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1 Introduction

The last decade has seen remarkable progress in identifying new characterisations of chaos
in many-body quantum systems. In particular, a large amount of attention has focused
on the physics of operator scrambling — namely the increase in size and complexity of
operators in a many-body quantum system under Heisenberg time evolution. A valuable
tool in probing this time evolution is provided by out-of-time ordered correlation func-
tions (OTOCs), which have been extensively studied in a range of many body systems
including quantum circuits [1, 2], condensed matter spin systems [3–5] and quantum field
theories [6–11]. These developments have led to a range of surprising new insights into
many-body quantum chaos, including the discovery of a fundamental bound on the growth
of OTOCs in systems with a large on-site Hilbert space dimension [12], and surprising
connections between many-body quantum chaos and hydrodynamics [13–21].

Throughout these developments an important role has been played by holographic
quantum field theories. In such theories the computation of the OTOC can be reduced
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to studying a two-particle scattering process near the horizon of a black hole in the dual
gravitational description [11]. The spatial and temporal form of the OTOC can then be
extracted from the profile of gravitational shock waves at the horizon [7, 11]. In particular
one finds that for theories dual to static, isotropic, planar black holes the initial decay of
the OTOC of two local few-body operators Ŵ , V̂ has the form

〈Ŵ (t, ~x)V̂ (0, 0)Ŵ (t, ~x)V̂ (0, 0)〉 ∼ 1− cGNeλL(t−|~x|/vB) (1.1)

where c is an order one constant, GN � 1 is Newton’s constant in the dual gravitational
description, the Lyapunov exponent λL = 2πT saturates the bound of [12], and the but-
terfly velocity vB is system dependent and characterises the rate of propagation of chaos
in the dual quantum field theory.

Furthermore, such holographic systems have played an important role in identifying
and testing new connections between many-body quantum chaos and hydrodynamics. In
particular, at least for maximally chaotic systems, it has been argued that there is remark-
able connection between the form of the OTOC (1.1) and an unusual feature of the energy
density response of the quantum field theory known as “pole-skipping” [13, 14]. Namely,
for perturbations at specific values of the analytically continued frequency ω∗ = iλL and
wave-numbers q∗ = ±iλL/vB related to the form of (1.1), one finds that the energy density
response is undefined. Furthermore, the retarded energy-density Green’s function exhibits
a collective excitation whose dispersion relation ω(q) passes through the point (ω∗, q∗).1

This “pole-skipping” phenomenon arises as a prediction of a hydrodynamic effective the-
ory of maximally chaotic systems [14, 17], and has been shown to be a generic feature
of holographic theories dual to planar black holes [15]. See [36] for a proposal for how
pole-skipping generalises away from maximal chaos, and [37–41] for investigations of pole-
skipping in CFTs.

So far, the connection between many-body quantum chaos and pole-skipping in
holographic systems has primarily been studied in theories dual to static planar black
holes [15, 42–50]. One important exception is provided by the study of rotating BTZ black
holes, which are dual to a 1+1 dimensional CFT on a circle with a chemical potential for
rotation.2 In such a setting, the form of the OTOC was studied in [53, 54] (see also [55–60]),
and in [61] it has been shown that a natural generalisation of pole-skipping applies for ar-
bitrary values of rotation. Whilst the fact that pole-skipping continues to hold in this case
is reassuring, and provides evidence that a hydrodynamic effective theory of chaos contin-
ues to apply, both the effects of rotation and the dual gravity description are particularly
simple for 1+1 dimensional CFTs.

In this paper, our goal is to study the relationship between many-body quantum chaos
and energy dynamics for an example dual to a higher-dimensional rotating black hole,

1In addition to the above example, holographic theories also exhibit pole-skipping in the lower-half
plane of complex frequency space [22]. These are not directly connected to the form (1.1) of the OTOC,
but can still provide interesting constraints on the dispersion relations of the field theory’s collective exci-
tations [23–35].

2See [51, 52] for other exceptions.
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specifically the Kerr-AdS black hole. Such a black hole, the details of which we review
in section 2, is dual to a 2+1 dimensional CFT on a sphere with a chemical potential for
rotation about the North pole [62, 63]. In section 3 we begin by studying the computation
of OTOCs in such theories. We note that a previous study of shock waves in the Kerr-
AdS black hole has been provided using the Newton-Penrose formalism in [64, 65]. Here
we provide a complementary description of chaos in which we compute OTOCs using the
eikonal approximation to gravitational scattering following [11]. As in previous examples
we relate the eikonal phase associated to the gravitational scattering process to the angular
profile of a gravitational shock wave at the horizon of the black hole. This angular profile
is the Green’s function of a second order partial differential equation which we refer to as
the shock wave equation, and is given explicitly in equation (3.9). Whilst solving for the
angular profile of the shock wave is in general complicated in the Kerr-AdS black hole,
an analytically tractable regime is provided by the case of large black holes in the slowly-
rotating limit (or limit of small chemical potential). In this regime we determine the spatial
profile of the shock wave, and study the form of the OTOC in the equatorial plane.

We then proceed to discuss the energy density response, and specifically pole-skipping,
for the theory dual to the Kerr-AdS black hole. For planar black holes it is well known
that the gravitational origin of pole-skipping can be traced to an unusual feature of ingoing
solutions to the linearised Einstein equations [15]. Specifically, when the frequency and
wavenumber of the metric perturbations are chosen to take the pole-skipping values ω∗ =
i2πT and q∗ = ±i2πT/vB then one component of the Einstein equations becomes trivial
at the horizon, resulting in an extra free parameter in the ingoing solution. Motivated by
this, in section 4 we analyse the near horizon behaviour of ingoing metric perturbations for
the Kerr-AdS background, for which we find an analogous phenomenon. In particular, for
metric perturbations at a frequency ω∗ = i2πT we find that one component of the Einstein
equations at the horizon becomes equivalent to the shock wave equation. As a result, this
component of the Einstein equations becomes automatically satisfied for certain choices of
the angular profile of the metric near the horizon related to the form of the OTOC.

For planar black holes, this observation immediately implies the existence of an extra
degree of freedom in the ingoing solution that is the gravitational origin of the pole-skipping
phenomenon [15]. In order to reach the same conclusion for the Kerr-AdS solution, we
use the Teukolsky formalism [66, 67] to provide an analysis of pole-skipping that directly
mirrors previous approaches. In particular we use this formalism to confirm the existence of
an extra ingoing mode at ω∗ = i2πT whenever the spatial profile of the near-horizon metric
is chosen to satisfy the shock wave equation. Moreover we show that this extra ingoing mode
implies the usual signatures of pole-skipping — namely that the energy density response
is undefined, and that a collective mode exists upon a parametrically small deformation
of the profile. Finally, for large black holes in the slowly rotating limit we show there is
pole-skipping at locations in Fourier space directly related to the temporal and angular
profile of the equatorial OTOC, and use such locations to obtain new constraints on the
dispersion relations of collective modes of the boundary theory.
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2 The Kerr-AdS black hole

As explained in the Introduction, our goal in this paper is to investigate the connection
between many-body quantum chaos and energy dynamics in the context of the holographic
theory dual to the Kerr-AdS black hole. To begin, it will be useful to review certain features
of the Kerr-AdS metric, and to introduce the different coordinate systems that we will use.

Starting from Boyer-Lindquist coordinates (t, r, θ, φ) and then introducing x = cos θ,
the Kerr-AdS metric takes the form

ds2 = − ∆r(r)
Σ

(
dt− a(1− x2)

Ξ dφ

)2

+ (1− x2)∆x

Σ

(
adt− (r2 + a2)

Ξ dφ

)2

+ Σ
∆r(r)

dr2 + Σ
(1− x2)∆x

dx2,

(2.1)

where the various functions and parameters in (2.1) are defined as

∆r(r) = (r2 + a2)
(

1 + r2

L2

)
− 2Mr, ∆x = 1− a2x2

L2 ,

Σ = r2 + a2x2, Ξ = 1− a2

L2 ,

M = (r2
0 + a2)(r2

0 + L2)
2L2r0

.

(2.2)

The above metric is a solution to Einstein’s equations with a negative cosmological constant
Λ = −3/L2, with L the AdS-radius. For non-zero a there are two horizons located at the
zeroes of ∆r(r). The outer horizon is located at r = r0, in terms of which we may write
the temperature T of the black hole as

2πT ≡ α = r0
2(r2

0 + a2)

(
1− a2

r2
0

+ 3 r
2
0
L2 + a2

L2

)
. (2.3)

The variable a parameterises the rotation of the black hole along the φ direction. In the
coordinate frame {t, r, x, φ}, the angular velocity of the outer horizon ΩH is given by

ΩH = aΞ
r2

0 + a2 . (2.4)

Note that ΩH is not directly relevant for the thermodynamics of the boundary theory,
since the coordinate frame {t, r, x, φ} rotates at infinity with an angular velocity −a/L2.
To understand the structure of the boundary theory it is useful to make the coordinate
transformation [68]

R =
√
L2(r2 + a2)− (L2 + r2)a2x2

L
√

Ξ
, Φ = φ+ at

L2 ,

cos Θ = L
√

Ξrx√
L2(r2 + a2)− (L2 + r2)a2x2 ,

(2.5)
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after which one finds that the asymptotic form of the metric as R → ∞ is global AdS in
standard coordinates

ds2 → −
(

1 + R2

L2

)
dt2 + dR2

1 + R2

L2

+R2(dΘ2 + sin2 ΘdΦ2). (2.6)

The dual field theory then lives on the conformal boundary of global AdS, and corresponds
to a 2+1 dimensional CFT on a sphere of radius L with boundary coordinates {t,Θ,Φ}.
The temperature of the CFT is given by (2.3) and there is a chemical potential Ω for
rotation about the North pole given by the angular velocity of the horizon relative to the
conformal boundary [62, 63, 69]

Ω = a

r2
0 + a2

(
1 + r2

0
L2

)
. (2.7)

In other words, the density matrix of the boundary theory is

ρ = e−βH−βΩJ

Z
, Z = Tr(e−βH−βΩJ), (2.8)

where β = 1/T and J is the angular momentum about the North pole.
In order to study OTOCs, we also need to introduce Kruskal-like coordinates in which

the metric is manifestly smooth at the outer horizon. To do this, following [65], we first
introduce the co-rotating angular coordinate

ψ = φ− ΩHt. (2.9)

The singularities in the metric at the outer horizon can then be removed by introducing
“ingoing” (v) and “outgoing” (u) co-ordinates defined by

du ≡ dt− (r2 + a2)
∆r

dr, dv = dt+ (r2 + a2)
∆r

dr, (2.10)

from which Kruskal-like co-ordinates can be constructed as

U = −e−αu, V = eαv. (2.11)

In these co-ordinates, the metric can be written as

ds2 =− ∆r

Σ

[
r2

0 + a2x2

2α(r2
0 + a2)

(
dV

V
− dU

U

)
− a(1− x2)

Ξ dψ

]2

+ Σ∆r

4α2(r2 + a2)2

(
dV

V
+ dU

U

)2

+ (1− x2)∆x

Σ

[
a(r2

0 − r2)
2α(r2

0 + a2)

(
dV

V
− dU

U

)
− (r2 + a2)

Ξ dψ

]2

+ Σ
(1− x2)∆x

dx2,

(2.12)
where, as usual, factors of r should be understood as meaning r(UV ) as determined through
equations (2.10) and (2.11). The metric (2.12) is smooth at r = r0, corresponding to
UV = 0, and explicit expressions for the individual metric components in these coordinates
can be found in appendix A.
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3 OTOCs in Kerr-AdS black holes

We will now discuss the computation of the out-of-time ordered correlation functions for
the theory dual to (2.1). As is now well known, for holographic systems dual to classical
gravity there is a well understood prescription to compute the OTOC of the dual field theory
in terms of high-energy scattering process near the horizon of a black hole [11]. So far,
however, computations of the OTOC in theories dual to rotating black holes have primarily
been restricted to the case of the BTZ black hole [53, 54] (see also [55–60]). We note that a
previous discussion of shock waves in Kerr-AdS black holes in the context of the Newton-
Penrose formalism has been provided by [64, 65]. However the connection between the
formalism in [64, 65] and the usual computation of OTOCs in terms of gravitational shock
waves is non-trivial. Here we will provide a complimentary discussion of the computation
of OTOCs in Kerr-AdS black holes in which we work directly with the metric variables
following [11]. In particular we will derive the partial differential equation that governs the
angular profile of gravitational shock waves, and use this to explicitly analyse the form of
the equatorial OTOC for large black holes in the slowly rotating limit.

