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Chaos and Related Nonlinear Noise Phenomena 

in Josephson Tunnel Junctions 

by. 

Robert Foster Mlracky 

ABSTRACT 

The nonlinear dynamics of Josephson tunnel junctions shunted by a 

resistance with substantial self-inductance have been thoroughly inves

tigated. The current-voltage characteristics of these devices exhibit 

stable regions of negative differential resistance. Very large increas

es in the low-frequency voltage noise with equivalent noise temperatures 

of 106 K or more, observed in the vicinity of these regions, arise from 

switching, or hopping, between subharmonic modes. Moderate increases in 

the noise, with temperatures of about 1 o3 K, arise from chaotic behav

ior. Both of these conclusions are substantiated by analog simulations. 

Measurements of the low-frequency spectrum of the hopping noise·in one 

type of junction show a 1/f2-dependence, independent of both bias cur

rent and temperature. A simple amplifier utilizing the negative differ

ential resistance is found to exhibit a "noise rise." 

Analog and digital simulations indicate that under somewhat rarer 

circumstances the same junction system can sustain a purely deter~ 

ministic hopping between two unstable subharmonic modes, accompanied by 

excess low-frequency noise. Unlike the noise-induced case, this chaotic 

process occurs over a much narrower range in bias current and is 

destroyed by the addition of thermal noise. The differential equation 

describing the junction system can be reduced to a one-dimensional 

mapping in the vicinity of one of the unstable modes. A general analyt

ical calculation of switching processes for a class of mappings yields 
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the frequency dependence of the noise spectrum in terms of the param-

eters of the mapping. 

Finally, the concepts of noise-induced hopping near bifurcation 

thresholds are applied to the problem of the three~photon Josephson 

parametric amplifier. Analog simulations indicate that the noise rise 

observed in experimental devices arises from occasional hopping between 

a mode ·at the pump frequency Wp and a mode at the half harmonic wpl2. 

The hopping is induced by thermal noise associated with the shunt 

resistance. 
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A. General 

CHAPTER I 

INTRODUCTION 

A current Frontier of Physics is the study of the dynamics of non

linear systems. Unlike most Frontiers, which are localized at some 

point on the periphery of Knowledge, Nonlinear Dynamics is a field 

interwoven throughout the body of Physics, serving as a common theme 

uniting many of its subspecialties. It is perhaps more appropriate then 

that Nonlinear Dynamics be called a "Super-specialty". This universal 

character of Nonlinear Dynamics has stimulated basic research in fields 

as diverse as fluid dynamics, laser studies, solid state electronics, 

astrophysics, and even meteorology. 

One aspect in particular has received widespread attention: namely, 

·nchaos." What is it, and why is it important to Physics? Several 

excellent review papers have been already been written to answer these 

questions (see, for example, May, 1976; Eckmarin, 1981; Ott, 1981), so we 

shall highlight only a few key points of relevance to our own studies. 

Much of the mathematical work in regard to nonlinear systems has 

been in the area of bifurcation theory. Given some function y which 

depends not only on an independent variable x, but also on a control 

parameter~. y = y(x,~), bifurcation theory seeks to answer the ques

tion: For what value of ~ does the response y(x,~) undergo abrupt 

transitions, where the character of the solution changes drastically, 

analogous to, say, a phase transition? Needless to say, numerous types 

of bifurcations are possible. But the most frequently discussed is the 

"period-doubling" bifurcation. To be more specific, if xis also·a 

continuous and periodic function of time [y = y(x(t),~)] with fundamen-
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tal frequency f 0 , a period-doubling occurs if, as ~ is varied, the 

fundamental frequency of y changes from f 0 to fo/2. 

Chaos generally arives only after one or more simple bifurcations 

have already taken place. Simply put, chaos is a deterministic response 

of a nonlinear dynamical system which is nevertheless aperiodic and 

whose power spectrum possesses broad-band "noise-like" components. 

Chaos is possible only in nonlinear differential equations which are of 

at least third-order and autonomous (i.e., no explicit time dependence), 

or second-order and nonautonomous: The Poincare-Bendixson theorem 

(Jordan and Smith, 1977) forbids chaotic solutions in second-order, 

autonomous systems. If we restrict ourselves to dissipative systems, we 

know from Liouville's theorem that volumes in phase space contract with 

time. The set of points ~o which a chaotic flow is attracted, analogous 

to a limit cycle for simple oscillations, is termed a "strange" attrac

tor, in light of the aperiodicity of chaotic systems. 

One of the goals of experimental studies of chaos, including our 

own, has been to classify in a variety of systems the transitions from 

simple oscillations to chaotic ones. Theoretical studies have suggested 

that there are three primary transitions to chaos. First, there is the 

Feigenbaum (1978, 1979) period-doubling scenario. Here an infinite 

cascade of individual period-doublings leads to a chaotic state as the 

control parameter is varied. A number of universal scaling laws govern 

this transition. The second route to chaos is that of Pomeau-Manneville 

(1980) intermittency. In this case, quiescent, or "laminar," durations 

occur in y(x(t),~) which are occasionally interrupted by noisy inter

vals. Again, scaling laws govern the mean times of quiescent periods. 

Finally, there is the scenario of Newhouse, Ruelle, and Takens (1978). 
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Here, chaos arises after three so-called Hopf bifurcations, at each of 

which an incommensurate frequency is added to the spectrum of the 

response y(x(t),~). In our own studies, only the first two of these 

scenarios are relevant. 

One final subject which has received less theoretical attention, but 

which is very important experimentally, is the role of noise in nonlin-

ear systems, especially those operated near bifurcation points. While 

chaos is a deterministic phenomenon, existing in mathematical systems 

without external noise, it is interesting to understand how chaos mani-

fests itself in real physical systems where noise is always present. 
\ 

This is one of the questions addressed in detail in this Thesis. 

Large-scale nonlinear systems, such as the earth's atmosphere and 

plasmas of ionized gases, have been the focus of much of the recent 

excitement in nonlinear dynamics. However, rich phenomena can be 

observed in many smaller-scale systems, especially in solid state elec-

tronics. Perhaps the most familiar nonlinear electronic device is the 

p-n semiconductor junction •. Recent experiments (Testa, Per~z, and 

Jeffries, 1982) have uncovered very interesting behavior which occurs 

when a p-n junction is placed in series with a resistor and inductor, 

and driven with a sinusoidal voltage. It was observed that many of the 

same effects found in simple one-dimensional mappings of the interval 

[xn+1 = f(xn), 0 ~ xn ~ 1], such as period-doubling bifurcations, chaos, 

intermittency, and crises, were also observable in this physical system. 

Another nonlinear electronic device is the Josephson junction 

(Josephson, 1962). Many practical devices have been developed which 

rely on its extreme nonlinearity, including magnetometers based on 

Superconducting QUantum Interference Devices (SQUID's) (Clarke, 1980), 



digital circuits (Zappe, 1983), voltage standards (Taylor et al., 1967), 

and parametric amplifiers (Claeson, 1983). Although there have been 

extensive analyses of the operation of these devices, it is only re

cently that the possibility of chaotic behavior in Josephson devices has 

been considered (Huberman, Crutchfield, and Packara, 1980; Pedersen and 

Davidson, 1981; Kautz, 1981a, 1981b; D'Humieres et al., 1982). These 

studies have been practically motivated, as it has been suggested that 

chaos is the source of the excess noise found in Josephson parametric 

amplifiers (more on this in Chapter IV). Much of this work has been 

numerical, and directed toward an ac-biased, resistively shunted junc

tion, whose equation is identical to that of the driven, damped 

pendulum: 

6 + (1!/6C)~ +sino= ide+ iac cos(wt). ( 1 • 1 ) 

These researchers found that for Sc 25, w ~ 1, ide= 0, and lac~ 1, 

period doubling, intermittency, phase-locking, as well as chaos, were 

indeed possible in Eq. (1.1). One question still remains: What impli

cations do these simulation results have on experiments performed on 

real junctions? 
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B. Thesis Outline 

The subsequent chapters of this Thesis address three distinct topics 

concerned with the rather complicated nonlinear dynamics of Josephson 

tunnel junctions. In Chapter II we explore in considerable detail the 

variety of phenomena observable in a de-biased Josephson tunnel junction 

shunted by a capacitance and a resistance having a non-negligible self-

inductance. We were motivated to perform these experiments by the 

desire to answer the following questions: 

1) Is chaos observable in an actual Josephson junction system? 

2) Which, if any, of the familiar scenarios are possible? 
\ 

3) Are there any new. transitions to chaos in this system? 

4) What is the role of thermal noise in the observed behavior? 

5) How well does the lumped circuit model account for the observed 

phenomena? 

In addition to obtaining the answers to these questions, several new 

phenomena were also observed. The current-voltage characteristics of 

such junctions show stable regions of negative dynamic resistance, 

unlike junctions with zero inductance. Experimental measurements of the 

noise resulting from both chaos as well as an unexpected hopping process 

will be discussed, along with the analog simulations which allowed us to 

interpret these results. We also present and interpret measurements of 

. 
the noise power spectrum of the hopping noise in one type of junction. 

We conclude this Chapter with a description of studies of the low-

frequency amplification and noise properties of a junction biased on a 

negative resistance. 

In Chapter III we describe an unanticipated phenomenon occurring in 

the above junction system. In the process of trying to understand the 
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origin of excess noise observed in actual Josephson tunnel junctions, it 

was discovered that analog simulations for comparable parameters exhib

ited an apparently deterministic 1/f-type power spectrum of-the noise 

over two decades at low frequencies. Further simulations, both analog 

and digital, have confirmed the origin of this noise in the governing 

circuit equation, and, unlike the noise-induced hopping described in 

Chapter II, this effect was destroyed by the addition of external noise. 

We describe how this noise can be explained in terms of hopping between 

two unstable oscillations. We then go to to show that the long-time 

dynamics of this hopping are determined exclusively by the character of 

a one-dimensional mapping of one of the junction variables in the 

vicinity of one of the unstable orbits. 

Chapter IV reexamines the performance of the three-photon Josephson 

parametric amplifier in light of the phenomenon of noise-induced tran

sitions near bifurcations_, uncovered in the work of Chapter II. This 

device has historically been plagued with an heretofore unexplained ex

cess noise phenomenon, termed "noise rise." Simula:tions of the complete 

amplifier circuit, including the resonant coupling circuit, wi 11 be de

tailed, and the results interpreted in light of recent developments in 

nonlinear dynamics. 
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CHAPTER II 

CHAOS IN JOSEPHSON TUNNEL JUNCTIONS 

A. Introduction 

As mentioned in Chapter I, there have been extensive analytical and 

numerical studies of the ac-driven Josephson junction system, Eq. (1 .1). 

On the experimental side, however, little has been done. It has proved 

rather difficult to perform controlled experiments which can be modelled 

by Eq.(1 .1), using conventionally fabricated Josephson junctions, while 

still operating at frequencies for which the lumped circuit model is an 

appropriate one. 
\ 

Only very recently have the first experimental results 

of chaos in this system been reported (Octavio and Readi Nasser, 1984). 

Still, the Josephson junction, by virtue of its simple nonlinearity, 

remains an attractive system through which universal aspects of chaos 

can be studied. In principle, any Josephson circuit possessing enough 

reactive elements to make the governing equation third-order should 

exhibit chaos, and thus provide a vehicle for the study of its appear-

ance in a real physical system. 

One such circuit is a de-biased resistively shunted Josephson tun-

nel junction, ~hose external resistance has a non-neglible self-indue-

tance associated with it (Fig. 1). Although there have been no previous 

experiments demonstrating chaos in thi"s circuit, there have been several 

studies of other, simpler nonlinear phenomena. One of these is a type 

of "relaxation oscillation" which can arise under certain circumstances. 

As an understanding of these relaxation oscillations is fundamental to 

an appreciation of chaos in this system, we shall briefly highlight this 

topic. 



Is I I qp ( V) 

L 
R 

VN(t) 
c I0 sin 8 

Figure 1. Schematic representation of a Josephson tunnel junction with 
critical current r 0 and self-capacitance C shunted'with an external resis
tance R which has a self-inductance L; I p is the quasiparticle tunneling 
current and VN is the Johnson voltage no~se associated with the resistance. 
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Generally speaking, a relaxation oscillation is a periodic phenom-

enon in a nonlinear system, which consists of at least two oscillations 

or transients with different characteristic times. Greater insight into 

the physics of relaxation oscillations in this particular system can be 

gained by referring to a mechanical pendulum analog of the Josephson 

junction (Fig. 2). In this model, a rigid pendulum (corresponding to 

the junction) is connected at its pivot point to an axle around which is 

applied a constant torque T (de bias current). The connecting axle, 

however, is not rigid, but has torsional elasticity, obeying Hooke's law 

with force constant K. This energy storage element corresponds to the 

inductance of Fig. 1. 
\ 

If the applied torque exceeds the critical value 

Mgl (critical current), the pendulum will rotate. For large torques the 

pendulum phase angle a (junction phase angle o) increases monotonically, 

as a good, or "grabbing," automobile clutch rotates when it is torqued. 

However, the presence of the torsional elasticity in the axle allows the 

pendulum to be out of phase with respect to the axle postion at which 

the torque is applied, measured by the angle ~. As a consequence, for 

lower values of the torque, the pendulum will occasionally fall back-

wards (negative junction voltage), as a "slipping" clutch might. For 

relatively small K values ("twisty" axle), the pendulum may undergo 

damped natural oscillations for a number of cycles, until the torsional 

axle has been "wound up," and the driving torque can again be trans-

-
ferred to the pendulum itself. The origin of subharmonic relaxation 

oscillations is now apparent: Several 2~-revolutions of ~ may occur 

before a complete oscillation period (including both rotations and 

relaxations of the pendulum) has elapsed. 

Relaxation oscillations occurring in resistively-shunted Josephson 
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MECHANICAL ANALOG 

Correspondence: 

8 • ~ 8 

Mgl • .. I 0 

M.Q 2 c )li (<P0/2 7r) C 

Y c • ( <P
0
/27T) 1/R 

K • ~ (cp0 /2rr) 1/L 

T c • I 
• 

y¢ ~ )1: Is 

XBL846·7018 

Figure 2. Pendulum mechanical analog of the Josephson junction 
circuit of Fig. 1. 
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po!nt contacts were first reported by Zimmerman and Silver (1967). Sev-

' eral years later Sullivan et al. (1970) observed subharmonic oscilla-

tions (i.e., the fundamental period of oscillation is an integer times 

the Josephson frequency, determined from the mean voltage), and invoked 
, .. 

feedback originating with the inductor to interpret them. The authors 

confined themselves t·o the zero ... capaci tance limit, offering no precise 

analytical or numerical results. Dempsey, Levinsen, and Ulrich (1975) 

considered the finite capacitance case and showed numerically that 

extensive subharmonic behavior is possible for a wide range of param-

eters. They suggested that the key factor for the existence of relaxa-
\ 

tion oscillations is that the amounts of energy which can be stored in 

the electric and magnetic fields of the circuit components must be 

roughly comparable to the junction coupling energy. No aperiodic 

behavior was reported. 

