittency.” This illus- 
trates an interesting aspect of ch aotic systems: th e fact 
that the same system can range in its producti .on from 
simple order to great complexity. 

Studying a variety of systems, Feigenbaum (64) has 
shown that period doubling at particular transition 
points is commonly seen as stability changes to chaos. 
The Feigenbaum scenario, in which a fixed point is fol- 
lowed over a cascade of bifurcations to a point of accu- 
mulation yet fails to achieve a definitive period, is one 
well-known route to chaos (243). This famous scenario is 
not only found in most low-dimensional mathematical 
systems but also in physical ones. Some of the earliest 
physical demonstrations include liquid helium being 
heated from below and moved through convection 
(Benard convection; e.g., Refs. 158, 243), electronic cir- 
cuits (147), a bouncing ball (203), chemical reactions 
(Belousov-Zhabotinskij reaction), optically bistable de- 
vices, and acoustics in which water is irradiated with 
sound of high intensity (153, 154). In areas related to 

physiology, Aihara et al. (5) show that for the periodi- 
cally forced Hodgkin-Huxley oscillator, successive pe- 
riod-doubling bifurcations are the route to chaos. Ai- 
hara and Matsumoto (2) also observed this route in the 
periodically forced squid axons. Similarly, Guevara and 
co-workers (107,108) described the dynamics of cell ag- 
gregates taken from the heart of embryonic chickens. 
Glass and Mackey (90,166) developed a model of differ- 
ential-delay equations for the regulation of hema- 
topoiesis. This situation follows a sequence of bifurca- 
tions leading to chaos analogous to that found in the 
logistic map. Periodic fluctuations in circulating levels 
of platelets, red blood cells, and white blood cells de- 
scribed in the clinical literature (e.g., cyclical neutro- 
penia) also can be understood with such a model. This 
results from a stable point, the healthy functioning, be- 
coming unstable and giving rise to a periodic solution. 
Akamatsu et al. (7) proposed such a model for the in- 
trinsic random or pseudo-random mechanism underly- 
ing certain types of muscular tremor, specifically a mod- 
ified quadratic equation. Consequently, such nonlinear 
dynamical concepts as period doubling, bifurcation 
points, and chaotic behavior have proven relevant for 
the understanding of both insect and isometric mam- 
malian types of tremor. 

Next, we may ask what will happen when the pa- 
rameter r becomes greater than r,? In this situation, 
the periodicity is completely lost, and the time series 
varies chaotically. For this reason, rco < r < 4 has been 
referred to as the “chaotic regime.” However, as we 
briefly noted earlier, this does not mean that all aspects 
of this region will be chaotic. This structure, however, is 
a delicate one and in it exists a large number of small, 
and often microscopic, stable (i.e., attractive) periodic 
“windows.” This situation can be described as follows: I) 
such cycles are of even periods, starting very high and 
then descending (e.g., left window in Fig. 2); 2) odd cy- 
cles appear (r > 3.6786. . . ) also in descending order (e.g., 
middle and right window in Fig. 2). Generally, these 
periodic sequences first appear with some basic period n 
then go through a sequence of period-doubling bifurca- 
tions, creating periods 2” X n (“subharmonics”), with an 
accumulation point at k+m ending the particular peri- 
odic window. (More strictly speaking, the cascade is over 
as the stable and unstable solutions, i.e., attractor and 
repellor, collide). The three widest such windows are 
(from left to right in Fig. 2) as follows: basic period six 
(r = 3.62. . .), basic period five (r = 3.73. . .), and basic 
period three (r = 3.82. . .), with rvalues noting the origin 
of the basic periods. All other periodic windows are ex- 
ceedingly narrow in r, with their periods generally being 
extremely high (i.e., some thousands of points). Outside 
of these windows there exist no stable periodic orbits, 
although there is an infinite number of unstable cycles. 
Such dynamic behavior is called chaotic. 

As discussed in section IAI, small changes in initial 
conditions result in completely different time series and 
make long-term prediction impossible. Thus even a sim- 
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FIG. 2. Top: logistic map as de- 
tailed in Equation 1. Construction of suc- 
cessive time points (1, 2, . . .) according 
to difference Equation 1 is illustrated. 
For chosen parameter, r = 3.33 time se- 
ries will oscillate between 4 points (2 
pairs of points, located closely to- 
gether). For a more detailed description 
of logistic maps, see Reference 20. Bot- 
tom: route to chaos illustrated for case 
of logistic map. Instead of using individ- 
ual diagrams to display behavior of 
time series for every value of parameter 
r, information may be assembled in a 
bifurcation diagram; abscissa includes r 
values from 2.8 to 4 in Equation I. For 
each r, all values x are plotted on ordi- 
nate, which corresponding time series 
will assume as time progresses. Bottom 
curve illustrates change in entropy, 
which system will assume for various 
choices of r. For r < 3, time series will 
assume only I stable point, and entropy 
will be near 0. As r increases, time se- 
ries will suddenly start to oscillate be- 
tween 2 points (first bifurcation), and 
entropy jumps to a first level. Next 
jump illustrates transition to period 4, 
then 8, and so on, in more and more 
rapid succession, until a first chaotic 
regimen is reached. There time series 
becomes totally irregular. Chaotic re- 
gions are then interrupted by windows 
with regular oscillations. Note that en- 
tropy drops to lower levels for these pa- 
rameters r. 
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ple equation, such as the logistic map, encompasses a 
surprisingly rich spectrum of dynamical behavior. De- 
pending on the value of the control parameter r, the 
iterations either converge after a transient phase to a 
fixed value, converge to cycles of stable points having 
different periodicity, or most important, the “tran- 
sients” will never converge, giving rise to an aperiodic, 
seemingly random (although fully deterministic) behav- 

ior that is referred to as deterministic chaos. The only 
exception to this rule is that of intermittency, a behav- 
ior characterized by regular motion interrupted by 
“random” bursts (170). 

To summarize mathematically, the general formula 
of a one-dimensional difference equation, the logistic 
equation, is a special case of xfP =f(xfp), wheref(x) is a 
scalar function. Typically, f(x) is noninvertible, since, 
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given x++~, one cannot uniquely determine x,. This is due 
to the fact that for almost each value of x~+~ there are at 
least two possible values of x,. This results in another 
restriction, even for deterministic systems; that is, 
when given a certain segment of the time series, we will 
be unable to compute its history despite the fact that the 
system is formally totally deterministic. We likewise 
cannot predict the long-term future, since the error of 
our prediction will explode exponentially with time. 
Now that we have discussed difference equations that 
represent discrete dynamical systems, we can consider 
continuous time systems in the next section. 

B. Lorenx and Rksler: Famous Attractors and 
Diferential Equations 

The counterpart of difference equations with their 
discrete time steps are systems of (first-order ordinary) 
differential equations. By letting the time step of the 
difference equations shrink to zero, the resultant differ- 
ential equ ations evol ve continuously in time. In physiol- 
ogy as well as in physics, this is the most common way to 
simulate dynamical systems and hence is used more fre- 
quently than difference equations, although difference 
equations may be easier to study numerically. A differ- 
ential equation connects the continuous rate of varia- 
tion of some quantity to that quantity’s current size and 
to the current sizes of some other quantities of the sys- 
tem. Thus a system with m independent variables is 
fully described by m-coupled differential equations 
(first order). 

The general formula of a system of ordinary differ- 
ential equations is 

dx/dt = F [x(t)] 

with x being a vector in an m-dimensional space. 
One way to visualize the patterns defined by differ- 

ential equations is to imagine a multidimensional space 
in which a moving point constructs a curved line. At any 
moment, the location of this one point provides complete 
information about the system’s state. Its projections 
along the various axes (i.e., system’s variables) give the 
values of the relevant quantities that describe this 
unique state (this space is called the phase space). 

For the purpose of a graphical representation of the 
system’s evolution beginning with some initial state 
x(O), a state space (phase space) is configured with axes 
corresponding to the variables of the system. With a 
phase space, the idea is to mathematically and graphi- 
cally represent the variables in the system. The state 
space defines all the possible states of the variables 
under study. Each state of the system can be completely 
represented by a point in this space. A particular set of 
occurrences or points can be connected, e.g., in time, to 

form an evolution of the system. Common terminology 
names the continuous curve describing the motion of the 
system originating from an initial state the trajectory 
or orbit. The set of orbits originating from all possible 
initial conditions generates a flow in the state space. 
Limitations of such a system include the condition that 
every trajectory must be non-self-intersecting and that 
different trajectories originating from different initial 
conditions must not overlap or occupy the same space. 
This arises from the fact that a point in phase space 
representing the state of a system is considered to en- 
code all the information about the system, including 
both its past and future history, which must be unique 
in a deterministic system. This means that there cannot 
be two different pathways leading in or out of one point 
if the system is deterministic. In real dissipative sys- 
tems (i.e., those subject to friction) with internal fric- 
tion and ubiquitous noise, trajectories do not move to- 
ward filling phase space as conservative systems (i.e., 
those that conserve energy and thus are not subject to 
friction), but over time approach a bounded region of 
the state space. This is a subspace of the total state 
space with a dimension not greater than the dimension 
m of the state space. Such a well-defined subspace is 
called an attractor. An attractor, as the name implies, 
appears to bring together a variety of nearby trajector- 
ies over time. An attractor characterizes the dynami- 
cally stable long-term behavior of the system. 

There exists a simple hierarchy of types of behavior 
(attractors) occurring in dissipative systems of differ- 
ential equations. In one-dimensional systems, the only 
possible attractor is a stable fixed point (an equilibrium, 
or resting, state) or a set of such points. In two-dimen- 
sional systems, an additional type emerges, the periodic 
attractor, also referred to as limit cycle, because it is 
characterized by a closed loop in the phase space. Again, 
in three-dimensional systems, another type of attractor 
can be expected. Because of its erratic features it is 
called, in contrast to traditional “ordinary” attractors, 
a strange attractor. 

Although Poincare (208) first described the impor- 
tance of initial conditions for classically deterministic 
systems in 1892, recent history credits Lorenz in 1963 
(161) with first describing a system of ordinary differ- 
ential equations which exhibit a dynamically stable, but 
erratic and nonperiodic, behavior. Interested in the 
problems of long-term weather prediction, Lorenz (161) 
developed a set of three differential equations modeling 
a convective process. Simply said, imagine that, as the 
sun heats the earth, the lower layers of air become 
warmer and lighter than the upper levels, which results 
in a upward motion of light warm air and a downward 
motion of cool dense air. As a result, convection rolls 
transport warmer air upward and cooler air downward. 
When heated even more, this laminar state loses its sta- 
bility and turns into turbulence with the direction of the 
convection rolls becoming chaotic, i.e., a random-ap- 
pearing change emerges over time in the spin orienta- 
tion of the rolls. Lorenz studied this phenomenon in a 
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FIG. 3. Lorenz attractor is shown. 

three-dimensional space through a set of differential 
equations. The equations actually arose from a simplifi- 
cation of the Navier-Strokes partial differential equa- 
tions of fluid dynamics given certain limitations. Today, 
Lorenz’s approach is currently seen as an unrealistic 
approximation of the phenomenon. However, his work 
did become a strong argument for the chaotic nature 
and unpredictability of atmospheric changes. 

Figure 3 illustrates the Lorenz attractor. The trajec- 
tory spirals around a center and passes back and forth 
from one spiral to the other without intersecting itself. 
On the other side, the spiral orbit has some small thick- 
ness, inside of which there are an infinite number of 
closely spaced surfaces with the resultant being that 
trajectories moving on them will never coincide. Such a 
complexly structured surface characterizes strange at- 
tractors. Looking at two trajectories, starting at initial 
conditions that can be as arbitrarily close as desired, 
one can see that the trajectories separate from one an- 
other at an exponential rate. As time continues, this 
leads to totally different futures, previously described 
as the phenomenon of sensitive dependence on initial 
conditions. One consequence of this is that a long-term 
prediction is impossible despite the deterministic na- 
ture of the system. For instance, in meteorology, a lim- 
ited knowledge of initial conditions makes it impossible 
to predict the weather on a long-term basis. It has even 
been suggested that such an insignificant event as a 
butterfly flapping its wings may destroy the predictive 
validity of such a weather system (referred to as the 
butterfly effect). Thus, in this model, the flutter of but- 
terfly wings in New York today is seen to affect the 
weather in Berlin some time later. As Lorenz pointed 
out (161), two initially very similar conditions, differing 
by an imperceptible amount, will eventually evolve into 
two completely different states. 

Another famous three-dimensional system of ordi- 
nary differential equations is the Riissler attractor. In- 
vented for the purpose of studying complex dynamics, 
this system may be seen as modeling the flow around 
one of the loops of the Lorenz attractor. This system has 
the simplest topology that will still produce a strange 
attractor. 

The three ordinary differential equations that gen- 
erate this system are as follows 

dx/dt = -y - x 

dy/dt = x + ay 

dx/dt = b + x(x - c) 

with parameters set at a = b = 0.2. 

This set of equations encompasses three system 
variables (x, y, x) and hence the dynamics can be embed- 
ded in a three-dimensional space. There is only one non- 
linear term, xx. Varying the control parameter (c) gives 
rise to rich dynamic behavior. As with the quadratic 
equation, this system utilizes the period-doubling route 
to chaos (Fig. 4). The periods 1,2,4, . . . can be seen, for 
example, for c values 2.5, 3.5, and 4.0, . . . , respectively. 
As c is increased from 2.5 to 14.2, there is a sequence of 
period-doubling bifurcations from a simple period one 
oscillation. The onset of chaos takes place at the point of 
accumulation c, - 4.233. As c is increased, the single 
closed line with a relative maxima of 2” widens into a 
band of orbits with nonoverlapping trajectories (Fig. 4). 

This motion occurs on what is essentially a band 
formed to a disk. This strange band demonstrates how a 
sensitive dependence on initial conditions emerges, i.e., 
how nearby orbits can diverge exponentially while still 
being confined to a limited region. The unstable steady- 
state point (O,O,O) serves as a “repeller” such that there 
is a tendency for an orbit to enhance its distance from 
(O,O,O) with each pseudo-cycle. This tendency explains 
the divergence of nearby orbits that are separated by 
small lateral displacements on the band. However, 
without a counteracting “force,” the spiraling would 
grow to infinity. The solution comes from topological 
folding, which acts as a counterpart to the stretching 
process of the flow’s bandwidth. In each pseudo-cycle, 
orbits from the outer part of the spiral band are folded 
back into the inner part of the spiral, continuously 
creating folds within folds ad infinitum. As a result of 
this, the almost two-dimensional band on which all mo- 
tion takes place consists de facto of an infinite number 
of infinitesimally spaced sheets. With each pseudo-cycle 
the number of sheets grows as an exponent of two. Be- 
cause the sheets are closely spaced, an experimentalist 
might conclude that the surface is two dimensional 
when in fact the actual dimension is greater. Given a 
compact object composed of an exponential divergence 
of nearby trajectories, a folding of sheets is the only 
solution. Otherwise, the repetitive foldings would pro- 
duce an infinitely large surface of the plane. In this so- 
lution exponential divergence is not a global, but a local 
feature in that two orbits on an attractor cannot diverge 
exponentially forever. Although orbits diverge and fol- 
low increasingly different paths, they eventually must 
return to nearby regions on different sheets, during 
which time, even if brief, the distance between them 
would be insignificant (so-called Poincare recurrence). 
In sum, in three and higher dimensions, it is possible to 
have flows which, in a compact region, continuously ex- 
pand the volume of phase space in some direction or 
directions while contracting them in others. 
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FIG. 4. Four phase portraits of 
Rossler attractor at different values of c 
illustrate period-doubling route to 
chaos. A-D: periods 1, 2, and 4, and an 
example of chaotic attractor are shown, 
respectively. Note that only D plot 
shows a nonclosed curve and therefore 
depends on length of trajectory. Motion 
on band is counterclockwise. Folding 
happens in area of positive y-values by 
ascending and afterward descending, 
both in positive x-direction, whereby 
trajectories on outer part of band were 
brought back in inner part of band, en- 
abling further divergence. 

10 

5 

C. Poincare’ Section and Return Map: Linking 
Differential and Difference Equations 

. 
dl 

As mentioned in section IIB, systems described 
fference equations are better cl .assified and easier 

bY 
to 

study. The question exists as to how we can reduce a 
system of differential equations to one of difference 
equations; that is, how can we force a continuous system 
into discrete states? We answer by describing a Poin- 
care section. 

It was at the end of the last century when the 
French mathematician and physicist H. Poincare (208) 
introduced a method of simplifying phase-space dia- 
grams of complicated systems. He simply sliced the 
bundle of orbits perpendicular to the flow. Said in more 
technical terms, a cu t is made in the flow of an attractor 
in the state space of dimension 3n in an appro priate re- 
gion with a hyperplane of dimension (m-l) perpendicu- 
lar to the flow (Fig. 5). The crossing points of the orbit 
with this hyperplane comprise the Poincare section 
(Fig. 5), and the series of these taken at regular inter- 
vals, the Poincare map. The continuous motion of the 
trajectory in one (pseudo-) cycle is mapped to just one 
point on the section. It shou Id be further noted that the 

will not be time interv al between two crossings typically 
a constant, but will vary around an average. 

Another way to consider Poincare sections is to 
imagine that one is viewing the phase-space diagram 
utilizing a strobe (20). If the strobe frequency is exactly 
the same as the freq uency of the process les under s tudy, 
then a si ngle point would r esul t. This is similar to a 

pendulum or a ball on a str 
dicular to a strobe of the 
be observed would be a single point. If, however, the 
frequency of the strobe were slightly different from that 
of the ball, one would see the ball at a slightly different 

ing in 
same 

perfect rotation perpen- 
frequency. What would 

point on the circle 
this situation the 

at each flash of the strobe. Because in 
frequen .cy of th e ball and that of the 

strobe would be incommensurate, the ball would appear 
as a series of points (i.e., a circle) rather than a single 
point. If the rotation of the ball were da%mpened (e.g., the 
motor controlling the rotation turned off), the rotation 
would gradually become slower until the ball stopped. In 
such a system, we would see a movement toward an at- 
tractor in both the phase space and the points on the 
Poincare section. 