For concreteness, we will be interested in computing correlation functions in the bound-
ary CFT dual to (2.1) of the form3

〈Ŵ (t2,Θ2,Φ2)V̂ (t1,Θ1,Φ1)Ŵ (t2,Θ2,Φ2)V̂ (t1,Θ1,Φ1)〉, (3.1)

where t2−t1 � β and the expectation value is taken with respect to the density matrix (2.8).
Whilst the OTOC in (3.1) is a one-sided quantity, it is in practice most efficiently computed
using the Kruskal geometry (2.12), dual to a thermofield double state. The OTOC (3.1)
can be related in such a geometry to a two particle gravitational scattering process between
particles moving along the U = 0 and V = 0 horizons [11].

In particular, in a symmetric frame, perturbing the thermofield double state dual
to (2.12) by a local boundary operator Ŵ at time t2 will result in quanta moving along the
V = 0 horizon with momentum pU1 .4 Likewise a perturbation by an operator V̂ at time
t1 results in quanta moving along the U = 0 horizon with momentum pV2 , highly boosted
relative to the Ŵ quanta such that pU1 pV2 ∼ e2πT (t2−t1). At the level of the classical
gravity approximation the scattering process is elastic, and conserves both the momenta
and angular coordinates of the quanta at the horizon [11]. As such the scattering amplitude
takes the form eiδ, where the eikonal phase δ is real and a function of pU1 , pV2 and the horizon
coordinates of the quanta. The OTOC (3.1) is then given by an integral of the scattering
amplitude eiδ over momenta and horizon coordinates, weighted by bulk-to-boundary wave
functions that decompose the perturbations caused by the boundary operators into horizon
quanta [11].

Our goal in this section is to compute the eikonal phase shift δ for gravitational scatter-
ing in the Kerr-AdS black hole (2.12). To this end we consider particles whose trajectories

3We assume that the OTOC in (3.1) has been regulated by a small separation of operators in imaginary
time.

4Note we are interested in the one-sided OTOC (3.1) and hence all operators act on the right hand
boundary.
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approach the null geodesic given by (U = U(τ), V (τ) = 0, x(τ) = x1, ψ(τ) = ψ1), corre-
sponding to quanta created by the Ŵ operator. Note that the fact we are in co-rotating
coordinates is essential to ensure such a trajectory obeys the geodesic equations near the
horizon. The stress tensor of such a particle is then given by [11, 70]

TUU = 1√
−g

pU1 δ(V )δ(x− x1)δ(ψ − ψ1),

Tµν = 0, µ, ν 6= U. (3.2)

Additionally we consider a second particle whose trajectory approaches the null geodesic
(V = V (τ), U(τ) = 0, x(τ) = x2, ψ(τ) = ψ2), corresponding to quanta created by the V̂
operator. This has a stress-energy tensor:

T V V = 1√
−g

pV2 δ(U)δ(x− x2)δ(ψ − ψ2),

Tµν = 0, µ, ν 6= V. (3.3)

The eikonal phase for gravitational scattering can then be computed by determining the
gravitational backreaction δgµν sourced by these particles. The eikonal phase is then given
by evaluating the on-shell action to linear order in δgµν , which can be written as [11, 70]5

δ = SEH [δgµν ] = 1
4

∫
d4x
√
−gδgµνTµν = 1

4

∫
d4x
√
−g
(
δgUUT

UU + δgV V T
V V
)
. (3.4)

Gravitational backreaction. We now wish to compute the gravitational backreaction
due to the stress tensors (3.2) and (3.3), which as usual will take the form of gravitational
shock waves across the U = 0 and V = 0 horizons. Let us begin by determining the
backreaction of the particle moving along the V = 0 horizon, with stress tensor (3.2).
After lowering indices the only non-zero component of the stress tensor Tµν is the V V
component, which we can explicitly write as

TV V = ∆′r(0)K0Σ0(x)
2α2(r2

0 + a2)2 p
U
1 δ(V )δ(x− x1)δ(ψ − ψ1), (3.5)

where
K0 = Ξ

r2
0 + a2 , Σ0(x) = r2

0 + a2x2, ∆′r(0) = d∆r(UV )
d(UV )

∣∣∣∣
UV=0

. (3.6)

To solve for the backreaction, we need to find a metric that satisfies the Einstein equations
with the stress tensor (3.5). Following [11] we take an ansatz corresponding to a shock
wave metric in which we consider two sides of the Kruskal geometry (2.12) with a shift
U → U + f1(x, ψ) as we cross the V = 0 horizon. As we show in appendix A, to linear
order in f1(x, ψ) such a shock wave can be described by a metric perturbation of the form

δds2 = −2gUV (0)f1(x, ψ)δ(V )dV 2 + . . . , gUV (0) = ∆′r(0)Σ0(x)
2α2(r2

0 + a2)2 , (3.7)

where . . . indicate terms proportional to V Nδ(V ) where N ≥ 1 is an integer. Such terms
are formally zero and so we ignore them.6

5Here we ignore non-linearities corresponding to interactions between the two shock-waves, which are
higher order in GN .

6The shock wave metric ansatz in [64, 65] includes such terms. We have verified that this ansatz,
including the V Nδ(V ) terms, leads to the same shock wave equation we obtain below.
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Inserting the ansatz (3.7) into the Einstein equations, with stress tensor given by (3.5),
we find the only non-trivial equation is given by evaluating the V V component of the
Einstein equation

RV V −
1
2RgV V −

3
L2 gV V = 8πGNTV V , (3.8)

at the V = 0 horizon. We then find the ansatz (3.7) obeys the sourced Einstein equations
provided the angular profile f1(x, ψ) obeys the differential equation

Lf1 = 8πGNK0Σ0(x)pU1 δ(x− x1)δ(ψ − ψ1), (3.9)

where L is the second order differential operator

L = ∂x(∆x(x)(1− x2)∂x) + K2
0Σ0(x)2

(1− x2)∆x(x)

(
∂2
ψ + 2a(1− x2)

K0Σ0(x)

(
α+ r0∆x(x)

Σ0(x)

)
∂ψ

)

− α
(

2r0 −
a2α(1− x2)

∆x(x)

)
.

(3.10)

Equations (3.9) and (3.10) are the central result of this section. The angular profile of
a gravitational shock wave on the V = 0 horizon is uniquely determined by solving (3.9)
subject to periodicity under ψ → ψ + 2π and regularity at x = ±1.

There is an entirely analogous discussion for the gravitational backreaction of the
second particle (3.3) moving on the U = 0 horizon. The backreaction of this particle can
be described by a shock wave metric arising from a shift V → V +f2(x, ψ) across the U = 0
horizon. To linear order in f2 this corresponds to the metric perturbation

δds2 = −2gUV (0)δ(U)f2(x, ψ)dU2, (3.11)

which satisfies the Einstein equations with source (3.3) provided f2(x, ψ) satisfies

L̃f2 = 8πGNK0Σ0(x)pV2 δ(x− x2)δ(ψ − ψ2), (3.12)

where L̃ is the differential operator appearing in (3.10) but with ∂ψ → −∂ψ.
Finally, to determine the eikonal phase using (3.4), it is helpful to first define f0(x, x′, ψ)

as the periodic, regular solution to the equation

Lf0 = −δ(x− x′)δ(ψ). (3.13)

The shock wave solutions (3.7) and (3.11) then correspond to a metric whose non-zero
components take the form δgV V ∼ f0(x, x1, ψ − ψ1) and δgUU ∼ f0(x, x2, ψ2 − ψ). Using
the symmetry of the Green’s function f0(x1, x2, ψ) = f0(x2, x1, ψ), we then find the on-shell
action (3.4) evaluates to

δ(pU1 , pV2 , x1, x2, ψ2 − ψ1) = 4πGN
K0∆′r(0)Σ0(x1)Σ0(x2)

α2(r2
0 + a2)2 pU1 p

V
2 f0(x2, x1, ψ2 − ψ1). (3.14)

The expression (3.14) for the eikonal phase shift fully characterises the gravitational scat-
tering process relevant for many-body quantum chaos. Formally the expression (3.14) is

– 8 –
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similar to that for planar black holes presented in [11] — for the relevant values of momenta
pU1 , p

V
2 then in co-rotating coordinates the eikonal phase grows exponentially as e2πT (t2−t1),

and has an angular profile related to the shock wave profile f0. However using (3.14) to
explicitly compute the form of the OTOC (3.1) is significantly more complicated than for
BTZ or planar black holes, in particular due to the difficulty in solving the PDE (3.9)
directly. As such we will now restrict to studying the form of the equatorial OTOC for
slowly rotating, large black holes, which we will be able to determine analytically.

3.1 Equatorial OTOC in Kerr-AdS black holes

We now wish to consider the form of the OTOC (3.1) in the equatorial plane, that is we
set Θ1 = Θ2 = π/2 and consider the correlation function

H4(t,Φ) ≡ 〈Ŵ (t2, 0,Φ2)V̂ (t1, 0,Φ1)Ŵ (t2, 0,Φ2)V̂ (t1, 0,Φ1)〉, (3.15)

where t = t2 − t1 and Φ = Φ2 − Φ1. For such operator insertions then, for large black
holes r0/L � 1, the angular profiles of the bulk-to-boundary wavefunctions relevant for
the OTOC will be sharply peaked at the horizon around the equatorial plane x1 ≈ x2 ≈ 0
and around co-rotating angles ψ1,2 such that ψ2 − ψ1 ≈ Φ − Ωt. To leading order in
GN , the exponential growth of the equatorial OTOC is then proportional to the eikonal
phase (3.14) evaluated at the relevant coordinates and momenta for the scattering process
(see e.g. [11, 17]). This gives

H4(t,Φ) ∼ 1− cGNe2πTtf0(0, 0,Φ− Ωt), (3.16)

where c is an order one constant. In general the shock wave equation obeyed by f0(x, 0, ψ)
is still a complicated PDE, and we will not attempt to solve it generically in this paper.
However, in the slowly rotating limit a� r0, a� L it is possible to determine f0(x, 0, ψ)
analytically, and hence determine the form of the equatorial OTOC (3.16) for slowly ro-
tating, large black holes.