Several researchers have constructed devices to take advantage of 

these interesting properties. Taur and Richards (1975) achieved ampli-

fication at 5 MHz, as well as mixing at 36 GHz, for junctions biased 

along a negative differential resistance region appearing in the DC 

current-voltage characteristic. More recently, Calander, Claeson, and 

Rudner (1981a, 1981b) have conducted extensive studies of relaxation 

oscillations at 10 GHz as well as injection locking of relaxation oscil-

-
lations to weak external signals. To interpret the phenomena they 

observed, the authors appealed to a simple model which considers the 
'• 

voltage response separately in the zero- and finite-voltage states. The 

duration of the former is determined by the L/R time constant of the 

shunt, and typically results in lengthly quiescent periods (as L/R » 

1/fJ, where fJ is the Josephson frequency). When the current through 



the junction reaches the critical current, the junction switches briefly 

to the voltage state before rapidly relaxing back to the supercurrent 

state. It is these two distinct time constants which allow the resul

ting periodic response to be classified as a relaxation oscillation. 

Calander, Claeson, and Rudner (1981a,1981b) verified the model through 

its dependences on L/R and I/I 0 . Unfortunately, the devices did not 

perform well enough to warrant continued investigation: Excessive noise 

temperatures were observed (103 K S TN~ 105 K), as well as saturation 

at low powers. 

This same circuit also enters into considerations of ultra-high per

formance de SQUID's. Koch, Van Harlingen, and Clarke (1982), in per

forming calculations and measurements of quantum noise in single junc

tions and de SQUID's, demonstrated that for junctions near the quantum 

limit with finite shunt inductances, there are significant increases in 

the low-frequency noise mixed down from frequencies near harmonics of 

the Josephson frequency. They conjectured that such effects were due to 

nonlinear interactions between the LC-resonance and Josephson frequen

cies. Obviously, for successful low~noise performance Of such devices, 

chaos, which in many practical situations is indistinquishable from 

other, natural sources of noise, must be avoided. 

Aside from these device implications, a significant motivation for 

conducting studies of chaos in this system is the relative ease with 

which meaningful experiments can be performed. First, the junction is 

de-biased, affording a precise measurement of the bias current, which 

serves as the "control parameter" in this system. Secondly, the range 

of junction parameters for which complicated behavior, including chaos, 

is expected, is easily accessible. (The justification for this belief 
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is -discussed below.) Finally, both noise measurements and spectral 

' analysis can be performed at radio frequencies, unlike the ac-driven 

experiment, which requires microwaves. 

After developing the equations of motion for this junction system, 

we discuss experiments on two types of Josephson tunnel junctions, and 

analog simulations conducted to interpret the results (Miracky, Clarke, 

and Koch, 1983). We then describe measurements of the spectrum of the 

low-frequency noise in these junctions. Finally, we address the ques-

tion of the usefulness as low frequency amplifiers of the negative 

resistance regions appearing in the I-V characteristics. 

B. Equations of Motion 

We begin with the Stewart-McCumber lumped circuit model of a de-· 

biased Josephson tunnel junction (Barone and Paterno, 1982). A Joseph-

son tunnel junction consists of two superconductors separated by a thin 

insulating barrier through which pairs of electrons (Cooper pairs) are 

able to tunnel coherently (Josephson, 1962). This flow of electrons 

constitutes a supercurrent, which is equal to I 0sino, where o is the 

phase difference of the order parameters in the separate superconduc-

tors. A shunting capacitance C must be included in the model to account 

for the overlap of the two electrodes. The distinct process of single-

electron, or quasiparticle, tunneling is represented by a current 

Iqp(V), which is a nonlinear function of the voltage V across the junc

tion. For the types of junctions we shall consider here, the quasipar-

ticle current is generally very small. Most importantly, we focus on 

those devices to which an external shunting resistance R has been added 

which has a self-inductance L. 

The resulting circuit is shown in Fig. 1, and is governed by the 

13 



equations 

I •• 
I 0sin o + ~e/2e o + Is + Iqp' (2 .1) 

and 

(2.2) 

where VN is the thermal voltage noise generated by the resistance R. 

If we introduce a dimensionless time variable 

T ~ (2~I 0 R;~ 0 )t, (2.3) 

where ~ 0 h/2e is the flux quantum, Eqs. (2.1) and (2.2) become 

•• 
i = sino + Be o + is + iqp, (2.4) 

and 

• • 
o = is + BLiS + vN, (2.5) 

with i=I/I 0 , is=Is/I 0 , iqp=Iqp/I 0 , vN=VN/IoR, Be=2~IoR 2 el~o, 

BL=2~LI 0 1~ 0 • The dot now denotes differentiation with respect to t. 

Neglecting the quasiparticle current and the noise voltage, we com-

bine Eqs. (2.4) and (2.5) to give the third-order equation 

BL Be ·r + Be 6 + ~ ( 1 + BL cos o ) + sin o = i. . (2.6) 

The system is seen to depend on three dimensionless-parameters: BL, Be, 

and i. The first two are fixed with respect to a given junction, but 

the continuously variable third one serves conveniently as the "control 

parameter." If one makes the correspondences listed for the pendulum 

analog in Fig. 2, an identical equation can be derived for it. 

It is helpful to have expressions in these dimensionless units for 

the characteristic frequencies of the system. The junction plasma 

frequency Op is 11/SC, the Le-resonance frequency OLe is 1/~, the Q 

of the Le-resonance is I(BL!Be), and the 4R-time constant tLR is BL· 

Thus, for BL- 10 and Be- 0.1, Op- 3, OLe- 1, Q- 10, and tLR- 10. 

Henceforth in this chapter we shall study the dynamics of Eq. (2.6) 
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only by means of analog and digital simulations.· We leave for the 

-Appendix an analytic calculation of the first period-doubling bifurca-

tion as i is reduced. 

C. Experiment 

We shall now describe experiments performed to observe chaotic be-

havior in thin-film Josephson tunnel junctions. We begin with a 

description of the junction samples, focusing on both the parameter 

specification and the fabrication procedures. Next the several exper-

imental measurements made on such junctions will be outlined. The re-

sults of these measurements will. then be presented and discussed. The 

interpretation of the results on the basis of analog simulations follows 

in the next section. 

1. Choice of Parameters 

The first step is to determine suitable junction parameters. A 

naive physical understanding of the origin of chaos in this particular 

circuit may assist in the task. One might expect significant deviations 

from the resistively shunted junction model (RSJ) when the energy stored 

in the inductance is of the same order as the junction coupling energy: 

implying 

Lr 02;2 ~ r 0 ~ 0 12~, 

SL ~ 2. 

(2.7a) 

(2.7b) 

In addition, let us assume that the LC-resonance plays a crucial role. 

The intrinsic junction plasma resonance should then be damped out 

sufficiently to ensure that it does not dominate. This implies that 

Be~ 1.0, giving us a second criterion. 

Two types of junctions were studied: "small-area" [ 10 1..1m x 10 1..1m --

Fig. 3(a)] and "large-area" [400 1..1m x 350 1..1m --Fig. 3(b)]. The former 

are more interesting from a device perspective, as they are similar to 

15 



(a) 

Au 
Nb 

_j_ 

' ' T IO,um ' ' -
Pb 

(b) 

400 iJ.m--

Pbin 

Cu Nb 

XBL 846·7112 

Figure 3. (a) Small- and (b) large-area Josephson tunnel junctions 
shunted by an external resistance with substantial self-inductance. In 
(b), the loop is overlaid with a superconducting Pbin ground plane, 
insulated from the loop with a layer of SiO. 
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the types of junctions used in such devices as de SQUID's, while the 

latter are more suitable for direct observation of subharmonic behavior 

and chaos, as will be seen. In general, the parameters Sc and SL can be 

tuned by altering Io with an applied magnetic field. This technique is 

very effective for large-area junctions, but of limited use for the 

small-area junctions. Still another constraint is the need to keep the 

critical current as large as the device technology permits. The chaotic 

"noise" power (really "signal" for this experiment) increases with I 0 , 

as power spectral densities scale like I 0 ~ 0 R/2n. The technology of 

small-area junctions restricts their critical currents to the range 0.1 

to 1.0 rnA. The only real flexibility in altering parameters of the 

small-area junctions then is in varying the size of the shunt loop. 

Combining Eq. (2.7a) with the estimate L - JJod, where d is the shunt 

loop size, implies that, for a junction with a critical current of 500 

JJA, d should be greater than JJffi. This is just the size scale for the 

small-area junctions, so by changing the placement of the shunt [the Au 

strip in Fig. 3(a)], d could be varied sufficiently to give a range of 

SL between about and 10. Typical parameters for these junctions were 

Io a 0.5 rnA, C 4 pF, R = 0.4 0, and L = 4 pH, from which we obtain Sc 

~ 1.0 and SL a 6.0. From measurements of Iqp(V) made on unshunted june-. 

tions fabricated in the same batch as shunted ones, we estimate that 

o = R/Rsg ~ 5x1o-3, where Rsg is the quasiparticle resistance below the 

gap voltage. 

A more systematic procedure was followed in choosing junction param

eters in the case of the large-area junctions. The primary constraint 

was the requirement that the characteristic voltage oscillations 

(Josephson oscillations) have their fundamental frequency, or low order 
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subharmonic (with subharmonic number between, say, 1 and 5), at radio 

frequencies below 1 GHz. This was motivated by the desire to simpify 

the amplification and spectral analysis of these signals, and to avoid 

the need for microwave technology. Parasitic effects generally increase 

with frequency, but they are of even greater concern here as one must 

attempt to match 50 n to the low-impedance (~ 1 n) tunnel junction. The 

scale of the Josephson frequency is set by: 

f J - (2e/h) (I oR) = ( 484 MHzi).N) (I oR). (2.8) 

If one requires that fJ ~ 1 GHz, this implies that loR~ 2~V. 

Secondly, we require that Be = 2nioR2e;~ 0 be ~ 0.3, to keep the 

junction overdamped. [It should be noted that this limit may not be 

appropriate for other types of devices, such as voltage-controlled 

oscillators based on the relaxation oscillation mode of the junction. 

(Silver, Sandell, and Wilcox, 1983).] Expressing this in terms of the 

junction capacitance per unit area eR and critical current density Jo we 

have: 

(2.9) 

For thermally-oxidized Nb-Pb junctions, eR ~ 0.044 pF/(~m)2 (Barone and 

Paterno, 1982). For Be~ 0.1 and Rio ~ 2~V, we have that 

jo ~ 5.3 x 10-9 A/(~m)2 = 5.3 x 1o-3 ~A/(~)2. (2.10) 

Generally one keeps r 0 ~ 1 mA, in order to reduce self-field effects 

(i.e., the interaction between the magnetic field produced by a bias 

current through a junction on the junction critical current itself.) 

This implies that the junction area AJ should be 

AJ = 1 .9 x 105 (~m) 2 , · (2.11) 

or that the length of one side of the junction should be 430 ~m. Thus 

we have that junctions should be approximately 400 ~m on a side, a 
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situation easily achieved without the need for photolithography. 

We have shown that the shunt resistance R should be = 2 mn, a rather 

small resistance for thin films of either Au or Cu with dimensions on 

the order of 100 ~m. The requirement that SL ~ 10 implies, for r 0 

rnA, that L ~ 3 pH, or, if L - ~ 0 d, that d ~ 2.6 ~m: This is clearly 

impractical if the film widths are 400 ~m. However, by covering the 

entire junction and shunt loop area with a superconducting ground plane, 

the effective inductance can be reduced by roughly the ratio of the 

strip width to the ground plane/strip separation, a number on the order 

of several hundred to one thousand. It is more convenient to be able to 

vary both R and L separately, in contrast to the arrangement with the 

small-area junctions. The configuration used to do this is shown in 

Fig. 3(b). The· resistance is formed by the Cu film which bridges the 

narrow (- 75 ~m) gap in the otherwise superconducting Pbin shunt loop. 

The resistance is thus controlled by the Cu film thickness, and the 

inductance by the size of the ~hun~ loop. 

Typical parameters for the large-area junctions were r 0 = 1 rnA, C 

5 n~, R = 2 mn, and L = 5 pH, giving Be~ 0.1 and SL = 15. Separate 

measurements on unshunted junctions give o = R/Rsg = 1x1o-3. 

2a. Sample preparation: Small-area junctions 

The small-area junctions were fabricated in nine batches of six 

junctions on a 50 mm diameter Si wafer, using photolithographic lift-off 

techniques. First, a Au strip about 10 ~m wide and 160 nm thick was 

deposited, followed by a Nb strip about 200 nm thick. The lift-off for 

the Nb strip was performed, and the resist patterned for the Pbin (5 

wt.Sin) strip. The wafer was diced to give nine individual substrates, 

each with six junctions; each substrate was processed individually from 
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this point. The surface of the Nb was cleaned by ion-milling in Ar, and 

oxidized with a radio frequency discharge in an Ar02 mixture. The Pbin 

film, about 300 nm thick, was then deposited and lifted off. 

2b. Sample preparation: Large-area junctions 

The large-area junctions were prepared three at a time on 3"x1" 

glass microscope slides. For the first set of film depositions, a 

cleaned sample slide was placed in an evaporator and the chamber pres

sure was reduced to less than 3x1o-6 Torr. The shunt was formed by 

evaporating onto the slide through aperture masks first Cu and then Pbin 

(10 wt.% In). The.circular Cu film was typically 290 nm thick. The 

L-shaped Pbin strip, about 170 nm thick, was positioned such that the 

corner coincided with the Cu spot [see Fig. 3(b)]. A 3-mil wire placed 

between the Pbin mask and substrate itself masked a fine gap in the Pbin 

where it overlapped the Cu, thus forming the shunt resistance. By vary

ing the Cu film thickness, resistances ranging from 1 to 40 mQ could be 

obtained. 

After bleeding the vacuum chamber to atmospheric pressure, the sam

ple was removed and mounted underneath a mask which defined the base 

junction electrode. The sample mount was then transferred to a vacuum 

chamber containing a Sloan sputtergun. The system was evacuated to a 

base pressure of less that 10-6 Torr. Argon was then bled into the 

system for about ten minutes, after which time the ionization discharge 

was initiated by increasing the chamber pressure to about 30 ~m while 

applying 400 V across the sputtergun electrodes. Once the discharge had 

commenced, a steady current of about 4 A was maintained by controlling 

the Ar pressure, as the Nb was sputtered onto the substrate. Three 

minutes of sputtering resulted in a film thickness of about 150 nm. 
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After bleeding the system to atmosph~ric pressure, the sample was then 

immediately transferred to a oven for the thermal oxidation in air of 

the Nb surface to form the tunneling barrier. This was done at approx

imately 130°C for about seven minutes; different barrier thicknesses 

could be grown by varying the oxidation time. After completing the 

oxidation, the sample was then transferred back to the evaporator where 

the counter electrode and remaining films were deposited, again through 

aperture masks. First, the counter electrode of Pbin, approximately 170 

nm thick, was evaporated. A 130 nm-thick layer of SiO was then depos

ited, to serve as insulation between the junction electrodes and a 210 

nm-thick Pbin ground plane which covered the entire junction area. 

Finally, a 130 nm-thick disk of SiO was evaporated atop the ground plane 

to serve as passivation •. Once removed from the vacuum chamber, the 

slide was diced into individual junction samples, ready for testing. 

3. Measurements 

The sample junctions were tested individually after being mounted at 

the end of a 100-cm long insert and immersed in a 5-liter capacity 

superinsulated fiberglass cryostat containing liquid helium. Twisted 

pairs of wires ran the length of the insert and were press-mounted to 

the junction electrodes to permit the several electrical measurements. 

First, current-voltage (I-V) characteristics were measured in the case 

of the small-area junctions by slowly sweeping the current bias, and 

measuring the resulting voltage. In the case of the large-area junc

tions, current-dV/di measurements were made instead, as the low junction 

voltage signals made I-V measurements using conventional low-noise 

amplifiers (such as the Brookdeal 5004) difficult. 