In a Poincare section one dimension is “lost,” and 
the flow discretized. This is because we record only the 
times the trajectory intersects 
a 2-dimensional plane in a 3 

with some su 
-dimensional 

bspace (e.g., 
system). A 

multidimensional periodic attractor can be detected eas- 
ily in this diagram as a fixed set of d points emerging 
repeatedly as illustrated by a Poincare section of the 
multiperiodic Rossler attractor. With a quasiperiodic 
motion in which the periodicities are incommensurable, 
the 
ber 

section appears 
of points which 

as an asymptotically infinite num- 
form a closed curve (a “limit cycle” 

formed by points hopping around). But what about 
other, more complicated sets of points? To explore this 
situation it is helpful to remember that the set of points 
on the surface of the section may be thought of as the 
graph of a system of (m-l) difference equations. Be- 
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FIG. 5. Poincare section and return map of Riissler strange attractor (a = b = 0.2, c = 5.0). A: slicing (transversely 
cut) of flow in front with a plane at x = 0 and y < 0. B: resulting Poincare section indicating that all crossing points lie 
on a line; note that de facto points are not constrained to a simple line but form a package of sheets with some 
minimal height in x-direction, which only looks like a line under conditions of finite precision in calculation and 
limited graphical resolution. C corresponding first return map with its striking resemblance to quadratic equation; 
Rossler described it as a “walking stick” (a smooth bell-shaped curve). Values of y which are lower than crossing 
point of graph with line y(i) = y(i + l), forming inner part of spiral in A, will be enlarged (exponential divergence of 
nearby orbits) by next pseudo-cycle but rest on their sheet (i .e., fixed x-value). They are only subjected to stretching 
process. Other part of y-values, forming outer part of spiral in A, in addition to stretching, is folded, resulting in a 
lowered value of y andin a different value of x;-in other-words, points return lying on a different (new) sheet. In the 
course of flow, combination of subsequent folding and stre 
diverge while orbits far away are brought close together. 

tching acts as a mixing procedure, in which nearby orbits 

cause the solution of the differential equations is lier, theorems suggest that given an infinitely long time 
unique, each crossing point P, determines the next (P,+l). series of just one variable, a complete description of the 

In some three or higher dimensional systems such total system can be derived. 
as the Lorenz or the Rossler-strange attractors with Based on a theoretical understanding of difference 
their (locally) almost two-dimensional flow-it turns equations, the map can be investigated for the occur- 
out that all the crossing points essentially lie on a sim- rence of chaos. One criterion of chaotic motion is a non- 
ple line. Consequently, they can be characterized with linear pattern, e.g., a unimodal graph with an absolute 
the help of only one instead of two (m-l) variables (Fig. 
5). This leads to the result that the system’s dynamics 
can be approximated well by a one-dimensional map. 
Moving to the next step of analysis, we can plot a graph 

slope greater than -1 in almost all parts. In this case 
stretching and folding should be recognizable in the re- 
turn map as illustrated by the Rijssler attractor (Fig. 5) 
as well as by examining successive Poincare sections of 

of the one-dimensional (first) return map (Poincare the flow. A further significant hint for chaos is the exis- 

map), pi+1 vs. Pi (Fig. 5), illustrating the dependence tence of period three in the return map, since it implies 
between successive intersection points. This graph al- period n with n = 1,2,. . . (Li-Yorke theorem, Ref. 157). 
lows us to predict the position of the next crossing point Once chaos is identified in the dynamics of the return 
by knowing the previous crossing point. map, this will also hold for the flow. A theorem of Osele- 

Thus another method of reducing the complexity of dec (197) ensures that the dynamical properties of the 
the phase space is through the use of a return map. For map, e.g., the rate at which nearby orbits diverge, are 
example, a single variable x can be plotted at regular independent of the choice of the slicing (hyper-) plane. 
time intervals such that x is plotted against x,,,. Com- For the Rijssler attractor, a return map is available 
pared with the often complex flow in phase space, a re- by reducing the dimension of the system to be investi- 
turn map contains only a small portion of the original gated to one. However, in many cases this does not hold, 
information; however, it is a highly valid instrument for and the Poincare section yields a set of points dispersed 
studying the stable properties of the system because it in the (m-I)-dimensional hyperplane, making the anal- 
encapsulates the essential dynamical properties of the ysis much more difficult. This may also result with the 
flow from which it is extracted. As we pointed out ear- points of the Poincare section lying on a curve, thus the 
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return map may fail to show any discernible structure. 
In higher dimensional systems, such limitations are fre- 
quently encountered, causing the technique to be less 
helpful. Consequently, its major applications are re- 
stricted to three-dimensional continuous systems. 

An historically popular example of a nonlinear sys- 
tem that may be described by differential equations is 
the “van der Pol oscillator.” Based on work using an 
electrical feedback system to translate electrical 
current into tones, this system produces both regularity 
and chaos. This system has also been modeled such that 
the theoretical oscillator exhibits all types of nonlinear 
behavior previously discussed including period doubling 
routes to chaos, frequency locking, intermittencies, and 
quasiperiodicity (see, e.g., Ref. 150). The generalized 
system for such a nonlinear oscillator, together with 
phase portraits and return maps, is presented in Figure 
6. Although there was little understanding of the cha- 
otic nature of the system, this model was used by van 
der Pol and van de Mark (268) in the 1920s to model the 
heart as well as to envision explanations for a variety of 
phenomena including relationships between species, 
shivering from the cold, menstruation, as well as 
rhythms of the heart (see Ref. 276). 

D. Getting to the Measure: Fractal Dimension, Metric 
Entropy, and the Spectrum of Lyapunov Exponents 
Characterize Attractors 

To date, essentially three different types of mea- 
sures have been employed to characterize attractors in 
physiological systems. First, measures of dimension 
focus on the system’s geometric (static) structure. The 
second type, that of entropy and information, and the 
third type, the spectrum of Lyapunov exponents, cap- 
ture the dynamical properties of the system orbiting 
within the attractor. Roughly speaking, the dimension 
of a system corresponds to the number of independent 
quantities needed to specify the state of the system at 
all given instants. It can also be said that the dimension 
corresponds to the number of independent quantities 
(modes or oscillators) inherent in a motion. As we note, 
it is important to distinguish between the dimension of 
the phase space (a property of the dynamical system) 
and the dimension of the attractor in the phase space. In 
the case of dissipative systems (e.g., those with friction), 
the first measure should be greater because of the typi- 
cally wide range of possible initial conditions of the sys- 
tem, whereas the second measure describes any state of 
the system after it has settled on the subspace of the 
phase space that is the attractor. Take, for example, a 
fixed-point attractor, in this case there is no variation in 
the final phase space position. Its dimension is zero, no 
matter what the dimension of the phase space is. On the 
other hand, the dimension of the phase space may be 
any positive number. For other “simple” attractors, the 
dimension may be one (e.g., a limit cycle or multiperio- 
die attractor). A sine wave for example would have a 
dimension of one. In the case of quasiperiodic attractors 

with n incommensurable frequencies, the dimension 
may be any natural number n. 

I. Measuring geometric structure 

Consider a line with a dimension of one. If we were 
to allow that line to fold back on itself a number of times 
as one might see with a coastline or what is called a 
Peano curve in mathematics, the line could begin to fill a 
plane such that it would appear to be two dimensional. 
Of course there are a number of figures (e.g., snow- 
flakes) that seem to lie in this area between the one-di- 
mensional line and the two-dimensional plane. To de- 
scribe these, Mandelbrot (168) introduced the term 
“fractal,” which comes from the Latin fractus and 
means irregular or fragmented. By definition, a “fractal 
dimension” is a dimension with noninteger values. In 
the same way, a point in a phase space folds and refolds 
with great complexity until a strange attractor is cre- 
ated. How might we describe the dimension of strange 
attractors with their complicated structure of closely 
packed sheets, producing a thickened surface as seen 
with the Lorenz attractor (Fig. 3) for example? We now 
examine some of the strategies proposed to quantify a 
strange attractors in terms of dimension or dimensional- 
ity (47, 63). Well-known approaches include capacity, 
Hausdorff-Besicovitch dimension, information dimen- 
sion, as well as the correlation dimension and its varia- 
tions. 

I) CAPACITY DIMENSION. The simplest of these defi- 
nitions is that of capacity dimension (63,146). This same 
measure is also referred to as Kolmogorow entropy, en- 
tropy dimension, metric dimension, logarithmic den- 
sity, or simply box-counting dimension. To calculate 
this measure the attractor (constituted by a set of n 
points) in the phase space of dimension D (the number 
of equations of the system) is covered by a regular grid 
of D-dimensional boxes of edge length E (called a coarse- 
grained partition). The (minimal) number N(E) of non- 
empty boxes needed to cover the set is counted. If we 
have a straight line of length L and N(E) boxes are re- 
quired, then N(c) = L(l/c). For example, to cover a IO-in. 
line would require five boxes of 2 in. on a side. For a 
two-dimensional square, the formula would be N(E) = 
L’(~/c)~, and for a D-dimensional figure, the formula 
would be N(E) = LD(l/~)D. Taking the logarithms, we 
find that D is equal to the log of N(E) divided by the log 
of L plus the log of (l/c). Because L becomes negligible in 
the limit of small E, the formula is usually written as 
follows with D replaced by a C 

c=lii * [ 1 (2) E 
For practical applications, if c is small enough, the slope 
of a plot In N(c) against In l/t will yield the capacity. 

For a strange attractor, the capacity dimension will 
have, in general, a noninteger value reflecting how 
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FIG. 6. Route to chaos for a van der Pol-like system according to Kowalik et al. (150). System is described by 2 + 
tic/a + a(1 - X cos x)] + x + c(x - X sin x) = -c(A sin ZX$! + B), where right side of formula denotes external driving 
force. One can see that for c-0 and X-2, above equation in first approximation is just well-known van der Pol 
equation 2 = aX(l - x X x) - x + excitation term. For present estimation (fourth-order Runge-Kutta), parameters 
were set at a = 0.8, c = 0.25, B = 3.1, and X = 2.65. Rows correspond to different choices in frequency parameter (f): top, 
f = 0.2615; middle, f = 0.2640; bottom, f= 0.2650. Right column: waveforms. Left column: phase portraits (X vs. x). 

closely packed the sheets of the attractor are. For exam- packages, the packages of sheets become smaller and 
ple, the Lorenz attractor has a capacity of -2.08 (99). smaller. When approaching infinitely dense packed 
Loosely speaking, to achieve a result in a whole dimen- points, the thickness of the respective region ap- 
sion, points must be infinitely densely packed in that proaches zero. 
direction. As we require regions of more and more dense II) HAUSDORFF-BESICOVITCH DIMENSION. The Haus- 
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dorff -Besicovitch dimension, also called the fractal di- 
mension or simply Hausdorff dimension (llZ>, dates 
back to the second decade of the 1900s. This measure can 
be viewed as a generalization of capacity with variable 
edge sizes instead of fixed ones and a millennium of all 
possible partitions. In the case of dynamical systems, 
both will give the same value (63). Again, the practical 
calculation of capacity is made by a box-counting algo- 
rithm based on the definition (236). It becomes increas- 
ingly difficult (e.g., prohibitive storage requirements) 
as the dimension of the phase space increases (>3) (104, 
but see also Ref. 159). 

In “metric” concepts of dimension, only a concept of 
distance is required (63). A serious problem of these met- 
ric concepts of dimension results from the fact that all 
nonempty boxes are equally important in the formula. 
Thus, because strange attractors are spatially nonuni- 
form, i.e., certain regions of the attractor are visited 
more than others, the kno wledge of a very long trajec- 
tory is needed to ensure that e ven very improbable 
boxes are visited. To achieve better convergent behavior 
for finite trajectories (point sets), definitions of dimen- 
sion are required that take the different densities on the 
attractor into accoun t. Therefore, each nonempty box 
has to be weighted by the relative frequency by which it 
is visited by a typical trajectory. Farmer et al. (63) 
called these “probabilistic dimensions.” They require 
both a metric and a probability or “natural” measure 
(47, 63). 

III) INFORMATION DIMENSION. The information di- 
mension 6, originally introduced by Balatoni and Renyi 
@I), can be understood as a generalization of the capac- 
ity by weighing each nonempty cube i with its “mass” 
(probability) (pi) 

Theiler (265) suggests that this measure of dimen- 
sion can also be thought of as how many real numbers or 
bits of information are needed to specify a point to a 
certain degree of accuracy. For example, a point on a 
line can be specified by a single number, whereas a posi- 
tion on a Cartesian plane requires two points. Likewise, 
a location in a three-dimensional space requires three 
real numbers. We can further realize that how accurate 
we locate a point is related to the size of the grid or 
coordinate system. The more accuracy required (i.e., the 
finer the grid), the more bits of information needed to 
specify the position. The numerator of Equation 3 can 
also be understood as the number of bits of information 
required to specify a state of the system within a certain 
accuracy E. This measure is, in the case of uniform point 
sets (i.e., each nonempty cube has the same probability 
p), equal to In N(C) in Equation 2. If the points on an 
attractor are uniformly distributed, then 6 = C, and if 
they are not, then 6 < C. 

IV)CORRELATIONDIMENSION. The most popular at- 

tempts to characterize attrac tors have been based on 
the correlation dimensi .on Y as proposed by Gr assberger 
and Procaccia (97, 99). It should be noted that the term 
“correlation” as used in this context can be confusing. 
However, one way to view this term is to consider a 
linear system such as represented by a sine wave, which 
would result in a circular or elipical limit attractor with 
a dimension of one. Pairs of points chosen along the 
attractor in the phase space would show a strong corre- 
lation. On the other hand, if the attractor is chaotic, 
then by definition the trajectories would expand expo- 
nentially, and pairs of points would not be dynamically 
correlated. 

In determining this measure, pairwise distances 
are calculated. Unlike methods that partition the phase 
space with a regular grid of boxes, this method selects 
spheres centered at randomly chosen reference points 
on the attractor (Theorem of Young, Ref. 280). The num- 
bers of neighbors falling within a sphere of radius c are 
counted for successive higher values of c. Experimen- 
tally, the slope of a plot of the number of points inside a 
sphere of radius E, i.e., C(c) plotted against the radius e 
(both in logarithmic scales) yields the correlation di- 
mension Y, which is a lower bounds to the fractal dimen- 
sion such that correlation dimension less than or equal 
to information dimension less than or equal to fractal 
dimension. Although there is no standard notation in 
this field, C(E) is often written as C(r). The correlation 
dimension u is defined as follows 

In C(E) 
v = lim ~ 

t-0 [ 1 In E 

The correlation integral C(V) defined as 

(4) 

cc > t  l 

[ 

1 
= lim --7j x 5 O(c - IXi - XjI> 1 (5) 

N-+a n i,j=l,i#j 

with the e(x) being the Heaviside function (=I if x > 0, 
otherwise = 0), a standa rd “counti ng” function. Apart 
from “ . . . “, which is the Euclidean distance (norm) be- 
tween the vectors xi and xj (97), the maximum norm 
(given by the largest difference in any coordinate; Ref. 
263) can also be used. Said in simple terms, C(t) can be 
viewed as the number of distances less than a given dis- 
tance c divided by the total number of distances alto- 
gether. From this it can be seen that C(c) can range from 
zero, in which no points are within E distance of each 
other, to one, in which all points are within 6 distance of 
each other. Thus one way of describing the correlation 
integral is to see it as the average number of points on 
the attractor within distance E of each other. If the at- 
tractor is fractal, then the log of the correlation integral 
for a certain range of 6 will have a linear relationship 
with the log of 6. A physiological example illustrating 
the steps involved in determing the correlation dimen- 
sion is illustrated in Figure 7. 

v) POINTWISE DIMENSION. With the use of Equa- 
tions 4 and 5, the pointwise dimension Dzi (63, 280) will 
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FIG. 7. Schematic description of 
procedure to estimate dimensional com- 
plexity. Autocorrelatiqn function is 
computed from time series (1) then de- 
composed into its principal components 
(2). For each point a linear sum of these 
factors is fitted to time series (least 
square) (3). Corresponding weights de- 
termine a point in state space (4. Mov- 
ing along time series, a trajectory is cre- 
ated. Dimension of this assembly of tra- 
jectories is estimated as dimensional 
complexity (also called fractal dimen- 
sion), by the following procedure. Start- 
ing with a distinct reference point of 
electroencephalogram (EEG) time se- 
ries, number of points N(r), which lie in 
a hypercube with sides of length r 
around this chosen point, is counted. 
This counting is performed for subse- 
quently larger radii until ultimately all 
points of time series lie within this hy- 
percube. For a single point attractor, 
number of data points around reference 
point (hypercube with radius r) will be 
0. If attractor is a l-dimensional line, 
number of points will increase with ti; 
for a Z-dimensional attraction, a plane, 
number will increase with ?, and so 
forth. Generally, number of counted 
points will increase with rd, with d de- 
noting fractal dimension of attractor or 
fractal complexity of EEG. It is esti- 
mated as linear slope in (log r/log IV) 
plot (5). A detailed description of proce- 
dures is provided in text. [Adapted from 
Elbert et al. (53).] 

result simply by taking just one reference point instead 
of the sum over all the reference points i = 1,. . . , n. This 
measures how fast the number of neighbor points 
around the reference point increases as the distance c is 
increased. For uniform point sets, where the pointwise 
dimension is independent of the chosen reference point 
i, u and 02 both equal Qi and will yield the same value. 
This point is supported by a computational argument by 
Mitra and Skinner (183), who showed that if the sample 
epoch is adequate (e.g., around 8,000 points for the Lor- 
enz time series, when 7 = O.OOl), then the pointwise sca- 
ling dimension & smoothly converges to the correla- 
tion dimension D,. Convergence occurs as the set of vec- 
tor-difference lengths used to make the log C(n,c) versus 
log c plots contains larger and larger numbers from the 
separate & contributions. Intuitively, this makes 
sense, since given an adequate data string describing a 
strange attractor, or any other attractor, the estimated 
dimension based on several orbits around the attractor 
(i.e., &) should give the same approximate estimate as 

that based on data containing many more orbits (i.e., & 
at the limit). 