In particular, in the slowly rotating limit a � r0, a � L then equation (3.13) for the
normalised shock wave reduces, for a source in the equatorial plane, to(

∂x((1− x2)∂x) +
∂2
ψ

1− x2 + 3 a
r0

(
1 + r2

0
L2

)
∂ψ −

(
1 + 3r2

0
L2

))
f0(x, 0, ψ) = −δ(x)δ(ψ),

(3.17)
which we need to solve subject to periodicity under ψ → ψ + 2π and regularity at the
North and South poles (i.e. x = ±1). As we discuss in appendix B, an exact solution to
the homogeneous version of the shock wave equation (3.17) can be obtained in terms of
Legendre functions, yielding the following Fourier series representation for f0(0, 0, ψ) (up
to an overall normalisation)

f0(0, 0, ψ) =
∑
k∈Z

Γ
[

1
4 −

k
2 −

iν
2

]
Γ
[

1
4 −

k
2 + iν

2

]
Γ
[

3
4 −

k
2 −

iν
2

]
Γ
[

3
4 −

k
2 + iν

2

]eikψ, (3.18)
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where

ν =
√

3
2

√√√√1 + 4r2
0

L2 −
4ika
r0

(
1 + r2

0
L2

)
. (3.19)

We now take the large black hole limit by taking the limit r0/L � 1 in (3.18) whilst
holding Lψ/r0 ∼ 1 fixed. As explained in appendix B, from this we find that for L

r0
�

|ψ| � 1 the shock wave profile is given by

f0(0, 0, ψ) ∝ 1√
|ν0ψ|


exp

(
−
(
1 +

√
3a

2L

)
|ν0ψ|

)
ψ > 0,

exp
(
−
(
1−

√
3a

2L

)
|ν0ψ|

)
ψ < 0,

(3.20)

where ν0 =
√

3r0/L.
From this shock wave profile it is straightforward to extract the equatorial OTOC

using (3.16). We find that for L
r0
� |Φ−Ωt| � 1 the equatorial OTOC of slowly rotating,

large black holes can be written in the form

H4(t,Φ) ∝ GN√
|ν0(Φ− Ωt)|


exp

(
2πT+

(
t− ΦL

v+
B

))
Φ− Ωt > 0,

exp
(

2πT−
(
t+ ΦL

v−B

))
Φ− Ωt < 0,

(3.21)

where
2πT± = 2πT

(
1± 2a√

3L
+ . . .

)
= 2πT

(
1± LΩ

v
(0)
B

+ . . .

)
, (3.22)

and
2πT±
v±B

= ν0
L

(
1±
√

3a
2L + . . .

)
= 2πT
v

(0)
B

(
1± LΩv(0)

B + . . .

)
. (3.23)

Note that to this order in the large black hole and slowly rotating limit we have 2πT =
3r0/2L2, Ω = a/L2 and v(0)

B =
√

3/2 is the butterfly velocity of the non-rotating black hole.7

The structure of the corrections in equations (3.22) and (3.23) can be understood by
noting that the form (3.21) is equivalent to that obtained by boosting the OTOC of a non-
rotating large black hole e2πT (t−|Φ|L/v(0)

B )/
√
|Φ| by a velocity v = −ΩL � 1. We also note

that for this reason, when expressed in terms of the variables {Ω, T, L, v(0)
B }, the corrections

to the OTOC of a decompactified BTZ black hole presented in [54] can be written in the
same form as (3.22) and (3.23) for ΩL � 1. An important physical difference to the case
of BTZ however is found in the corrections to the equatorial butterfly velocities v±B . In
particular it was observed in [54] that the butterfly velocity of rotating BTZ black holes
is independent of the chemical potential for rotation. However, from (3.22) and (3.23) we
find that the equatorial butterfly velocities v±B of large Kerr-AdS black holes are corrected
at leading order in ΩL to

v±B =
√

3
2

(
1± 1

2
√

3
a

L
+ . . .

)
= v

(0)
B

(
1±

(
1
v

(0)
B

− v(0)
B

)
LΩ + . . .

)
. (3.24)

7Care must taken in interpreting the exponents 2πT±, since the functional form (3.21) is only valid for
the regime |Φ− Ωt| � 1. In particular, as for the rotating BTZ black hole [54], the functional form (3.21)
does not imply a violation of the chaos bound [12].
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In this context, the fact that there is no correction to the butterfly velocity in the BTZ
case is related to the fact that v(0)

B = 1 for such a system.

4 Near-horizon metric perturbations of Kerr-AdS

In the last section we studied the computation of the OTOC in the CFT dual to the Kerr-
AdS black hole, and in particular we showed that the angular profile of the gravitational
shock waves relevant for the OTOC are governed by the shock wave equation (3.9). For
the case of large black holes in the slowly rotating limit we were also able to obtain an
explicit form for the equatorial OTOC as given by (3.21). We now turn to examine the
connection between these features of the OTOC and the linear response properties of the
field theory (in particular its energy density response), which are encoded in ingoing metric
perturbations around the geometry (2.1).

In particular, as we reviewed in the Introduction, for the simpler case of planar AdS
black holes it is known that at certain carefully chosen (complex) values of frequency ω and
wavenumber q there surprisingly exist extra ingoing solutions to the linearised Einstein’s
equations [13, 15, 22]. One implication of this fact is that at these carefully chosen values
these spacetimes necessarily support a quasinormal mode, corresponding to a collective
mode of the boundary theory. Furthermore, the retarded Green’s function of the energy
density operator in the dual field theory exhibits a “pole-skipping” phenomenon, charac-
terised by a non-uniqueness of the (complex) Fourier space Green’s function due to the
intersection of a pole and a zero.

Although explicitly solving the relevant perturbation equations is difficult, the exis-
tence of these extra ingoing solutions can easily be inferred just from studying the per-
turbation equations near the horizon in ingoing coordinates. One particularly interesting
instance can be inferred by examining the vv component of the Einstein equations (where
v is the ingoing coordinate) on the horizon [15]. This equation vanishes identically for
modes of a specific frequency and wavenumber (ω∗, q∗), indicating that there is an extra
free parameter in the general ingoing solution. This instance is particularly interesting as in
general ω∗ = i2πT and q∗ = ±i2πT/vB, where 2πT and vB are the Lyapunov exponent and
butterfly velocity governing the temporal and spatial profile of the OTOC. This universal
result provides evidence for a hydrodynamic effective theory of chaos in such systems [14].

In anticipation of the fact that the Kerr-AdS black hole does not have spatial transla-
tional invariance, it will be helpful to rephrase the origin of the pole-skipping phenomenon
described above in a way that does not rely on a spatial Fourier transform. In particular,
if one studies Fourier modes of frequency ω∗ = i2πT in the above-mentioned planar black
holes, then the vv component of the Einstein equations on the horizon becomes a second
order differential equation for the spatial profile of δgvv at the horizon. This differential
equation is identical to the one governing the spatial profile of a gravitational shock wave
on the V = 0 horizon, in the absence of the delta function source. Therefore if the spatial
profile of δgvv at the horizon is chosen to satisfy the (sourceless) shock wave equation then
the vv component of the Einstein equation is automatically satisfied, and it can be shown
this results in an extra ingoing solution to the linearised Einstein equations [15].
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In the remainder of this paper we will explain if and how such phenomena generalise to
the case of the Kerr-AdS black hole. In this section we will focus only on the near-horizon
properties of metric perturbations, showing that at ω∗ = i2πT ,8 the vv component of the
Einstein equations again reduces to a differential equation for the angular profile of δgvv on
the horizon, which is equivalent to that implied by the sourceless shock wave equation (3.9).
We will deal carefully with the radial evolution to the boundary, and the connection to
field theory linear response, in section 5.

Since we are interested in ingoing metric perturbations about the spacetime (2.1), we
work in coordinates (v, r, x, ψ) where v is the ingoing coordinate defined in equation (2.10),
and ψ is the co-rotating angular coordinate defined in (2.9). We are then interested in
studying linear perturbations of the metric, after Fourier transforming with respect to the
ingoing coordinate v

δgµν(v, r, x, ψ) = e−iωvδgµν(r, x, ψ), (4.1)

and, as motivated above, we wish to examine the form of the Einstein equations for
ω = ω∗ = i2πT . The modes (4.1) obey a complicated set of coupled partial differen-
tial equations. However, motivated by the results for planar black holes described above,
for now we will focus on just the vv-component of the Einstein equations at the outer
horizon r = r0. Assuming that all of the metric perturbations are regular at the horizon,9

then for ω = i2πT evaluating this equation at the horizon gives

∂x

(
(1− x2)∆x(x)∂x

δgvv(r0, x, ψ)
Σ0(x)

)
− α

(
2r0 −

a2α(1− x2)
∆x(x)

)
δgvv(r0, x, ψ)

Σ0(x)

+ K2
0Σ0(x)2

(1− x2)∆x(x)

[
∂2
ψ

δgvv(r0, x, ψ)
Σ0(x) + 2a(1− x2)

K0Σ0(x)

(
α+ r0∆x(x)

Σ0(x)

)
∂ψ
δgvv(r0, x, ψ)

Σ0(x)

]
= 0.

(4.2)
Crucially, this horizon equation depends only on δgvv(r0, x, ψ) ands its angular derivatives
at the horizon — all other metric components have decoupled from this equation. Moreover,
from comparison to (4.2) we see that this horizon equation is nothing but the sourceless
version of the shock wave equation (3.9) that controls the spatial profile of the OTOC, where
δgvv(r0, x, ψ)/Σ0(x) appears in the role of the shift f1 as is natural from equation (3.7).

Now, any ingoing solution to the linearised Einstein equations must necessarily satisfy
the horizon equation (4.2). Hence either the metric component δgvv must vanish everywhere
on the horizon, or it must have a specific spatial profile there, corresponding to a non-
trivial solution of the equation (4.2). The key point is the existence of the latter option
— it indicates that if δgvv(r0, x, ψ) has an appropriate spatial profile then it is possible for
it to be non-zero on the horizon, allowing for the potential existence of an extra ingoing
solution.