In addition to the de I-V (I-dV/di) measurements, the noise at 
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approximately 100 kHz was measured for both types of junctions, as a 

function of current bias. A schematic of the circuit used to perform 

this measurement is contained in Fig. 4(a). A cooled resonant tank 

circuit, consisting of a coil of inductance LT wound from Nb wire and a 

capacitance CT, was connected directly across the junction under test. 

This arrangement transformed the junction impedance in order to better 

match the relatively low junction impedance (1 0 in the case of the 

small-area junctions and 2 mO in the case of the large-area ones) to the 

somewhat higher optimal noise matching impedance (5 kG) of the Brookdeal 

5004 preamplifier. Equivalently, the voltage across the capacitor is 

amplified by a factor Q = wLT/RT, which was approximately 60 (500) for 

the small- (large-) area junctions, in a bandwidth w0;Q, where wo = 

.1/I(LTCT). The output of the preamplifier was then fed into a PAR HR-8 

lock-in amplifier, used in the low-frequency mixer mode: A reference 

signal set to w 0 12~ multiplied the input, producing a narrow bandwidth 

signal at zero frequency which could be monitored with a RMS meter. 

This signal, suitably filtered of high frequencies, is a direct measure 

of the noise at 100 kHz. It is more convenient to express it in terms 

which allow ready comparison to other sources of noise, such as Johnson 

noise originating in .the shunt resistance R. Hence we define an 

equivalent noise temperature TN in the bandwidth B of the tank circuit 

as: 

(2.12) 

where <V~> is the mean square voltage noise monitored with the RMS 

meter. 

A second measurement was made in the case of the large-area junc

tions, illustrated in Fig. 4(b). A 50-0 semi-rigid coaxial cable was 
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connected directly across the junction voltage electrodes and, at the 

top of the cryostat, to a wide-band (1 GHz) amplifier, with a noise 

figure of about 1.3 dB. The output of the amplifier was fed into a HP 

3559A spectrum analyzer, allowing the spectrum of the voltage oscilla

tions to be monitored. 

D. Results 

In Fig. 5 we show the results of the low-frequency measurements 

[Fig. 4(a)] from a typical large-area junction. Here we plot together 

the noise temperature TN and the differential resistance dV/di as a 

function of I, in order to determine whether excess noise is correlated 

with structure on the I-V characteristic. The differential resistance 

shows a great deal of structure, including regions of negative differ

ential resistance (NDR). The noise also shows considerable structure, 

and one can distinguish three types of features. First, there are 

regions of bias current for which the junction has a noise temperature 

below the system noise temperature, 70 K. Second, there are a number of 

fairly broad regions for which the noise temperature varies from about 

300 K at high bias currents to about 2300 K at currents just above the 

critical current. Third, there are a number of narrow but exceedingly 

noisy peaks for which the noise temperature is greater than 5x104 K, the 

saturation value for the electronics; in other measurements we have de

termined that these peaks may have noise temperatures as high as 106 to 

108 K. These noise spikes are usually in the vicinity of negative re

sistance regions, but do not appear consistently at any specific fea

ture: For example, the spike at 1.56 rnA in Fig. 5 occurs near dV/di = 

0, while that at 4.32 rnA occurs near a minimum in dV/di. 

Results from another, similar large-area junction, one with a some-
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Figure 5. TN (upper) and dV/di (lower) vs I (for increasing I) for 
a typical large-area junction with Be= 0.11, BL = 12, and r = 8.9x10- 5 

The numbers indicate order of subharmonics. TN was measured in a band
width of 244Hz about 117kHz. Inset shows junction configuration. 
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what lower critical current, are contained in Fig. 6. Although the 

structure observed here in both the noise temperature and differential 

resistance graphs is noticeably different from that in Fig. 5, the 

same four aspects are observed: bias points of negative differential 

resistance, regions of low noise (TN < 32 K, the system noise level 

here), broad intervals where TN- 3x102 K, and large spikes where TN-

3000 K. In this case, the noise spikes are sometimes but by no means 

always associated with local maxima in the differential resistance. 

To investigate further the origin of this structure we performed the 

high-frequency signal measurement of Fig. 4(b). Because of the extreme 

impedance mismatch between the junction (2 mn) and the semi-rigid-coax/ 

preamplifier system (50 n), the preamplifier noise temperature was very 

high, about 3x106 K. In the regions of very low noise for both junc

tions, we were able to observe stable subharmonic oscillations of the 

Josephson frequency. By separately measuring the de voltage Vdc across 

the junction with a low-noise voltmeter (Fluke 845 AB) and the lowest 

frequency present in the spectrum analyzer output, f 1 , the subharmonic 

number n is determined from the relation: 

n = Vd 0 /(~ 0 f 1 ). (2.13) 

These numbers are indicated in Figs. 5 and 6. Such subharmonic oscil

lations are in fact the relaxation oscillations discussed in Sec. A. In 

regions of bias current where the junction noise temperature was of the 

order of 103 K, the subharmonic spectral components vanished, but the 

noise temperature of the high-frequency amplifier was far too high for 

us to make any observations of the nature of the noise at these 

frequencies. 

We believe the large noise spikes generally arise from switching, or 
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hopping, between two different oscillatory modes. As evidence of this, 

Fig. 7 shows two well-defined peaks at 335 and 377 MHz observed when a 

different junction was biased on a large noise spike. As one sweeps the 

bias current through the region where the noise spike occurs, one ob

serves first one peak, then the growth of the second peak as the first 

one shrinks, and finally the disappearance of the first peak. For bias 

points where only a single peak was observed, no excess low frequency 

noise was measured. Thus, the junction is apparently hopping between 

two subharmonic relaxation modes, giving rise to copious levels of noise 

at frequencies below the characteristic switching frequencies. Switch

ing between subharmonic and "noisy" modes (TN - 103 K) can also occur, 

as is suggested by the appearance of noise spikes on the boundaries 

between noise-free and moderately noisy regions in Figs. 5 and 6. The 

connection between this moderately noisy region and chaos is made on the 

basis of simulations, to be discussed in Sec. E of this chapter. 

I-V characterisitcs and low-frequency noise measurements were simi

larly obtained for several small-area junctions. Figures 8 and 9 are 

two representative examples, for slightly different values of R and I 0 • 

Here the bottom voltage scale refers to the I-V characteristic (curve on 

right in figure), and the top noise temperature scale is a measure of 

the low-frequency noise (curve on left). (Note: the TN scale in Fig. 8 

is linear in I<V~>, while that in Fig. 9 is logarithmic in <V~>.) As 

the junction resistance is much larger here than in the large-area junc

tions, a smaller tank circuit Q, typically 57, was needed to optimally 

match the junction to the preamplifier. In general, much less structure 

is apparent in the I-V characterictics for the small area junctions, 

compared with curves from the large-area ones. For the junctions dis-
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cussed here, the significant structure is confined to rather high bias 

currents (390 ~A for Fig. 8 and 320 ~A for Fig. 9), and bias currents 

just above the critical current. For intermediate bias currents (320 ~A 

to 330 uA in Fig. 8 and 200 ~A to 300 ~A in Fig. 9) there is little 

structure on the I-V characteristics, as well as no noise above the 

baseline (system) noise levels. 

A general correlation between structure in the I-V characteristic 

and enhanced noise is evident in both Figs. 8 and 9. It seems that 

wherever a negative resistance appears, noisy spikes with 104 K ~ TN 

~106 K are observed at nearby bias points. In Fig. 8, the noise ex

ceeds 4x1o6 K at 380 uA, just below a substantial negative resistance. 

In Fig. 9, the noise is greater than 5x104 K at 175 uA, near the vol-

tage minimum (dV/di = 0) of a prominent negative resistance region. The 

same is true for I = 155 uA. Conversely, in both figures, wherever the 

noise is only "moderate" (~ 103 K), little structure appears. This is 

true for I between 220 uA and 300 uA in Fig. 8 and I ~ 200 uA in Fig. 9. 

However, as for the large-area junctions, there does not seem to be a 

unique correspondence between the excess noise and the structure of the 

I-V characteristic. Further interpretation of these features will be 

made in the discussion of analog simulation results. 

On the basis of these measurements we see that some similar phenom-

ena are observed in the small-area junctions as in the large-area ones: 

negative resistance; and low, moderate, and high noise levels. There 

is, however, one significant difference. Although the extent in bias 

current over which structure and noise are observed is smaller in the 

small-area junctions, the actual bias ranges where dV/di < 0 are gener-
' 

ally greater for the small-area junctions. In fact, without a large 
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enough series resistor added to the tank circuit, the tank circuit can 

spontaneously oscillate at such points. The potential for using such a 

negative resistance as an amplifier wi 11 be discussed in Sec. G. 

E. Analog Simulations 

In order to shed more light on the behavior observed experimentally, 

we have simulated the junction circuit of Fig. 1 using an electronic 

analog. (The advantages of analog simulations over digital computations 

are speed and economy. Analog studies allow one to delineate more 

quickly the general behavior possible in a multi-dimensional parameter 

space. Digital computations, with their greater precision, are best 

suited when particular parameter values warrant closer scrutiny.) To 

represent the bare junction we used a commercially-available circuit 

(the Model JA-100, manufactured by Philip Gillette and Associates of 

Beaverton~ Oregon). A block diagram of this circuit is contained in 

Fig. 10. Rather than realizing the traditional phase-lock loop analog 

circuit, this circuit actually integrates the voltage to obtain the 

phase o, then produces a terminal current approximately proportional to 

sin o. The advantage of this circuit over the phase-lock loop is that 

an rf reference frequency (- 100 kHz) is not needed, thus avoiding 

potential cross-talk problems. 

It was essential to use an active circuit (constructed from opera

tional amplifiers) to represent the inductance of Fig. 1. Since the 

voltage-to-frequency factor ("~o") is 10-4 V sec for the junction ana

log, for I 0 = 100 ~A and SL = 10 an inductance L = SL~o/2ni 0 = 2 H is 

needed. Such an inductance is quite difficult to obtain from a passive, 

room-temperature component, with a resistance low enough to maintain a 

reasonable Be value (- 0.1). The circuit used to achieve this indue-

33 



Figure 10. Block diagram of the electronic cir
cuit used to represent the Josephson junction in the 
analog simulations. The complete circuit is manufac
tured by Philip Gillette and Associates of Beaverton, 
Oregon. 
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tance is an example of a "gyrator," and is illustrated in Fig. 11. 

Here, the terminal voltage is fed into an integrator with time constant 

t, whose output drives a voltage-to-current converter. The current 

produced is then fed back into the input in a way which does not depend 

on the source impedance. The terminal impedance is then proportional to 

jwt, which is precisely the form needed to represent an inductance. A 

circuit so constructed could easily represent inductances ranging from 

10-3 H to 30 H (10-2 ~ BL ~ 102), with low losses. 

We added to the junction analog and the active inductance a combina-

tion of active and passive components to represent the remaining ele-

ments of the model. A hybrid analog-digital circuit was constructed to 

produce a filtered, pseudo-random sequence of voltage pulses to repre-

sent the Johnson noise VN of Eq. (2.2). The output voltage level was 

calibrated and made continuously variable to provide a wide range of r 

values. R and I 0 were fixed at 630 0 and 100 ~A, respectively, and dif

ferent values of capacitors were interchanged to achieve a range of Be 

values. Finally, a voltage-to-current converter, attached to the JA-100 

unit, was biased with a battery to supply the de-bias current. 

Figure 12 is a typical set of solutions for Be = 0.25, and BL = 8.0. 

(1) The left-hand column shows the voltage across the junction u vs time 

for four values of bias current, while the right-hand column shows the 

corresponding phase portrait, V = ~ 0 612n vs Iosino. In (a), the solu-

tion is the Josephson oscillation with period one, and the corresponding 

phase portrait is a single closed loop that repeats each time o evolves 

through 2n. In (b), .a bifurcation has occurred to a period two solu-

tion, and the phase portrait contains two loops. In (c), a second 

bifurcation has occurred to a period four solution, while in (d) the 
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Figure 12. Voitage (~) vs time (left-hand column) and voltage (~) 
vs junction current (I 0sin6, right-hand column) for the analog ~!mula
tor with Be = 0.25, BL = 8.0, and r = rsys: (a) period one, (b) period 
two, (c) period four, and (d) chaos. The bias current was reduced in 
going from (a) to (d). · 
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system has become chaotic. This is an illustration of a Feigenbaum 

(1978, 1979) period-doubling sequence to chaos. 

In Figs. 13 and 14 we show I-V characteristics and low-frequency 

noise measurements obtained from the simulator for two sets of parame

ters, chosen to approximate those of the experimental large-area junc

tions of Figs. 5 and 6 respectively. In so much as the same qualita

tive features are present in both figu~es, we shall discuss in detail 

only Fig. 13. The curve on the right is an I-V characteristic (in 

dimensionless units) and the one on the left is the noise temperature 

measured in a bandwidth of 10 to 50 Hz corresponding to frequencies 

between 24 and 120 MHz for the experimental junction; 117 kHz for the 

real junction corresponds to 0.049 Hz for the analog. 

Although there is certainly not a one-to-one correspondence between 

the simulations and the real junction, the simulations enable us to un

derstand the general features. The numbers associated with the I-V 

characteristic indicate the subharmonic numbers which were observed at 

the corresponding bias point; the filled circles denote bifurcation 

points. Notice that stable subharmonics were observed only in regions 

where there was no low-frequency noise. Although the first period

doubling cascade as the bias current is reduced is not apparent from the 

graph, the full cascade followed by chaos (as exemplified in Fig. 12) 

was observed to arise for these parameters. As the bias current is 

further reduced, the system exhibits Pomeau-Manneville intermittency 

(1980), followed by tangent bifurcations to limit cycles of even or odd 

periodicity. In the theory of one-dimensional mappings with single 

quadratic maxima, there is an explicit sequence in which stable limit 

cycles of period n should first appear as the control parameter is 
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Figure 13. TN and V/I 0R vs I/I 0 (for increasing I) for analog junc
tion with Be= 0.105, BL = 12.0, and r = 8.9x10-s. Noise was measured 
at frequencies between 10 and 50 Hz. Solid circles indicate bifurcation 
points. Inset shows model of junction. 
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varied monotonically (Metropolis, Stein, and Stein, 1973). The behavior 

we observe in our junction simulations as the bias current is reduced 

does not appear to fit this simple picture, suggesting that a reduction 

of this third-order system to a one-dimensional mapping of the type ana

lyzed by Metropolis, Stein, and Stein (1973) may not be possible. How

ever, numerical studies we describe in Chapter III demonstrate that a 

different type of one-dimensional mapping does exist near the onset of 

type III Pomeau-Manneville intermittency, for certain parameter values. 

Finally, the lack of order in the appearance of periodic windows indi

cates that the basins of attraction are probably quite complicated, and 

that the observed behavior may depend crucially on the amount of exter

nal noise present. Results from digital simulations (Koch, Miracky, and 

Clarke, 1984) are in excellent agreement with those from the analog. 