VI) POINT D2 CORRELATION DIMENSION. A variation 
of the pointwise dimension, the “point D2” (PDZ) esti- 
mate of the correlation dimension has been develo.ped 
by Skinner and associates (251, 252, 254, 256) The PD2 
does not use all possible vector-difference lengths, like 
the Q algorithm of Grassberger and Procaccia (99), nor 
all vector-difference lengths with respect to a fixed ref- 
erence vector, like the Farmer et al. algorithm (63). 
Rather, it seeks stationary subepochs of the same type 
as the one in which the reference vector is located, then 
tests and rejects those vectors for which linear scaling 
and convergence cannot be found (191,239,273,310,325, 
326). This is seen as an advantage over accepting every 
reference vector as valid, which means erroneously in- 
cluding some vector-difference lengths for which the 
fundamental scaling relationship that defines dimen- 
sion does not hold (198, 262). 

VII) RELATIONSHIP OF DIMENSIONAL MEASURES. 
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Confronted with the variety of measures for determin- 
ing dimensions, two questions arise. First, is it possible 
to integrate them in a “super” concept of dimension? 
Second, what about nonuniform point sets (e.g., strange 
attractors) yielding different pointwise dimensions for 
different reference points. How is it possible to super- 
sede the local description by a global one? 

In 1983, Hentschel and Procaccia (122) and Grass- 
berger (95) introduced the spectrum of Renyi dimen- 
sions d, (originally defined by Renyi; Ref. 223, as an 
information theoretic concept, in the context of dynami- 
cal systems theory. Based on the order q Renyi informa- 
tion 

I XI 
Q 

1 44 

1-q 
ln c 33% 

i=l 

(APPENDIX in Ref. 225), certain scaling exponents d, 
[“generalized (Renyi) dimensions of order q”] which de- 
pend on a continuous parameter q can be defined 

d = 
Q lim - 

E+O i 

I 

ln’c 1 
= 1 

-X 
q-1 

NC4 - 
ln c PZ 

i=l 

In E 

NW 
ln c Pi 

i=l 

In E 

1 Wl) (6) 

coincides with Equation 3, the information dimension. 
For nonuniform point sets (“multifractals”), the d, 

values are unequal for different values of q, yielding 
instead of only one, an infinite number of dimension 
values. With the aid of this formula, three of the dimen- 
sion concepts described previously can be placed into a 
continuum of correlation exponents based on qth mo- 
ments of the probability distribution of boxes: do = C (or 
Hausdorff dimension), d, = 0, d, = u [the sum Czi) pz 
characterizes the chance that two arbitrary points on 
the attractor will have a distance 5 E]. Their order is 
determined by the fact that, generally, d, > d’, for any 
q < q’ (a monotonically decreasing function). For uni- 
form point sets (“single fractals”) d, = d’,. When q is an 
in teger, d, has 

Interpreti 
a physical meani 

ng Equation 6 as 
ng. A 
a sui table average over 

1 

the pointwise dimensions, the second question, that con- 
cerning nonuniform point sets yielding different point- 
wise dimensions for different reference points, can also 
be answered. As q is varied, different subsets, which are 
associated with different scaling indexes (i.e., pointwise 
dimensions), become dominant. Large positive values of 
q emphasize the most concentrated regions of the phase 
space (small pointwise dimensions), whereas large nega- 
tive values emphasize the most rarely visited regions 
(large pointwise dimensions). So the d, values are able 
to reflect that an attractor may have regions of differ- 
ent densities and therefore can be viewed as a character- 

ization of the nonuniformity of the point set. The larger 
the range of d, values, the more “nonuniform” the 
point set. 

2. Describing the evolution of a system 

In describing how often various areas of the phase 
space are visited (i.e., the density of a region), measures 
of dimension emphasize the static qualities of the at- 
tractor without regard to time. To study the dynamical 
characteristics, i.e., the evolution of a system, we can 
utilize measures of entropy and the spectrum of Lya- 
punov exponents, which help us to understand the man- 
ner in which trajectories develop over time. It should be 
noted that these measures are specific to dynamical sys- 
tems, whereas the measure of dimension can be defined 
for any fractal measure (point set). 

I) CONCEPT OF ENTROPY. To introduce the concept of 
entropy, it is useful to recall the information dimension 
described above. Entropy estimates the (average) infor- 
mation gained by observing a state of the system with 
precision E. One view of information is to consider the 
dynamical process as a machine that takes the initial 
input and generates a string of numbers (245). In the 
case of a fixed point or periodic orbit (e.g., as generated 
by a sine wave), each orbit is the same and thus after a 
time no new information is gained by considering addi- 
tional orbits. Said in other words, there is no uncer- 
tainty in such a system. Thus it is easy to predict the 
outcome before an observation is made of the next orbit. 
However, in a chaotic system, each orbit is new to the 
observer, and thus new information is gained. With new 
information, prediction before an observation of the 
next orbit would become more difficult. Such a system 
can be seen as creating information. The question now 
becomes how can we measure the amount of informa- 
tion created. 

The “dynamical” question, how much information, 
on average, is gained (or lost) by observing a portion of 
the system’s evolution (i.e., a subset of the full trajec- 
tory) can be answered by the metric of Kolmogorov- 
Sinai (K-S) entropy (146). It measures the degree of 
“chaoticness” of the system, or the long-time average 
rate at which information is generated by the system, or 
equivalently, the rate at which current information 
about the system is lost. K-S entropy is inversely pro- 
portional to the time interval over which the state of the 
system can be predicted, given that one knows an initial 
state with precision c as well as the evolution equations 
of the system. 

We know that the trajectories of chaotic systems 
emerging from nearby (but indistinguishable within a 
certain limit) initial conditions diverge exponentially 
and evolve into distinguishable states after a time. Be- 
cause of this sensitivity to initial conditions, chaotic 
systems continually generate new information, thus 
making any long-term prediction impossible. In a cha- 
otic system, if we begin with a certain precision of mea- 
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surement c, such that two initial conditions appear insig- 
nificantly different (i.e., starting in the same box and 
less than E distance apart), we will discover that these 
two conditions will become significantly different (i.e., 
visit 2 different series of box sequences) as the system 
evolves in time. To be more precise, if we partition the 
attractor into N(E) boxes s,, . . . s,with box size E, then “M 
successive measurements, taken at regular time inter- 
vals 7, will yield a sequence of boxes (sl, . . . s,) visited by 
the observed trajectory. Now, let P(s,, . . . sN) be the 
joint probability of finding the trajectory at time 7 in 
box s,, at time 27 in box s,, . . . , and at time ~27 in box s,. 

The K-S entropy (K> is then defined as (62,98) 

h 4.5 

8 1 1 point of phase transition 

K =- lim lini lim 
7-O c-0 m-cc 

X- 
L 

’ 
m7 Sl 

2 P(s, . . . s,) X In P(s, . . . s,) 
- . . s, 1 (7) 

The time for which the behavior of the system can 
be predicted is proportional to l/K. Thus, if K ap- 
proaches 0, i.e., no change in information, then the sys- 
tem becomes fully predictable and new measurements 
provide no additional information. In contrast, in the 
case in which K approaches infinity, the system be- 
comes a stochastic process. For a chaotic system, how- 
ever, the metric entropy will have a positive finite value. 
The greater this value is, the more chaotic the system. 
For applications with cardiovascular data, Pincus (204) 
has modified the K-S entropy measure to require less 
computational resources. The resultant measure, not ac- 
tually an estimate of K-S entropy, is referred to as ap- 
proximate entropy. It has been used to measure the 
amount of regularity in a series of heart beats and other 
physiological signals. 

As in the case of dimensions, entropy can be gener- 
alized to a set of order q Renyi entropies (98), the dynam- 
ical counterparts of the Renyi dimensions 

K= - lim lim lim 
7+0 c-0 m-co 

[ 

1 1 
X-- m7 l - 4 In 2 pq(s, . . . s,) 1 (8) Sl... s, 

and, analogously, K2 (as for d, = u) is of all Kq the easiest 
to calculate. K. corresponds to the topological entropy, 
which is the dynamical analog of the Hausdorff-Besico- 
vitch dimension, and Kl is the K-S entropy K. 

An example of estimating the K2 entropy of sponta- 
neous MEG activity is presented in Figure 8. As can be 
seen, in the middle of the record the entropy rapidly 
jumps to a different level, indicating a phase transition 
in the regulation of neural mass activity. 

II)LYAPUNOVEXPONENTS. Anotherveryimportant 
fundamental measure of a system’s dynamic is the spec- 
trum of characteristic Lyapunov exponents (165, 24.23, 
which completely describes the characteristics of the 
trajectories in phase space. In comparison to K-S en- 

2.54 - ’ 

2 -1 time (set) 

FIG. 8. Example for evolution of K, entropy (following IQ. 8) for a 
15-s magnetoencephalogram (MEG) segment from 1 subject. A 7.5-s 
time window was chosen for present estimation and scanned across 
whole interval. MEG was recorded over left 
relaxed waking state with eyes open. 

temporal region during 

tropy, which is seen as a measure of the rate of informa- 
tion flow, Lyapunov exponents can be viewed as mea- 
suring the rate of exponential divergence of nearby tra- 
jectories . As a digressio n, it should be noted that, 
whereas trajecto ries in ch aotic systems are sensitive to 
initial conditions, the overall structure of the attractor 
tends not to be. In practice, one takes a number of initial 
conditions spread over the trajectory to calculate the 
average Lyapunov exponent. The Lyapunov exponent is 
written as X and may be negative, zero, or positive. If the 
exponent X is negative, the trajectories converge over 
time, and the system is not chaotic. This represents the 
condition in which insignificant differences in the ini- 
tial conditions (e.g., x and x + E) become even less so as 
the system evolves. If the exponent is positive, then the 
trajectories diverge; that is, insignificant differences in 
the initial conditions become significant over time. In 
this situation, the evolution of the trajectory is sensitive 
to initial conditions and by definition chaotic. Thus the 
presence of a positive Lyapunov exponent signifies a cha- 
otic system. For n-dimensional systems there are n Lya- 
punov exponents such that the spectrum consists of as 
many exponents as there are dimensions in the phase 
space (not the attractor). Each exponent measures an 
average rate of exponential divergence (>O) or conver- 
gence (CO) of infinitesimally close trajectories on one 
specific axis. These orthogonal axes are chosen such 
that they have a fixed relation to the trajectory, and 
hence rotate within the phase space, as the system 
evolves. 

Consider, for instance, a continuous dissipative sys- 
tem in a phase space with dimension D > 2. According to 
the definition of an attractor as a bounded subset in the 
phase space surrounded by a basin of attraction, at least 
one negative exponent must exist. This reflects the fact 
that nearby trajectories starting in the basin of an at- 
tractor converge on it as time progresses (during which 
time on the average, their initial distance with regard to 
at least one direction decreases exponentially). If the 
attractor is a fixed point, all the exponents would be 
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TABLE 1. Spectrum of Lyapunov exponents provides a 
useful classiJication of attractors 

Dimension 
of Phase 

Space Exponents Type of Attractor 

Spectrum of 
Lyapunov 

- 

-7 - 
0, - 

-9 -7 - 
0, -? - 

0, 0, - 
+, 0, - 

Fixed point 
Fixed point 
Limit cycle (1 torus) or periodic 

attractor 
Fixed point 
Limit cycle (1 torus) or periodic 

attractor 
Two-torus or quasiperiodic attractor 
Strange attractor (chaos) 

+, Positive exponent; -, negative exponent. 

negative. If the attractor is not a fixed point, at least one 
exponent will be zero, ind icating that, in at least one 
direction of the flow, the distance will not vary exponen- 
tially with time for two nearby trajectories. As repeated 
throughout, a hallmark for a strange attractor is the 
exponential divergence of nearby trajectories. This phe- 
nomenon will result in a positive Lyapunov exponent for 
the corresponding direction in space, which is the direc- 
tion transverse to the flow on the attractor. Moreover, 
the magnitudes of an attractor’s positive exponents are 
measures of the chaoticness of the attractor such that 
the more positive the exponent(s), the more vigorous is 
the stretching effect in that particular direction (the 
folding is not measured by the Lyapunov exponents), 
and the smaller is the predictability for the evolution of 
such a system. The spectrum of Lyapunov exponents not 
only quantifies the behavior of orbits on the attractor, 
which is described by the nonnegative exponents, but 
also encompasses the behavior of transient trajectories 
that approach the attractor through the negative expo- 
nents. By the latter, one can think of transients or of 
perturbations of the system’s state. Because of the dis- 
sipative nature of the system, the sum of all Lyapunov 
exponents must be smaller than zero. 

As seen in Table 1, the spectrum of Lyapunov expo- 
nents can provide a useful classification of attractors. 
The Lyapunov exponents in the spectrum are presented 
in decreasing order. It should also be noted that in 4-di- 
mensional space (not shown in Table l), a new type of 
behavior, hyperchaos (235), can emerge and is charac- 
terized by two positive Lyapunov exponents. It is possi- 
ble only with at least four dimensions that two positive 
Lyapunov exponents become possible. 

To give a technical mathematical definition of the 
Lyapunov spectrum, consider a set of initial conditions, 
starting in an infinitesimally small D-dimensional 
sphere B,(x) of radius r around a point x. After a time 
t + 0, the sphere will be transformed under the action of 
the nonuniform flow into an ellipsoidal set, the length of 
which ith semi-axis on the average is approximately 
reCtAi) for almost all x in the basin of the attractor. The 
semi-axes &with i = 1. . . D, which defines the axes of a 
local coordinate system, are nothing more than the Lya- 
punov exponents. They are given by 

xi = 
1 riw 

lim lim - In - 
At--co r-0 [ 1 t r 

(9) 

where q(t) is the length of the semi-axis i after the time 
t. If the nu 
rithm, the 

mber two is chosen 
unit of the exponen 

for 
ts w 

the basis 
ill be bits 

of the loga- 
per second, 

or for a discrete set of points, bits per iteration. The 
limit r-0 preven ts, in th 
the el .lipsoid from becomi 

course of the folding process, 
g distorted and maintains or- 

thogonality of its semi-axes. (For a more rigorous defini- 
tion in terms of the Jacobian matrix, see Refs. 47,197.) 
For dissipative systems, the sum over all D exponents is 
negative, indicating that an initial volume contracts ex- 
ponentially fast on the average. In contrast, for conser- 
vative systems (without friction) the sum becomes zero. 

For an analytical system, the whole spectrum can 
be calculated using the Jacobian matrix of partial deriv- 
atives at point x (23, 246). For empirical investigations, 
it 
ti 

is necessary to reconstruct the attractor from a 
.me series, which is generally noisy and of finite 1 

scalar 
ength. 

Before the 198Os, it was not generally possible to esti- 
mate Lyapunov exponents of an experimental system. 
Only systems that produced a one-dimensional Poincare 
(return) map could be analyzed. By 1985, a method to 
estimate all nonnegative exponents as well as some neg- 
ative ones was introduced by Eckmann, Ruelle, and co- 
workers (46,47; see also Ref. 241). In the same year, Wolf 
et al. (277) proposed an 
est exponent and, in pr 

algorithm to 
inciple, the s 

estimate the 
#econd expone 

larg- 
nt as 

well. As the latter approach proved its superiority over 
the former (270), it has become widely used. However, 
Eckman et al. (46) were able to show that the major 
drawback of the Eckmann-Ruelle algorithm (its depen- 
dence on the embedding dimension) suggested in pre- 
vious work does not exist, at least for an improved pro- 
cedure. It has also been suggested (39) that, in the origi- 
nal comparison (270) of the two methods, the 
implementation of the algorithm of Eckmann-Ruelle 
was flawed. Thus the Eckmann-Ruelle procedure may 
be of interest, since 
part of the spectrum 

it provides estimates for a larger 

In the Wolf et al. (277) procedure, an arbitrarily 
chosen trajectory, which they refer to as the “fiducial 
trajectory,” is followed in its evolution through an at- 
tractor, reconstructed through temporal and/or spatial 
embedding to the end of the data set. In this procedure, 
one continuously looks for points in its locally nearest 
neighborhood and measures the separation of the pairs 
over time. To avoid folding processes (the spurious ele- 
ment problem, see, e.g., Ref. 261) that would cause an 
artificial decrease in the distance, a new neighboring 
point has to be substituted whenever the evolved dis- 
tance exceeds some specified value. The constraint is 
that the new point shows approximately the same orien- 
tation to the fiducial point as the old one, which avoids 
contributions from other Lyapunov exponents. For sim- 
plicity in actual practice, instead of using a variable 
time step between two substitutions, one can simply 
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take a fixed time step. The average divergence rate is 
then finally computed as follows 

where ?@(tk) is the separation that evolved from the ini- 
tial distance r(t& and m indicates the number of re- 
placements made in the time t, - to. 

The data requirements for low-dimensional sys- 
tems (dimension ~3-5) are between some thousands and 
ten thousands of points (46, 65, 270, 277). However, for 
higher dimensional systems, the calculations quickly 
become unfeasible because the amount of data required 
grows exponentially with the dimension d of the attrac- 
tor (i.e., ~10~). In a physical system (e.g., Rayleigh- 
Benard convection), two positive exponents were ob- 
tained applying the Eckmann-Ruelle method with 
40,000 points (600 periods of the main oscillation) (46). 
The Wolf et al. (277) algorithm was able to estimate 
both positive exponents of Riissler’s hyperchaos (dimen- 
sion 3.005) using -32,000 points. However, it should be 
noted that it is not only the number of points but also 
the total recording time that should be considered (46). 
Both preceding algorithms are fairly insensitive to vari- 
ations in the fitting parameters (e.g., time steps 7, criti- 
cal distance r, and embedding dimension 0) (270). 

A good survey on the methods described previously 
is available (39). New algorithms and improvements of 
the described algorithms are also available (103, 242, 
244,259; together with Ref. 260, where an alternative to 
Lyapunov exponents is described). Analogous to the 
scaling function f(cu) in the theory of dimension (Ill), 
generalized Lyapunov exponents (100) can be defined, 
and a scaling function for the first (effective) Lyapunov 
exponent can be derived (18, 96,240). Experimental ex- 
amples exist for a laser system (259). The spatial distri- 
bution of the local largest Lyapunov exponent of brain 
activity is presented in section IV (Fig. 15). 

There exist relations between Lyapunov exponents 
and dimensional estimates. Kaplan and Yorke (141) 
conjectured a relationship between the information di- 
mension 0 and the positive exponents 

where we assume the Lyapunov exponents to be ordered, 
X, > X, > X > X, and where j is the largest integer so that 
X, > X, > X > Xj > 0. The term dKY is sometimes referred 
to as the Lyapunov dimension. A full discussion is avail- 
able (61, 63, 97, 99, 149, 156, 187, 236, 263). For analyti- 
cally defined models, dKy may represent the easiest way 
for computing the dimension. However, some authors 
use the Lyapunov dimension as means of determining 
the upper bounds of the information dimension. 