This argument can be made precise in the context of planar black holes: for modes
of an appropriate spatial profile there is an additional parameter in the ingoing solution

8Throughout this paper ω will refer to the frequency of perturbations in co-rotating coordinates.
9Specifically that the metric perturbations and their first and second derivatives are finite at r = r0.
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to the linearised Einstein’s equations and this is the origin of pole-skipping [15]. For the
case of the Kerr-AdS black hole considered here, the near-horizon analysis above strongly
suggests that we should expect pole-skipping whenever δgvv(r0, x, ψ) obeys (4.2). However
in order to demonstrate that this is indeed the case, it is necessary to perform a more
sophisticated of the linearised metric perturbations than we have presented so far. This is
because the radial evolution of this near-horizon solution to the boundary is significantly
more complicated for Kerr-AdS than for planar or BTZ black holes, due to the difficulty in
separating the dependence of the metric perturbations on r and x. We will do this in the
following section using the Teukolsky formalism, and show that the intuition suggested by
the above argument is correct.

5 Pole-skipping and quasinormal modes in Kerr-AdS

In the previous section we saw that when the near-horizon metric had a certain spatial
profile related to the shock wave equation, one component of the Einstein equations became
trivial at the outer horizon. In the static case, for which the radial and spatial dependence
of the metric perturbations can easily be separated, it is simple to then perturbatively
construct solutions to the linearised Einstein equations around the horizon and find the
extra free parameter in the ingoing solution that is the origin of pole-skipping [15].

In this section we will demonstrate that the same is true for Kerr-AdS, and that there
is an extra ingoing mode whenever the angular profile of δgvv(r0, x, ψ) satisfies (4.2). As
previously mentioned, for Kerr-AdS it is non-trivial to separate variables in the perturba-
tion equations and so to achieve this we will use the Teukolsky formalism: by means of a
suitable ansatz for the metric in terms of certain master fields, a separation of variables can
be achieved reducing these PDEs to a set of ODEs called the Teukolsky equations [66, 67]
(see [71–73] for helpful overviews). Using these we will be able to provide an analysis
of pole-skipping in terms of ODEs that mirrors previous treatments. In particular this
will allow us to explicitly construct the extra ingoing solution at ω∗ whenever the angular
profile of δgvv at the horizon satisfies (4.2), and to show that its existence implies the
usual signatures of pole-skipping such as the existence of a corresponding gravitational
quasinormal mode.10

5.1 The Teukolsky equations

In this section we will introduce the key features of the Teukolsky equations that will
be needed to address the question of pole-skipping in Kerr-AdS. A detailed discussion of
the use of the Teukolsky equations to study quasinormal modes in this spacetime was
presented in [73], to which we refer the reader for the many additional details of the results
quoted below.

10Note that throughout we will use “quasinormal mode” in a slightly more general sense than is commonly
used — in particular we will include solutions to the linearised Einstein equations that are asymptotically
global AdS4, but whose angular profile in the bulk may not be regular.
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For ease of comparison with [73], it will be convenient to use the coordinate system
of [74] in which the Kerr-AdS line element is

ds2 = − ∆r

Ξ2Σ

(
dt̃− (a2 − χ2)

a
dφ

)2

+ ∆χ

Ξ2Σ

(
dt̃− (a2 + r2)

a
dφ

)2

+ Σ
∆r

dr2 + Σ
∆χ

dχ2,

(5.1)
where11

∆χ = (a2 − χ2)
(

1− χ2

L2

)
, Σ = r2 + χ2, (5.2)

and ∆r and Ξ are given in equation (2.2). The temporal and angular coordinates t̃ and χ
are related to the coordinates used previously by

t̃ = Ξt, χ = a cos θ = ax. (5.3)

The Teukolsky equations allow one to construct solutions to the linearised Einstein equa-
tions from radial and angular master field variables [75–79]. To do this, one first parame-
terises metric perturbations in terms of Hertz potentials ψ(±2)

H as

δg−µν(r, χ, t̃, φ) =
(
l(µmν) (∆1∆2 + ∆3∆4)− lµlν∆2∆5 −mµmν∆4∆6

)
ψ−H ,

δg+
µν(r, χ, t̃, φ) =

(
n(νm̄µ) (∆7∆8 + ∆9∆10)− nµnν∆10∆11 − m̄µm̄ν∆8∆12

)
ψ+
H ,

(5.4)

where lµ,mµ, m̄µ, nµ and the first order differential operators ∆n are defined in appendix C.
Then for Hertz potentials of the form

ψ±H
(
r, χ, t̃, φ

)
= e−iω̃t̃+ikφ (r − iχ)2R±ω̃kλ±(r)S±ω̃kλ±(χ), (5.5)

one finds that the metrics in (5.4) satisfy the linearised Einstein equations when the func-
tions R±ω̃kλ±(r), S±ω̃kλ±(χ) satisfy pairs of ODEs known as the Teukolsky equations. Here
λ± are separation constants that appear from the separation of the r and χ dependence via
the master fields. There are two pairs of Teukolsky equations, one for each of the variables
ψ±H . For the variable ψ+

H we shall refer to these as the spin +2 Teukolsky equations, which
have the form (

D−1∆rD†1 + 6
(
r2

L2 + iω̃Ξr
)
− λ+

)
R+
ω̃kλ+

(r) = 0,(
L−1∆χL†1 + 6

(
χ2

L2 − ω̃Ξχ
)

+ λ+

)
S+
ω̃kλ+

(χ) = 0.
(5.6)

The spin −2 Teukolsky equations, relevant for the potential ψ−H , are given analogously by
the two ordinary differential equations(

D†−1∆rD1 + 6
(
r2

L2 − iω̃Ξr
)
− λ−

)
R−ω̃kλ−(r) = 0,(

L†−1∆χL1 + 6
(
χ2

L2 + ω̃Ξχ
)

+ λ−

)
S−ω̃kλ−(χ) = 0.

(5.7)

11Note that Σ here coincides with our previous definition (2.2) after changing coordinates according to
equation (5.3).
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The objects Dn, D†n, Ln and L†n are differential operators whose explicit forms are given
in appendix C. Solutions to the angular Teukolsky equations characterise the angular de-
pendence of the metric. Whilst solutions for S±ω̃kλ±(χ) can be obtained for any value of
λ±, normally one is interested in angular eigenfunctions for which the resulting metric is
regular at both χ = ±a. This regularity implies λ+ = λ− = λ takes a discrete set of values,
and the corresponding regular eigenfunctions are called spin-weighted AdS-spheroidal har-
monics. For a given ω̃ and integer k the eigenvalues λ at which regular solutions exist can
be indexed by an integer l, where regularity constrains −l ≤ k ≤ l and l ≥ 2. In general,
λ(ω̃, k, l) must be computed numerically, as was done in [80]. However analytic formulae
exist in certain limits. In particular, in the slowly rotating limit (i.e. in an expansion at
small a) [80–82]

λ(ω̃, k, l) = (l − 1)(l + 2)− 2k
l

l2 + l + 4
l + 1 aω̃ + . . . . (5.8)

A crucial property of the Teukolsky equations is that given a solution to one pair of
these equations, one can generate a solution to the other pair using differential maps named
the Starobinsky-Teukolsky identities [83–87]. If R+

ω̃kλ(r) and S+
ω̃kλ(χ) are solutions to the

spin +2 Teukolsky equations, then

D†−1∆rD†0D
†
0∆rD†1R

+
ω̃kλ(r) and L†−1∆χL†0L

†
0∆χL†1S

+
ω̃kλ(χ) (5.9)

satisfy the spin −2 Teukolsky equations for the same values of the constants ω̃, k and
λ+ = λ− = λ. Similarly, if R−ω̃kλ(r) and S−ω̃kλ(χ) are solutions to the spin −2 Teukolsky
equations, then

D−1∆rD0D0∆rD1R
−
ω̃kλ(r) and L−1∆χL0L0∆χL1S

−
ω̃kλ(χ) (5.10)

are solutions to the spin +2 equations for the same values of the constants. Successive
application of two Starobinsky-Teukolsky identities therefore provides an eighth order dif-
ferential map between solutions of a single Teukolsky equation. Evaluating such a map
explicitly and using the Teukolsky equation to simplify yields

D−1∆rD0D0∆rD1D†−1∆rD†0D
†
0∆rD†1R

+
ω̃kλ(r) = C2

STR
+
ω̃kλ(r),

L−1∆χL0L0∆χL1L†−1∆χL†0L
†
0∆χL†1S

+
ω̃kλ(χ) = K2

STS
+
ω̃kλ(χ),

(5.11)

where we have defined Starobinsky-Teukolsky constants

K2
ST = λ2 (λ+ 2)2 + 8λΞ2aω̃ ((6 + 5λ)(k − aω̃) + 12aω̃) + 144Ξ4a2ω̃2(k − aω̃)2

+ 4a2

L2

[
λ(λ+ 2)(λ− 6) + 12Ξ2(k − aω̃)(2kλ− aω̃(λ− 6)) + a2

L2 (λ− 6)2
]
,

C2
ST = K2

ST + (12MΞω̃)2 .

(5.12)

5.2 Existence of extra ingoing modes

We are now going to take advantage of the Teukolsky equations and associated formalism
to prove rigorously our claim from section 4 that there is an additional ingoing solution for
ω∗ = i2πT when the angular profile of the near-horizon metric satisfies equation (4.2).
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In particular, for our purposes the key point of the Teukolsky equations is they provide
an ansatz in which the study of the radial profiles of metric perturbations can be reduced
to studying a pair of ordinary differential equations for the radial functions R±ω̃kλ(r) defined
above. In particular, for a given value of (ω̃, k, λ) we will consider metric perturbations of
the form

δgµν(r, χ, t̃, φ) = δg+
µν(r, χ, t̃, φ) + δg−µν(r, χ, t̃, φ), (5.13)

that are a sum of two solutions generated by the Hertz map (5.4). In the case where
one imposes regularity in the angular coordinate (i.e. where λ = λ(ω̃, k, l)) then the an-
gular profiles are related to the spin weighted AdS-spheroidal harmonics. For l ≥ 2, the
above ansatz (5.13) is then, up to gauge transformations, the most general solution to the
linearised Einstein equations.

Here, motivated by previous analyses of pole-skipping, we will consider a more general
class of metric perturbations in which we relax the condition of regularity in the angular
profile of the metric. To do this, we will consider solutions to the Teukolsky equations
where k and λ+ = λ− = λ are taken to be arbitrary complex parameters. The metric is
then taken to be generated by the Hertz map (5.13) above, where S+

ω̃kλ(χ) is an arbitrary
solution to the spin +2 angular Teukolsky equation and S−ω̃kλ(χ) is the corresponding
solution to the spin −2 angular equation obtained by applying the Starobinsky-Teukolsky
identity (5.9) to S+

ω̃kλ(χ). Without loss of generality, we fix the relative normalisations of
the two angular solutions by KSTS−ω̃kλ(χ) = L†−1∆χL†0L

†
0∆χL†1S

+
ω̃kλ(χ). Whilst considering

solutions without spatial regularity may seem unusual, it is analogous to what is done for
planar black holes. In that case, the relation between hydrodynamics and chaos becomes
manifest upon studying pole-skipping after analytically continuing a real wavevector ~q to
a complex one [13–15]. Having fixed the angular dependence of the Hertz potentials as
above, the metric perturbation (5.13) is characterised by two radial variables R±ω̃kλ(r),
each of which satisfies a second order ODE. Here, we are interested in solutions to the
Teukolsky equations for which the metric constructed via the Hertz map is ingoing at the
outer horizon of the black holes, i.e. for which δgµν(r, v, χ, ψ) has a Taylor series expansion
around the outer horizon (where v is the ingoing coordinate defined in (2.10)). For generic
values of ω̃, each radial Teukolsky equation has two types of solution near the outer horizon

R±ω̃kλ(r → r0) ∼ (r − r0)∓1−i (Ξω̃−kΩH )
4πT , and

R±ω̃kλ(r → r0) ∼ (r − r0)±1+i (Ξω̃−kΩH )
4πT .