Notice in both Figs. 5 and 6 that the very large noise temperatures 

(~ 105 K) measured in the real junctions are not present in the band

width of the noise measurements in Figs. 13 and 14. For the real junc

tions, the noise measurements in Figs. 5 and 6 were performed at reduced 

frequencies, f/(2~IoR/~ 0 ), of 1.2x1o-5 and 2.6x1o-5, respectively, while 

for the simulations the reduced frequency of the measurements spans the 

range 2.5x1o-3 to 1.3x10-2. The lack of a large noise peak in this por

tion of the analog spectrum suggests that switching noise is greater at 

much lower reduced frequencies • 

In both Figs. 13 and 14 the chaotic noise has a noise temperature of 

of typically 600 K at the higher bias currents, increasing somewhat as 

the bias current is lowered. In addition, we see large levels of noise, 

sometimes with noise temperatures as high as 106 K, over relatively 

narrow ranges of current. To illustrate the chaotic and hopping behav-
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ior, in Fig. 15 we plot the spectral densities of the voltage at the 

points A and B of Fig. 13. In Fig. 15(a), the noise due to chaos is 

plotted for no injected noise and for an injected noise equivalent to 

3.18 K. (The intrinsic, system noise temperature of the analog was 

estimated to be such that rsys = 3x1o-7.) The broadened peak at high 

frequencies is from a residual subharmonic mode. The noise at low 

frequencies is white with a noise temperature of about 700 K, and is 

relatively unaffected by the presence or absence of thermal noise. In 

Fig. 15(b), the noise temperature of the junction in the absence of 

thermal noise was below the noise temperature of the measurement system. 

The addition of thermal noise greatly enhanced the noise temperature at 

low frequencies, where TN increases approximately as 1/f to a value of 

about 105 Kat 0.1 Hz. In this particular instance, the bias point is 

at a metastable subharmonic mode, but is sufficiently close to a chaotic 

regime that transitions between tne subharmonic mode and the chaotic 

regime can be induced by the added thermal noise. 

Analog simulations were also made for parameters approximately equal 

to those of the experimental small-area junction of Fig. 8; the results 

are contained in Fig. 16. Again, the I-V characteristic is plotted on 

the right, and the low-frequency noise (TN) in the bandwidth between 

2.5x1o-3 and 1 .3x1o-2 dimensionless units appears on the left. As with 

the data from the real junctions, there are several significant differ

ences between the small- and large-area junction results, such as less 

overall structure and fewer regions of excess noise. However, the 

equivalent dimensionless frequency of the noise measurements for the 

small-area junctions is 3.4x1o-7, which is inaccessible even with the 
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Figure 15. Analog voltage spectral density at points A (a) and B 
(b) of Fig. 13, with and without injected thermal noise. In (b), the 
junction noise was below the system noise in the absence of thermal 
noise. Arrows indicate frequency equivalent to 117kHz in real junc
tions. Bandwidth over which noise measurements in Fig. 13 were made is 
indicated by bars. 
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Figure 16. TN and V/I 0R vs I/I 0 (for inc~tasing I) for analog junc
tion with Be= 0.37. SL = 4.0, and r = 1.8x10 . Noise was measured at 
frequencies between 10 and 50 Hz. 
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analog simulator. The largest level of noise observed in actual junc

tions was 4x1o6 K (Fig. 5), while that seen in simulations was 2x1o5 K 

(Fig. 15). It is certain that there is a practical limit on the low

est frequency for which meaningful results can be obtained from analog 

simulations, below which the hopping process is destroyed or limited by 

other factors, such as the intrinsic 1/f noise of the electronic cir

cuits and components comprising the analog. In the actual experiments, 

however, it is quite likely that this practical limit is much smaller in 

dimensionless units; the measurements described in Sec. F suggest that 

it is well below 3x1o-7 (corresponding to 100kHz). Finally, note that 

in the case of these small-area junctions, there is a better qualitative 

correspondence between the experiments and simulations, presumably due 

to the somewhat smaller value of aL· 

An extensive region of the <ac,SL)-parameter space has been mapped 

out using the analog simulator, with the results summarized in Fig. 17. 

Where several regions overlap in the figure, a distinction can be made 

between the different effects from the value of bias current for which 

those effects occur. For example, chaos could appear for one value of 

i, while relaxation oscillations may be more stable for another value. 

From this study we conclude that chaos arises for 1 ~ aL ~ 25 and for ac 

~ 1. The lower limit on Sc (0.01) arises from practical limitations of 

the analog: In principle, there is no apparent reason why it should not 

extend much lower. The region of bifurcated solutions naturally sur

rounds the region of chaos, and from this graph we see that the first 

period doubling sets in for SL = 0.1 with Sc 0.1. This is in excel-

lent agreement with the analytic calculations described in the Appendix. 

The other two types of phenomena shown, hysteretic (dual-valued for 
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Figure 17. Detailed map of the behavior observable within the (Be, 
BL)-parameter space for the circuit of Fig. 1. The phenomena indicated 
occur for some value of the bias current: Overlapping regions of dif
ferent effects occur for different values of bias current. 
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I<I0 ) subharmonic solutions and relaxation oscillations, are distinct 

from chaos yet are intimately related to the complicated nonlinear dy-

namics of this system. Hysteretic solutions have for a long time been 

known to occur for BL = 0 and Be?! 1. For 5 < BL < 70 subharmonic solu-

tions are apparently allowed for Be > 1 • It is not clear why this is 

the case. As for the relaxation oscillations, all we can conclude at 

this point is that there is a connection between them and chaos, albeit 

a rather fuzzy one. (The boundary of the relaxation oscillation region 

in Fig. 17 is somewhat arbitrary.) "Dephased relaxation oscillations" 

(by which we mean aperiodic solutions which arise when the damping is 

not sufficient to weaken the plasma oscillations between relaxation 

cycles, resulting in a loss of phase stability) are perhaps a form of 

chaos. Further analytic and/or numerical work is needed to clarify this 

connection. Clearly, in the regime BL ?! 1 when the period of the 

relaxation oscillations is very low, the familiar period doubling 

transitions to chaos are often observable, as in Fig. 12. 

Another way to analyze a nonlinear system is to construct a strobe-

scopic picture of the dynamical flow within the multi-dimensional phase 

, 
space. An example of this is the Poincare map, or surface of section 

(Guckenheimer and Holmes, 1983). For the three-dimensional system 

described by Eq. (2.6), this could be constructed by graphing, say, 6Ct) 

vs 6Ct) for fixed values of o(t). Limit cycles would appear as discrete 

sets of points, a total of n for an nth-order subharmonic oscillation. 

Strange attractors, on the other hand, consist of a Cantor set of 

points, and thus would occupy an irregular and seemingly arbitrary 

curve. In the system of Fig. 1, the variables Is and V are more readily 

accessible than o or its derivatives, and so are more convenient to use 
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to construct mappings. The choice may seem more natural in the pendulum 

• • 
analog of Fig. 2, where the corresponding variables are ~ and e. In 

terms of dimensionless variables, they are related to o as follows: 

•• 
is = i - sin o - Be o - iqp (2.14a) 

. 
and v = o. (2.14b) 

, 
Figure 18 is an example of a Poincare map of is vs v for the analog 

constructed from several thousand points sampled at o = ~ for the param-

eter values BL = 2.25, Be= 0.15, r = fsys• and i = 3.85. This bias 

point lies within a chaotic regime which is near an unstable period two 

limit cycle.· The two darkened regions at the right are the "ghosts" of 

this unstable solution. The horn-shaped curve brings to mind the 

strange attractors found in other systems, such as the Lorenz equations. 

Note that in the vicinity of the lower-right darkened region that the 

attractor actually consists of several distinct layers, or "leaves." 

This feature is characteristic of self-similar structures, of which many 

strange attractors are examples. 

Figures 19 and 20 are the Poincar~ maps for the parameters of Fig. 

13 (with r = rsys)~ at point A and near point B, respectively. In each 

case the bias point lies within a chaotic regime, which accounts for the 

, 
similarity of the two Poincare mappings. (Recall that the spectra of 

Fig. 15 were obtained by adding external noise.) If the sytem were 
, 

biased exactly at point B with noise, the resulting Poincare mapping 

would be a composite of Fig. 20 and a stable period two limit cycle. 

Clearly, the structure seen in Figs. 19 and 20 is chaotic. Moreover, by 

comparing Figs. 18 and 19 one can conclude that larger BL values lead to 

more complicated structure. 
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F. Noise Spectra 

An interesting related question is: What is the dependence on 

frequency of the spectrum of the hopping noise at low frequencies? 

Several theories have been proposed recently which address the origin of 

excess low-frequency noise in nonlinear dynamical systems (Manneville, 

1980; Ben-Jacob et al., 1982; Geisel and Nierwetberg, 1984). All of 

these theories predict the shape of the power spectrum at low frequen

cies. However, considering the simplicity of the models used, it is not 

clear how such results can be applied to real physical systems, such as 

the one studied here. Therefore, in order to test the relevance of 

these models to the system of Fig. 1, we have measured directly the 

low-frequency hopping noise spectrum in an actual junction. 

We used a small-area junction [Fig. 3(a)] because its impedance is 

better matched to the preamplifier. Figure 21 shows an I-V character

istic of a small-area junction with a resistance of 0.48 n and critical 

current of 190 ~A, at 4.2 K. 

The excess low-frequency noise was greatest for bias points near the 

large NOR at 310 ~A of Fig. 21, so careful measurements were made there. 

The noise levels at frequencies below 100 kHz were large enough so that 

extra tank circuits were used only to obtain the data points at 98 kHz 

and 780 kHz. Figure 22 is a graph of the noise power spectra, expressed 

as a noise temperature, which is defined as: 

(2.15) 

Sv(f) is the voltage spectral density read from the HP 3585A spectrum 

analyzer, which followed the preamplifier. The several curves are data 

taken for different values of bias current. Notice that all of the 

curves have a characteristic shape: a plateau at asymptotically low 
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frequencies, and an approximate 1/f2 fall-off at higher frequencies. A 

least-squares fit of the points on the linear portion of the curve for I 

3.110 ~A gives Sv- 1/f2.1. 

The same junction was also measured at the lower temperature of 2.6 

K, and the results are plotted in Fig. 23. Although the critical cur

rent and resistance both increased somewhat as the temperature was low

ered, to values of 196 ~A and 0.50 n, respectively, the same basic 

results were obtained: The measured power spectra went as 1/f2 , with 

plateaus at zero frequency. 

Two basic questions come up in attempting to interpret these data. 

First, is this a noise-induced or deterministic hopping process? 

Unfortunately, the results presented here cannot answer that question. 

On the one hand, it is well known that Poisson switching between two 

states, characterized only by a constant average switching rate, gener

ates a 1/f2 spectrum. Thermally activated processes can sometimes fall 

into this category. On the other hand, for dynamical systems such as 

this one, in which the effective potential barrier separating the two 

states is very sensitive to the value of the parameters, measurements of 

the temperature dependence of the noise spectra may not isolate the 

source of the hopping. We are unable to conclude which of the param

eters changing with temperature (critical current, resistance, Johnson 

noise, etc.) is the variable controlling the response. Secondly, if the 

the spectrum is 1/f2, what sort of theoretical explanation can best 

account for our results? The theories of both Ben-Jacob et al. (1982), 

and Geisel and Nierwetberg (1984) both predict 1/f2 shapes, starting 

from different models: Which (if either) is correct? In short, merely 

measuring the power spectrum of a hopping process does not necessarily 
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provide sufficient information to be able to distinguish between 

competing theories. 

G. Negative Resistance Amp1ifier 

A negative differential resistance (NDR) is potentially a very use-

ful feature for achieving amplification of oscillatory signals. For 

example, by placing a circuit element possessing a NDR into a series 

resonant circuit and biasing it appropriately, the circuit will oscil-

late spontaneously at the resonance frequency, thus achieving "infinite 

-
gain." More generally, the ability to compensate for other circuit 

losses can have beneficial applications. As has been discussed above, 

self-resonant Josephson junctions exhibit stable NOR's, so it would be 

interesting to explore the amplification properties of devices. This 

section describes experiments to do just this. 

Figure 24 shows the I-V characteristic of a small-area junction. 

Its rather large NDR at a bias of roughly 170 ~A makes it suitable for 

amplifier measurements. An amplifier was formed by connecting the june-

tion in parallel with two tank circuits, whose resonant frequencies were 

98 kHz and 780 kHz. Figure 25 shows an equivalent circuit of the ampli-

fier configuration for one of the tank circuits. The series resistance 

RT (about 1 0) was added to maintain the total circuit resistance, in-

eluding the junction dynamic resistance when biased on the NDR, posi-

.. tive. Otherwise, gain measurements would not be meaningful. A weak 

signal near the tank circuit resonant frequency f 0 was injected into the 

tank circuit by sinusoidally driving a coil formed by several turns of 

wire wound around the cryostat containing the junction. The voltage VT 

across the capacitor was measured by a low-noise preamplifier followed 

by a Hewlett-Packard 3585A Spectrum Analyzer. The power gain is defined 
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60 

for this circuit as: 

G (2.16) 

where R0 = dV/di at I = IB for the bias current IB in the NDR, indicated 

by the arrows in Fig. 24. 

Figures 26 and 27 show the power spectra of the voltage VT for bias 

currents I = 0 (bottom curve in each figure) and I= IB (top curve), at 

98 kHz and 780 KHz, respectively. In Fig. 26, although the peak of the 

input signal is obscured by the top curve, there was, as indicated, a 

gain of 5.7 dB when the junction was biased on the NDR, a number in 

agreement with what one would expect from estimates of RT and R0 • No-

tice, however, that the noise in the vicinity of f 0 has been amplified 

much more, by roughly 30 dB. Similarly, in Fig. 27, the signal gain was 

measured to be 1.2 dB, while the noise gain was about 20 dB. The fact 

that the gain is lower at the higher frequency suggests that the differ-

entia! resistance is a function of frequency, being somewhat less nega-

tive at 780 kHz. This is entirely plausible, considering that the I-V 

characteristic is an average of oscillations of much higher frequencies. 

Obviously, for high enough frequencies, this quasi-static I-V approxima-

tion ceases to be valid. 

The most important conclusion to be drawn from these results is that 

a type of "noise rise" ensues when the NOR is utilized in a low-frequen- . . 
cy amplifier. By this we mean that the amplification of narrow-band 

signals does not increase as fast as that for nearby broad-band noise, 

as some parameter is varied. We speak of a "noise rise" here in the 
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Figure 26. Power spectrum near 98 kHz (=1/2~/LTCT) of both the input 
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resistance amplifier. A gain of 5.7 dB was achieved. 
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same sense as for Josephson parametric amplifiers (Feldman, Parrish, and 

Chiao, 1975), which are discussed in more detail in Chapter IV. We 

should point out that it is unlikely that the noise rise can be ex

plained by a saturation of the input signal, considering the good agree

ment between the measured and estimated gains at 98 kHz. 

In order to explain these results a model is needed of the underly

ing dynamics. On the basis of analog simulations of this system, we 

suggest the following picture. Imagine that at some value of the bias 

current there is a bifurcation of the junction system to a substantively 

different solution. Assume furthermore that the solutions on either 

side of this bifurcation point are characterized by different mean vol

tages: There is a discontinuity in the I-V characteristic as the bias 

current is varied. Now include thermal noise. The system now samples 

alternately, or hops between, the two solutions, resulting in a rounding 

of the abrupt discontinuity in the I-V characteristic. This hopping 

process, as has been discussed at length above, would generate excessive 

low-frequency noise when it is triggered by even a small anount of 

broad-band noise. Thus, although one achieves gain at the signal fre

quency due to the NOR, there is a great amount of broad-band noise pres

ent in the vicinity of the signal frequency due to the hopping process-

hence, a noise gain. Furthermore, the fact that the gain of the ampli

fier decreases as the operating frequency is increased (compare Figs. 26 

and 27) is consistent with this interpretation of the origin of the 

NOR's: One would expect less signal coherence at higher frequencies. 

