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Novel memristive hyperchaotic system designs and their engineering applications have received considerable critical attention. In
this paper, a novel multistable 5Dmemristive hyperchaotic system and its application are introduced.3e interesting aspect of this
chaotic system is that it has different types of coexisting attractors, chaos, hyperchaos, periods, and limit cycles. First, a novel 5D
memristive hyperchaotic system is proposed by introducing a flux-controlled memristor with quadratic nonlinearity into an
existing 4D four-wing chaotic system as a feedback term. 3en, the phase portraits, Lyapunov exponential spectrum, bifurcation
diagram, and spectral entropy are used to analyze the basic dynamics of the 5D memristive hyperchaotic system. For a specific set
of parameters, we find an unusual metastability, which shows the transition from chaotic to periodic (period-2 and period-3)
dynamics. Moreover, its circuit implementation is also proposed. By using the chaoticity of the novel hyperchaotic system, we
have developed a random number generator (RNG) for practical image encryption applications. Furthermore, security analyses
are carried out with the RNG and image encryption designs.

1. Introduction

In recent years, chaos systems have become the subject ofmany
studies in the fields of science and engineering. A large number
of new chaotic systems have been proposed one after another,
and their application scopes are more and more extensive
[1–8]. With the progress of science and technology, chaos has
been applied not only to communication [9–12], image pro-
cessing [13–15], complex networks [16–21], synchronization
[22–27], electronic circuits [28–30], and optimization [31–35]
but also to encryption studies [36–41]. 3is is because chaotic
signal has good pseudorandom, initial-value sensitive, and
long-term unpredictable characteristics, which enhances the
confusion and diffusion of encrypted data.

Due to themore complex structure and dynamic behavior
of the hyperchaotic system, in order to better meet the needs

of secure communication and information hiding, people
propose to construct hyperchaotic systems to improve the
complexity of the systems. At present, hyperchaotic systems
are usually constructed by loading feedback controller on 3D
or 4D continuous chaotic systems [42–46]. 3e feedback
controllers are divided into linear and nonlinear, among
which the nonlinear-feedback term will further increase the
complexity and unpredictability of the system, which is more
suitable for the construction of hyperchaos [47–51].

Memristor is a kind of hardware implementation com-
ponent of memory nonlinear electronic memristor chaotic
circuit, which has research significance in chaotic secure
communication, image encryption, neural networks, and
other fields [52–56]. It describes the relationship between
magnetic flux and charge. 3e concept of the memristor was
proposed by Chua in 1971 [57], and it was not until 2008 that
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HP laboratory realized the first real memristor [58]. Because
of the nonlinear and memory characteristics of the mem-
ristor, as the feedback term of the hyperchaotic system, it can
produce complex nonlinear dynamic phenomena, which
provides a new development space for the design of the
hyperchaotic system. At present, the main method is to use
the memristor as the feedback term in typical chaotic systems
to construct hyperchaotic systems. In [59], a novel 5D
hyperchaotic four-wing memristive system (HFWMS) was
proposed by introducing a flux-controlled memristor with
quadratic nonlinearity into a 4D hyperchaotic system, the
dynamic characteristics of the HFWMS were analyzed, and
the FPGA realization of the 5DHFWMSwas also reported. In
[60], a new memristive system was presented by replacing the
resistor in the circuit of modified Lü system with the flux-
controlled memristor, respectively, which could exhibit a
hyperchaotic multiwing attractor, and the values of two
positive Lyapunov exponents were relatively large. 3e dy-
namical behaviors and the circuit implementation were also
carried out.

Coexisting attractors depend on the symmetry of the
systems and the initial condition of the systems [61].
Multistability refers to the phenomenon that the system
shows different dynamic characteristics and different
attractors coexist under same parameters [62]. In recent
years, the study of multistability and coexistence attractors is
a hot topic in nonlinear dynamics [63–70]. Lai et al. [63]
showed the coexistence behavior of different attractors
under different initial conditions and parameter values, such
as four limit cycles, and two double-scroll attractors with a
limit cycle. In [65], a new 4D fractional order chaotic system
was proposed by adding a variable to the 3D chaotic system.
3is new system had no equilibrium point, but it could also
show rich and complex hidden dynamics. Zhang et al. [66]
introduced a state variable into a 3D chaotic system and then
analyzed the dynamic characteristics of the new system
under different initial conditions, proving that the new
system has extreme multistability. In fact, various systems
exhibiting multistability have been proposed. However, a
review of literature revealed that this remarkable behavior is
rare in 5D memristive hyperchaotic system with coexisting
multiple attractors. Such systems cannot be ignored. Because
of their complexity, the generated signals are usually used for
secure communication and random number generation.