(5.14)

It is the first of these that typically corresponds to an ingoing solution for metric pertur-
bations following the Hertz map, while the second corresponds to an outgoing solution.
Therefore after imposing ingoing boundary conditions, we have only one independent so-
lution for each of R±ω̃kλ, and so for generic values of ω̃ ingoing solutions to the Teukolsky
equations are parameterised by two constants.

Here we will show however that if we treat (ω̃, k, λ) as arbitrary complex parameters
then there are certain values of them for which there exists an extra ingoing mode. To
understand how this can be possible, we note that whilst the above discussion holds for a
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generic frequency, the situations is more subtle is we look at frequencies

ω̃ ≡ ω̃∗ = kΩH + i2πT
Ξ . (5.15)

Note that in the co-rotating coordinates used in section 3 and 4 this corresponds to a
frequency ω = i2πT with respect to boundary time t, which is the frequency at which we
expect from section 4 an extra ingoing mode to exist. It is also the frequency governing
the temporal growth of the OTOC in corotating coordinates.

The frequency (5.15) is not a generic frequency from the point of view of the near-
horizon solutions of the radial Teukolsky equations. For modes of this frequency, the radial
profiles of the two independent solutions (5.14) naively differ by an integer power. Suppose
the two independent solutions for R+

ω̃∗kλ
(r) at this frequency did indeed have the form

R+
ω̃∗kλ

(r → r0) ∼ (r − r0)±1/2, (5.16)

near the outer horizon. This would suggest the existence of an extra ingoing solution,
as applying the Hertz map to either of these solutions would produce a metric satisfying
ingoing boundary conditions. However, in cases where the naive analysis indicates powers
differing by an integer, a more thorough analysis typically shows that one of the solutions
contains logarithmic terms that violate the ingoing boundary conditions.

However, in planar black holes, it has been understood that such logarithms do not
appear for certain choices of spatial profile of the perturbation [22] (which in that case
correspond to certain wavenumbers). Here, the analogous result is also true. We find
that both of the metric solutions generated via the Hertz map from R+

ω̃∗kλ
(r) are indeed

ingoing, provided that the angular profile of the metric components is chosen appropriately.
For such angular profiles, there is therefore an extra ingoing mode in the metric solution
constructed via the Hertz map. Moreover, we will see that this choice of angular profile is
precisely such that the metric on the horizon satisfies equation (4.2).

To illustrate how this occurs, we begin by examining the near-horizon properties of
the solutions R+

ω̃∗kλ
(r). We first assume there is a solution near r0 that is consistent with

ingoing boundary conditions for the metric:

R+
ω̃∗kλ

(r → r0)→ (r − r0)−1/2
∞∑
n=0

Rn(r − r0)n. (5.17)

Substituting this into the radial Teukolsky equation (5.6) and solving order-by-order in
(r − r0) for the coefficients yields the leading order condition(

−λ+ 6
(
ir0Ξω̃∗ + r2

0
L2

))
R0 = 0, (5.18)

along with expressions for Rn>2 in terms of R0 and R1. Equation (5.18) has the solution
R0 = 0, from which we can then construct a one-parameter (R1) family of ingoing solutions.
For generic values of λ this is the unique ingoing solution (up to overall normalisation) for
R+
ω̃∗kλ

(r). However, for solutions with

λ = λ∗ ≡ 6
(
ir0Ξω̃∗ + r2

0
L2

)
, (5.19)
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the condition (5.18) is identically satisfied and therefore both R0 and R1 are independent
parameters. Hence in this case there are two independent solutions R+

ω̃∗kλ∗
(r) that each

generate an ingoing metric solution via the Hertz map.
We can do even better than this near-horizon analysis by observing that the

Starobinsky-Teukolsky constant C2
ST vanishes precisely for ω̃ = ω̃∗ and λ = λ∗. As ex-

plained in appendix D, this allows us to construct exact expressions for R±ω̃∗kλ∗(r) through-
out the entire spacetime:

R−ω̃∗kλ∗(r) = (r − r0)3

I(r)∆r(r)

(
α− + β−

∫ r ∆r(r̄)I(r̄)2

(r̄ − r0)6 dr̄

)
, (5.20)

and
R+
ω̃∗kλ∗

(r) = G(r)I(r)
∆r(r)

(
α+ + β+

∫ r

r0

∆r(r̄)
I(r̄)2G(r̄)2dr̄

)
, (5.21)

in terms of the functions

I(r) =
(

1− r0
r

)1/2
exp

(∫ r

r0
dr̄

(
i
Kr(r̄, ω̃∗, k)

∆r(r̄)
− 1

2(r̄ − r0) + 1
2r̄

))
,

G(r) = c3r
3 + c2r

2 + r + c0,

(5.22)

where cn are fixed constants for which we give explicit expressions in appendix D.
As expected the general solutions (5.20) and (5.21) depend on four arbitrary constants

α± and β±, and so these generate four independent metric solutions upon applying the
Hertz map. It is straightforward to verify using the Hertz map that the three solutions
parameterised by α± and β+ all satisfy ingoing boundary conditions at the outer horizon
while the solution parameterised by β− does not. As there are typically only two ingoing
solutions to the radial Teukolsky equations at a generic value of ω̃ — one each for R±ω̃kλ(r)
— we have shown that for any value of k there is an additional ingoing solution for the
case ω̃ = ω̃∗ and λ = λ∗.

Finally, we can now ask what the spatial profile of the metric component δgvv is at
the points (ω̃∗, k, λ∗) at which the extra ingoing modes exist. To do this we note that after
applying the Hertz map the contributions to δgvv from the ingoing modes R±ω̃∗kλ∗ generated
by the constants α−, β+ vanish at the horizon. In contrast, the mode generated by α+ gives
a non-zero contribution at the horizon that can be expressed in terms of the angular profile
S+
ω̃∗kλ∗

(χ) and its first and second derivatives. Using that S+
ω̃∗kλ∗

(χ) is a solution to the
spin +2 angular Teukolsky equation for (ω̃∗, k, λ∗) we then find that parameterising the
resulting metric as δgvv(r0, χ, φ) ∝ (r2

0 + χ2)F (χ) the angular profile F (χ) satisfies

∂χ (∆χ∂χF ) + a2K2
0Σ2

0
∆χ

(
−k2 + 2ik (a2 − χ2)

aK0Σ0

(
α+ r0∆χ

(a2 − χ2)Σ0

))
F

−α
(

2r0 −
α(a2 − χ2)

1− χ2

L2

)
F = 0,

(5.23)

where we denote Σ0 = r2
0 + χ2. Note that ∆χ = (1 − x2)∆x and thus after identifying

F = f1, χ = ax and ∂ψ = ik, this is precisely the sourceless version of the shock wave
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equation (3.9). In summary, we see that the extra ingoing mode in the metric we have
found using the Teukolsky equations exists precisely at a frequency ω = i2πT when the
angular profile of δgvv at the horizon is given by a solution of the shock wave equation (4.2).

Whilst we had anticipated that this should be the case from section 4, the Teukolsky
formalism has allowed us to both demonstrate this rigorously and also provides a charac-
terisation of the spatial profile of the metric everywhere in the bulk through the angular
Teukolsky equations. In the next subsection we will discuss the implications of this addi-
tional ingoing mode for pole-skipping and the connection between quasinormal modes and
the form of the OTOC in the slowly-rotating limit.

5.3 Quasinormal modes and pole-skipping

We have used the Teukolsky formalism to identify an extra ingoing solution to the linearised
Einstein equations when the frequency ω̃ and separation constant λ in the Teukolsky for-
malism have certain values given by equations (5.15) and (5.19). We will now discuss the
implications of this extra ingoing mode. In particular we will argue that the existence of the
extra ingoing mode means that the spacetime supports a quasinormal mode at the points
(ω̃∗, k, λ∗) for any k. More precisely, the boundary energy density response is undefined
at these points and supports a collective excitation arbitrarily close to them. This is what
is meant by pole-skipping. Note that having used the Teukolsky formalism to relate the
radial dependence of gravitational perturbations to the study of two ODEs, our subsequent
analysis closely follows previous treatments of pole-skipping [15] and hence many technical
details are relegated to appendix D.

Before proceeding, we reiterate that we are analysing gravitational perturbations for
which (ω̃, k, λ) are taken as independent complex parameters.12 In doing so we are not
imposing the condition of regularity of the angular profile of the metric, which as discussed
above restricts k to an integer and λ to a discrete set of values λ(ω̃, k, l) where l ≥ 2 is
an integer and |k| ≤ l. In particular, we note that the values λ∗ in equation (5.19) for
which the extra ingoing mode exists do not generically correspond to a situation where
the bulk metric is regular in angular coordinates. Whilst such solutions to the Einstein
equations are therefore not directly physical, as in the planar case their existence implies
a connection between hydrodynamics and many-body chaos, and can be used to extract
information about the physical dispersion relations of collective excitations in the boundary
theory.

To explore the implications of the extra ingoing mode, we first discuss the asymptotics
of the solutions to the radial Teukolsky equations. For any value of (ω̃, k, λ), these can be
expanded as r →∞ in the form

R±ω̃kλ(r →∞)→ A±
L

r
+B±

L2

r2 + . . . , (5.24)

where A±, B± are constants that depend on (ω̃, k, λ). Imposing asymptotic boundary con-
ditions on the metric perturbations corresponds to imposing constraints on these constants.