In conclusion, we have examined the usefulness of NOR's in self

resonant Josephson tunnel junctions as low-frequency amplifiers. Their 

performance is not very satisfactory from a practical perspective: They 
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exhibit a noise rise. On the positive side, the interpretation of this 

noise rise in terms of the underlying noise-induced hopping dynamics 

underlines the relevance of these effects in general to nonlinear 

systems. 

H. Concluding Remarks 

We conclude this chapter by supplying answers to the questions posed 

in Chapter I. First, chaos is observable in this Josephson junction 

system; it manifests itself as a noise temperature TN - 103 K. Further

more, we know from simulations that both the Feigenbaum and Pomeau

Manneville transitions to chaos are possible in this system. Although 

no new "paths to turbulence" were uncovered in the course of these 

studies, a new phenomenon of noise-induced switching, or hopping, was 

observed experimentally, with TN - 105 Kat low frequencies. This 

process seems to be correlated with the appearance of negative differ

ential resistance regions in the I-V characteristics. In summary, we 

have succeeded in understanding most of the key results of these 

experiments by means of analog simulations of the lumped circuit equa

tions, reaffirming once again our faith in the RSJ model. 

One question remains unanswered though: Why should the switching 

noise discussed in Sec. F possess a 1/f2 spectrum, down to such 

extremely low frequencies? Such a result is very difficult to simulate, 

even using analog methods. Perhaps the only way to understand this 

result would be to reduce the governing differential equation to a non

linear mapping, and then study the behavior as one iterates it. 
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CHAPTER III 

DETERMINISTIC HOPPING IN A JOSEPHSON CIRCUIT DESCRIBED BY A 

ONE-DIMENSIONAL HAPPING 

A. Introduction 

"Hopping", the seemingly random transition of a dynamical variable 

among several distinct states, is a phenomenon found in a variety of 

nonlinear physical systems, including optical devices (Gibbs et al., 

1981), semiconductor devices (Teitsworth, Westervelt, and Haller, 1983), 

and Josephson junctions (Ben-Jacob et al., 1982; Goldhirsch et al., 

1984). For many of the same reasons that chaos in systems with only a 

few degrees of freedom has been used as a paradigm of chaos in more com

plicated systems, it is worthwhile to study hopping in simple systems. 

A number of questions present themselves immediately: Can hopping be a 

deterministic process?. If so, what relationship does hopping have to 

chaos? What is the effect of external noise? What is the power spec

trum of the low-frequency noise produced by the hopping process? Can 

one go from a phenomenological characterization of hopping to the 

mechanism producing it? 

Some of these questions have already been clarified in a limiting 

case where the system hops back and forth between a noise-free state and 

a noisy state. This occurrence of noise in bursts, called intermit

tency, has been known for quite some time in hydrodynamical systems 

(Tritton, 1977). More recently, Mandelbrot (1977), studying the noise 

in transmission lines, realized the importance of a phenomenological 

property displayed by this kind of noise, namely self-similarity. The 

noise he was studying could be modeled by a signal consisting of noisy 

bursts of equal duration separated by intervals of random length u whose 
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probability distribution obeyed the equation 

Probability(u > t) = t-D, 

where D is a constant. The pattern in time formed by the noise-free 

phases is invariant respect to the choice of time scale and was an early 

example of a fractal, i.e. an object lacking any characteristic scale. 

D is known as the fractal dimension. 

Manneville (1980) showed that noise with this scaling property could 

be produced by a deterministic mechanism involving the iteration of a 

one-dimensional mapping with a marginally unstable fixed point. The 

analytical behavior of the map near its fixed point provides the basis 

for self-similarity. Manneville studied the particular case of the map 

Xn+ 1 = Xn(1 + e + Xn)mod1 that appears as a special case of the desta

bilization of a limit cycle of a dissipative dynamical system. He found 

numerically that iterates of this mapping produce a signal with a power 

spectrum behaving as 1/wl~n wl2 (w is the frequency in rad/s), and 

justified this result with a scaling argument. Procaccia and Schuster 

(1983) generalized Manneville's results to a more general class of map

pings and obtained expressions for the frequency dependence of the power 

spectrum in terms of the parameters of the mapping. 

The particular mapping studied by Manneville belongs to an important 

class of intermittent phenomena known as the Pomeau-Manneville (1980) 

intermittency. This type of intermittency, which is generic, occurs 

when a dissipative system has a limit cycle that loses stability to a 

chaotic attractor. Pomeau and Manneville have distinguished three sub

classes for this kind of intermittency according to the way in which the 

complex number known as the Floquet Multiplier (FM) leaves the unit 

circle, signalling that the limit cycle has lost stability. In type I 
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intermittency the FM is real and crosses the unit circle at +1. This is 

called a tangent bifurcation for a one-dimensional mapping. In this 

case, there is an upper limit to the distribution of times in the noise

free or laminar phase. For type III intermittency, the FM is real and 

negative and crosses the unit circle at -1, signalling a period-doubling 

bifurcation to an unstable mode. In this case there is no long time 

cut-off. Type II intermittency is similar in that respect to type III 

and occurs when the FM is an arbitrary complex number crossing the unit 

circle at a phase different from 0 or n. Type II and type III intermit

tencies thus produce excess noise at low frequencies, and at the onset 

of intermitt~ncy the power spectrum scales as 1/wjin wl2 for type II 

(this case corresponds to the Manneville map given above) and as w-1/2 

for type III. Type I and type III intermittencies have been shown to 

occur in several physical systems (Manneville and Pomeau, 1979, 1980; 

Berge et al., 1980; Dubois, Rubio, and Berge, 1983). 

It is thus tempting to explain the excess low frequency, or "1/f" 

(where f Q w/2n), noise found in many complex systems (Dutta and Horn, 

1981) by this Pomeau-Manneville intermittency. Manneville (1980) has 

suggested that type II intermittency might be a universal explanation. 

However, it is not clear that these systems can be reduced to an equiv

lent dissipative dynamical system with only a few degrees of freedom. 

Moreover, as was shown by Manneville (1980), and Procaccia and Schuster 

(1983), the spectrum behaves as w-"' ("'a constant) down t.o arbitrarily 

low frequencies only for very precisely adjusted values of the param

eters, and it is unclear at the present how these values could be ob

tained in a wide variety of many-body systems under a broad range of 

circumstances. 
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On the other hand, assuming one is indeed dealing with a system 

possessing few degrees of freedom, the Pomeau-Manneville mechanism, 

although "generic" (used in the mathematical sense meaning "most likely 

scenario"), is not the only one which can produce low-frequency noise, 

or involve the reduction of a differential equation to a one-dimensional 

mapping. More complicated situations can occur, as for example in an 

electronic circuit (Arecchi and Lisi, 1982; Beasley, D'Humieres, and 

Huberman, 1983; Voss, 1983) or in the Rikitake dynamo (Ito, 1980). Both 

of these systems exhibit hopping between two equivalent states deduced 

from one another by a symmetry operation. 

An example of a physical system in which various kinds of hopping 

processes are known to occur is the Josephson junction. In particular, 

hopping between metastable states in the ac-driven junction, Eq. (1 .1), 

has been observed in simulations (Ben-Jacob et al., 1982; D'Humieres 

et al., 1982; Goldhirsch et al., 1984) and also recently experimentally 

(Octavio and Readi Nasser, 1984). Ben-Jacob et al. (1982) analyzed Eq. 

(1.1) for parameter values for which there is hopping between two un

stable phase-locked states. Their analytical calculation of a simpli

fied model of Eq. (1.1) produces power spectra that decay as 1/f2 or 

1/f4 (depending on parameter values) at relatively high frequencies. 

Their numerical computations are in good agreement with their analysis. 

In a simila~ vein, Geisel and Nierwetberg (1984) have also analyzed Eq. 

(1 .1), together with a related one-dimensional mapping, and have found a 

1/f2 dependence above some characteristic frequency. In neither of 

these works is the possibility of 1/f noise addressed. Very recently, 

Gwinn and Westervelt (1984) presented numerical simulations of Eq. (1.1) 

showing 1/f noise over a limited range, but found that this noise is 
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easily destroyed by a small amount of computational noise. 

We have chosen to study an alternative system, that shown in Fig. 1 

and discussed in great detail in Chapter II. The relationship between 

that noise-induced hopping process, identified as the source of the 

observed excess low-frequency noise, and the deterministic nonlinear 

dynamics was not addressed at the time. We merely pointed out that 

when the added white noise was reduced to a very low level in the simu

lations, the hopping process ceased, and the excess (1/f-like) noise 

spectrum vanished. However, in the course of related simulations, a 

relatively rare situation was observed in which a low-frequency 1/f 

power spectrum (over a limited range) was produced by hopping that arose 

in the absence of thermal noise. This process, which we refer to as 

deterministic hopping, occurred only at very precisely chosen values of 

the bias current, and was destroyed by the application of a modest level 

of Nyquist noise. 

The aim of this Chapter (Miracky, Devoret, and Clarke, 1984) is to 

demonstrate that the underlying dynamics leading to this deterministic 

hopping process can be represented by a one-dimensional mapping of one 

of the dynamical variables of the junction (the voltage). In particu

lar, we establish a connection between a mapping which, in Sec. B, we 

show analytically to lead to 1/f noise under appropriate conditions, and 

the differential equation for the Josephson junction circuit of Fig. 1, 

which we summarize in Sec. C. The results of the analog and digital 

simulations that exhibit the excess low-frequency noise (over a limited 

range) and the one-dimensional map are presented in Sec. D. Section E 

contains a concluding summary. 
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B. Deterministic Hodel Producing Switching Noise With a ~-v Spectral 

Density 

In this section we describe a calculation carried out by M.H. 

Devoret (Miracky, Devoret, and Clarke, 1984) of the spectral density of 

a simple two-state switching process as a function of the probability 

distribution of the time intervals between switching events. We obtain 

sufficient conditions for the observation of a w-v power spectrum and 

describe a mathematical deterministic model based on the iteration of a 

one-dimensional mapping that satisfies these criteria. 

1. Simple Model For Switching Noise 

We consider a physical process in which a variable switches between 

two states of the system as indicated in Fig. 28(a). Each state repre

sents some dynamical process, for example, a limit cycle, a relaxation 

oscillation or a chaotic regime. We assume that the characteristic fre

quencies of these dynamical processes are much higher than typical 

switching frequencies between the two states, so that each state may be 

represented by a time-averaged value as shown in Fig. 28(b). Thus, we 

need consider only a signal x(t) that takes the values 0 and during 

successive random intervals •o and , 1 • We assume that all the intervals 

are statistically independent of one another. The random process is 

thus described entirely by the probability distributions 

~o(t) probability 

~ 1 (t) =probability 

<•o > t) 

(t1 > t). 

(3.1a) 

(3.1b) 

The interesting property of our model, as we shall see, is that the 

spectral density Sx(w) of the process x(t) can be calculated in closed 

form in terms of ~o(t) and ~ 1 (t). When ~ 0 = ~ 1 , the process is com

pletely described by its power spectrum (as is the case, for example, 
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Figure 28. (a) Time sequence of a signal showing switching between 
two distinct oscillatory modes; (b) time sequence obtained from (a) by 
retaining only the zero-frequency component of each mode; (c) derivative 
of the time sequence in (b): The arrows represent delta functions. 
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for Gaussian noise). 

2. Calculation of Spectral Density 

Our procedure is to compute the correlation function G(t) of the 

time derivative y(t) = dx(t)/dt, and to Fourier transform this correla-

tion function to obtain the spectral density Sy(w). We then use there

sult 

(3 .2) 

We chose this method because the calculation of the correlation function 

of y(t), which consists of delta functions of alternating sign [Fig. 

28(c)], is particularly simple. 

It can easily be shown that 

G(t) 
1 = <y(O)y(t)> = <ly(O)I>fo(t) + 2 [<y(t)>+ <y(t)>_]}· 

= [2/(<To> + (Tl>)]g(t), (3.3) 

where, assuming y(t) is stationary, <y(t)>± is the ensemble average 

value of y(t) at time t when there is a spike of sign ± at t = 0. The 

quantity <ly(O)I> is simpiy the average rate of spikes at t = 0. If ne-

cessary, stationarity can be imposed by introducing a cut-off at long 

times in n0(t) and n1(t). 

We define the probability densities Po(t- t') and p1(t- t') of 

finding a positive and negative delta function, respectively, at time t 

when there is a negative and positive delta function at timet': 

d 
Po(t) = dt [1 - no(t)], (3.4a) 

and 
d 

P1(t) = dt [1 - n1(t)]. (3. 4b) 
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One then finds 

t t t' 

- P,<t> + J dt'p0(t- t'>P 1<t'> - J dt'p 1(t- t'> J " ' dt p0 (t 
0 0 0 

" " - t )p,(t ) + ••• , (3. 5) 

together with an analogous expression for <y(t)>_ by interchanging 0 and 

1 and+ and- in Eq. (3.5). The nth term in this infinite series corre-

spends to the situation in which there are n delta functions between 0 

and t. 

We can resum these series expansions using Laplace transforms 

L.T.{f(t)} = f(z) = J~ e-ztf(t}dt, 

0 

and making use of the property 

' ' L. T. { J
t 

dt f(t - t ) ( " ' " } dt g(t - t ) f(z)g(z). 
0 0 

We obtain 

" - - - - -L.T.{<y(t)>+} =- p1(z) + p0 (z)p 1(z) - p1(z)p0 (z}p 1(z} + ••• 

(3. 6) 

(3. 7) 

(3 .8) 

and a similar expression for <y(t)>_. Subtracting the two expressions 

and rewriting the result in terms of ~ 0 (z) and ~ 1 (z), we obtain 

(3 .9) 

We can easily compute the Fourier transform g(w) of g(t) from the result 
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-iwt 
e g( t)dt lim [g(z) + g(z)], (3.10) 

z -+ iw 

where z is the complex conjugate of z. Finally, we obtain the required 

spectral density of x(t) 

2 g(w) 

<•o> + <-r,> w2 
(3.11) 

3. Self-Similar Power Spectra 

We are now in a position to determine the conditions that must be 

satisfied by ~ 0 (t) and ~ 1 (t) so that the power spectrum Sx(w) diverges 

in the limit w -+ 0 as Aw-v, where A and v are positive constants. We 

restrict ourselves to distributions that have a well-defined power law 

behavior as t • ao • To leading orde·r, we take 

~o<t) 
t-ao 

= ao 
t-+ao 

<a 0 > o) (3.12a) 

~,<t) "" a, 
t-al <a 1 > o). (3. 12b) 

t-+ GD 

Exponentially decreasing distributions can be treated by letting 8-+ao. 

Using Eq. (3.9) and tables of Laplace transforms (Abramowitz and Stegun, 

1964), we obtain the values of vas a function of a0 and a1 listed in 

Table 3.1. A plot of v versus a0 and a1 is given in Fig. 29. 

4. One-Dimensional Mappings 

We turn now to a discussion of how one can obtain probability dis-

tributions corresponding to Eq. (3.4) from a physically realizable mech-

anism. From the work of Manneville (1980) we know that a one-dimen-

sional mapping can generate a signal consisting of a seemingly random 

alternation between long quiescent intervals and short irregular bursts. 