In terms of metric entropy, Pesin’s theorem (202) 

states that under certain preconditions, the sum of the 
positive exponents is equal to the metric entropy KI. 
Thus, for a strange attractor with its spectrum (+, 0, -), 
the largest exponent coincides with the metric entropy. 

E. Comparative Overview of Methods for Calculating 
the Correlation Dimension 

Because a variety of studies, which we discuss in 
sections IIE3 and 11E4, emphasize measures of dimen- 
sionality, we now present a more procedural under- 
standing of three of these dimensionality measures as 
applied to physiological signals. These are the correla- 
tion dimension (D&, the pointwise dimension Dzi (also 
called the pointwise scaling dimension (PWSD), and the 
point-D2 (PDZ). In section IID, we discussed these mea- 
sures mathematically. Comparison among the three 
methods of measuring dimensionality using sine waves, 
the Lorenz attractor, and the Henon attractor are 
shown in Figure 9. Figure 10 graphically illustrates the 
steps required to move from a physiological signal to the 
dimensional estimate. 

I. Grassberger-Procaccia correlation dimension 

The correlation dimension (D2) of a time series is 
defined as C(n,r) - r D2, where C(n,r) is the cumulative 
number of all rank-ordered vector-difference lengths 
within a range (r) and n is the number of vector-differ- 
ence lengths (the - sign means, “scales as”) (99, 198, 
262). Vector differences (as described in Fig. 10) are 
made as follows: I) a reference vector is constructed that 
begins at a specific point in the data (the i vector, Fig. 
lOc> and takes a specified number (m) of sequential 
time steps in the data stream that are of a fixed length t 
(Fig. 10, B and C); each data value encountered by the 
time steps is used as one coordinate of the m-dimen- 
sional vector (Fig. 10, C and 0); 2) a different vector (j 
vector, Fig. 1Oc) is then made by beginning at a differ- 
ent starting point, but using the same number of time 
steps; and 3) the difference vector is made by subtract- 
ing the i vector and j vector from one another (Fig. lOD, 
far right). 

Normally the reference i vector is kept at a fixed 
place, while the j vectors are made, one for each point 
throughout the data, except the one where the i vector 
is. The i vector is then changed, and the j vectors are 
again constructed by running through the entire data 
series. The unique feature of the D, algorithm is that all 
possible vector differences (i.e., at a given embedding 
dimension m) are made. Then the vector-difference 
lengths (their absolute values) are rank ordered, creat- 
ing the D, set for that embedding dimension (m = 3 for 
the example in Fig. IOC, bottom). 

The next step in the algorithm is to make a 
log C(n,r) vs. log r plot of this rank-ordered histogram of 
vector-difference lengths (Fig. lOE, left); a range value 
(r) (i.e., bin width) that initially includes only the small- 
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a 
FIG. 9. Comparison of relative accuracies of 3 

I- 

algorithms [sine (S), Lorenz (L), and Henon (H)] for 

a 
Q 

estimating correlation dimension when used on non- 
stationary data. Several time series (top) with differ- 
ent known (169) dimensions (shown beneath each sub- 
epoch) were linked together to make nonstationary 
time series (6,000 points). “Sampling rate” was ad- 
justed for each subepoch so that same 7 step could be 

m 

used throughout (7 = 1). Subepoch means of point D, 
n 
II, 

(PD2; shown as numbers beneath each subepoch) are 
generally seen to be more accurate than either those 
of classical D, (i.e., a single point, large arrow) or 
mean “pointwise” scaling dimension (PWSD). Latter 0 
shows a larger variance (small arrows), especially at cf) 
transitions (left small arrow). s 

n 

ol 
n 

est vector-difference length is continuously incre- data epoch, but they alone are the basis for the log-log 
mented in size, and the corresponding number (N) of plot and the consequent slope and ‘yn pairs. This means 
vector-difference lengths in each range are continuously that since “I&’ is chosen sequentially for each digitized 
counted. Thus a log-log cumulative histogram is made, point in the time series, dimension is estimated as a 

CORRELATION DIMENSION 

NONSTATIONARY DATA 

b 
.  

1.09 

C, whose size is related to the values of r and of the total function of time as well as its position on the attractor. 
number of vector-difference lengths. 

The next step is to measure the slope of the linear 
region in this log-log plot; this linear region reflects the 
values of r over which the model C(n,r) - rD2, or D, - 
log C(n,r)/log r, is valid. The value of ‘yn is incremented 
and the corresponding slope noted, thus yielding slope 
and m, pairs (Fig. IOF, right). The values of 332/ are se- 
lected to span the size of the expected 02 value (that is, 
m, ranges from 1 to 20, + 1). The number of embedding 
dimensions is relevant up to the point where its incre- 
ment is no longer associated with increased slope (i.e., it 
is convergent). 02 then is the slope of the linear region at 
the convergent values of m. 

2. Pointwise dimension Dzi (also called the pointwise 
scaling dimension P WSD) 

3. PD2 algorithm 

The “point-D2” estimate of the correlation dimen- 
sion (PDZ) was developed by Skinner and associates 
(251, 252, 254, 256).4 Calculating the PD2 is similar to 
that of the PWSD; that is, the reference vectors (nref, the 
current i vectors) remain fixed while the j vectors sam- 
ple the whole data series to make the D, sets for each 
multidimensional (m) phase space. The j vectors consid- 
ered, however, must arise from a subepoch that mani- 
fests scaling characteristics similar to those surround- 
ing the i vector. Also, the PD2 rejects unsuitable esti- 
mates that do not result in linear scaling or clear 
convergence; these rejections could result from noise or 
other artifacts in the data, or from an insufficient sam- 
ple of stationary subepochs. The PD2 does not use all 

The pointwise scaling dimension was suggested by possible vector-difference lengths, like the Grassberger 

Farmer et al. (63) to be an estimate of D2 that was per- and Procaccia algorithm (D2), nor all vector-difference 

haps less sensitive to nonstationarities (i.e., changes in lengths with respect to a fixed reference vector, like the 

autocovariation over the time series) because the refer- Farmer et al. (63) algorithm (PWSD). It seeks its own 

ence vector (nref, the current i vector) is fixed for each 
estimate and dominates the calculations. In this proce- 
dure, the j vectors, which are made with respect to the 4 The software for the PD2 is available free of charge from Neu- 
single reference vector, still span and probe the entire rotech Laboratories, Box 9797, The Woodlands, TX 77830. 



24 ELBERT, RAY, KOWALIK, SKINNER, GRAF, AND BIRBAUMER Volume 74 

subspecies of stationary data with which to make the 
vector differences, then it tests and rejects those esti- 
mates for which linear scaling and convergence cannot 
be found. Accepting every data point as a valid coordi- 
nate in the reference vector would mean erroneously A 
including those vector-difference lengths for which the 
relationship C(n,r) - rD2 does not hold. The model for 
the PD2 is C(n,r,n,*e,) - rD2, where nTef is an acceptable 
reference vector showing scaling within its own subspe- 

A/D 

ties; that is, 1) linear in the log C(n,r,n,,,) versus log r 
plot, and 2) convergent in the slope versus YYZ plot. Be- 

AUTOCORRELATlOfi 

cause each nzef has a new coordinate that could be of any uk 
value, the PD2 values are independent of each other, and uLn TIME 

this justifies using the mean PD2 values over a station- 6 0 
DELAY 

ary subepoch as the best estimate of the correlation di- 

owsd pp 
c) 

c> 1 
\ IST ZERO CROSSING 

T =2 
mension. 

4. Selection of7 

The value of 7 is irrelevant if the number of points 
in the time series is infinite, a condition which is never 
approached for biological data. A conventional way of 
determining the size of the 7 step is to calculate the first C 

A/D . I 1 I a , 

4 
Y 7 

1 T 
zero crossing of the autocorrelation function of the data 
(Fig. 1OB). When multiple peaks are present in the 
power spectrum (i.e., the fast Fourier transform of the 
autocorrelation function), as is the case for the Lorenz 
time series, it is often suggested that 7 be selected as the 
number of digitized values in a quarter-cycle of one of 
the higher dominant frequencies. One should be 
cautious about 7 selection when nonstationarities arise 
in finite data. In this case, each subepoch may require a 
different 7 for adequate sampling of the attractor. Thus 
the autocorrelation function and power spectrum 
should be evaluated separately for each subepoch. 

describing system properties, but there exist numerous 
problems in applying these measures to actual physio- 
logical data. In fact, it is suggested that major difficul- 
ties result from the indiscriminate application of cha- 

F. Consideration in the Application to Physiological 

otic dynamics (i.e., formulas) to physiological time se- 
ries before understanding the actual mathematical 
properties of the signal (204). As can be seen, several 

Time Series 

authors (e.g., Ref. 196) note that the presence of a fractal 
dimension alone in a time series is not sufficient to indi- 
cate the presence of a strange attractor and, in fact, may 

1. Deterministic versus stochastic processes 

have been produced by a filtered stochastic process. 

Measures of system complexity such as dimension- 

They conclude that “observing a finite correlation di- 

ality, entropy, and Lyapunov exponents are useful in 

mension from experimental data does not necessarily 
imply the presence of deterministic chaos,” since there 
exist stochastic processes that give such a value also. 
Theiler (266) has shown how the error of dimensional 
estimation increases when the sample size is decreased. 
He (266) has also pointed out the necessity of discrimi- 
nating low-dimensional chaotic data from filtered high- 
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FIG. 10. Calculation of correlation dimension. A: raw data and its 
digitized form (A/D). B: autocorrelation function, showing where 
correlation coefficient (R) crosses 0 point on time-delay axis (i.e., sepa- 
ration of 2 points correlated in time; correlation is 1.0 with a separa- 
tion of 0 time); 7 is found to be 2 digitized values. C: T jumps are used to 
select digitized voltages to apply as coordinates for an embedding di- 

m 

mension of 3. D: plots of selected points result in an i vector and a j 

E 

vector; their difference (ij-DIFF) makes 1 value in vector-difference 
length histogram (D2 SET). E: plot of log N vs. log r for all embedding 

N 

dimensions (Left) and plot of slope found in linear scaling regions for 
each embedding dimension (right); convergence is observed at m = 2, 
and slope (D2) at this value is indicated by arrow. 

DIFF 

2 

dimensional noise, which can appear to be low dimen- 
sional if filtered enough. Some have addressed this issue 
statistically, by comparing their dimensional estimates 
of biological data with those of white noise filtered by 
the same data acquisition system (e.g., Ref. 254). 

Thus an important issue relates to the fact that 
measures of system complexity do not, in themselves, 
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give any insight into whether the system under study 
was the result of a deterministic or a stochastic process. 
Kaplan and Glass (139) suggest one method for making 
a determination as to whether the underlying signal is 
generated by a deterministic or stochastic process. The 
method is based on an observation by Takens (262,263) 
that all the tangents to the trajectory in a given region 
of phase space generated by a deterministic system will 
have similar orientations as compared with those gen- 
erated by a random process. Other techniques will likely 
be developed for this important concern. 

2. Stationarity and short-term changes in dimension 

By definition, stationarity refers to a property of a 
time series in which the mean and the variance as well 
as the autocovariation remain constant over time. This 
is an important condition for experimentalists, since a 
variety of signal analytic procedures, including inferen- 
tial statistics, assume stationarity. Biological signals, 
such as electroencephalography (EEG), are unlikely to 
remain stationary over long intervals, especially of the 
length theoretically considered in the calculation of di- 
mensional estimates. Some investigators (180, 182, 251, 
252,254) have even suggested that such requirements as 
stationarity represent a fundamental flaw in the appli- 
cation of chaos theory to biological systems. 

One solution that has been proposed to this problem 
is to use short epochs of such signals as EEG. Data 
lengths varying from 20-30 s to even less than 1 s in the 
case of evoked potentials have been used. In terms of the 
ZO- to 30-s epochs of EEG, it has been assumed that the 
error in the dimensional estimate that arises because of 
the small data samples will be systematic, thus enabling 
control and experimental comparisons to be made. Thus 
a measure of dimensional differences between condi- 
tions or between subjects should remain useful because 
the errors will be approximately the same in both cases, 
and therefore, the results will still be suitable for statis- 
tical testing. 

In terms of the even smaller epochs of 1 s or less, 
Skinner and associates (166, 183, 254, 255), using data 
recorded from the olfactory bulb of the rabbit during 
behavioral quiescence, reported that epochs as short as 
500 ms were necessary to achieve statistical stationar- 
ity. After the presentation of a novel odor, the 500-ms 
epochs still appeared to be stationary within this condi- 
tion. However, dimensionality (Q) estimates were ob- 
served to be statistically significantly increased com- 
pared with control. Similarly, Rapp et al. (218) proposed 
that human EEG epochs of 1 s would remain stationary, 
and they found that following a target stimulus the & 
values were significantly lower than those following a 
nontarget stimulus. 

One problem with these brief-interval studies is 
that the poststimulus dimensions may appear to be sta- 
tionary, when actually they are not; that is, the dimen- 
sional shift may not change to a new stable state but 
may actually undergo a variety of rapid nonstationary 
changes. Most event-related potential studies indicate 

that indeed a variety of different generators are sepa- 
rately activated within the 500-ms poststimulus in- 
terval. 

A second aPPr0 lath to solving the problem of data 
nonsta tionari ty has bee n to use a method for continu- 
ously estimating the dimension, with the expectation 
that the reference vector, which spans only a short in- 
terval, would remain stationary and would dominate 
the calculations, making the overall estimate less sensi- 
tive to nonstationarities (63,181,252,258). Farmer et al. 
(63) developed the pointwise scaling dimension (re- 
ferred to above as Q), which Mayer-Kress et al. (181) 
report as an improvement over the traditional Grass- 
berger-Procaccia method in a study examining biologi- 
cal data (EEG, EMG, heartbeat intervals). However, 
errors with this method could arise because the method 
assumes data stationarity over the whole epoch. 

Skinner and associates (250,252,255) developed the 
point-l), method, which they believe to circumvent the 
requirement for data stationarity altogether. As dis- 
cussed previously, the point-l), uses an algorithm in 
which each reference vector (i.e., the “point”) seeks only 
its own stationary subepochs in which to make the vec- 
tor-difference lengths that are used to determine the 
dimensional estimate at that point in the data. When 
applied to human event-related EEG data of the type 
previously used by Rapp et al. (218), it was found that 
the dimension does not appear to shift a unitary value, 
but rather changes continuously during the 500-ms pe- 
riod following the stimulus. Skinner has argued the PD2 
is inherently more sensitive to the output of the under- 
lying biological system than is a stochastic measure 
[e.g., the signal-averaged mean (183) or the standard 
deviation (250,256)] used on the same data. This point is 
illustrated for the human brain in Figure 11. In Figure 
11, he shows that dimensional changes related to differ- 
ences in instructional set can occur without a change in 
the actual event-related potentials. This type of sensitiv- 
ity with the PD2 reveals features in both the nervous 
system (e.g., sites of single-trial information storage) 
and heart [e.g., vulnerability to lethal arrhythmias 
(251)] that have not yet been observed by other methods. 

3. Use offilters and comparison with white 
and colored noise 

Experimentally, physiological signals are generally 
filtered in some manner by both analog and digital 
filters. This has posed the practical problem of how the 
filtering process itself influences various measures of 
dimensionality. Some researchers (e.g., Refs. 17, 185) 
have suggested that if the filter can be described by 
differential equations, then this will increase the di- 
mensional estimates, although this is not always the 
case. However, other research suggests that appropriate 
filters do not necessarily influence estimates of dimen- 
sionality (e.g., Ref. 1184). Rapp et al. (217) extend this 
discussion and suggest comparisons with surrogate data 
sets as one alternative procedure to distinguish between 
filtered signals and noise. 
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shock (S2) following a dim light flash (Sl) or a weak 
one. The S2 stimuli in both cases were the same. 
Event-related potentials (ERPs) were recorded from 

FLASH 
vertex of scalp (Cz). No statistically significant dif- 
ferences were found for any ERP data points (20 trial 

SHOCK SHOCK averages, t tests with protected a-levels) between 2 
conditions. PD2 values were calculated for same data, 

I 

EXPECT STRONG 

NO SIGNIFICANT 
ERP-DIFFERENCES 

\\\, 

EXPECT WEAK 
SHOCK 

FIG. 11. Effects of instructional set (expectancy) 
on event-related dimensional response. Subjects (n = 
17) were instructed to expect either a strong finger 

using 20 linked trials within each subject (8,020 data 
points, at 200 Hz, analog to digital). PD2 values were 
calculated using 7 = 6 in all subjects. Event-related 
PD2 response showed statistically significant data 
points using the same statistical method (indicated 
by dark lines). Resting baseline was found to be lower 

timulus, as was poststimu- 
P (grand average), left ver- 

tical line is 20 pV, and time line is 2 s; PD2 (grand 
is 2 dimensions, with base- 

SIGNIFICANT (pc.01) 
PD2-DIFFERENCES 

au 
To evaluate a particular physiologica 1 signal 

thors have suggested that the obtained results 
many 

Lam a 
particular nonlinear dynamical analysis be compared 
with that of noise. However, Osborne and Provenzale 
(196) demonstrated that colored random noise, if ana- 
lyzed by the Grassberger-Procaccia procedure, may give 
finite and predictable values of the correlation dimen- 
sion. Such a result would suggest the presence of a cha- 
otic system, when, in actuality, only noise existed. To 
test for this possibility, some authors (217) have sug- 
gested a shuffle test in which the original data set is 
shuffled then reanalyzed. A more elegant procedure is 
suggested by Theiler et al. (267) in which one determines 
the Fourier transform of the original data set, then ran- 
domizes the phases of this transform and produces a 
second data set by taking the inverse transform. By ap- 
plying Grassberger-Procaccia to both data sets, it is pos- 
sible to determine statistically if there exists a differ- 
ence between the two data sets. In this way, one can 
evaluate if the actual data set is more than linearly 
correlated noise. This type of procedure has the addi- 
tional advantage of establishing an inferential probabil- 
ity in the testing of the null hypothesis (i.e., the signal is 
not different from that of noise) and is less difficult and 
has numerous advantages over making the claim that 
one is measuring dimensionality directly in a particular 
real world signal. Additionally, if the null hypothesis 
cannot be r ejected, then there would exi .st no advantage 
in determining a particular measure of dimensionality. 
Furthermore, Skinner and co-workers (183, 250, 256) 
have used the PD2 algorithm to sense and reject bursts 
of noise (see Fig. 12, N) superimposed upon EEG data. 
Such noise would markedly increase the subepoch 
means of the PWSD and the single value for Q (i.e., 
400 dimensions). For biological data, the PD2 values 
are found to be significantly smaller and statistically 
discriminable from white noise passed through the 
same data acquisition system (254). 