12Note for any (ω̃, k, λ) there are two independent solutions to the angular Teukolsky equation. However
the radial solutions R±ω̃kλ depend only on the parameters (ω̃, k, λ).
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In order for the background metric plus the metric perturbation (5.13) to be asymptoti-
cally global AdS4, we require that the solutions to the Teukolsky equations satisfy the two
conditions [73]

WA− = LB−
[
−4akLΞ (2iB+ + 5LΞω̃A+) + 2a2

(
−6 + λ+ 6L2Ξ2ω̃2

)
A+

+ λL2
(
2 + λ− 4L2Ξ2ω̃2

)
A+ − 4L3Ξω̃ (iB+ + Lω̃ΞA+)

(
2 + λ− 2L2Ξ2ω̃2

)]
,

(5.25)
and

KST =− B−
L3W

[
λ2L6(2 + λ)2 + 8aλ (6 + 5λ) kL6Ξ2ω̃ − 144a3kL4Ξ2ω̃

(
−2 +λ+ 2L2Ξ2ω̃2

)
+ 4a2L4

{
λ
(
−12 + (−4 + λ)λ+ 24k2

)
+ 2L2Ξ2ω̃2

(
(6− 5λ)λ+ 18k2

)}
+ 4a4L2

{
36− 12λ+ λ2 − 48λk2 + 12L2Ξ2ω̃2

(
λ− 6(1 + k2)

)
+ 36L4Ξ4ω̃2

}
+ 48a6k2

(
2λ+ 3L2Ξ2ω̃2

)]
,

(5.26)
where the constant W is

W =L3
[
λ (2 + λ)B+ − 4 (1 + λ)Lω̃Ξ (iλA+ + 2LΞω̃B+) + 4i (2 + 3λ)L3Ξ3ω̃3A+

]
+ 8L7Ξ4ω̃4 (B+ − iLΞω̃A+)− 4akL2Ξ [3iλA+ + LΞω̃ (5B+ − 8iLΞω̃A+)]

+ 2a2L
[
2 (2iLΞω̃A+ −B+)

(
3 + λ− 3L2Ξ2ω̃2

)
+ 3B+

]
.

(5.27)
If, for a given value of (ω̃, k, λ), the ingoing solution is such that (5.25) and (5.26) are
satisfied, then the bulk spacetime supports a quasinormal mode. As noted previously, we
are using the term quasinormal mode in a more general sense than normal, since we are not
demanding regularity of the angular profile of the metric. For generic values of (ω̃, k, λ), it
is simple to see that there will not exist a quasinormal mode. In particular, as discussed
in section 5.2, generically there are unique (up to normalization) ingoing solutions for each
of R±ω̃kλ(r). These ingoing solutions determine the ratios B+/A+ and B−/A− in terms of
(ω̃, k, λ). The resulting conditions (5.25) and (5.26) then become two equations for two free
parameters (which can be taken to be A±). Hence for generic (ω̃, k, λ) there will not be a
non-trivial solution to (5.25) and (5.26) for A± and hence there will not be a quasinormal
mode. Rather, quasinormal modes only exist for certain frequencies ω̃(k, λ). However, it is
immediately clear that the existence of the extra ingoing mode means that there must be a
quasinormal mode for the special case (ω̃∗, k, λ∗). In this case only the ratio B−/A− is fixed
by the ingoing boundary condition, and (A+, B+) are independent parameters. As such
there are three free parameters in the expansion (5.24), which one expects can be chosen to
satisfy the two constraints in (5.25) and (5.26). Indeed, we can explicitly check this can be
achieved by using the ingoing solutions identified in equations (5.20) and (5.21). After first
imposing ingoing boundary conditions by setting β− = 0 in equations (5.20) and (5.21),
we can expand the resulting solutions near the asymptotic boundary. We then find that
the conditions (5.25) and (5.26) can be explicitly satisfied for certain choices of β+/α+ and
β+/α−, which we provide in appendix D. By choosing these values of the constants and
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then applying the Hertz map to the solution in (5.20) and (5.21), we therefore explicitly
obtain a quasinormal mode solution to the linearised Einstein equations.

Whilst we have seen there is a quasinormal mode at the special point (ω̃∗, k, λ∗), there
are also other ingoing solutions we could construct at this point, corresponding to any other
choice of the ratios β+/α+ and β+/α−. Such solutions will not give rise to metrics that
are asymptotically global AdS4, but rather solutions in which the metric of the boundary
field theory is non-zero (i.e. solutions for which there is a source for the stress tensor). The
existence of these multiple ingoing solutions means that strictly at the location (ω̃∗, k, λ∗),
the energy density response for a given source in the boundary theory is undefined, i.e. there
is pole-skipping.

In order to make the source and energy density response well defined, it is necessary
to move slightly away from the pole-skipping point. In particular, continuing to treat λ as
a free parameter, we can now examine what happens when one moves slightly away from
the special point (ω̃∗, k, λ∗) to

ω̃ = ω̃∗ + εδω̃, λ = λ∗ + εδλ, (5.28)

where ε � 1. Since we are no longer exactly at the pole-skipping point, there is no
longer an extra ingoing solution. This can be seen explicitly by including non-zero ε

corrections to the horizon equation (5.18) from which one constructs the ingoing solutions to
R+
ω̃kλ(r). At order ε this equation receives corrections proportional to δω̃, δλ that determine

the ratio R1/R0 in terms of δω̃/δλ. Whilst the ingoing solution now only has two free
parameters, the fact the solutions depend on the slope δω̃/δλ means that in the vicinity of
the pole-skipping point we can generate a one-parameter family of ingoing solutions of the
form (5.20) and (5.21) by varying the slope. In particular, as shown in appendix D, the slope
δω̃/δλ can be chosen such that the resulting ingoing solution near (ω̃∗, k, λ∗) corresponds
to a quasinormal mode. Thus, as for planar black holes, there must be a quasinormal mode
whose dispersion relation ω̃(k, λ) passes through the pole-skipping point (ω̃∗, k, λ∗).

5.4 Equatorial OTOC and pole-skipping in the slowly rotating limit

In the previous subsections we showed that there must exist a quasinormal mode in the
Kerr-AdS spacetime when the parameters in the Teukolsky equations are taken to be
(ω̃∗, k, λ∗). We also observed a connection between the extra ingoing mode and many-body
quantum chaos, specifically that such extra ingoing modes exist when the angular profile
of the metric component δgvv on the horizon satisfies the shock wave equation (4.2).

The above connection is non-trivial and, as in planar and non-rotating cases, provides
strong evidence that a hydrodynamic effective theory of chaos continues to apply in Kerr-
AdS black holes. However it would also be nice to obtain a more direct connection between
hydrodynamic and chaotic observables in the boundary quantum field theory. In particular,
in planar black holes, there is a simple and general relationship between the functional form
of the OTOC and the locations of pole-skipping points [13–15]. Here we will explain how
such a connection generalises to the Kerr-AdS black hole, at least for large black holes in
the slowly rotating limit for which we computed the equatorial OTOC in section 3.
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In particular, let us recall that in the Kerr-AdS black hole, we have found a family of
pole-skipping points when the parameters (ω̃, k, λ) in the Teukolsky equations satisfy

ω̃∗ = kΩH + i2πT
Ξ , (5.29)

and
λ∗ = 6

(
ir0Ξω̃∗ + r2

0
L2

)
, (5.30)

for any value of k.
We wish to compare the locations of these pole-skipping points to the profile of the

equatorial OTOC (3.21) for large black holes in the slowly rotating limit. For comparison
to the pole-skipping analysis, it is instructive to write this functional form in co-rotating
coordinates by defining ψ = Φ− Ωt. We then have

H4(t, ψ) ∝ e2πTt√
|ν0ψ|


exp

(
−
(
1 +

√
3a

2L

)
ν0ψ

)
, ψ > 0,

exp
((

1−
√

3a
2L

)
ν0ψ

)
, ψ < 0.

(5.31)

In co-rotating coordinates, the equatorial OTOC is therefore characterised by exponential
growth with a frequency ω∗ = i2πT , and two imaginary wavenumbers k = ±ik± where

k± = ν0

(
1±
√

3a
2L

)
= 2πT±

v±B
. (5.32)

As we noted below equation (5.15), the value of ω̃∗ at which there exists pole-skipping
corresponds in co-rotating coordinates to the frequency ω∗ = i2πT . As such pole-skipping
occurs precisely at the same imaginary frequency that characterises the time dependence
of the OTOC (5.31). However it is not immediately clear how the wavenumbers k = ±ik±
that characterise the angular dependence of the equatorial OTOC are related to the pole-
skipping points, which exist for any value of k provided λ is suitably chosen.

In order to proceed, it is necessary to understand how λ and k should be related when
comparing pole-skipping to the equatorial OTOC. In order to do this we recall that if one
is interested in regular solutions to the Einstein equations, then λ is not an arbitrary free
parameter. Rather, regular solutions exist for values λ(ω̃, k, l) where k, l are integers with
l ≥ 2 and |k| ≤ l. For a slowly rotating black hole the values of λ are given by [80–82]

λ(ω̃, k, l) = (l − 1)(l + 2)− 2k
l

l2 + l + 4
l + 1 aω̃ + . . . , (5.33)

and physically relevant quasinormal modes (i.e. those with regular angular profiles) cor-
respond to frequencies ω(k, l) at which ingoing solutions to the radial Teukolsky equa-
tions with (ω̃, λ(ω̃, k, l), k) satisfy the asymptotic boundary conditions in equations (5.25)
and (5.26) (see [80] for a study of these modes and [88] for a higher-dimensional gener-
alisation). Now, for planar black holes, if we wish to relate the functional form of the
OTOC along the x direction to the location of pole-skipping points, we would do this by
considering pole-skipping points where the wavevector ~q in the boundary Green’s function
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is aligned along the x direction [13–15]. At least in the slowly rotating and large black
hole limits, a natural analogue for comparing to the equatorial OTOC in the Kerr-AdS
black hole is to consider modes where the wavenumber k takes its maximal value, i.e. we
consider modes with k = l.13 The corresponding quasinormal modes are then characterised
by dispersion relations ω(k).

As we have emphasised, solutions to the Teukolsky equations at the pole-skipping
points (ω̃∗, k, λ∗) do not typically give rise to bulk metric perturbations with regular angular
profiles. However motivated by the above discussion, we can consider pole-skipping points
in which λ, k are complex parameters related by (5.33) where we set l = k. In the large
black hole and slowly rotating limit, such pole-skipping points exist precisely when the
wavenumber k takes the values (5.32) related to the form of the OTOC. To show this is
the case, we first set l = k and ω̃ = ω̃∗ in (5.33). We then find that to leading order in
the large black hole r0/L� 1 and slowly rotating limits a/L� 1 the condition (5.19) for
λ = λ∗ becomes14

k2 − 3ikar0
L2 = −3r2

0
L2 . (5.34)

Solving this equation and expanding in the slowly rotating limit we thus find pole-skipping
at the wavenumbers

k = ±iν0

(
1±
√

3a
2L

)
= ±ik±, (5.35)

which precisely match the wavenumbers governing the angular decay of the equatorial
OTOC. As such the dispersion relation of collective modes of energy density with l = k

in the boundary theory should, if analytically continued as described above, pass through
the location (ω̃∗,±ik±) which is precisely related to the functional form of the equatorial
OTOC as in (5.31). As for the form of the OTOC in this limit, the expressions for the
pole-skipping locations can be obtained by applying a boost with velocity v = −ΩL � 1
to those of the static Schwarzschild-AdS4 black hole found in [15].