We can apply Manneville's ideas to generate a signal consisting of 
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TABLE 3.1. Dependence of v or Sx(~) on So and 81 

- . 

v or Sx(w) · 

min(a0 ,a1) > 2 \1 = 0 

min<a0 ,a1);.. 2 Sx(w) - l~nwl 

v = 2- min(Bo,B1) 

Bo +a, > 2, min(Bo,B1) < 1 v = min(a0 ,a1) 

a0 + a1 < 2 v = 2- max(Bo,a1) 

- .. 
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Figure 29. Variation of v, where S(w) - w-v, as a function of e0 
and e1• The heavy lines indicate singular regions of the function, 
where the frequency dependence of S(w) contains logarithmic corrections 
as indicated. 
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switching events such that the time interval between two events obeys a 

scaling law. Consider the map in Fig. 30 that has two marginally unsta-

ble fixed points at x = 0 and x = 1, instead of only one unstable fixed 

point as in Manneville's map. Near each fixed point, the map can be 

expanded as 

(3.13) 

where Ax is the distance to the fixed point. (The figure has been drawn 

for the particular case A= 2, a= 1.) The exponents a and coefficients 

A in general differ for the two fixed points, and will be denoted by a0 

and Ao for x = 0 and a 1 and A1 for x = 1. We take as our switching pro-

cess the signal obtained when we iterate the map xn ~ Xn+ 1, assigning 

the value 0 or 1 to x when Xn is on the branch corresponding to the 

fixed point x = 0 or x = 1, respectively. 

Manneville (1980) showed that the probability distribution of the 

times spent on a branch behaves for long times as 

1/a 
~(t) = (1 + aAt) , (t ~~) (3.14) 

where the time is in units of the duration of one iteration. We note 

that a Poisson switching process, that is ~(t) = e-mt, corresponds to 

a ~ 0. 

Combining Eqs. (3.13) and (3.14) with the results for v(S0 ,s1) shown 

in Table 3.1, one obtains the exponent v of the power spectrum in the 

limit w ~ 0 which is a universal quantity depending only on the expo-

nertts a0 and a 1 of the map. The variation of v with a0 and a 1 is shown 

in Table 3.2. In the limit a 1 ~ 0 where the switching signal degener

ates to a random succession of bursts of characteristic duration A1 1, 
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XBL 846-7019 

Figure 30. One-dimensional mapping of the interval [0,1], given by: 

t0Cn+ 1 = t.Xn(1 + 2t.Xn), where t0Cn = Xn for 0::; Xn < 1/2, or t0Cn = 1 - Xn 
for 1/2 < xn ~ 1. 
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TABLE 3.2. Dependence of v or Sx(w) on «o or «1 

\) 

0 

Sx(w) - l.2.nwl 

max(ao,a1) > 1, 1/ao + 1/a1 > 2 

1/a0 + 11a1 < 2 



we recover the results of Procaccia and Schuster (1983). 

We have carried out a numerical test of our predictions for the case 

a 0 = a 1 = 1 which gives an exact 1/w power spectrum without the logar

ithmic corrections that one obtains for the Manneville mapping. We 

iterated the map shown in Fig. 30 on a computer 3 x 106 times for one 

set of initial conditions and obtained the power spectrum shown in Fig. 

31. The sequence of iterates was Fourier transformed in two different 

ways to obtain the overlapping sets of spectral estimates shown in the 

figure. The squares are the averaged results of about 700 individual 

records of 4096 points each, while the triangles are the averages of 

about 50 records of 4096 points each, obtained after a tenth-order deci-

mation of the original sequence of iterates. At low frequencies the 

power spectrum scales as 1/w, down to the lowest frequency data point. 

C. Equations of Motion 

The application of Kirchoff's laws to the circuit shown in Fig. 1 

yields the equations 

•• 
I = I 0 sino + <~o/2n)C o + Is + Iqp (3.15) 

and 

(3.16) 

where VN(t) is the thermal voltage noise generated by the resistance R; 

since R << 1/oqp for situations of practical interest, we neglect the 

thermal noise voltage associated with Oqp· To simplify the situation, 

we assume that oqp is linear over the voltage range of interest with the 

dimensionless value o ~ Roqp· It is more convenient to write Eqs. 

(3.15) and (3.16) in dimensionless form. If we introduce a dimension-

less time • = (2ni 0 R;~ 0 )t, Eqs. (3.15) and (3.16) become: 

.. . 
i = sino + Be o + is + oo (3.17) 
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Figure 31. Power spectrum of the iterates of the mapping of Fig. 
30. Different symbols denote different frequency bands for the 
4096-point fast Fourier transform. 
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and 

• • 
0 = is + BL is + vN, (3.18) 

with i = III 0 , is = Is/Io, vN = VN/IoR, Be = 2'11'loR 2 CI~o' and SL 

2~Lr 0 ;~ 0 • The dots now denote differentiation with respect to T. The 

magnitude of the voltage noise is characterized by r = 2~kgT/ r 0 ~ 0 , the 

ratio of thermal noise to the junction coupling energy. 

Although there has been some analytical work on the dynamics of this 

system -- Wiesenfeld et al. (1984) have calculated to good accuracy the 

threshold for the. first period-doubling bifurcation as the bias current 

i is reduced from some large value -- most of the insight into the com-

plicated dynamics of the system has been achieved with both analog and 

digital simulations (Miracky, Clarke, and Koch, 1983; Koch, Miracky, and 

Clarke, 1984). The next section is devoted to simulations associated 

with the deterministic hopping process. 

D. Simulations 

1. Analog Simulations 

One signature of an intrinsic hopping process is excess low fre-

quency noise in a power spectrum. Figure 32 shows a voltage power spec-

trum obtained from an electronic analog (commercially manufactured by 

Philip Gillette and Associates, Beaverton, Oregon) of the circuit shown 

in Fig. 1 for one set of parameter values (SL = 4.0, Be= 0.37, i 

2.36, o = 0.004) where this excess low-frequency noise was observed. 

There was no added voltage noise, and the intrinsic, system noise of the 

analog was estimated to be such that rsys = 3x1o-7. The spectrum scales 

approximately as 1/f between normalized frequencies 1o-4 and 1o-2, and 

is seen to flatten out below 1o-4. The large peak near 10-1 and the one 

slightly lower in frequency correspond to residual subharmonic modes. 
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Figure 32. Voltage power spectrum for an electronic analog of the 
circuit shown in Fig. 1, with parameters chosen to maximize the region 
over which excess low-frequency noise is observed: BL = 4.0, Be= 0.37, 
o = 0.004, i = 2.36, and r = rsy~· (The spectrum was computed over two 
overlapping frequency intervals.) 
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Their linewidths are in fact narrower than is apparent: The broadening 

is an artifact of an averaging of adjacent Fourier harmonics. 

By monitoring the time sequency of the voltage, we conclude that 

this low frequency noise originates in a two-mode hopping process, rath-

er than in some other process. The steady-state waveform spends random 

time intervals in one of two distinct nearly-periodic modes that differ 

in one important aspect. While in one mode o increases monotonically 

• • 
with time (i.e. o > 0), in the other o is periodically negative. Al-

though the latter behavior is impossible for SL = 0, it occurs commonly 

for SL 2._ 1 and represents a "relaxation oscillation" (Dempsey, Levinsen, 

and Ulrich, 1975). In this mode, the junction oscillates for a while at 

the Josephson frequency (determined by the voltage across the junction), 

and then relaxes to a state with zero average voltage in which the june-

tion undergoes damped oscillations at the plasma frequency, w
0 

(2~I 0 coso/~ 0 c) 112 • The junction subsequently returns to the non-zero 

voltage regime, and the cycle repeats. Bearing in mind the pendulum 

analog of the Josephson junction (Fig. 2), which we introduced in Chap-

• 
ter II, we label the mode for which o is always positive as the "grab-

bing mode" and that in which relaxation oscillations occur as the "slip-

ping mode". 

It is clear that neither mode is stable, so that the system satis-

fies the requirement of two unstable fixed points described in Sec. B. 

Moreover, the two modes are characterized by two different average vol-

tages, so that we can represent the long-time behavior as a switching 

process between two constant voltages, as in the telegraph signal of 

Fig. 28(b). However, these requirements are not sufficient to produce 

1/f noise, since the power spectrum depends critically on the nature of 
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the mapping in the vicinity of the fixed points. 

An important aspect of this hopping process is that, unlike the sit-

uation described by Miracky, Clarke, and Koch (1983), it occurs in the 

absence of added white (Nyquist) noise. Although the residual white 

noise in the electronic analog (fsys = 3 x 10-7) cannot be entirely 

ruled out as a source of the hopping, we found that the low-frequency 

power spectrum was not significantly affected until we added a noise 
. 

equivalent to several hundred milliKelvin. Furthermore, we found that 

the power spectrum was much more sensitive to the value of the bias 

current than is the case for the noise-induced hopping. Both of these 

results suggest that the switching arises deterministically from the 

governing equations. We note that for the deterministic hopping, the 

1/f noise was relatively insensitive to the values of Be and sL, either 

of which could be varied over a range of perhaps 10 to 20% before the 

hopping ceased. 

2. Digital Simulations 

To eliminate the possibility that the residual noise of the analog 

induced the hopping and to study the dynamical processes in greater de-

tail, we performed extensive double-precision digital computations for a 

similar set of parameters to those we studied on the analog simulator. 

We integrated Eqs. (3.17) and (3.18) numerically, using a fourth-order 

Adams-Bashford-Moulton predictor-corrector method (Lambert, 1973), with 

typical time steps of 10-2 yielding local truncation errors estimated to 

be < 10-9. For each set of parameters, starting from an arbitrary set 

of initial conditions, we computed typically 320 Josephson cycles to 

allow any start-up transients to die out before including the data in 

power spectra or maps. Figure 33 shows a typical time sequence computed 
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Figure 33. Representative time sequence (time increasing from left 
to right and from top to bottom) obtained by numerical integration of 
the the equations governing the circuit of Fig. 1 for 8L = 4.0, Be 
0.367, o = 0.004, i = 2.357, and r = 0. An example of a switching event 
is indicated by the dashed line separating the two modes labelled 
"Slipping" and "Grabbing." 
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in this way, for the parametervalues SL = 4.0, Be= 0.367, i = 2.357, 

o = 0.004 and r = 0. An example of a switching event is indicated by 

the dashed line, where the system undergoes a transition from the slip

ping mode to the grabbing one. 

The results are presented in three ways that we now describe in de

tail: Voltage spectral densities, Poincarl maps, and return maps. The 

voltage spectral densities were computed from the time sequences using a 

4096-point Fast Fourier Transform algorithm. However, because we are 

interested only in extremely low frequency behavior resulting from high 

frequency processes computed with small time steps, the time sequences 

were first passed through a digital low-pass filter prior to a high

order (typically 100-500) decimation. These filtered time sequences 

were Fourier transformed and the 2048 harmonics were averaged into 25 

frequency windows equally spaced on a logarithmic scale. The results 

for several such records (typically five) were averaged together. The 

effects of thermal noise were simulated by introducing pseudorandom 

voltage impulses [to represent the vN of Eq. (3.18)] at each time step; 

the magnitude of the Fourier transform of these impulses is a constant 

proportional to r112. 

Typical power spectra are shown in Fig. 34 for parameters BL, Be, i, 

and o close to those used in Fig. 32. The top curve is for r = 0, and 

is the one referenced by the axes. The lower curves are for non-zero r, 

expressed in terms of an equivalent ambient temperature for a junction 

critical current of 1 rnA: T = ~ 0 (1 mA)r/2~k 8 •. The lower curves have 

been successively displaced by 10 dB for clarity. The power spectra at 

the lowest two temperatures are approximately 1/f over rather more than 

one decade, and flat at low frequencies. On the other hand, we see that 
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for T = 4.2K the spectrum has already been modified by the external 

noise, and that for T ~ 42K, the spectrum is nearly white below 10-2. 

We can conclude that this level of thermal noise is sufficient to de

stroy the long-term correlations necessary for 1/f noise. 

The very strong dependence of the low-frequency noise on the value 

of the bias current (in the absence of added thermal noise) is illu

strated in Fig. 35. For i = 2.365 (solid curve with open circles) the 

motion consists of a stable subharmonic limit cycle. A slight decrease 

in the bias current, to 2.361 (solid circles), has little effect on the 

subharmonic mode, but produces a low frequency tail that probably indi

cates the onset of intermittency. When the current is decreased to 

2.358 (solid curve), the low frequency power spectrum is at a maximum, 

with a 1/f region. The decrease in bias current from 2.365 to 2.358 

(0.3%) has increased the level of noise by over five orders of magni

tude. A further small decrease in the current (dashed curve) produces a 

low frequency noise that is white, indicating that the system has become 

fully chaotic. 

To obtain more information on the modes between which the system 

hops, particularly with regard to the presence of any strange attrac

tors, in Fig. 36 we show a Poincarl section at o = ~ for the parameter 

values used in Figs. 33 and 34. The points lie on a smooth curve that 

is highly contracted, and thus nearly one-dimensional over much of the 

phase space. When one monitors the time sequences of the iterates, one 

sees the same behavior as with the analog simulator: The system spends 

varying amounts of time, that occasionally become very long,· in one of 

two modes. One is the slipping mode, near an unstable. period three 

limit cycle for which the iterates lie within the encircled regions. 
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Iterates that land near to the fixed points slowly evolve away, as is 

apparent from the darkened portions of the attractor near the fixed 

points. The other, grabbing mode consists of a chaotic motion along a 

subsurface of the entire attractor, in the region enclosed approximately 

by the dashed curve. The points that lie outside these two regions re

present transition points between the two modes. (Note that these 

points, although "transient" in the sense of not belonging to either 

mode, are still points on the attractor -- they do not represent "start

up" transients.) In that the long time behavior is determined by the 

nature of the mapping in the immediate vicinity of the fixed point (the 

limit cycle of the motion), these transition points can be ignored pro

vided that the mechanism that controls the reinjection into either mode 

is nearly random. 

The precise character of the mapping must be determined from a re

turn map of one variable. In order for the mapping to correspond to the 

theory described in Sec. B, it must both be one-dimensional and have a 

power law departure from linearity. The return map constructed from 

points near the fixed point X of Fig. 36 is illustrated in Fig. 37(a). 

Here we plot the third-iterate mapping, vn+
3 

vs. 

the stability of the period three relaxing mode. 

vn, in order to analyze 

As the points are 

generated, they appear alternately on either side of the 45° line. We 

notice that the map is very nearly one-dimensional, particularly near 

the fixed point where the mapping intersects the dashed 45° line. The 

fact that the mapping is very nearly tangential to a -45° line drawn 

through the fixed point indicates that the loss of stability of this 

period three limit cycle occurs via a bifurcation with a FM equal to -1. 

Hence, the ensuing intermittency is type III (Pomeau-Manneville). The 
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departure of the mapping from -45° is approximately linear on the lower 

branch, and roughly quadratic on the upper branch. The curve shown il-

lustrates how iterates that are injected close to the fixed point inev-

itably spiral away; this evolution originates in the quadratic shape of 

the upper branch. 

We now compare the mapping of Fig. 37(a) with the simple model des-

cribed in Sec. B. We obtain a new map, shown in Fig. 37(b), by taking 

the second iterate of the points on the upper branch of Fig. 37(a): This 

procedure corresponds to plotting vn+6 vs. vn· The similarity between 

the mapping of Fig. 37(b) and the behavior near the origin in Fig. 30 is 

striking. We have performed a least squares fit to the function 

Vn+3 - Vn,O = -(1 + E)(Vn - Vn,O) + a(Vn - Vn,0)2 + S(Vn - Vn,0)3 

+ Y(vn - vn,o)4 (3.19) 

for the points shown in Fig. 36(a), and find vn,O = 2.25669, E 

0.02528, a= 0.06521, B = -0.30064, andY= 0.13260. The fact that E is 

small is consistent with the fact that the noise extends to low frequen-

cies: The lower cut-off frequency in the spectrum of the noise should 

vary inversely as a power of E (Procaccia and Schuster, 1983). Also, 

the significant quartic component allows for an asymmetry in the mapping 

about the fixed point, and hence permits a spectrum which is more 1/f

like than what one would expect from a simple period doubling (s-w-112 

for type III intermittency). We conclude that this system has a self-

similar distribution of times spent in the vicinity of the period three 

limit cycle. However, the stability of the chaotic grabbing mode is not 

easily extracted from the Poincar{ mapping of Fig. 36, since the mapping 

is not obviously one-dimensional and Eq. (3.9) cannot be solved in 

closed form. We emphasize, however, that this difficulty does not in-
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validate the model discussed in Sec. B. If one were to compute the dis

tribution of times spent in the rotating mode, one could still compute 

the power spectrum from Eq. (3.9). 