III. APPLICATIONS IN CARDIOLOGY: CHAOS 

IN THE HEART 

In this section, we present findings from the behav- 
ior in single cardiac cells and also a brief overview of 
studies investigating the intact heart. Results suggest 
that low-dimensional chaos can be observed on different 
levels, in the behavior of single cells, and in the coopera- 
tive mass action giving rise to the functioning of a whole 
organ. 

A. Dynamics of Cardiac Cells 

Influential work has been carried out by Guevara in 
his PhD thesis and by Glass and associates (86439, 91, 
108, 110) on aggregates of spontaneously beating, cul- 
tured cardiac cells which had been isolated from the 
ventricles of an embryonic chick heart. In an aggregate, 
the cells are nearly isopotential, so the choice of the cell 
to be recorded should not influence the results, i.e., the 
aggregates are nearly electrically homogeneous. A total 
of 11 aggregates was investigated. Under several as- 
sumptions (201) (mainly that the spontaneous activity 
of the aggregate can be modeled by a strongly attracting 
limit cycle attractor illustrated by a trajectory that 
quickly turns back onto the attractor after a perturba- 
tion has been induced), a phase-transition curve can be 
observed from the reaction of the aggregate to brief pul- 
satile shocks at different phases of spontaneous, nearly 
periodic activity of the cardiac cycle. This curve shows 
the new phase caused by the delivered impulse against 
the old phase of stimulus presentation. On the basis of 
the empirically observed phase-transition curve, which 
is fitted to an analytical function and given certain as- 
sumptions, a Poincare return map consisting of a two- 
parameter one-dimensional map 
rived and i terated to predict the 

of the unit 
dynamical 

circle is de- 
response of 
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FIG. 12. Dimensional changes (PD2) in surface 
potentials (SP) recorded from surface of olfactory 
bulb of awake rabbit. Fusiform bursts of activity are 
associated with inspiration. White noise of both high 
and low amplitude (N) is overwritten on data and is 
either rejected by PD2 algorithm or is high dimen- 
sional. Note that low-dimensional changes do not al- 
ways occur, as seen during inspiratory bursts in mid- 
dle of record. 

the aggregate under periodic stimulation at different 
amplitudes and frequencies. The results show a bifurca- 
tion structure in which the average number of action 
potentials per stimulus is plotted in a two-parameter 
(amplitude vs. frequency) space leading to complex be- 
havior of the forced system. Regular (phase locking) as 
well as irregular (chaotic) activity together with three 
routes to chaos (period doubling, quasiperiodicity, in- 
termittency) can be predicted for different values of the 
two stimulation parameters. Presumably, this bifurca- 
tion structure is in an analogous sense “universal” for a 
large class of two-parameter one-dimensional maps 
(with 2 extrema) in the same manner as the U-sequence 
is universal for one-parameter one-dimensional maps 
with one extreme (e.g., the quadratic equation). How- 
ever, further mathematical research is needed, espe- 
cially for the zones in which the circle map is noninver- 
tible. Experiments on periodic stimulation of the car- 
diac cells are, in general, in good agreement with these 
predictions. 

Various periodic zones (phase-locking patterns) 
and all of the three routes to chaos were confirmed, 
which strongly supports the usefulness of circle maps 
for modeling periodically stimulated cardiac cells. 
Phase-locking patterns that are computed to occupy 
small regions of the parameter space could not be de- 
tected. This failure, however, may be due to experimen- 
tal noise. The observed dynamics show patterns similar 
to many cardiac arrhythmias arising from two or more 
autonomous pacemaking foci (ectopic foci), such as 
various Wenckebach rhythms, high-grade block, escape 
rhythms, and pure parasystole. Although highly over- 
simplified, the aggregate cell model can give valuable 
insights into cardiac dynamics and may have implica- 
tions for data obtained from cardiac patients (40, 85). 

Similar work has been carried out on periodic stimu- 
lation of spontaneous active cardiac Purkinje fibers 
(109). Chialvo and Jalive and co-workers (37,38) studied 
nonspontaneously active Purkinje fibers from sheep 
driven with periodic current pulse trains. The most 
striking phenomenon was the observation of various 
patterns of entrainment in the stimulus strength versus 
frequency plane, although this did not result from the 
competition of two oscillators (see Ref. 174 for a compa- 
rable behavior in squid axons). Period doubling as well 
as irregular oscillations were found. 

Another experiment examined the action potential 

propagation along an unbranched Purkinje fiber. When 
the conduction of the central segment (out of the 3 seg- 
ments) was slightly impaired by superfusion with an 
electrical uncoupler or by mechanical compression, the 
stimulation by regular pulse trains with increasing fre- 
quency causes a bifurcation structure in conduction ve- 
locity somewhat similar to those of the quadratic equa- 
tion and consequently suggests chaotic activity. Keener 
(142) also discussed chaotic dynamics of periodically 
stimulated, but not spontaneously oscillating, cardiac 
medium. Driving isolated endocardial right ventricular 
canine fibers with increasing rates did not produce cha- 
otic activity. However, when ventricular fibrillation 
was induced with intravenous quinidine (an intoxica- 
tion which modifies an ionic channel conductance), 
phase locking, period doubling, and aperiodic dynamics 
were demonstrated (42). 

Chaos appears also to occur in the heartbeat time 
series. Skinner et al. (252) have applied various methods 
to the heartbeat following artery occlusion. They report 
that before the initiation of lethal arrythmogenesis the 
mutual information increases, the correlation dimen- 
sion decreases, and the recurrence patterns shift from 
periodic clustering to local clustering. If true, these re- 
sults hold exciting clinical promise, since they would 
offer new tools to monitor the sick or injured heart. 
Analysis of the dynamic patterns could be easily imple- 
mented in standard electrocardiogram monitoring and 
thus may provide early warning for cardiac problems. A 
review of the applications of nonlinear dynamical 
analysis to cardiology is available (41), along with more 
specialized discussions of chaos and cardiovascular 
processes that suggest exciting potential applications 
(252,255). 

B. Low-Dimensional Chaos Prevails in the Intact Heart 

Sudden cardiac death is predominantly due to ven- 
tricular fibrillation (VF), and it accounts for over 
500,000 yearly fatalities in the United States alone (215). 
A low ventricular ejection fraction or a high degree of 
premature ventricular complexes observed in a 24-h 
electrocardiogram are noninvasive indicators of risk. Al- 
though their sensitivity in large groups is statistically 
significant, their predictive power for a given individual 
(i.e., specificity) is not very good, nor do they suggest 
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when the lethal event might occur (209). Based on recent 
insight into the involvement of the autonomic nervous 
system and higher cortical centers in animal models of 
sudden cardiac death (84, ZOO, 253, 257, 271), the rela- 
tionship of the neurocardiac reflexes to cardiac vulnera- 
bility to VF is being closely examined (26, 132). In pa- 
tients with a myocardial infarction, the standard devia- 
tion of spontaneously varying interbeat intervals and 
the sensitivity of interbeat intervals to forced changes 
in blood pressure have both been shown to be prospec- 
tive predictors of mortality (24,25,144,145,152,160,171, 
194, 226). 

Recently, it has been proposed that fluctuations in 
the heartbeats manifest deterministic chaos (15, 182, 

251); consequently, the use of stochastic predictors, such 
as the mean and standard deviation, may not be the 
most accurate way to describe the dynamics of the 
heartbeat pattern. For example, we could compare two 
time series of heart rate values, one which alternated 
between 70 and 90 beats/min (e.g., 70, 90, 70, 90, 70, 90, 

.) and another which had the values of 70 and 90 
bkats/min randomly chosen with a probability of 0.5. 

Given enough data points, both of these time series 
would have the same mean and standard deviation. How- 
ever, the regularity of these two series would be ex- 
tremely different, one perfectly regular and one ran- 
dom. As introduced previously, Pincus (204) used the 
measure of approximate entropy (ApEn) as one method 
for measuring entropy or irregularity in a time series. 
Consistent with the hypothesis that regularity in neona- 
tal heart rate is a sign of pathology, this author showed 
that the ApEn measure was lower for a group of sick 
human babies (in which 3 of 9 died) than for a healthy 
control group. In other work with aborted sudden infant 
death syndrome infants (205), and problem labors (206), 
the ApEn measure was able to detect subtle differences, 
suggesting its potential usefulness as a practical moni- 
toring procedure. 

Using the point correlation dimension (PDZ), Skin- 
ner and co-workers (15, 182, 251) studied neurocardiac 
reflex behavior in the conscious pig during experimental 
myocardial infarction and demonstrated that the PD2 
predicted imminent VF, whereas a stochastic measure 
(i.e., standard deviation) did not; that is, after occlusion 
of the left anterior descending coronary artery, the 
mean PD2 values of the interbeat intervals dropped 
from 2.50 t 0.81 (SD) dimensions to 1.07 t 0.18 (SD) 
some minutes before VF occurred. Occlusions that did 
not result in VF did not produce low-dimensional shift. 
Within-subject changes in the standard deviations of 
the heartbeats before and after occlusion were not sig- 
nificantly different. 

A similar decline was found (256) in the PD.2 values 
of the heartbeats in ambulatory electrocardiograms 
from 10 of 11 human subjects with preexisting coronary 
heart disease who subsequently experienced VF while 
being monitored. In 23 of 27 controls, who had severe 
arrhythmias but no history of VF, the PD.2 values did 
not drop to such low levels. In contrast, the standard 
deviations of the heartbeat intervals in these same sub- 

jects were unable to discriminate the VF patients from 
their matched controls. Again, support has accrued for 
the notion that a deterministic measure will be more 
accurate in tracking the output of a deterministic sys- 
tem (i.e., any system) than a stochastic measure. A de- 
terministic model that may describe how the heartbeat 
dynamics are produced, both normally (between 2.5 and 
3.5 dimensions) and pathologically (t1.2 dimensions), 
has been discussed recently (249). 

IV. APPLICATIONS IN NEUROSCIENCE: CHAOS FROM 

NEURON TO BRAIN 

In this section, we present findings from the differ- 
ent levels at which neural organization is investigated. 
We begin on the microscopic level with excitable mem- 
branes and single neurons (sect. IVA) then proceed from 
multicellular neural systems (sect. IVB) to large-scale 
brain measures and conclude with the study of behavior 
(sects. IVC and IvD). In accord with the current state of 
this field, the review focuses more on research findings 
than on theoretical models. 

A. Dynamics of the Isolated Neuron 

The variety of neuron firing patterns offers an op- 
portunity for modeling with nonlinear systems. For in- 
stance, West (275, 276) suggests that the behavior of 
normally silent neurons can be viewed as a fixed point of 
a dynamical system, that a periodic pulse train can be 
seen as a limit cycle, and that erratic wave trains can be 
modeled by chaotic attractors. Individual neurons are 
characterized by nonlinear elements as indicated by 
thresholds or refractory periods and, as such, are likely 
candidates for complex irregular behavior (e.g., the in- 
tegrate and fire model of a neuron). Evidence for chaotic 
activity in excitable membranes has been collected in in 
vitro preparations (see sect. I). In this situation one fre- 
quently observes period-doubling cascades as the route 
to chaos, but intermittency and other routes have also 
been reported (e.g., Refs. 2, 3, 114). Not all chaotic sys- 
tems also have nonchaotic states (i.e., routes to chaos). 
Some, like the EEG-generating system, seem to have 
continuously chaotic states, at least under nonpatholog- 
ical conditions as described below. 

We now present a brief overview of chaotic behav- 
ior in cell membranes, which is generally induced by the 
method of periodic stimulation. 

I. Giant internodal cell of the freshwater algae 
Nitella Jexilis (118, 119) 

The work of Hayashi et al. (118) was the first to 
provide evidence for chaotic behavior in cell mem- 
branes. These researchers used sinusoidal stimulation, 
which initially produces entrainment to the stimulation 
signal. The neuron then loses its entrainment and be- 
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comes aperiodic. Plotting the membrane potential at the 
peak of the periodic stimulation aga inst t he preceding 
one shows a single-valued curve with some resemblance 
to the quadratic map with a period three window (Fig. 
ZB). Thus, using a variety of techniques and the theorem 
of Li and Yorke (15’7; “period three implies chaos”), 
these researchers were able to establish the existence of 
chaos, although chaos in this case means the existence 
of aperiodic behavior rather than sensitivity to initial 
conditions. 

2. Giant neurons (>2OO mm diameter) in the isolated 
esophageal ganglion of Onchidium verruculatum, 
marine pulmonate mollusk 

There are two types of giant neurons: “silent” ones 
which need a medium to oscillate as described previ- 
ously (117) and two pacemaker neurons which spontane- 
ously show periodic activity in artificial seawater (114- 
116,135). Both have been shown to produce chaotic activ- 
ity of various types under period stimulation. 

Spontaneous chaotic bursting activity, in the inter- 
spike interval as well as in the membrane potential, can 
be observed in the pacemaker neuron of the mollusk 0. 
verruculatum immersed in artificial seawater using a 
small direct current approaching zero (0.3 nA) (113). In 
this situation, the input from other neurons of the esoph- 
ageal ganglion is suppressed by means of carbon diox- 
ide. Chaos was verified through one-dimensional Poin- 
care return maps using successive interspike intervals, 
and the attractor was reconstructed from the voltage as 
a function of time. Chay (36) also detected spontaneous 
chaotic bursts (with some remarkable resemblance to 
the Poincare return map of the interspike intervals) in 
her three-variable model of an excitable membrane. 

3. Giant axon of squid Doryteuthis bleekeri (2, 4, 6, 60, 

173) 

This axon is the subject of a famous mathematical 
model, the Hodgkin-Huxley differential equations, as 
described in section I (I, 5, 33, 34, 123, 125, 126) and re- 
viewed in Ref. 127. Many nonlinear features could be 
found in the model as well as in experiments (l-3,5,175, 
172). Other types of models based on difference equa- 
tions, especially circle maps (Ref. 3 and references 
therein), or based on Eyring multibarrier rate theory 
(Ref. 35 and references therein) were also capable of 
chaotic behavior. With one exception (60), a study which 
uses quantitative measures (Lyapunov exponent and 
metric entropy) to characterize chaos, these studies 
used, in addition to power spectra, visual methods of 
analysis. In general, two-dimensional or three-dimen- 
sional phase portraits were reconstructed representing 
the membrane potential (v> and its (multiple) deriva- 
tives (dV/dt). In a few cases, phase portraits were recon- 
structed by the time lag method, i.e., stroboscopic plots 
at a fixed phase of the sinusoidal force or Poincare re- 

turn maps (see Ref. 128 for an introduction to these 
methods). An overview of the system’s behavior is given 
by a parameter space composed of the ratio between the 
forcing and the spontaneous frequency on one axis and 
the forcing amplitude on the other. In such a plot, the 
various zones of entrainment and irregularity can be 
observed (e.g., Refs. 91, 113, 119). 

4. The pond snail Lymnaea stagnalis (1%) 

In this early study, the notion and methods of chaos 
analysis were not yet known. Consequently, the nonperi- 
odic behavior observed was mistakenly described as an 
effect of “internal noise sources.” This work was not on 
intact central neurons, since the neurons from which 
the recording took place were not isolated from the 
brain but were removed from the body. 

One problem with some of these studies is that a 
highly concentrated ionic medium is required to induce 
self-sustained activity. In addition, a comparatively 
high-forcing amplitude is required. This problem, how- 
ever, does not apply to the work of Matsumoto and co- 
workers (174, 176), who were the first to show chaotic 
activity under regular trains of current pulses instead of 
a sinusoidal current. Furthermore, pulse trains also 
produce chaotic responses in the giant axon of squids (as 
well as in the Hodgkin-Huxley model) immersed in nor- 
mal seawater (5). Interestingly, in measuring the corre- 
lation dimension at two different points along the axon 
(30-40 mm distance from one another), they found that 
chaos is stably propagated (n = 3.2 vs. 3.4). This suggests 
that chaos may be relevant in neural information pro- 
cessing. 

Another condition under which chaotic activity can 
be observed is based on chemical induction. Neurons of 
the pond snail L. stagnalis, in the presence of cocaine, 
show irregular putative chaotic oscillations (151). Hol- 
den and co-workers treated neurons of the same mollusk 
with high concentrations of aminopyridine (a convul- 
sant drug) (130) and also with menthol-saturated saline 
(an anesthetic) (120). During prolonged exposure to 
aminopyridine, the neuron passes through a range of 
periodic and irregular behaviors in which each state 
persists for several minutes. Chaotic amplitude modula- 
tions are exhibited after the drug has been washed off. 
Unfortunately, the assessment of chaos in these studies 
was determined only by visual inspection of the time 
series. 

In conclusion, this brief survey of different cell 
types and various electrical and/or chemical techniques 
used to induce phase-locking patterns as well as irregu- 
lar, chaotic, or chaotic-like oscillations, and the obser- 
vation of spontaneous chaotic activity, clearly supports 
the hypothesis that single cells are able to exhibit a vari- 
ety of behaviors due to their strong nonlinearity. Fur- 
ther insight into the broad spectrum of qualitatively 
different behaviors can be derived from mathematical 
models which, in general, are in good agreement with 
experimental observations. The two-parameter (fre- 
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quency vs. current amplitude) space with its multiple 
zones of entrainment and irregularity has proven to be a 
valuable tool for displaying the results of such dynami- 
cal studies. Poincare return maps and two-dimensional 
or three-dimensional phase portraits have also been 
successfully applied, when the dynamics under consider- 
ation were of low dimensionality. At this time, the ma- 
jor tools for determining dynamics in the literature are 
graphical. Unfortunately, quantitative characteriza- 
tions using fractal dimension, Lyapunov exponents, or 
metric entropy are not common in the literature. In con- 
clusion, although chaotic irregularity in excitable mem- 
branes has been clearly demonstrated for certain condi- 
tions, the significance of this behavior for the function- 
ing of a given cell and its interaction with other cells has 
yet to be determined. 