6 Discussion

In this paper we have explored the connection between many-body quantum chaos and
energy dynamics in the holographic theory dual to the Kerr-AdS black hole. We showed
that for perturbations at a frequency ω∗ = i2πT the energy density response of the bound-
ary theory exhibits the phenomenon of pole-skipping whenever the angular profile of the
near-horizon metric obeys the gravitational shock wave equation, which also governs the
form of the OTOC. As a consequence we found that the bulk Einstein’s equations admit
quasi-normal mode solutions with such profiles, corresponding to collective excitations in
the energy density response of the boundary quantum field theory. For large black holes
in the slowly rotating limit we were able to explicitly determine the form of the equato-
rial OTOC of the boundary theory, and we showed how the pole-skipping phenomenon

13The results below for the values of k± are unchanged if we instead consider k = −l.
14When taking the large black hole limit we take k ∼ r0/L� 1.
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relates this functional form to the dispersion relation of collective excitations in the energy
density response.

There are many interesting questions for future work. Most immediately, we saw in
section 3 that determining the full shock wave profile and understanding the general form of
the boundary OTOC in Kerr-AdS is significantly more involved than in previous examples.
It would be interesting to understand the explicit form of the OTOC beyond the slowly-
rotating limit we discussed in section 3.1, and also to understand its behaviour outside
the equatorial plane. It would also be interesting to explore if the profile of the OTOC
beyond these limits can be used to obtain additional constraints on the dispersion relations
of collective excitations in the boundary theory.

Nevertheless, through our analysis of gravitational shock waves we have established
a precise connection between the OTOC and pole-skipping in the energy response of the
boundary theory dual to the Kerr-AdS black hole. As such, our results provide strong
evidence that many-body quantum chaos in such systems can be described in terms of a
hydrodynamic effective theory along the lines of [14]. It would be worthwhile to generalise
such an effective theory to include the effects of a chemical potential for rotation. In
particular, it is known that in the absence of such a chemical potential the effective theory
discussed in [14, 17] is only consistent for maximally chaotic systems. For the rotating
black holes considered here and in [53] the exponential growth of the OTOC cannot simply
be characterised through a Lyapunov exponent λL = 2πT saturating the bound of [12].
However, both the equatorial OTOC for slowly rotating Kerr-AdS black holes computed in
this paper and the OTOC of the BTZ theory computed in [53] saturate a generalised version
of the chaos bound for rotating ensembles introduced in [54]. It would be interesting to
understand if saturating such a bound is a necessary condition for a hydrodynamic effective
theory of chaos to apply to systems with a chemical potential for rotation.

Furthermore, in this paper we have only considered one family of pole-skipping points,
present at a frequency ω∗ = i2πT in co-rotating coordinates. In planar black holes, there are
in addition infinitely many pole-skipping points in the energy density response at complex
frequencies in the lower half plane [22]. Whilst these additional pole-skipping points are
not directly related to chaos, they can be used to obtain a set of exact constraints on
the dispersion relations of quasinormal modes in an analogous manner to our discussion
in section 5.4. In planar cases, some of these pole-skipping points occur at real wave-
numbers, and thus by generalising them to Kerr-AdS (and other rotating spacetimes) it
may be possible to obtain direct constraints on the dispersion relations of the physical quasi-
normal modes that are regular in the angular coordinates. In particular, we note that such
an analysis is not limited to asymptotically AdS spacetimes, but could also be carried out
for spacetimes that are asymptotically flat. As such the work in this paper provides a
starting point to identifying the resulting constraints on the quasi-normal mode spectrum
of rotating black holes, including those of astrophysical relevance. Finally, mathematical
connections between supersymmetric field theories and the quasi-normal modes of black
holes have recently been observed [89–93] and it would be interesting to understand the
significance of the special class of quasi-normal modes that exist at pole-skipping points in
this regard.
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A Kerr-AdS metric in Kruskal-like coordinates

In the main text we argued that after a shift in the coordinate U → U + f1(x, ψ) across
the V = 0 horizon of the metric (2.12), then at leading order in f1 the only non-trivial
perturbation of the metric is the δgV V component given by (3.7). To justify this, let us
note that the AdS-Kerr metric (2.12) in Kruskal coordinates is of the form

ds2 = gµν(U, V, x, ψ)dxµdxν , (A.1)

where xµ = (U, V, x, ψ) and the non-zero metric components are

gUU = 1
U2

1
4α2(r2

0 + a2)2Σ

[
∆r

(
Σ2(r2

0 + a2)2

(r2 + a2)2 − (r2
0 + a2x2)2

)
+ a2(1− x2)∆x(r2

0 − r2)2
]
,

gV V = 1
V 2

1
4α2(r2

0 + a2)2Σ

[
∆r

(
Σ2(r2

0 + a2)2

(r2 + a2)2 − (r2
0 + a2x2)2

)
+ a2(1− x2)∆x(r2

0 − r2)2
]
,

gUV = 1
UV

1
4α2(r2

0 + a2)2Σ

[
∆r

(
Σ2(r2

0 + a2)2

(r2 + a2)2 + (r2
0 + a2x2)2

)
− a2(1− x2)∆x(r2

0 − r2)2
]
,

gUψ = 1
U

a(1− x2)
2α(r2

0 + a2)ΞΣ

[
∆x(r2 + a2)(r2

0 − r2)−∆r(r2
0 + a2x2)

]
,

gV ψ =− 1
V

a(1− x2)
2α(r2

0 + a2)ΞΣ

[
∆x(r2 + a2)(r2

0 − r2)−∆r(r2
0 + a2x2)

]
,

gψψ =(1− x2)
Ξ2Σ

[
∆x(r2 + a2)2 − a2(1− x2)∆r

]
,

gxx = Σ
(1− x2)∆x

,

(A.2)
and r = r(UV ). To construct the shock wave ansatz we follow [6, 7, 11, 94] and let
Ũ = U + θ(V )f1(x, ψ) and make the replacements

gµν(U, V, x, ψ) → gµν(Ũ , V, x, ψ),
dU → dŨ − f1(x, ψ)δ(V )dV, (A.3)

in (A.1). In terms of coordinates yµ = (Ũ , V, x, ψ) the resulting metric is given by

ds2 = gµν(Ũ , V, x, ψ)dyµdyν + δds2, (A.4)

where at linear order in f1(x, ψ) one obtains

δds2 = −2gUV (Ũ , V, x, ψ)f1(x, ψ)δ(V )dV 2 − 2gUU (Ũ , V, x, ψ)f1(x, ψ)δ(V )dŨdV
−2gUψ(Ũ , V, x, ψ)f1(x, ψ)δ(V )dV dψ. (A.5)
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Note that near the V = 0 horizon one has

gUV = Σ0(x)∆′r(0)
2α2(r2

0 + a2)2 +O(V ), gUψ ∼ O(V ), gUU ∼ O(V 2), (A.6)

where Σ0(x) = r2
0 +a2x2. We therefore find that the shock wave metric is of the form (3.7)

presented in the main text.

B Shock wave profile in slowly-rotating limit

In this appendix we provide more details on how to obtain the equatorial shock wave
profile (3.20) in the slowly-rotating, large black hole limit. Starting from the slowly-rotating
limit of the shock wave equation (3.17) in real space, the first step is to make a Fourier
transform of the homogeneous equation with respect to ψ to obtain

d

dx

[
(1− x2) d

dx
f0,k(x, 0)

]
−
(

k2

1− x2 +
(

1 + 3r2
0

L2

)
− 3ik a

r0

(
1 + r2

0
L2

))
f0,k(x, 0) = 0.

(B.1)
The solution of this equation that is regular at the North pole (x = 1) is the associated
Legendre polynomial f0,k(x > 0, 0) = c+P

k
−1/2+iν(x) where ν is given in equation (3.19) in

the main text and c+ is an arbitrary constant. We can then obtain the solution that is
regular at the South pole f0,k(x < 0, 0) = c−P

k
−1/2+iν(−x) by using the reflection symmetry

of the homogeneous equation. We then find the solution to the equation with a delta
function source in the standard way by patching the two solutions together across the
equator, yielding (up to an overall normalisation)

f0(0, 0, ψ) =
∑
k∈Z

eikψ lim
x→0

P k−1/2+iν(x)
d
dxP

k
−1/2+iν(x)

. (B.2)

After explicitly evaluating the limit of the ratio of associated Legendre polynomials [95],
and using gamma function identities, this simplifies to equation (3.18).

We will now invert this Fourier series to obtain a real-space form for the equatorial
OTOC. To do so, we take the large black hole limit r0 � L which simplifies the arguments
of the gamma functions such that

f0(0, 0, ψ) =
∑
k∈Z

Γ
[

1
4 −

k
2

(
1 +

√
3a

2L

)
− iν0

2

]
Γ
[

1
4 −

k
2

(
1−

√
3a

2L

)
+ iν0

2

]
Γ
[

3
4 −

k
2

(
1 +

√
3a

2L

)
− iν0

2

]
Γ
[

3
4 −

k
2

(
1−

√
3a

2L

)
+ iν0

2

]eikψ, (B.3)

where ν0 =
√

3r0/L. In the limit ψ � 1 with ν0ψ fixed, the Fourier sum can be approxi-
mated by the Fourier integral

f0(0, 0, ψ) =
∫ ∞
−∞

dk̃
Γ
[

1
4 −

k̃ν0
2

(
1 +

√
3a

2L

)
− iν0

2

]
Γ
[

1
4 −

k̃ν0
2

(
1−

√
3a

2L

)
+ iν0

2

]
Γ
[

3
4 −

k̃ν0
2

(
1 +

√
3a

2L

)
− iν0

2

]
Γ
[

3
4 −

k̃ν0
2

(
1−

√
3a

2L

)
+ iν0

2

]eik̃(ν0ψ).

(B.4)
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In the large black hole limit ν0 � 1, the Fourier coefficients can be simplified using the
large z asymptotic expansion Γ(z + c)/Γ(z + b) = zc−b + . . . [95] to yield (up to an overall
normalisation)

f0(0, 0, ψ) =
∫ ∞
−∞

dk̃
eik̃(ν0ψ)√

(k̃ − k̃+)(k̃ − k̃−)
, (B.5)

where the branch points are located on the imaginary axis at k̃± = ±i(1±
√

3a/(2L)).
The final step is to evaluate the inverse Fourier transform (B.5). We first choose

the branch cuts to extend out from the branch points in opposite directions along the
imaginary axis to infinity. To perform the inverse Fourier transform for ψ > 0 (ψ < 0), we
then evaluate the contour integral running along the real axis and extending into the upper
(lower) half plane and closing by wrapping around the branch cut. The result of this is

f0(0, 0, ψ) = e−
√

3a
2L ν0ψ

∫ ∞
0

dq
e−(q+1)|ν0ψ|√
q(q + 2)

= e−
√

3a
2L ν0ψ

∫ ∞
0

dpe−|ν0ψ| cosh(p), (B.6)

where in the second expression we made the substitution q = cosh(p) − 1. The inte-
gral over p is an integral representation of a modified Bessel function of the second kind
K0(|ν0ψ|) [95] and thus the shock wave profile in the slowly rotating, large black hole limit
can be expressed as

f0(0, 0, ψ) ∝ e−
√

3a
2L ν0ψK0 (|ν0ψ|) . (B.7)

When a = 0, this agrees with the corresponding solution for the planar Schwarzschild-
AdS4 black hole [7]. The final step is then to expand the Bessel function far from the delta
function source |ν0ψ| � 1, which yields the expression (3.20) for the shock wave profile
presented in the main text.