Finally, there remains the question of why the computed 1/f region 

shown in Fig. 34 extends over such a limited range of frequencies. We 

have ruled out significant errors due to the truncations in the numeri

cal methods. One expects a local truncation error, ~xt, to give rise to 

a distortion of the power spectrum at frequencies below ~xt· However, 

the power spectrum flattens out at frequences of about 10-3, while ~xt 

is about 10-9. Instead, there are two other reasons that perhaps ex

plain the low frequency cut-off. First, the mapping in Fig. 37(a) is 

not exactly tangential to the -45° line, and so deviates slightly from 

the mapping of Fig. 30. Second, the reinjection of the iterates back 

into the vicinity of the fixed point might not be entirely uniform and 

random as is assumed in the model. Both of these effects, especially 

the slope of the mapping, depend on the choice of parameters in a 

complicated way. However, one would expect that the mapping could be 

adjusted by varying one of the parameters, so that the 1/f region 

extended over a larger frequency range as the mapping became more ideal. 

The extreme sensitivity of the power spectrum to the bias current (Fig. 

35) supports this argument. We note also that the region of 1/f noise 

was greater in the analog simulations (Fig. 32) than in the digital 

simulations, presumably because in the analog case one can more readily 

optimize the values of the appropriate parameters. We note, however, 

that because the mapping of the physical system must be analytical at 

the fixed point, it could never consist exclusively of a quadratic upper 

branch and a -45° linear lower branch intersecting at the fixed point. 
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Thus, although the mapping representing the physical system may approach 

the mapping of Fig. 30 arbitrarily closely, it may never achieve it 

precisely. 

E. Concluding summary 

We have shown analytically that a deterministic switching process 

represented by a one-dimensional mapping can produce a spectral density 

that scales as 1/f for a particular choice of parameters. Numerical 

simulations confirm the analytical results. We have investigated the 

applicability of this model to a current-biased Josephson tunnel junc

tion, shunted with its self-capacitance and with a resistance in series 

with an inductance. Analog simulation and numerical integration of the 

differential equation representing this circuit demonstrate that, for 

appropriate parameters, the system switches deterministically between 

two modes, one a "grabbing mode" and the other a "slipping mode". This 

process is analogous to type III intermittency, and as such is a route 

to chaos. The switching process manifests itself as an excess low fre

quency noise with a frequency range and dependence that are determined 

by the nature of the evolution in phase space in the vicinity of an 

unstable oscillatory mode. The addition of a small amount of white 

noise, representing the Nyquist noise in the shunt resistor, destroys 

the excess low-frequency noise. Poincar~ and return mappings show that 

the underlying dynamics can be represented by a one-dimensional mapping 

of one of the dynamical variables, namely the voltage across the junc

tion. The fact that the 1/f power spectrum extends over only a modest 

range of frequencies is probably due to a small imprecision in the 

choice of parameters in the simulations, and to the analytical proper

ties of the mapping. 
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There remains the question of the relationship of this work to ex

periments performed on real junctions, which inevitably exhibit Nyquist 

noise. As already mentioned, the spectra for both the noise-induced and 

deterministic processes are very similar, and one could not distinguish 

between the two processes from a study of the spectra alone. It is pos

sible that a reduction in the ambient temperature, and hence in the 

level of Nyquist noise, could resolve this difficulty: One would expect 

the noise-induced process to be reduced and the deterministic process to 

be enhanced. One should bear in mind, however, that if the temperature 

is reduced sufficiently, quantum effects (Koch, Van Harlingen, and 

Clarke, 1982) will set a lower limit on the level of intrinsic noise. 

Thus, it appears that the full experimental demonstration of the ideas 

presented in this Chapter, although not necessarily out of the question, 

will be quite difficult. The contribution of this work lies in the 

demonstration that a system represented by a differential equation can 

exhibit deterministic yet chaotic hopping that can be explained in terms 

of a one-dimensional mapping. 
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CHAPTER IV 

SIMULATION OF THE NOISE RISE IN 

THREE-PHOTON JOSEPHSON PARAMETRIC AMPLIFIERS 

A. Introduction 

One interesting application of the Josephson junction is in the 

parametric amplification of weak electromagnetic signals, such as those 

encountered in radio astronomy. Several different research groups in 

recent years have attempted to construct devices suitable for this pur

pose (for a review of the field, see, for example, Levinsen et al., 

1980). However, in most cases, there has been observed an undesirable 

side-effect: Namely, a noise temperature which is an increasing func

tion of signal gain. Numerous theories have been proposed to explain 

this "noise rise," but all have proved unsatisfactory in one respect or 

another. One such theory which has received much attention recently is 

the suggestion that chaos is responsible for the noise rise (Huberman, 

Crutchfield, and Packard, 1980; Pedersen and Davidson, 1981). This 

chapter describes simulations which were performed to test this hypoth

esis in the case of the three-photon Josephson parametric amplifier 

(Miracky and Clarke, 1983). The significant and new approach of this 

study is the inclusion of thermal noise as well as a complete model of 

the amplifier circuit in the simulation model. 

The chapter is organized as follows. We begin with a brief summary 

of the principles of operation of parametric amplifiers (paramps) in 

general. This is followed by a history of the experiments which have 

been performed on both three- and four-photon Josephson paramps. We 

then catalog the theories which have been proposed to explain the noise 

rise, with particular emphasis placed on the chaos explanation. In this 
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regard, we examine the relevant nonlinear dynamics of the simplest model 

of the paramp, a circuit whose equation is identical to that of the 

sinusoidally-driven, damped pendulum [Eq. (1 .1)]. We shall highlight 

the conditions under which chaos is expected to occur. The bulk of this 

chapter will deal then with the simulation results. It will become 

clear then that the role of the thermal noise is essential to provide an 

explanation for the noise rise which is consistent with the published 

experimental results. 

B. Historical Overview 

1. Parametric Amplification 

Any nonlinear reactance can be used as the active element in a para-

metric amplifier. Traditionally, the nonlinear capacitance of a varac-

tor diode has been used. However, the Josephson junction is an attrac-

tive alternative in light of its lower potential noise temperature and 

lower pump power required to achieve the same gain (typically -70 dBm 

pump power in the case of the Josephson junction, versus -10 dBm for the 

varactor diode). To see how the Josephson junction can function as a 

paramp, we start with the Josephson equations: 

• 
v = <~o/2n) o (4.1a) 

and I I 0 sin o. (4.1b) 

Taking the time derivative of the second equation and substituting for 

• 
o in the first yields: 

V = LJ di/dt, where LJ = ~ 0 /(2ni 0 cos o). (4.2) 

The Josephson junction is thus equivalent to a nonlinear inductance. 

Under the influence of a strong ac drive at the so-called "pump" fre-

quency ~' the variation of the phase extends into the nonlinear portion 

of the LJ-versus-o curve. A mixing results among the frequency campo-
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nents present in the input, leading to sum and difference frequencies in 

the output. It is customary to restrict consideration to those circuits 

for which only a single difference frequency, or "idler", has signif

icant power coupled out of the junction. There are two single idler 

modes of operation of a Josephson paramp, the three- and four-photon, 

corresponding to the allowed modes in the presence or absence of a 

de-bias current, respectively. [See Levinsen et al., (1980) for an 

analytical discussion of this point.] The relationships between the 

relevant frequencies are: 

and 

wp ~ ws + wi (three-photon) 

2~ a WS + Wi (four-photon). 

(4.3a) 

(4.3b) 

Here ws is the signal frequency, and wi is the idler frequency. The 

relationship between the various frequencies in the two modes, as well 

as an illustration of the amplification process, is given in Fig. 38. 

From practical considerations it is easier to supply a single matching 

circuit for the signal and idler in both modes, so experiments are usu

ally designed such that these two frequencies are approximately equal. 

This is the usual "quasi-degenerate" form of parametric amplification. 

Hence, for the four-photon mode, ~ = ws = wi, and, for the three-photon 

mode, (1/2)~ a ws = wi. By way of comparison, less power is required 

to achieve equal power gain in the three-photon mode, as the de-bias 

current serves to more easily bias the phase into the nonlinear portion 

of the LJ-versus-o curve. However, this advantage is offset by the need 

for two separate waveguides for the signal/idler and pump. 

2. Experimental History 

The Josephson paramp, operated in the four-photon mode, was first 

experimentally demonstrated by Feldman, Parish, and Chiao (1975). They 
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Figure 38. Schematic representation of parametric amplification in 
both (a) three- and (b) four-photon modes. ~· ws, and wi are the pump, 
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the frequency components are monochromatic. The vertical scale is 
arbitrary. 
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showed gain at 37 GHz, using unbiased microbridges, and named their de

vice the SUPARAMP (Superconducting Unbiased PARametric AMPlifier). Nu

merous researchers have subsequently extended the device technology. 

Taur and Richards (1977) have demonstrated comparable performance in a 

point contact pumped at 36 GHz. In an attempt to couple the relatively 

low impedance junction more efficiently to the characteristic waveguide 

impedance, Wahlsten, Rudner, and Claeson (1978) experimented with 

series-arrays of junctions operated at 10 Ghz. Although they generally 

found improved performance compared to individual junctions, they,. like 

all of the others, were still plagued by the problem of noise rise. 

The three-photon paramp was pioneered by several Danish researchers. 

Mygind et al. (1979) operated with low-noise performance at 35 GHz using 

a single junction. Although an extensive theory of amplification and 

noise performance in three-photon paramps was developed by Soerensen et 

al. (1980), it stopped short of explaining the·observed noise rise. 

Thus, it was assumed that a single mechanism must be at work in pro

ducing the noise rise in both modes, in spite of the rather different 

amplification processes involved in the separate cases. The inability 

to understand and hence avoid the noise rise has prevented the Joseph

son paramp from widespread application. The need, however, still exists 

for improved low-noise high frequency amplifiers, regardless of the suc

cess of the superconductor-insulator-superconductor (SIS) mixer. 

3. Theories of the Noise Rise 

This phenomenon of the noise rise is nearly ubiquitous yet still re

mains unexplained. Ever since its first observation there have been at

tempts to uncover its origins. Simple linearized theories, even includ

ing thermal noise, fail to give a noise rise. Chiao et al. (1978) have 
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proposed a model of phase instability noise to explain the noise rise in 

the four-photon microbridge case, which seems in reasonable accord with 

experiments. However, the extension to finite capacitance, as for tun-

nel junctions, requires numerical or analog computer methods. Feldman 

and Levinsen (1981) have constructed a model which suggests that the 

paramps are susceptible to bias point instabilities, although they con-

cede that their argument is "piecemeal and unrigorous." 

The question of the noise rise has recently received renewed atten-

tion along with the widespread interest in nonlinear systems and chaos. 

Huberman, Crutchfield, and Packard (1980) first suggested that chaos 

might be the explanation for the noise in the four-photon case, and 

there has subsequently been a considerable literature on the subject. 

They studied the equation: 
.. . 
~ + ~I• + OSsin ~ = r sin ot. (4.4) 

which, like Eq. (1 .1), is the equation for the driven, damped pendulum 

and the ac-biased Josephson tunnel junction. For T = 5, they found that 

complicated behavior set in for 0100 ~ 0.8 and r ~ 0.6. Such behavior 

included Feigenbaum period-doubling cascades followed by chaos, which 

manifested itself by the appearance of broad-band noise. Pedersen and 

Davidson (1981) concluded that chaos could indeed explain the noise rise 

in the four-photon amplifier, while Levinsen (1982) concluded that chaos 

could not be the explanation in either the three- or four-photon case. 

(However, Levinsen failed to observe a noise rise to begin with in his 

simulations.) Levinsen points out that an important aspect of the real 

amplifiers has usually been neglected in the other studies of chaotic 

behavior, namely the circuit that couples the signal to and from the 

junction. 
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Given this history of Josephson paramps and their noise rise, it is 

useful to summarize here the remaining unanswered questions and ambigu

ities. First, since the gain of the amplifier is intimately related to 

the impedance presented by the coupling circuit, any model that attempts 

to explain the noise rise must include this element. With the exception 

of Levinsen's (1982) inconclusive attempt, this has not been done. From 

a practical perspective, no experiment is ever performed without it, 

hence it is immaterial whether chaos is intrinsic to the bare junction 

system, or to the one including the (in general, reactive) coupling 

circuit. It is likely that these reactances alter the response of the 

junction to the pump signal enough such that comparisons between calcu

lations based on the bare junction model and published experimental 

results will not be in good agreement. The need for simulation methods 

which address this question is apparent. 

The second major shortcoming of previous studies has been the ne

glect of thermal noise in the simulations. As the experiments described 

in Chapter II (Miracky, Clarke, and Koch, 1983) have demonstrated, noise 

in systems close to bifurcations can result in rather drastic and 

unexpected consequences. It would seem then unwise to to ignore its 

effects a priori. 

For these reasons, we have performed analog simulations of the 

three-photon mode, including a calibrated thermal noise source and a 

model for the coupling circuit. On the basis of these results, we iden

tify the source of the noise rise in the three-photon case. We conclude 

the chapter with a brief discussion of the implications of this work for 

future device development. 
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C. Analog Simulations 

The circuit model which we have simulated, first suggested by 

Levinsen (1982), is illustrated in Fig. 39. The junction itself was 

represented by the elebtronic analog described in Chapter II (Fig. 11). 

An active circuit (Fig. 40) was constructed to represent the ungrounded 

low-loss inductor in the coupling circuit. Voltage oscillators with 

large external series resistors served as the current sources. The 

pseudo-random number generator circuit described in Chapter II func

tioned as the thermal noise source. Passive elements were used to 

represent the remaining components of the circuit. We assume the re

sistively shunted junction model with Sc = 2~IoRJCI~o = 26.3 for all 

simulations discussed here; I 0 is the critical current, 1/RJ is the 

quasiparticle conductance, and C is the self-capacitance. 

We report here simulations for wp/wo = 1.12, where w0 = /{2~I 0 /~oc) 

is the maximum plasma frequency. Although Kautz (1981b) states that 

chaotic solutions exist only for 1/RJC ~ Wp ~ w0 , we have discovered no 

significant difference between simulations for wp/wo = 1.12, Wplwo = 

0.93, and wp/wo = 0.84, except in the pump amplitude Ip required for 

maximum gain. In real parametric amplifiers, one generally uses a cir

culator to couple the signal into and out of the junction. We represent 

this element, as well as any other coupling reactances, in our model by 

a resonant circuit tuned to the signal frequency, ws = 1/I(L'C'). We 

chose values of L', C', and of the series and load resistors R' and RL 

to achieve a Q for the coupling circuit, /(L'/C')/(R'+RL), of about 20. 