B. Animal Studies: Chaos in Cell Assemblies 
and Brain Structures 

I. Single neurons in the precentral and postcentral 
gyrus of anesthetized squirrel monkeys 

Correlation dimension analyses of the interspike 
intervals of IO single neurons in the precentral and 
postcentral gyri of anesthetized squirrel monkeys have 
been reported by Rapp and colleagues (219,220). These 
studies provide insight into the activity of neurons in 
their natural environment. Three of the IO neurons ex- 
hibited relatively low fractal dimensions (between 2.2 
and 3.5), two presumably gave values between 5 and 7, 
and the remaining neurons produced behavior that 
could not be distinguished from random noise. The low- 
dimensional neurons were slower (17, 21, 32 ms typical 
interspike intervals) than the higher-dimensional ones 
(1 ms)? This result indicates that low-dimensional 
chaos can occur in the spontaneous activity of some sim- 
ian cortical neurons. Because the length of the time se- 
ries (varying from several hundreds up to -1,900) is 
limited, possible higher dimensional chaos could not be 
detected. Another limitation is that fast-firing neurons 
(which do not occur normally) could not be detected with 
the procedures utilized. 

2. Bucal ganglion of mollusks 

Bucal-cerebral neurons are key neurons in the gen- 
eration of motor patterns. There exist strong bidirec- 
tional connections between these neurons and brain mo- 
toneurons that are related to drive and patterned activ- 
ity. To study chaotic behavior, Mpitsos and co-workers 
(e.g., Refs. 188,191-193) deafferented the cerebral gan- 
glion, removing the effects of sensory inputs as well as 

5 Some of the neurons were firing at a rate of 1,000 Hz. These are 
dying cortical cells. The average firing rate for a cortical neuron in the 
conscious brain is -1.0 Hz. 

motoneuron targets in the mollusk Pleurobranchaea ca- 
lifornica, a sea slug. They recorded two patterns during 
the generation of rhythmic motor-related activity in- 
volving bite-ingestion: the bite-swallow phase of feeding 
and regurgitation. They found quickly decreasing auto- 
correlation functions, one-dimensional return maps ob- 
tained from Poincare slices of two-dimensional recon- 
structed attractors showing folded sheets, correlation 
dimensions between 1.75 and 2.5, and positive Lyapunov 
exponents (0.15 up to 0.55 bits/s). All of these findings 
are suggestive of low-dimensional chaotic behavior dur- 
ing patterned motor activity. One limitation pointed out 
by Mpitsos (188) is that because of the brief temporal 
duration and variability of biological actions, such as 
feeding or regurgitation, attractors that are believed to 
control these behaviors can be investigated in only a 
limited manner, since only several cycles are available 
in the data. Thus a strong claim for chaos in this prepa- 
ration is difficult to support. 

If the motor pattern generation is indeed chaotic, 
the question arises whether such a signal can be “under- 
stood” by other parts of the brain. To approach this 
question, Mpitsos and co-workers (189, 190) studied a 
very simple neuronal network with one input unit, one 
output unit, and four hidden units. They demonstrated 
that this network was able to distinguish various cha- 
otic signals (98), e.g., the logistic equation and Rijssler 
equation) in the fundamental aspects of the dynamics 
including the greatest Lyapunov exponent. With this re- 
sult, one can speculate that the information exchange 
between various parts of the brain is coded as various 
degrees of chaos. The meaning of this speculation is that 
the neural message is not composed of a signal over- 
lapped by noise but lies in the irregularity itself. Differ- 
ent coding mechanisms would allow the simultaneous 
processing of different tasks but might then also in- 
crease the noise for the encoding of information per- 
taining to concepts of one particular task-related set. 
This would allow limited parallel processing. Further- 
more, the neurons of the motor system are found not to 
be specialized to produce specific motor patterns but are 
multifunctional, which means that they are able to pro- 
duce a variety of behaviors. In this model it would be the 
reciprocal interaction between the animal and the envi- 
ronment that determines which behaviorally related at- 
tractor was selected. 

3. Olfactory system of the rabbit 

The olfactory bulb is a model neuropil with the 
same cell types and chemical neuromodulators as the 
neocortex. Its anatomy and physiology, however, are 
simpler. Furthermore, the amplitude of the surface po- 
tential recorded above a “column” (i.e., a functional 
unit) is strongly correlated with the firing frequency of 
the underlying output cell. Because the surface EEG has 
exactly one-quarter cycle phase lag with the oscillations 
in the mitral cell firing probability, it is interpreted that 
the EEG is actually generated by the open-field dipoles 
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of the granule cells. The latter are always recurrently 
activated (i.e., with a quarter cycle lag) when the asso- 
ciated mitral cell fires. Because of the simplicity and 
knowledge about electrogenesis, it is expected that the 
study of chaos in the EEG will be easier to interpret for 
this model neuropil than for the neocortex. 

Freeman and associates (66-69, 71, 78, 80, 81, 248, 
272), with an overview of their methods (48, 69, 72, 79, 
279), thoroughly investigated the perceptive events in 
the olfactory system of the conscious rabbit (odor recog- 
nition and discrimination), and based on this work, they 
also developed a mathematical model of the bulb that 
uses nonlinear, coupled, ordinary, differential equa- 
tions. To extend their findings to sensory processing in 
the neocortex itself, they also studied the visual system 
of the monkey (75, 76, 81). 

In the rabbit, the surface EEGs were recorded by an 
8 X 8 array of electrodes interspaced at the observed 
spatial frequency. The array was constructed to cover at 
least 20% of the bulbar surface. The animals were 
trained (appetitive conditioning) to respond to two dif- 
ferent odors in different ways (i.e., sniffing and licking 
or sniffing only) (272). It was found that ,&receptors 
must be intact for learning-related changes to occur in 
the bulbar EEG (101). The terminal endings of the nor- 
adrenergic neurons that activate the ,&receptors project 
from the nucleus locus coeruleus to impinge on bulbar 
locations that regulate the excitability of the mitral 
cells (162). Based on these biological findings and on the 
results of simulations in their mathematical model, it 
was interpreted that during conditioning the main ef- 
fect was primarily on the potentiation of the mutually 
excitatory synapses between the mitral cells; that is, 
these synapses were thought to be subjecte d to the great- 
est amount of pote ntiation according to the Hebbian 
rule of temporally convergent states of excitation (121). 
After acquisition, and in the presence of a learned odor, 
a relatively stable and reproducible distribution of EEG 
activities was observed that formed a distinctive spatial 
pattern. This evoked pattern appeared to involve the 
whole bulbar surface (72, 78, 272), thus leading to the 
conclusion that the bulb operates as a global dynamical 
system. 

The mathematical model that Freeman developed 
is based on biology (66, 70, 71, 279) and consists of four 
interconnected parts, with time delays between them. It 
is simplified by neglecting the connections to and from 
the other parts of the brain (248, 279). Four types of 
activity can be generated by the model that are of the 
same types actually seen in the rabbit bulb; that is, a 
time series can be generated by the differential equa- 
tions (which constitute the model) that resemble the 
EEG of the bulb observed during four experimental 
conditions. 

The first type of common activity is that of a silent 
system, which seems to occur under deep anesthesia, 
and is represented by a fixed point attractor in a time- 
delayed phase space. A second type is that of normal 
background EEG observed in the absence of a signifi- 
cant input. Freeman (71) suggests that the bulbar back- 

groun d acti vity is chaotic, for it has an attractor in 
phase space that seems to be a point repel1 or, its power 
spectrum shows a l/f distribution, its autocorrelation 
function attenuates rapidly, and its time series is aperi- 
odic. This evidence is further supported by the analysis 
of the model (71,248), whose output time series remains 
statistically indistinguishable from the empirical data. 
For example, the correlation dimension (106) was calcu- 
lated for the time series sampled from both the model 
and the bulb (71, 73), and similar values were obtained: 
5.46 (model) and 5.92 (bulb). These values were within 
the standard error of the measurements. A modified 
model is also available from this lab (279), yielding sig- 
nificantly lower values of dimension, i.e., between 2.3 
and 2.4. 

A third type of activity seen in the biological data is 
the reaction of the system to a learned odor. In this case 
the surface EEG has an almost coherent series of inspi- 
ratory bursts of oscillations, with a narrow spectral dis- 
tribution, which vanishes during each expiration. Be- 
cause this seemi ngly peri 

. . 
odic p 

turned out to be (at least in the 
lattern of reaction (248) 
model ) also chaotic, its 

time series was thought to be represented by a “near- 
limit cycle” attractor (71 ) . Because of the req ui rement 
for large data sets, Freeman thought dimensional analy- 
sis would not be possible for the bulb, but only for the 
model. Simulations of different “learned” odors pro- 
duced different time series, each with a different near- 
limit cycle attractor; the attractors could be easily dis- 
tinguished from one another and could be distinguished 
from that of the resting background activity. The di- 
mension decreased from 2.33 in the resting state to 1.13 
during the simulated odor (279). 

The fourth type of modeled biological activity is 
that of an epileptic seizure. The seizure results in a par- 
oxysmal discharge which “repeats at a rate of about 3/s 
for lo-70 s.” It is induced biologically by an intense stim- 
ulation of the lateral olfactory tract. After temporary 
cryogenic blockade in the lateral olfactory tract, how- 
ever, it is considerably easier to initiate the seizure 
(102). It was interpreted that the seizure results from a 
disconnected state in which a collapse of transmission 
occurs between the bulb and other parts of the system 
(70). In the model, the seizure can be simulated by chang- 
ing a parameter in the excitatory feedback pathway. 
This adjustment is thought to produce a Ruelle-Takens- 
Newhouse route to chaos, via two Hopf bifurcations 
(195). The resulting chaotic attractor is toroidal shaped 
(71), with a correlation dimension of 2.52 in the case of 
the biological system and an average value of 2.76 for 
the model (73). The recovery from the seizure is not yet 
understood (74). 

Freeman and associates concluded that the dynami- 
cal process in the olfactory syste m of a motivated 
is characterized, in the absence of any significan t 

abbit 
odor, 

by a spatially and temporally unpatterned chaotic state. 
Immediately after presenting a learned odor, the sys- 
tem briefly switches to a global odor-specific chaotic 
state characterized by a single near-limit cycle attrac- 
tor. They believe that the acquisition of the near-limit 



32 ELBERT, RAY, KOWALIK, SKINNER, GRAF, AND BIRBAUMER Volume 74 

cycle attractor can be understood as a pattern recogni- 
tion process, which, because of differential conditioning, 
initiates the required action. Whether the transition to 
the odor-specific attractor is due to a bifurcation, i.e., to 
a parameter change in the single system (66,82,248), or 
to a change in the system’s state, i.e., the input is 
switched into the basin of another attractor (19,71,279), 
is not yet clear. In either case, however, they concluded 
that the learning of a new odor and its subsequent recog- 
nition is related to a process involving a change in cha- 
otic dynamics (248). 

Using the PD2 algorithm, Mitra and Skinner (183) 
began to observe new features of the neuropil that could 
not be seen with the classical O2 algorithm. This may 
have resulted from the limited time resolution and data 
stationarity requirement of the D, (183). With each res- 
piratory cycle in the resting state, there was found to be 
a rapid shift in the PD2 from between six and seven 
dimensions during expiration to one to two during inspi- 
ration. During preodor control epochs there existed a 
smooth gradient of PD2 values in the spatial array; the 
mean PD2 values at each point in the array, averaged 
over 1.3 s (-3 respiratory oscillations), showed a clear 
spatial pattern. Moreover, the lowest mean dimension 
in this resting pattern indicated where the future learn- 
ing-dependent changes in dimension would occur. When 
a novel odor was presented, it evoked an increase in the 
mean PD2 values at each point such that all points in- 
creased to the same value, again confirming the Free- 
man idea, based on the change in the surface potential 
pattern, that the process was global. The dimensional 
increase occurred primarily during the dimensional 
“dip” associated with inspiration. After habituation, 
the odor did not evoke any changes in the spatially dis- 
tributed mean PD2 values. Comparison of the nonodor 
gradients before and after the intervening learning (i.e., 
the habituation), however, showed that small learning- 
dependent increases in the PD2 values had occurred, in 
precisely the part of the gradient where the smallest 
PD2 values had been located. This learning-specific 
change occurred repeatedly, with additional habitua- 
tion of new odors; that is, a new low-dimensional trough 
existed in the resting spatial gradient after each learn- 
ing episode, which, with new learning, again showed a 
small dimensional increase during the control condi- 
tion. 

Because no systematic transitions in dimension 
(i.e., routes to chaos) were noted and because the resting 
bulb does not seem to be characterized by a single di- 
mension, a shifting among existing attractors or the 
forming of new ones may best explain the observed PD.2 
changes rather than the systematic change of a parame- 
ter in a single chaotic system (i.e., one that bifurcates to 
new dynamics with each parameter change). The oscil- 
lation of dimension from a higher value to a lower one, 
which occurs during the evaluation of a set of expected 
(i.e., habituated) ambient inputs, may be an important 
part of the sensory process. An example of such data is 
shown in Figure 12. The observation that all PD2 values 
rise to the same value during evaluation of a novel odor 

suggests that a single global dynamic is controlling the 
bulb at that moment; this, however, is not the case dur- 
ing the background condition, when the spatial distri- 
bution of PD2 values is not uniform. The small site-spe- 
cific increases in dimension that occur with new learn- 
ing are somehow related to this background gradient, 
and some are again modified with still newer learning, 
thus illustrating a “context updating” of the stored in- 
formation. 

The work from the model neuropil indicates that 
deterministic chaos, of varying dimensional complexity, 
characterizes its functioning, but why this is the case is 
still unclear (279). Global higher dimensional attractors 
characterize the surface potentials only when the bulb is 
stimulated by new or conditioned odors. Lower dimen- 
sional attractors are associated with the evaluation of 
known, highly habituated (i.e., expected) stimuli. Why 
these lower dimensions have a graded spatial distribu- 
tion is unclear. Freeman’s mathematical model (e.g., 
Refs. 66, 69, 78, 248) suggests that chaos enables odor- 
specific information to be represented by a specific di- 
mension. Although some mathematical models of per- 
ception do not require chaos (e.g., Ref. IOS), low-dimen- 
sional chaos seems to prevail in biological systems. 
Understanding chaos in the olfactory bulb may be ex- 
pected to provide a breakthrough in our understanding 
of how a neuropil works. 

4. Dimension evaluations of specific cortical structures 
in cats 

Using chronically implanted electrodes in five cats, 
Riischke and Baqar (228,230,231) made dimension evalu- 
ations of specific cortical structures. They measured 
from each of the three structures: the auditory cortex, 
the hippocampus, and the reticular formation during 
slow-wave sleep (l-3 Hz) that can be characterized as a 
state of hypersynchrony over the whole cortex. A total 
of 15 time series (7 X 2,048 points, encompassing -20 s 
of time, and 8 X 4,096 points lasting 41 s) was recorded. 
The results indicate the presence of various attractors 
with correlation dimensions in the range of 3.8 and 5.6 
for these three structures. Looking at the individual 
case, a strong relationship was not found between the 
structures and their fractal dimensions, which was con- 
sistent over cases. Likewise, the test-retest reliability 
from cats with two samples from the same cortical 
structure was less than moderate. Taking the 15 trials 
together, the statistically relevant information is that 
in 86% of the trials the auditory cortex showed the 
highest correlation dimension (5.06 t 0.31). Signifi- 
cantly lower were the dimensions of the reticular for- 
mation (4.58 t 0.38) and those of the hippocampus 
(4.37 t 0.36). These results can be contrasted with di- 
mension measurements of eight to nine (with a maximal 
embedding dimension of 10) of an awakened cat deter- 
mined from spontaneous activity in the auditory cortex. 

Also interested in the question of whether chaotic 
behavior can be detected in a higher frequency window 
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(between 100 and 1,000 Hz), these authors (232,233) stud- 
ied the activity of the inferior colliculus (brain stem) 
and of the cerebellar cortex in four awake freely moving 
cats. Different from the above-cited study in which a 
saturation in the correlation dimension was found in 
three of four of the cases, in the present study strange 
attractors could only be observed in one of four of the 
investigated trials. These results may be partly due to 
frequent movement artifacts. Thus one might conclude 
that in this high-frequency window chaotic activity is 
possible but not the rule. If attractors are observed, 
their dimensions are 7.05 t 0.15 for the cerebellar cortex 
and 6.70 t 0.20 for the inferior colliculus. 

C. Human Studies: Chaos in Electroencephalograms 
and Magnetoencephalograms 

While the application of nonlinear analysis tech- 
niques to brain processes has been discussed previously, 
it was Babloyantz et al. (16) who first published results 
on the dimensionality of the human EEG. Since that 
time (1985) more than 50 papers have reported results 
from EEG analysis using nonlinear dynamical analysis 
(8,11-14,16,22,44,53,94,155,163,164,179,180-182,186, 
223, 239, 247, 255, 258, 273, 274, 278). Many of these 
papers were demonstrational in nature and presented 
data from only a few subjects with the EEGs being 
taken from only one or two sites, making variance esti- 
mations and inferential statistical comparison impossi- 
ble. Additionally, many of these studies only examined 
resting baseline type measurements or did not specify 
under what conditions the measurements were made. 
Although supportive of the potential associated with ap- 
plying nonlinear techniques to EEG in general, Dvorak 
and Holden (43a) suggested in 1991 that little had been 
clearly demonstrated in the reported research up to that 
time. These authors suggest that this results both from 
the complexity found in the EEG and the lack of a gen- 
eral theore 
creased the 
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research has in- 
studied as well as 

the tasks used. Initial group studies (n > 10) were those 
of Shinagawa et al. (247), Pritchard and Duke (Zll), and 
ourselves (53,56,57,148,163,164,223) and are discussed 
in this section. 
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As discussed previously, one major problem with 

ng me thods of nonlinear dynamics to evaluate biolog- 
1 data is the nonstationarity of the si .gnal. It remains ica 

unclear as to how long the brain remains in a specific 
state that would result in a stationary signal governed 
by a single attractor. Principally, nonstationarity can be 
induced in two ways: I) by a change in the parameter 
values (these are regulated by the surroundings of the 
system) and 2) by a change in the actual values of the 
variables due to an input, which causes a shift in the 
trajectory away from the surface of the attractor. It has 
been suggested that neurotransmitter systems, and 
hence the excitability of interneural connections, might 
invoke bifurcations i n the system generating the EEG 
signal (136). Sensory input will cause the second ki nd of 

perturbation. Both sources of variation should therefore 
be held constant during the EEG recording. Tests to 
measure nonstationarity based on characteristics of the 
amplitude distribution have not proven to be useful. 
Only abrupt changes in the dimension can be easily de- 
tected as a disturbed scaling behavior in the calculation 
of the fractal dimens 
adequ ate method to 

ion. Unfortunately, there exists 
measure the nonstationarity, 

no 
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though there have been attempts to extend the correla- 
tion dimension as a function of time, a procedure which 
may maintain accuracy over nonstationary epochs (e.g., 
Refs. 181, 186, 255) as well as the development of mea- 
sures that do not demand stationarity of the signal. 