C Additional details of Teukolsky formalism

For the purposes of completeness, in this appendix we present explicit expressions for the
differential operators that play an important role in the Teukolsky formalism of perturba-
tions of the Kerr-AdS black hole [73]. In terms of the function Σ = r2 + χ2, the angular
differential operators appearing in the Hertz map (5.4) are

lµ∂µ = 1√
2Σ

(
Ξ(a2 + r2)√

∆r
∂t̃ +

√
∆r∂r + aΞ√

∆r
∂φ

)
,

nµ∂µ = 1√
2Σ

(
Ξ(a2 + r2)√

∆r
∂t̃ −

√
∆r∂r + aΞ√

∆r
∂φ

)
,

mµ∂µ = 1√
2Σ

(
− iΞ(a2 − χ2)√

∆χ
∂t̃ +

√
∆χ∂χ −

iaΞ√
∆χ

∂φ

)
,

m̄µ∂µ = 1√
2Σ

(
iΞ(a2 − χ2)√

∆χ
∂t̃ +

√
∆χ∂χ + iaΞ√

∆χ
∂φ

)
,

(C.1)
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and the differential operators ∆n are

∆1 = lµ∂µ + 1√
2Σ∆r

(
∆′r −

∆r(2r − iχ)
Σ

)
, ∆2 = mµ∂µ + 1√

2Σ∆χ

(
∆̇χ + 5i∆χ

r − iχ

)
,

∆3 = mµ∂µ + 1√
2Σ∆χ

(
∆̇χ −

∆χ(2χ+ ir)
Σ

)
, ∆4 = lµ∂µ + 1√

2Σ∆r

(
∆′r −

5∆r

r − iχ

)
,

∆5 = mµ∂µ + 1√
2Σ∆χ

(
∆̇χ

2 + ir∆χ

Σ

)
, ∆6 = lµ∂µ + 1√

2Σ∆r

(∆′r
2 −

iχ∆r

Σ

)
,

∆7 = m̄µ∂µ + 1√
2Σ∆χ

(
∆̇χ −

∆χ(2χ+ ir)
Σ

)
, ∆8 = nµ∂µ + 1√

2Σ∆r

(
−∆′r + 5∆r

r − iχ

)
,

∆9 = nµ∂µ + 1√
2Σ∆r

(
−∆′r + ∆r(2r − iχ)

Σ

)
, ∆10 = m̄µ∂µ + 1√

2Σ∆χ

(
∆̇χ + 5i∆χ

r − iχ

)
,

∆11 = m̄µ∂µ + 1√
2Σ∆χ

(
∆̇χ

2 + ir∆χ

Σ

)
, ∆12 = nµ∂µ + 1√

2Σ∆r

(
−∆′r

2 + iχ∆r

Σ

)
,

(C.2)
where primes denote derivatives with respect to r and dots denote derivatives with respect
to χ. The differential operators appearing in the Teukolsky equations (5.6) and (5.7) are

Dn = ∂r + i
Kr(r, ω̃, k)

∆r
+ n

∆′r
∆r

, D†n = ∂r − i
Kr(r, ω̃, k)

∆r(r)
+ n

∆′r
∆r

,

Ln = ∂χ + Kχ(χ, ω̃, k)
∆χ

+ n
∆̇χ

∆χ
, D†n = ∂χ −

Kχ(χ, ω̃, k)
∆χ

+ n
∆̇χ

∆χ
,

(C.3)

where

Kr(r, ω̃, k) = Ξ
(
ka− ω̃

(
a2 + r2

))
, Kχ(χ, ω̃, k) = Ξ

(
ka− ω̃

(
a2 − χ2

))
. (C.4)

D Explicit demonstration of existence of a quasinormal mode

In this appendix we explain how to obtain the explicit expressions (5.20) and (5.21) for
the solutions to the radial Teukolsky equation at the pole-skipping point (ω̃, λ) = (ω̃∗, λ∗),
and use this to obtain explicit expressions for the quasi-normal mode solutions at and
near this point. As mentioned in the main text, our starting point is the observation that
the Starobinsky-Teukolsky constant C2

ST (defined in equation (5.12)) vanishes for (ω̃, λ) =
(ω̃∗, λ∗). As a consequence, we conclude from equation (5.11) that there are solutions
R±ω̃∗kλ∗(r) that are annihilated by the 4th order differential operators in the Starobinsky-
Teukolsky identities (5.9) and (5.10):

D†−1∆rD†0D
†
0∆rD†1R

+
ω̃∗kλ∗

(r) = 0, D−1∆rD0D0∆rD1R
−
ω̃∗kλ∗

(r) = 0. (D.1)

Each of these is a set of four nested first-order differential equations that can be formally
integrated to give general solutions dependent on four integration constants. It is then
straightforward to verify by substitution that each of these satisfies the corresponding radial
Teukolsky equation for a unique value of these constants (up to an overall normalisation).
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This procedure yields the solutions parameterised by the constants α± in equations (5.20)
and (5.21), where the constants cn are

c3 = 1
3r2

0
+ 12iMΞω̃2

∗
aλ∗ (−kλ∗ + aω̃∗ (λ∗ − 6)) , c2 = 1

r0
+ 6Mω̃∗
a (−kλ∗ + aω̃∗ (λ∗ − 6)) ,

c0 = r0
3 + 4M (−kλ∗ + aω̃∗ (λ∗ − 3))

λ∗ (−kλ∗ + aω̃∗ (λ∗ − 6)) .
(D.2)

An integral expression for the second solution to each Teukolsky equation (those parama-
terised by the constants β± in equations (5.20) and (5.21)) can then be identified using the
Wronskian method. One can verify that the Starobinsky-Teukolsky identity (5.9) maps
the solution parameterised by β+ to the solution parameterised by α− and annihilates
the solution parameterised by α+, while the Starobinsky-Teukolsky identity (5.10) maps
the solution parameterised by β− to the solution parameterised by α+ and annihilates the
solution parameterised by α−.

As explained in the main text, to identify the quasinormal mode solution at (ω̃, λ) =
(ω̃∗, λ∗), we first impose ingoing boundary conditions at the horizon by setting β− = 0 in
the general solutions (5.20) and (5.21). A quasinormal mode then exists for the values of
α± and β+ for which the two conditions (5.25) and (5.26) are satisfied. These conditions
have the unique solution

β+
α+

=
[
aλ∗ (−kλ∗ + aω∗(λ∗ − 6))

36Mω∗r2
0c3

exp
(
−2
∫ ∞
r0

(
i
Kr(r, ω̃, k)

∆r
− 1

2(r − r0) + 1
2r

)
dr

)

−
∫ ∞
r0

∆rdr

G(r)2I(r)2

]−1

,

β+
α−

= 36Mω∗r
2
0

c3aλ∗(−kλ∗+ aω∗(λ∗−6))

[
1+ 2r4

0a
2

M2L4

(
1+ r0

iL2Ξω∗

)2
{

2L
2

r2
0
−15

(
1+ iL2Ξω∗

r0

)}]
,

(D.3)
and thus there is a quasinormal mode at (ω̃∗, λ∗) for these values of the constants.

As described in the main text, we can build on the exact solutions (5.20) and (5.21)
at the pole-skipping point (ω̃∗, λ∗) to prove that there exist quasi-normal mode solutions
perturbatively close to this point. After perturbing ω̃ and λ as in equation (5.28), it is
straightforward to identify the ingoing solution for R−ω̃kλ(r) as

R−ω̃kλ(r) = α−
(r − r0)3

I(r)∆r(r)
+O(ε), (D.4)

to leading order in ε.
However, the situation is more subtle for R+

ω̃kλ(r). Far from r0, the corresponding
Teukolsky equation can be solved perturbatively to give the general solution (5.21) up to
O(ε) corrections. However, for any finite ε there is a unique ingoing solution (up to overall
normalisation) and we have to therefore identify the unique value of the ratio β+/α+

corresponding to this. To do so, we first expand the general solution (5.21) near the
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horizon, yielding (up to an overall multiplicative constant)

R+
ω̃kλ → (r − r0)−1/2

[
1 + (r − r0)

(
β+
α+

4πTr0(a2 + r2
0)

G(r0)2 + G′(r0)
G(r0)

− 4iL2r0Ξω̃∗ + 3(6r2
0 + L2 + a2)

8πTL2(a2 + r2
0)

)
+ . . .

]
+O(ε).

(D.5)

We will match this to the near-horizon form of the ingoing solution. To identify this,
we first solve the Teukolsky equation near the horizon (for ε 6= 0) and demand that the
corresponding metric perturbations are ingoing. Then, by expanding this ingoing solution
at small ε we obtain (up to an overall multiplicative constant)

R+
ω̃kλ → (r − r0)−1/2

[
1 + (r − r0)

(
δλ

δω̃

i

2Ξ(a2 + r2
0)

− (a2 + r2
0)(4ir0L

2Ξω̃∗ + 3a2) + 3(3a2(L2 + r2
0)− ΞL2r2

0)
8πTL2(a2 + r2

0)2

)
+ . . .

]
+O(ε).

(D.6)
Matching this to (D.5) and simplifying gives

β+

α+ = G(r0)2

4πTr0(a2 + r2
0)

[ 3r0
a2 + r2

0
− G′(r0)
G(r0) + i

2Ξ(a2 + r2
0)
δλ

δω̃

]
, (D.7)

as the ingoing boundary condition. Therefore for any small, non-zero ε the ingoing solution
for R+

ω̃kλ(r) is (5.21), with β+/α+ given by (D.7).
Having identified the unique ingoing solutions for R±ω̃kλ(r) to leading order in ε, we

can now prove that there must exist quasinormal modes whose dispersion relations pass
through the pole-skipping point (ω̃∗, λ∗). To do so, we simply take the ingoing solution
we have just constructed and expand it near the asymptotic boundary. A quasinormal
mode exists when the two conditions (5.25) and (5.26) are satisfied, which we find is the
case when

δλ

δω̃
=− 2iΞ(a2 + r2

0)
{
G′(r0)
G(r0) −

3r0
a2 + r2

0
+ 4πTr0(a2 + r2

0)
G(r0)2

[
−
∫ ∞
r0

∆rdr

G(r)2I(r)2

+ aλ∗(−kλ∗ + aω∗(λ∗−6))
36Mω∗r2

0c3
exp

(
−2
∫ ∞
r0

(
i
Kr(r, ω̃, k)

∆r
− 1

2(r − r0) + 1
2r

)
dr

)]−1}
.

(D.8)
In other words, there must be a quasinormal mode dispersion relation ω̃(k, λ) passing
through the point (ω̃∗, λ∗), with slope given by equation (D.8). More generally, the depen-
dence of the ingoing solution upon the slope δλ/δω̃ means that we can construct ingoing
solutions near (ω̃∗, λ∗) satisfying any asymptotic boundary condition, not just that corre-
sponding to a quasi-normal mode, by choosing an appropriate value of the slope δλ/δω̃.
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