We also maintained the conditions R'= RL and R'+RL = RJ necessary to 

achieve near-optimum noise performance (Soerensen et al., 1980). Final-

ly, a white noise current IN(t) was included to represent the Johnson 
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Figure 39. Circuit for analog simulation of three-photon Josephson 
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Figure 40. Circuit schematic for the active ungrounded inductance 
used in the simulations of the Fig. 39 circuit. 
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noise in the shunt conductance of the junction. The magnitude of this 

noise is characterized by r = 2~kBT/Io~o· 

We followed the standard procedure in setting up the correct pump 

and de-bias levels. With low pump power and a small signal at ws = 

wp/2, we adjusted the de-bias current, Ide• until signal gain and an id

ler at frequency wi = Wp - ws = ws were observed. We then increased the 

pump amplitude Ip, adjusting Ide to achieve maximum gain. Maximum gain 

occurs when (Soerensen et al., 1980): 

Ws = wo[Jo(n)]112[1 - (Idc1Io)2J114, 

where n = 2eVp/hWp and Vp is the implicitly-defined voltage across the 

junction at the pump frequency. 

Fig. 41 illustrates representative examples of our results. In Fig. 

41(a), we plot the spectral density of the voltage across RL for Ip/Io = 

0 and Ip/Io = 0.682 (the point of maximum gain) in the absence of added 

thermal noise (the residual noise level corresponds tor= 6.1x1o-7). 

The idler is approximately equal to the signal in amplitude, which is 

what one would expect from the Manley-Rowe relations (Loecherer and 

Brandt, 1982). The smaller peaks at frequencies below wi and above ws 

represent resonances associated with the coupling circuit (Getsinger and 

Matthaei, 1964). The signal gain Gs is 19.9 dB, while the noise gain GN 

at frequency ws increases by 31 dB as Ip/Io is increased from zero to 

its value for maximum gain. (The signal gain Gs is the ratio of the 

power at w = ws for Ip/Io = 0.682 to that at Ip/Io = 0; the noise gain 

GN is the ratio of the noise powers at w = ws for the same two pump 

levels.) For larger values of Ip or Ide• a bifurcation occurs to an osc

illation at wp/2. This behavior is well-documented experimentally (Ped

ersen et al., 1980), and is a useful means of showing that the maximum 
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gain condition has just been passed. At the bifurcation point, signal 

amplification drops sharply. Furthermore, there is no evidence for 

chaotic solutions at nearby bias points. 

Figure 41(b) shows the results for the same range of pump amplitudes 

with r = 1.8x1o-4, or T = 4.2 K for r 0 rnA. The maximum signal gain 

decreased to 14.0 dB from its noise-free value of 19.9 dB. More impor-

tantly, the noise level near ws has increased far more sharply than the 

signal, by 32 dB as the gain is increased from unity to its maximum 

value. 

An important issue in the history of both the three- and four-photon 

amplifiers has been the exact dependence of the noise temperature TN on 

the signal gain Gs. To address this question, in Fig. 42 we plot ~/Gs 

(a quantity proportional to TN) vs Gs, where we varied Gs by varying Ip 

with Ide kept fixed at its value for maximum gain. For r = 6.1x10-7 

(upper curve) TN rises somewhat as Gs rises to about 7 dB, and is con

stant for higher values of Gs· Thus, for Gs > 7 dB, TN is independent 

of Gs, as one would expect for a useful amplifier. On the other hand, 

for r = 1.8x1o-4 (lower curve), the noise temperature rises steadily as 

Gs is increased, by 18 dB as the gain increases from 0 to 14 dB. We 

note that TN rises more rapidly than Gs for values of Gs below about 10 

dB, and more slowly than Gs for higher values of Gs. This deviation 

from a linear relationship between TN and Gs is very compatible with the 

experimental results of Mygind et al. (1979) for values of Gs up to 

about 8 dB. However, it is difficult to make meaningful comparisons of 

the magnitudes .of TN obtained from our simulations with those obtained 

from real devices without more accurate information on the parameters of 

the real junction and, in particular, of the coupling circuit (Levinsen 
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et al., 1980; Soerensen et al., 1980). 

To explore whether there is a well-defined threshold for the onset 

of the noise rise, we measured Gs and ~ for several values of r; the 

results are summarized in Table 4.1. Even for values of r as low as 

0.42x1o-5 (corresponding to a temperature of 0.1 K for I 0 = 1 rnA), the 

noise rise is clearly present. The ratio GN/Gs is almost independent of 

temperature over th~ range 0.1 K $ T ~ 0.42 K (for I 0 = 1 rnA). Thus, 

only a low level of thermal noise is necessary to trigger the noise 

rise. 

D. Discussion 

From these results, we can draw three conclusions about the noise 

rise in three-photon parametric amplifiers. First, chaos is excluded as 

a possible explanation. It is an inescapable fact that to achieve sig

nificant levels of gain the amplifier must be operated at values of bias 

current and pump power below the threshold for bifurcation to period 

two. The Feigenbaum period-doubling cascade, followed by chaos, does 

ensue for larger values of bias current and/or pump power. However, 

such phenomena occur well beyond the region of signal amplification and 

hence could not be a factor in practical devices. Second, the noise 

rise occurs only when a nonzero level of thermal noise is present. In 

the absence of noise, the system is uniquely in either the fundamental, 

unbifurcated mode below the infinite gain point, or in the bifurcated 

mode above it, depending on parameter values. Without noise, there can 

be no bridging of these two modes. Third, the noise rise is most likely 

the result of occasional hopping, induced by thermal noise, between a 

bias point in the unbifurcated region and an unstable one in the bifur

cated region. Qualitatively, one would expect this picture to give rise 
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TABLE 4.1. Dependence of Gs, ~.and GN/Gs on level of thermal noise. 

r (x 10-5) Gs (dB) ~ (dB) ~/Gs (dB) 

0.061 19.9 + 0.1 31.1 + 1.1 11 • 2 + 1.1 -
0.42 18.8 + 0.1 36.6 ~ 0.7 17.8 + 0.7 

4.2 16.7 + 0.1 36.3 ~ 0.7 19.6 + 0.7 

8.4 15.6 + 0.1 34.7 ~ 0.5 19.1 + 0.5 

18.0 14.0+0.1 32.0 ~ 0.7 18.0 + 0.7 



to a noise temperature that increases with gain: One increases the gain 

by biasing the amplifier nearer to the. threshold for a period-doubling 

bifurcation, but the probability of noise-induced hopping unfortunately 

increases in tandem with it. 

Finally, we emphasize that it is most unlikely that the specific 

mechanism we have presented here for the noise rise in the three-photon 

amplifier (noise effects near a period-doubling) accounts for the noise 

rise in the four-photon amplifier, for which the amplification process 

involves significantly different dynamics. If, however, the four-photon 

paramp possesses an instability of the same period as the pump near the 

infinite gain point, then thermal noise could trigger hopping between 

modes. It is conceivable that this could produce a noise rise in an 

analogous fashion. 

E. Conclusions 

We have shown that the noise rise in three-photon Josephson paramps 

is a consequence of noise-induced hopping near a dynamical instability, 

which, unfortunately, coincides with the infinite gain point. It would 

seem then that the noise rise is unavoidable in the three-photon paramp. 

It is possible though that at significantly lower temperatures (say, 

below 100 mK: see Table 4.1), the thermal noise alone might be below 

the threshold for the triggering of the hopping. However, at these 

temperatures, quantum noise originating in zero-point fluctuations in 

the shunting resistance (Koch, Van Harlingen, and Clarke, 1982) domi

nates thermal noise and may yet prevent satisfactory paramp performance. 

In either case, a dilution refrigerator would still be required, thus 

detracting from the attractiveness of the Josephson paramp vis-a-vis 

varactors or masers. 
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It is also possible that a suitable choice of parameters might re

sult in adequate gain without a nois: rise. For example, higher quality 

junctions (i.e., greater RJ'S) might be helpful, as would a greater un

derstanding of the role the coupling circuit reactances play in the cir

cuit dynamics. At present, this is only speculation; further analyses 

and controlled experiments are needed to test these ideas. 

We conclude this chapter by commenting on alternative approaches. 

Very recently, Silver et al. (1983) have suggested constructing paramps 

by shunting a junction with an external inductance (rf SQUID). Their 

analysis suggests that sufficient gain can be obtained under bias condi

tions far removed from the bifurcation threshold. Further experiments 

are needed though to demonstrate the utility of this type of paramp. 
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APPENDIX 

CALCULATION OF PERIOD DOUBLING 

IN A JOSEPHSON CIRCUIT 

We summarize in this Appendix analytic calculations performed by 

Wiesenfeld, Knobloch, Miracky, and Clarke (1984), which predict the 

first period-doubling bifurcation arising in Eq. (2.6) as i i.s reduced 

from a large value. These calculations, as will be shown, agree remark-

ably well with both analog simulations and digital computations. More-

over, the method used demonstrates a systematic scheme for achieving 

greater accuracy. 

We start with Eq. (2.6): 

SLsc6" + sc6 + 6c1 + SLcos o) + sin o = i. (A .1) 

It is known that for i>1, the junction voltage v possesses a de compo-

. 
nent as well as an oscillatory part. Since o = v in these units, we 

write 

o=v+x('r), (A.2) 

where V is some constant, and x is a periodic function of time < [see 

Eq. (2.3)]. Now introduce a new time u, defined as 

u = v<. (A.3) 

Then 

o' = 1 + x', (A.4) 

where primes denote differentiation with respect to u. Equation (A.1) 

becomes: 

SLScv3x''' + Scv2x'' + vx' +vSL[sin(u+x)]' + sin(u+x) = i -V. (A.5) 

Equation (A.5) is now analyzed using the method of harmonic balance 

(Jordan and Smith, 1977). Assuming that x is periodic, we write 

00 

x(u) ~ L An sin(nu + ~n), 
n=1 

(A.6) 
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where An and <Pn are constants to be determined. After substituting (A.6) 

into (A.5) we balance coefficients of each Fourier mode independently. 

This leads to an infinite set of nonlinear coupled transcendental 

algebraic equations. It is expected that An diminishes as n increases, 

so for tractability we arbitrarily truncate the expansion (A.6) and 

solve the resulting equations. The lowest order approximation would be 

x(u) = A1 sin(u + <P 1), (A.7) 

implying 

o(u) = u + A1sin(u + <P1)• (A.8) 

After substituting this into Eq. (A.5) and neglecting Bessel functions 

Jm(A1) for m~3 (this is a good approximation for A1~1), we obtain: 

J 1 sin<P1 = i - V, (A. 9) 

A1V(1- SLScV2) + VSL(Jo- J2)cos<P1- (Jo + J2)sin<P1 = 0, (A.10) 

and (A. 11) 

where the Bessel functions Jm are evaluated at A1• 

Given BL, Sc, and i, these equations may be solved for V, A1, and 

<P,. Figure 43 compares the results from an analog simulation of the 

Fig. 1 circuit with the values of V and A1 obtained from Eqs. (A.9) -

(A.11). Also shown are the results of integrating the evolution equa

tion (A.1) directly on a digital computer, as was done in Chapter III. 

· It is seen that the calculations reproduce remarkably well the values 

obtained from the digital computer, agreeing to within 1% over a wide 

range of parameter values. The analog circuit also gives 1-2% agreement 

for the quantity V, while there is a systematic discrepancy of about 10% 

for the amplitude A1• In both cases, the disagreement can be accounted 

for by the uncertainties involved in the analog measurements. 

It is reasonable to presume that the agreement will become better as 
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more terms in Eq. (A.6) are retained. If one uses 

x(u) (A.12) 

instead of Eq. (A.7), five equations in the five unknowns v, A1; A2 , $1, 

and $2 are obtained. Figure 44 compares the ratio A2/A1 from this cal

culation with that obtained for the analog simulator using a power spec-

trum analyzer. Very good agreement is evident. 

The stability of this basic oscillation o0 (u) is tested by assuming 

a perturbation ~(u) about it, and then following its evolution. A sta-

ble or unstable basic oscillation would be identified by whether ~(u) 

decays or grows with time, respectively. 

We start by substituting o = o0 + ~ into Eq. (A.1) and linearizing 

about o0 • The following equation in ~ results: 

v3SLBc~''' + v 2 Bc~'' + ~' + vBL(~cosoo)' + ~cosoo = 0. (A.13) 

This equation can be analyzed using Floquet theory (Jordan and Smith, 

1977). For an equation with real coefficients, such as (A.13), three 

possibilities are allowed: period-doubling instabilities, period-one 

instabilities, and Hopf instabilities. In fact, only the former are 

possible in Eq. (A.1) (Wiesenfeld et al., 1984). In this case, the 

basic oscillation o0(u) period doubles [i.e., a perturbation ~(u) 

possessing components at frequencies mu/2 (m an odd integer) is not 

damped out] if a real Floquet multiplier becomes less than -1. 

To determine whether a period doubling occurs for a given set of 

parameters SL, Sc, and i, first the basic oscillation oo(u) is computed. 

Then a perturbation ~(u) of the form 

~(u) = I [Ymcos(mu/2) + amsin(mu/2)] 
m odd 

(A.14) 
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is assumed, and substituted into Eq. (A.13). Period doubling is sig

nalled when the determinant of the coefficient matrix, obtained when the 

Fourier components of Eq. (A.13) are matched, vanishes. 

Figure 45 compares the results of this calculation with both digital 

computations and analog simulations for Bc=0.0986, giving the critical 

value of bias current i=icrit for the onset of period doubling for 

various values of SL· In order to obtain accurate results, it is impor

tant that an accurate representation of o0 be used. The figure presents 

two theoretical curves. The solid line uses the crudest approximation 

for o0 , obtained by assuming the existence of only the single harmonic 

[see Eq. (A.8)] in the basic oscillation. The dashed-dotted curve (see 

inset) assumes Eq. (A.12) to obtain better estimates of A1, ~ 1 , and v, 

but still uses Eq. (A.8) for the period-doubling part of the calcula

tion. Obviously, these are only the first of a systematic sequence of 

calculations which should converge to the exact answer. From Fig. 45 we 

see that good accuracy is already achieved for the crudest approxima

tion, the more refined approach becoming important for higher values of 

SL· The first correction accounts for about one-third of the discrep

ancy between the calculation and the digital integration for SL=14. 

The results of the analog simulations agree with the results of the 

digital computations and analytical calculation to a much greater accur

acy in Fig. 45 than one might have expected from the results summarized 

in Fig. 43(b). As this agreement is more consistent with the results in 

Fig. 43(a), we conclude that it is the oscillation frequency, rather 

than the amplitude, which is of greatest importance in determining when 

period doubling sets in. 

An interesting feature predicted by our calculation is that there is 

122 



8 

6 
-+--

"-
(.) 

.~ 

4 

0 

1st ORDER CALCULATION 
-o-o- 2nd ORDER CALCULATION. 

• ANALOG SIMULATION 
---DIGITAL COMPUTATION 

4.0 

10 12 14 
(.3L 

XBL 8311-12290 

Figure 45. Onset of period doubling: icrit vs 8L for Be = 0.0986. 
Solid curve represents calculations based on the first-order approxima
tion Eq. (A.7), while the dashed-dotted curve (inset) uses the second
order approximation Eq. (A.12). Dashed line gives the results of digi
ital computations, while the solid circles are from analog simulations. 

123 



a minimum value of aL=SL,min (for fixed Sc) for which the period

doubling instability can occur. This behavior is also observed in the 

analog simulations. For Sc=0.1, we find the theoretical value 

SL,min=0.72 as compared with the value determined from the analog simu-

lation 0.77<aL min<0.84. 
. , 
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