Several groups of investigators have studied di- 
mension evaluations of the EEG and MEG from human 
subjects during various mental tasks (eyes closed, eyes 
open, quiet and awake, computation, verbal tasks, imagi- 
nation, meditation, sleep). However, a comparison of the 
reported 
ported in 

values for 
different 
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factors includ- 
electrode sites, 

type of recording, filter, data precision, sampling rate), 
the processing of the signal (digital filtering, artifact 
correction), and the algorithm used to estimate the di- 
mension. 

The two most commonly used algorithms are the 
Grassberger-Procaccia (99) and the averaged pointwise 
dimension, although Pritchard et al. (213) have explored 
an alternative algorithm based on the work of Ellner 
(58). The Grassberger-Procaccia algorithm is widely 
used because of its presumed economy in determining 
the correlation dimension from the slope of the scaling 
region. This is determined only once for each embedding 
dimension. The averaged pointwise dimension is more 
time consuming, since the scaling region has to be de- 
termined for each reference point and each embedding 
dimension separately, but has other advantages (see 
Refs. 131,178 for a comparison). In principle, with very 
long time series, both algorithms should yield the same 
dimension value. However, in practice, there exists a 
tendency for the pointwise dimension to be higher (e.g., 
4.3 t 2.2 vs. 6.4 t 1.2 for correlation and pointwise di- 
mension, respectively; Ref. 179). Both methods are far 
from becoming an automatic procedure and have to be 
applied with care. Some of the parametric consider- 
ations are as follows: 1) the length of the time series to 
be recorded. In general, the higher the dimension, the 
longer the time series required (9, 178); however, for 
biological signals, this demand may be in conflict with 
conditions of nonstationarity that might suggest 
shorter tim 
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the phase space should be linearly and nonlinearly inde- 
pendent from one another regardless of the reconstruc- 
tion methods used [e.g., singular value decomposition 
(30,53,143,164), also illustrated in Figure 7; multichan- 
nel reconstruction (43)]. The mutual information func- 
tion may be used to estimate the optimal time lag. For 
the EEG, we have shown that the first minimum (or 
zero crossing) of the autocorrelation function works 
equally well (94). 3) The maximal embedding dimension 
(32, 179) is also important. There exists a boundary ef- 
fect for high values that causes a systematic underesti- 
mation in dimensional calculations. 4) The number and 
selection criterion for the reference points is another 
parametric consideration. If all points are used as refer- 
ence points, then the procedure must be specified. 5) The 
number and refinement of the radius classes used 
should be taken into account, as well as 6) the method to 
find the scaling region, the size of the fitting interval, 
and goodness of fit (9). 

It should also be noted that quite different and 
sometimes invalid methods are used to determine the 
error bars of the dimension. Finally, when plotting the 
measured slope of the scaling region for increasing em- 
bedding dimensions, a visually based decision or a nu- 
merical cut-off is required to determine whether satura- 
tion is reached or not. To circumvent this problem, some 
studies take as their measured dimension the average 
over the highest few embedding dimensions. Because all 
of these factors may have an influence on the evaluated 
dimension value and because of the failure of an ac- 
cepted standard, a direct comparison of the results from 
different laboratories remains difficult. Only changes in 
the dimension between different conditions may be rep- 
licable in different laboratories. For this reason, we em- 
phasize that one should not seek to measure dimension- 
ality directly but in relation to particular tasks, sites, or 
subject groups. 

Before reviewing various studies, it should be noted 
that artifacts (e.g., eye movement) in the EEG tend to 
reduce the determined dimension. Based on studies in 
our lab and those of others, we presume that the actual 
dimension of EEG lies well above a value of three and 
are skeptical about dimension values reported that do 
not exceed this value. Given a measure of relative di- 
mension, we can now begin to summarize the results 
from the currently existing studies. If not otherwise 
stated, the comparison is to a relaxed eyes-closed condi- 
tion. 

The eyes-closed state itself shows different dimen- 
sionalities due to the existence (dimension reduction) or 
absence (dimension enhancement) of a-waves (94, 155, 
247). “Pure” a-waves obtained by filtering the a-band 
yield a much lower dimension than is found with the 
unfiltered time series (258). Investigations of the rest- 
ing EEG with open eyes typically indicate a relatively 
higher dimension than under an eyes-closed condition 
when the a-rhythm becomes more pronounced. This was 
originally demonstrated in a study by Pritchard and 
Duke (212) with 12 subjects. The drop in dimensional 
complexity associated with closing the eyes was greater 

over occipital loci. In two of three group studies, how- 
ever, in which we compared an eyes-open with eyes- 
closed condition, we did not find consistent lowering of 
the dimension, although parietal a was significantly en- 
hanced. In one study (unpublished data), we calculated 
the averaged pointwise dimension (63) with 200 refer- 
ence points equally distributed over the time series. The 
time delay for the phase-space reconstruction was gener- 
ally chosen to have the value where the autocorrelation 
function is zero. The scaling region was found automati- 
cally by fitting a regression line within a range which, 
beforehand, was visually determined. The length of the 
time series was 8,192 points with the maximal embed- 
ding dimension 40. In another study (53), we investi- 
gated the EEG from 12 control and 12 schizophrenic 
subjects under resting conditions, using the singular 
value decomposition based on the autocovariance func- 
tion with time lags ranging from 0 to 32 points. A calcu- 
lation of the dimension (illustrated in Fig. 7) using the 
method of pointwise dimension (63) did not produce a 
significant difference due to eyes open or closed in ei- 
ther of the groups (although a-activity was markedly 
more pronounced when eyes were closed). With the use 
of the same methods in a larger sample of student sub- 
jects (n = 42), the difference became significant. Simi- 
larly, Pritchard and colleagues (212-214) replicated 
their finding of a systematic difference in EEG dimen- 
sional complexity for a resting condition between eyes 
closed and eyes open. Thus it appears that the “idling 
state” characterized by a-waves is generally one with a 
lower dimensionality. 

In another study, together with Werner Lutzen- 
berger, we sought to extend previous EEG work in three 
ways. First, we utilized a variety of tasks that cut across 
sensory modalities including touch, vision, imagery, and 
verbal processing. These tasks were chosen to reflect 
neuropsychological processes that differentially utilize 
both the frontal and more posterior areas of the cortex. 
Second, we used measurements from nonlinear systems 
theory and compared these results with measures de- 
rived from conventional Fourier analysis. Third, 
whereas previous studies have been limited to only one 
or two electrode sites, we collected data from 15 and 32 
electrode sites (164). The outcome showed variations be- 
tween scalp sites for all measures and also variations 
between tasks. The brain maps, displayed in Figure 13, 
illustrate that dimensional complexity provides differ- 
ent information than seen in traditional EEG power 
frequency bands. The highest dimensions were observed 
for the imagery tasks, followed by the sensory touching 
tasks and observational task, and the lowest for the ver- 
bal alliteration task. Under the assumption that lower 
dimensionality dominates during rest rather than dur- 
ing more active engagement, we can conclude that more 
“attractors” are utilized in the imagery tasks than in 
those tasks of alliteration or simple observation. We are 
convinced that “rest” is not a well-chosen control condi- 
tion, because a very large number of more or less com- 
plex brain processes may happen during such an un- 
structured situation. A simple task like our alliteration 
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FIG. 13. Brain maps for electroen- 
cephalogram (EEG) dimension as well 
as CY- and ,&power averaged across 10 
subjects. Subjects were asked to imagine 
and experience an extremely positive 
time in their past in which they had felt 
“in love” (left column) and to imagine 
the same type of positive experience 
which included a sexual experience 
(right column). While maps of CP and ,8- 
power do not discriminate 2 types of 
images, map for dimensional complexity 
and its mean value differs systemati- 
cally for 9 of 10 subjects. [Data from 
Lutzenberger et al. (164).] 
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task defines the stimulus-response requirements much 
more precisely and may therefore constitute a more 
preferable control condition. Although evidence is still 
preliminary, it seems possible that task performance 
increases dimensional complexity over those brain 
areas with little involvement in the task, but reduces the 
dimensional complexity in those areas in which net- 
works become actively engaged. 

One potentially important application of nonlinear 
measures is in documenting specific states of conscious- 
ness such as sleep stages, coma, or hypnosis. For exam- 
ple, Gallez and Babloyantz (83) measured Lyapunov ex- 
ponents and metric entropy during sleep (stage IV), 
Creutzfeld-Jakob coma, and an eyes-closed a-condition. 
Although basically a demonstration study using a single 

electrode site with a single individual, this study sug- 
gests that the dynamical measures used are highest in 
the a-state, suggesting a more complex system than is 
present during sleep. Rijschke and Aldenhoff (229) ex- 
tended this work with the first group study (n > 10) of 
nonlinear dynamics during sleep. In this study, EEGs 
were recorded during sleep from 12 young adults. These 
researchers reported greater differences in dimension 
between light sleep (stage II) and slow-wave sleep (stage 
IV). What is impressive is the consistency of results 
found between subjects. All 12 subjects showed a drop in 
dimensionality as sleep progressed from stage II to 
stage III. Likewise, there was a smaller, but statistically 
significant, drop in dimensionality between stages III 
and IV. This drop was seen in 11 of the 12 subjects. Fur- 
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thermore, in every subject the correlation dimension 
was higher during rapid-eye-movement sleep than dur- 
ing stage IV sleep. More recently, Rijschke et al. (234) 
estimated the largest Lyapunov exponent in sleep EEG, 
showing its decrement with deepening of slow-wave 
sleep (stages). However, it should be noted that Principe 
and Lo (210) point out a variety of difficulties estimat- 
ing Lyapunov exponents from sleep data. 

In terms of hypnosis, work from our lab examined 
24 subjects who either easily hypnotized or not during 
an initial baselines and during an hypnotic induction 
(224). Differences in both frequency bands (e.g., 4-8 Hz 
0) and dimensionality were found between the high and 
low hypnotic susceptible individuals. However, EEG 
samples taken at five equal intervals as individuals 
passed through an hypnotic induction demonstrated 
changes in EEG frequency bands, especially in the more 
posterior areas of the brain, as the induction pro- 
gressed, but showed no differences in dimensionality es- 
timates. In other work, we then asked if individuals 
prone to dissociative experiences (ZZl), which can range 
from normal experiences (e.g., absent mindedness) to 
more pathological processes, would show baseline and 
task differences in the EEG. Unlike the hypnosis study, 
there were no EEG differences in either fast Fourier 
transform frequency bands or estimates of dimensional- 
ity between the high and low dissociative subjects. Fi- 
nally, irrespective of individual differences, overall task 
differences similar to those found in our previous report 
(164) were seen. Emotional imagery trials in compari- 
son with mental math trials were characterized by sig- 
nificantly higher dimensional estimates in the more 
frontal areas (frontal/temporal) as compared with the 
more posterior ones (parietal/occipital). The entire cor- 
tex showed relatively similar dimensional values during 
the imagery tasks, whereas during the mental math 
tasks a lower dimensional level was seen in the frontal 
and temporal areas. These results (ZZZ), along with our 
previous work, build a consistent picture of relatively 
higher frontal dimensions during imagery and further 
support the idea that nonlinear dimensional analysis 
characterizes aspects of brain dynamics not seen in tra- 
ditional spectral analysis. 

As discussed in section IIFS, there is an emerging 
trend to move research using chaos methods of analysis 
toward inferential statistical hypothesis testing. As 
pointed out by Theiler et al. (267), it is an easier task to 
reject the null hypothesis that a particular signal is lin- 
early correlated noise than to determine the dimension 
of the signal. Pijn et al. (207) used a procedure based on 
an earlier paper of Theiler (264) to compare the EEG of 
the Wistar rat with that of a control signal. The control 
signal was computed in three steps: 1) the actual EEG 
was Fourier transformed to give an amplitude and 
phase spectrum, 2) the phase angle of each frequency 
component was replaced by a random number, and 3) an 
inverse transform of the resulting signal was carried 
out to create the control signal. This procedure resulted 
in the actual EEG and the control signal having the 
same power spectrum. In our own work (164), we used as 

a control signal computer-generated random series 
which was filtered to give power spectra identical to the 
individual EEG traces. At this time there remain a num- 
ber of technical issues as to the best type of control sig- 
nal to utilize. Theiler et al. (267) suggest two separate 
algorithms for generating surrogate data, and this work 
should be consulted for detailed procedures. 

D. Pathological Processes Investigated by Tools Derived 
From the Theory of Dynamic Systems 

The genesis of focal epileptic seizures is often stud- 
ied using a topical application of convulsants, e.g., peni- 
cillin, applied to various cortical structures, especially 
the hippocampus. Another method is to add a convul- 
sant to the medium of in vitro slice preparations. In both 
cases, penicillin induces a discharge pattern in the neu- 
rons (e.g., CA3 pyramidal cells in the case of the hippo- 
campus) which is quite similar to spontaneously occur- 
ring epileptic patterns. In the hippocampus, the struc- 
ture responsible for this transition consists of a neural 
circuit of mossy fibers, CA3 pyramidal cells, and inhibi- 
tory basket cells. The recurrent inhibitory pathway be- 
tween pyramidal cells and basket cells is mediated by 
the inhibitory transmitter y-aminobutyric acid (GABA). 
Applying penicillin antagonizes the GABA receptors on 
the pyramidal cell membrane and weakens inhibition 
(the network excitability increases), which in turn re- 
sults in epileptogenic behavior. 

In good agreement with experimental data, the 
neural structure of recurrent inhibition in the hippo- 
campus has been modeled by a neural network (e.g., Ref. 
167) with one bifurcation parameter being the amount 
of convulsant applied. In the latter study, a transition 
was observed from regular low-frequency burstlike ac- 
tivity with different periodicities to irregular, possibly 
chaotic, sustained high-frequency firing. By enhancing 
the time delay as the bifurcation parameter, Kaczmarek 
and Babloyantz (137), using their early model of recur- 
rent inhibition, found a sequence of qualitatively differ- 
ent dynamical behaviors leading from steady state to 
chaotic “epileptic” activity. Somewhat different was the 
study of Ermentrout and Cowan (59) who model tonic- 
clonic transitions by a bifurcation sequence resulting 
from an enhancement of the excitability of the neurons. 
The transition went from a steady state to a high-fre- 
quency mode (tonic phase) to a two-frequency mixed 
mode (transition) to a low-frequency mode (clonic 
phase). Rapp (216) presents two competitive explana- 
tions for the marked depolarization of the membrane 
potential with its bursts of action potentials induced by 
a convulsant. The first explanation is the network expla- 
nation as described previously with its drug-altered net- 
work transmission properties. The second explanation 
is the thesis of aberrant pacemaker epileptic neurons. 
These two processes can, in Rapp’s view, act together in 
the clinical state. Rapp (216) further suggests that the 
epileptic seizure with its massive rhythmic depolariza- 
tion is not itself a chaotic accident but an “automatic 
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FIG. 14. Human brain not only undergoes a phase transition dur- 
ing an epileptic seizure, as suggested by work of Iasemidis and Sackel- 
lares (133), but temporal largest Lyapunov exponent (LLE) profiles 
indicate phase transitions minutes before seizure onset. Large drop in 
LLE, prominent at most electrode sites, indicates seizure. Significant 
reductions can be observed in electrocorticogram (ECoG), minutes be- 
fore this event. Such attempts to undergo a phase transition are most 
prominent for electrodes overlying seizure focus (thin line). [Redrawn 
from Iasemidis and Sackellares (133).] 

corrective mechanism that re-establishes neural co-ordi- 
nation.” We previously discussed (see sect. IVB) the 
work of Freeman and colleagues (70, 71, 73) concerning 
epileptic seizures in the olfactory bulb in which the ac- 
tual seizure was compared with a mathematical model. 

In the literature, there exist several dimension eval- 
uations of epileptic patients during ictal and/or interic- 
tal periods as well as comparisons to those of normals. 
The first dimensional analysis of an epileptic patient 
undergoing a petit ma1 seizure was made by Babloyantz 
and Destexhe (12). Extremely coherent waves lasting 5 s 
and corresponding to -18 spike-wave cycles were sam- 
pled with a high value of 1,200 Hz and yielded a striking 
low correlation dimension of only 2.05 t 0.09. The great- 
est Lyap unov exponent (2.9 t 0.6 bits/s) gave furth er 
evidence for chaotic beh avior. Presumably, the seizu re 
involves the entire cerebral cortex in that the two chan- 
nels, frontal vs. parietal and vertex vs. temporal, 
showed equal results. Another study during a seizure 
(269) reports no significant change in the dimension 
value but an increase in the metric entropy compared 
with a normal subject. 

Iasemidis and Sackellares and colleagues (133,134, 
237, 238) recorded the electrocorticogram from 16 sub- 
dural electrodes covering a relatively larger area over 
the right mesiotemporal focus of a patient and evalu- 
ated the Lyapunov exponent during preictal, ictal, and 
postictal epochs for three different seizures (an example 
is provided in Fig. 14). The onset of a seizure is charac- 
terized by an abrupt decrease in the exponent solely of 
the electrodes nearest the focus, so an identification of 
the epileptogenic focus by means of Lyapunov expo- 

nents is possible. As the seizure progresses, the Lya- 
punov exponent increases and, finally, in the cessation 
of the seizure, ends with an abrupt decrease in all elec- 
trodes. Even though the lowest values of the Lyapunov 
exponent occurred during the seizure, these were still 
positive, denoting the presence of a chaotic attractor. 
Additionally, the Lyapunov values were higher in the 
postictal state than in the preictal one. These authors 
(133, 134, 237, 238) conclude that the largest Lyapunov 
exponent can be useful for seizure detection and localiza- 
tion. 

Pijn et al. (207) studied epileptic seizures in male 
Wistar rats. Using implanted electrodes, these re- 
searchers were able to study the seizures over the course 
of time as well as compare the same brain area under 
differential behavioral conditions (e.g., restful waking, 
exploratory locomotion, and seizure). The results 
showed that as different brain areas were recruited into 
the seizure activity, there was a corresponding switch in 
the correlation dimension of the EEG from a high to a 
low one, suggesting the emergence of chaotic attractors. 

In the first step of evaluating the correlation di- 
mension, a marked difference between interictal MEG 
recordings from four epileptic patients and a-MEG re- 
cordings from five normal subjects has been reported by 
Saermark et al. (239). Instead of the S-like shape in the 
log C(r) versus log r plot, the curves of epileptics show 
two inflection points separating three segments of dif- 
ferent slopes (the middle part approaches a value of 1). 
A comparison of the dimension values between the two 
groups is difficult because different criteria were used 
to select the leads. The recording sites of the epileptics 
were chosen to show a clear prominence of 3-6 Hz, 
whereas the time series of normals come from the audi- 
tory cortex and show, at least in the reported case, a 
prominent a-spectrum. In a study by two of us (94), we 
could not detect any differences in the averaged point- 
wise dimension of the seizure-free EEG records from 
seven epileptic patients compared with two controls. 
However, for one person undergoing an absent seizure, a 
dimension reduction of about two was observed. 

In the case of Creutzfeld-Jakob disease, the correla- 
tion dimension of one patient calculated from various 
leads shows a relatively wide range from 3.7 to 5.4 (14). 
This may indicate the coexistence of various attractors 
in the cortex or is simply due to artifacts. In any case, 
the dimension lies in between that found with the a- 
state (-6.1) and an epileptic seizure (-2.05). 

It is well known that large doses of anesthetics re- 
duce the EEG to a flat line (fixed point attractor with 
zero dimension), which suggests the possibility of as- 
sessing the depth of anesthesia during a surgical opera- 
tion by means of the fractal dimension. Mayer-Kress, 
Layne, and co-workers (155,180,182) analyzed the EEG 
recorded from C&-T,, C,-T,, P,-0,, and P,-0, of one per- 
son 5 min before and IO min during the induction of 
fluroxene, but got a negative result. The correlation di- 
mension was not sensitive to the depth of anesthesia. 
The first two locations showed no reaction to fluroxene 
at all; the second two locations surprisingly showed a 
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tendency to an increase in the first 5 min (light anesthe- 
sia), but remained constant in the following 5 min (me- 
dium anesthesia). However, it should be noted that the 
effects of fluroxene are somewhat different from that of 
traditional anesthesia. Watt and Hameroff (273, 274) 

also investigated the effect of anesthetics on the dimen- 
sion of the EEG (C&-P, lead, 1 person). The anesthetics 
used isoflurane and Fentanyl, followed by thiopental so- 
dium, the latter one suppressing EEG bursts. The di- 
mension values and embedding dimensions were very 
low (perhaps due to the short interval length of 4 s) with 
a slight decreasing tendency from 2.15 (awaking state) 
to 2.07 (isoflurane and Fentanyl) to 1.90 (thiopental so- 
dium). In summary, the expected relation between the 
fractal dimension and the depth of anesthesia has not 
been supported by these preliminary findings. 

In a group study, together with Brigitte Rockstroh 
and Rudolf Cohen (53), we examined the dynamical fea- 
tures of the spontaneous EEG in schizophrenic patients 
and control subjects under resting conditions. While 
controls showed about equal dimensional complexities 
over both central and frontal cortex, schizophrenic pa- 
tients differed such that the fractal dimension was 
lower at frontal midline (F,) than at the central midline 
(C,). Two-thirds of the schizophrenic sample exhibited 
values outside the range of the control group, with one- 
half of the patients more than three standard deviations 
above the mean of controls. The observed frontocentral 
gradients in patients classified as suffering from schizo- 
phrenia suggest that the frontal and the central dy- 
namics are dissociated even in the relaxed waking state, 
whereas a coupling occurs in the control sample. There- 
fore, we may conclude that the dynamics of the brain 
regions projecting to these recording sites are different 
for the two groups. 

Using a 37-channel neuromagnetometer, Kowalik 
et al. (148) measured the spontaneous neuromagnetic 
activity (MEG) under resting conditions in subjects suf- 
fering from tinnitus (ringing in the ears) and normal 
controls. For all cases, the largest Lyapunov coefficient 
(LLE), reconstructed from MEG time series, turned out 
to be positive, a result that strongly supports the conjec- 
ture that brain dynamics bear chaotic features. Across 
channels, the LLE map (as illustrated in Fig. 15) was 
generally less uniform in the tinnitus sufferers than in 
controls. Furthermore, in the tinnitus group, LLE peaks 
tended to be higher than in control subjects. The au- 
thors (148) draw the conclusion that tinnitus emerges 
from a deficit in the regulation of local neuronal excit- 
ability in the temporal region. Whether or not such stud- 
ies will enhance our understanding of cerebral disregu- 
lation remains a controversial issue; nevertheless, the 
work demonstrates the potential usefulness of mapping 
the LLE for diagnostic purposes. 

E. Speculation Concerning Hebbian Cell Assemblies 

Historically there have existed two views of the ce- 
rebral cortex. The first view divides the cortex into 

various subsystems and emphasizes the structural di- 
versity of different areas and their short-range connec- 
tions. The second view describes the brain as a single 
operating system by emphasizing statistical similari- 
ties between the density of synapses, dendrites, and the 
existence of long-range connectivity and plasticity. As is 
often the case, the solution to this problem seems to be 
dialectical in nature. There appears to be some truth to 
both views. Like an electron, appearing one time as a 
wave and another time behaving like a particle, we may 
observe the cortex depending on experimental condi- 
tions functioning as a whole system at one time, or sepa- 
rating into subsystems at another time. This hypothesis 
receives support from the previously cited data by Lut- 
zenberger et al. (164). In this study, resting conditions or 
imagery of pleasant scenes yielded the same fractal di- 
mensions at every electrode site, whereas specific sen- 
sory tasks produced distinct patterns with different 
fractal dimensions across the scalp, a finding that has 
been replicated by Ray et al. (222). When such differ- 
ences are observed, we have reason to assume that the 
underlying dynamics must differ, thus arising from dif- 
ferent systems at work, at least during the time of analy- 
sis. This example illustrates that the new methods of 
looking at brain dynamics might not only extract more 
information than was previously available, but eventu- 
ally help us or even force us to create new ideas of brain 
functioning. However, techniques specifically tailored 
to study dynamics in neuronal mass action need also to 
be developed. We conclude this section by presenting 
some speculation concerning the relationship between 
nonlinear dynamics and Hebbian cell assemblies. 

One major problem in the interpretation of EEG/ 
MEG findings has been the lack of a coherent theoreti- 
cal approach within which to articulate and test the re- 
sults from experimental studies. At this time we would 
like to suggest one such approach that could serve as a 
working hypothesis for future research. This approach 
is based on our understanding of how Hebbian cell as- 
semblies are sculptured within a highly interconnected 
neuropil by the forces of stimulus-evoked activity, 
forces which include chemical release, synaptic enhance- 
ment, and the competition of previously formed cell as- 
semblies. 

In the course of this paper we have presented dif- 
ferent examples ranging from single-cell firing to com- 
plex sleep-waking cycles that all follow deterministic 
chaotic rules. We believe that some of these applications 
open a new refreshing view on some well-known, but 
badly understood, physiological mechanisms. Most of 
our attention was devoted to the complex behavior of 
larger interconnected cell masses of the brain and their 
electrical activity for which nonlinear analysis shows 
promise. Because most of the work presumes complex 
neuronal networks functioning according to a connec- 
tionistic theory of brain activity, we briefly introduce 
this view. The connectionistic viewpoint also allows us 
to understand more clearly the parallel existence of, a 
continuum of, fully deterministic chaotic activity in the 
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FIG. 15. Brain maps for largest Lyapunov exponents (LLE) for 1 subject, MEG was measured over both temporal 
regions, and LLE was estimated using a modified algorithm (148) as proposed in Reference 2’77. For every MEG time 
segment, change of LLE with number of iterations was estimated. If this value converges, mean across last 20% of 
iterations was assumed to correspond to LLE. Dark regions refer to valleys; lighter ones describe elevations in LLE. 
Maximal changes of amplitude on measured surface are in range of -30%. For all cases, LLE turned out to be 
positive, a result that strongly supports conjecture that brain dynamics bear chaotic features if we assume that 

regulation of brain activity is deterministic in nature. [Adapted from Kowalik et al. (148).] 

neocortex (49-51,55,54). In an earlier paper in this jour- 
nal (27) we explained some of these interactions. 

Let us now consider the competition between neuro- 
nal cell assemblies (NCA). The concept of cell assem- 
blies (28, 121) has become fundamental to models con- 
cerned with the functioning of the brain, even though 
many neuroscientists were initially reluctant to accept 
this position. Hebb in 1949 (121) postulated that short- 
term memory is represented in reverberatory circuits, 
as described by Lorente de No in 1943 (160a). Once acti- 
vated, these circuits can maintain excitation, since they 
are formed by a set of highly interconnected neurons, 
each of which receives excitation from, and gives excita- 
tion to, other members of the same set. If a sufficiently 
large number of neurons in one such cell assembly is 
activated, then the whole set will become active and pro- 
duce the function for which it has been sculpted, which 
includes bringing up stored information and outputs to 
use it. 

A key concept related to memory storage is that the 
structure of these cell assemblies is flexible and can be 

changed rapidly to update the context of the stored in- 
formation. This requires the continued strengthening of 
connections between simultaneously active neurons 
(Hebb’s rule), an assumption which has long been con- 
sidered the physiological basis for the acquisition of 
learning and storage of memory. It is thought that in- 
creasing the level of postsynaptic activity within neural 
networks will, in turn, increase the ability of simulta- 
neously active synapses to depolarize the postsynaptic 
membrane, while insufficient activation is seen to 
weaken them. Hebbian models of memory were sug- 
gested by quite a number of theorists including Palm 
(199) and more recently Brown et al. (31). The synapses 
in the assemblies can be upregulated and downregu- 
lated by both homosynaptic and heterosynaptic events 
and by a variety of chemical reactions. Bailey and Kan- 
de1 (Ma) have suggested that the long-term information 
storage mechanism may involve the modulation of ge- 
netic material (i.e., gene expression) to manufacture 
within the cell a protein that perpetuates or fixes the 
specific synaptic gain of a particular synapse in the cell. 
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Probably all of the synapses on dendritic spines are sub- 
ject to both short-term and long-term modification in 
their relative gains, a finding which suggests that three 
of four cortical synapses are plastic (29). The buildup 
and strengthening of a cell assembly requires that a 
large portion of synapses in the neuropil that are not 
relevant for the incoming information event be shut off, 
otherwise connections would form too randomly. This 
means that the excitability of the neuropil must some- 
how be reduced for a fraction of a second or so before a 
relevant event can be stored (50, 51, 54). 

Let us now review the consequences of such a Heb- 
bian view for the interpretation of brain activity, espe- 
cially that which can be recorded noninvasively as 
event-related responses and also observed in its behav- 
ioral consequences. I) The development of cell assem- 
blies depends on plastic (“Hebbian”) excitatory cell sys- 
tems with a rapid rise time for their construction. The 
system ideally suited for this purpose is the apical pyra- 
midal dendritic trees of the upper neocortical layer. 

2) A cell assembly includes sometimes widespread 
cortical neurons including sensory, cognitive (meaning), 
and motor functions. Any restrictive separation into 
highly specialized “modules,” as is fashionable in pres- 
ent day neuropsychology, is obsolete; vis-a-vis the fact 
that every sufficiently large pool of neurons of the cor- 
tex is connected to every other neuronal pool, forming 
the anatomic basis of our illusion of a unified conscious- 
ness. The meaning and qualitative nature of an event, an 
idea, an emotion, or a percept is reflected in the local 
topography of its connections and firing patterns, so to 
speak in the topographical “Gestalt” of an assembly in 
its phase space, not in the properties of its parts, the 
cells, or its transmitters. 

3) This specificity of an assembly is best reflected in 
the spatial distribution and frequency of fast-changing 
electrical activities, such as the EEG and event-related 
components. It has to be fast because assemblies must 
have the ability to ignite explosively as a whole; a whis- 
per can turn on a full-blown paranoid delusion within a 
fraction of a second, including all, or nearly all, sensory, 
motor, and meaning aspects of that delusion. 

4) Cell assemblies, and therefore the EEG and 
event-related or evoked potentials, should have proper- 
ties of deterministic chaos. They cannot be totally ran- 
dom, since it would be impossible to create new ideas 
and percepts if assemblies did not generate novel activ- 
ity patterns within the fraction of a thought. Freeman 
and Skarda (77, 248) have shown that in the olfactory 
system of the rabbit chaos becomes more prevalent 
when there is competition between parts of assemblies, 
or between several assemblies. We believe that we have 
hints for a similar mechanism for cognitive processes in 
the human neocortex (see below). 

With increasing competition between different net- 
works in different cortical localizations, the phase space 
in which a corresponding biological activity of the neu- 
rons varies becomes multidimensional. In new situa- 
tions with multimode1 memory demands, the dimension- 

ality (complexity) of the neuronal process should be 
higher. 

5) Whether a given assembly will be ignited and the 
“contrasts” between assemblies (their foreground- 
background Gestalt) depends on the threshold of an as- 
sembly. Usually assemblies are excited by external or 
internal stimuli. More frequently, they are primed by 
conditioned stimuli occurring before a stimulus that ul- 
timately ignites the assembly. In addition to externally 
controlled threshold regulation, cell assemblies have 
their own automatic threshold control to, as Braiten- 
berg and Schtiz poetically state “discover and isolate 
ideas. . .” and to reinforce ideas “and keep them sepa- 
rately” (Ref. 29, ~205). Another main function of auto- 
matic threshold control is to prevent the transition from 
an “Einfall” to an “Anfall” (Ref. 29; transition from an 
idea to a seizure) in an excitatory neuronal network. 
Inherent to threshold control is its nonlinear transfor- 
mation of information. Therefore, we ought to apply 
principles from nonlinear systems theory (determinis- 
tic chaos) to understand the dynamic patterns of thresh- 
old regulation. 

The chaotic activity has to be deterministic and 
nonrandom, because living biological systems can only 
function if held within certain activity limits through 
feedback of the ongoing activity. On the other hand, 
nonlinear changes in the state of neuronal cell assem- 
blies is a prerequisite of any living system to generate 
new sensory-motor patterns that control the environ- 
ment in a dynamic ever-changing way, which are depen- 
dent on slightly different initial conditions and conse- 
quences. 

As Skarda and Freeman (248) have put it, chaos 
provides the NCAs with a “deterministic ‘I don’t know’.” 
Without it, the patterned activity would always return 
to old, already formed NCAs leading to exhausting repe- 
tition. However, it seems as if any group of NCAs can be 
pressed into limited cycle deterministic activity for a 
certain time period by highly structured external or in- 
ternal variations. Some pathological conditions, and re- 
petitive behavior without competitive activity, may fall 
into this category. Their detection remains an impor- 
tant challenge. 

V. SUMMARY 

In this review we examined the emerging science of 
deterministic chaos (nonlinear systems theory) and its 
application to selected physiological systems. Although 
many of the popular images of fractals represent fasci- 
nation and beauty that by analogy corresponds to na- 
ture as we see it, the question remains as to its ultimate 
meaning for physiological processes. It was our intent to 
help clarify this somewhat popular, somewhat obscure 
area of nonlinear dynamics in the context of an ever- 
changing procedural base. We examined not only the 
basic concepts of chaos, but also its applications ranging 
from observations in single cells to the complexity of the 
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EEG. We have not suggested that nonlinear dynamics 
will answer all of our questions; however, we did at- 
tempt to illustrate ways in which this approach may 
help us to answer new questions and to rearticulate old 
ones. Chaos is revolutionary in that the overall ap- 
proach requires us to adopt a different frame of refer- 
ence which, at times, may move us away from previous 
concerns and methods of data analysis. 

In sections I-IV, we summarized the nonlinear dy- 
namics approach and described its application to physi- 
ology and neural systems. First, we presented a general 
overview of the application of nonlinear dynamical tech- 
niques to neural systems. We discussed the manner in 
which even apparently simple deterministic systems 
can behave in an unpredictable manner. Second, we de- 
scribed the principles of nonlinear dynamical systems 
including the derived analytical techniques. We now see 
a variety of procedures for delineating whether frenetic 
chaotic behavior results from a nonlinear dynamical 
system with a few degrees of freedom, or whether it is 
caused by an infinite number of variables, i.e., noise. 
Third, we approached the applications of nonlinear pro- 
cedures to the cardiovascular systems and to the neuro- 
sciences. 

In terms of time series, we described initial studies 
which applied the now “traditional” measures of dimen- 
sionality (e.g., based on the algorithm by Grassberger 
and Procaccia) and information change (e.g., Lyapunov 
exponents). Examples include our own work (53, 148) 
and that of Pritchard et al. (214), demonstrating that 
the dynamics of neural mass activity reflect psycho- 
pathological states. Today, however, the trend has ex- 
panded to include the use of surrogate data and statisti- 
cal null hypotheses testing to examine whether a given 
time series can be considered different from that of 
white or colored noise (cf. Ref. 262). 

One of the most important potential applications is 
that of quantifying changes in nonlinear dynamics to 
predict future states of the system. For example, Iase- 
midis and co-workers (133, 134) have reported charac- 
teristic alterations in the electrocorticogram before an 
epileptic seizure. In terms of cardiovascular processes, 
Skinner et al. (252) suggest that nonlinear dynamics can 
be used as a basis for future biomedical tests to signal 
various cardiovascular insults such as a heart failure. If 
such promises hold, they will have tremendous implica- 
tions for the understanding of both neurological and car- 
diovascular pathologies. 
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