With the development of communication technology
and the coming of information age, people are more and
more aware of the important role of information security
[71–76], and the research of various security protection has
become the current research hotspot [77–82]. As an im-
portant part of information security transmission, random
number generator (RNG) has been paid more and more
attention. 3e unpredictable and unrepeatable random
number sequence which can be produced by RNG plays an
important role in information encryption. Based on Shan-
non information theory, in order to ensure the absolute
security of communication, the RNG with high speed,
unpredictability, and good randomness has great research
value [83–89]. 3e chaotic system is a kind of complex
nonlinear motion, which is highly sensitive to the initial

conditions, and its orbit is unpredictable for a long time.
3erefore, the chaotic system shows very good cryptography
characteristics.

In recent years, people are committed to the research and
design of chaos-based RNGs [90–93]. Sometimes the key of
generating random sequence by chaos is the choice of
chaotic systems. However, most RNGs based on chaos have
a typical disadvantage. 3at is to say, the limited precision of
all processors may cause the chaotic system to degenerate
into periodic function or fixed point [94]. In order to
overcome this disadvantage, a generator based on hyper-
chaos was proposed in [94].3e self-shrinking generator was
used to disturb the hyperchaotic sequence to reduce the
period degradation and improve the sequence performance,
which was superior to many other linear-feedback-shift
register-based generators. Random numbers created in the
chaotic systems are tested according to the randomness tests
with the highest international standards such as AIS-31 and
NIST 800 22 and then are ready to be used in encryption
applications [95, 96]. In encrypted applications, it is not
enough to encrypt data only. Encrypted data must also be
equipped with the highest possible reliability. In order to
prove the high level of reliability, some security analysis
must be carried out according to the data type. Key space,
sensitivity, floating frequency, histograms, correlation, and
information entropy analysis are common security analysis
in the literature [97–99].

Motivated by undiscovered features of systems with
coexisting multiple attractors, we introduce a novel multi-
stable 5D memristive hyperchaotic system with a line of
equilibrium and its practical chaos-based application in the
present work. 3e rest of this work is organized as follows.
Section 2 describes the mathematical model of the novel
multistable 5D memristive hyperchaotic system. Dynamical
properties and circuit realization of the system are inves-
tigated in Sections 3 and 4, respectively. Section 5 presents a
random number generation (RNG) using the chaoticity of
the multistable 5D memristive hyperchaotic system, while
security analyses are also carried out with the RNG designed.
To validate the performance of the RNG, the application of
image encryption is employed in Section 6, we also employ
standard security analysis whose outcome is compared
alongside available state-of-the-art methods. Finally, we
conclude in Section 7.

2. A Novel Multistable 5D Memristive
Hyperchaotic System

Recently, Yu and Wang [100] proposed a 4D four-wing
chaotic system, and its mathematical model is

_x � − ax + yz,

_y � by − xz,

_z � xy − cz + dw,

_w � xy − ew,


(1)

where x, y, z, andw are the state variables and a, b, c, d, and e
are the system parameters. When a � 10, b � 12, c � 60, d � 2,
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and e � 3, system (1) can display a fully four-wing chaotic
attractor under the initial conditions (2, 1, 1, 2).

Memristor is a passive two terminal device which de-
scribes the relationship between flux φ and charge q. In this
paper, the memristor is controlled by flux, and the rela-
tionship between the current flowing through the two ter-
minal device and the port voltage can be expressed as
follows:

i �W(φ)u, _φ � u, (2)

where W(φ) is the memductance function of the flux-
controlled memristor and defined as

W(φ) � f + 3gφ2. (3)

Based on system (1), by introducing the memristor
model in (3) to the third equation of system (1), a novel 5D
memristive hyperchaotic system is presented as follows:

_x � − ax + yz,

_y � by − xz,

_z � xy − cz + dw f + 3gu2( ),
_w � xy − ew,

_u � − z,


(4)

where a, b, c, d, e, f, and g are the system parameters. When
the typical parameters are fixed as a � 10, b � 12, c � 30, d � 2,
e � 4, m � 0.1, and n � 0.01 and the initial conditions are
chosen as (2, 1, 1, 2, 2), the memristive system (4) exhibits
a four-wing hyperchaotic attractor, as shown in Figure 1,
from which it can be seen that the system has topologically
more complex attractor structure than system (1) presented
by [100]. 3e memristive chaotic system (4) has the same
symmetry as the original 4D chaotic system (1) and
remains unchanged under the coordinate transformation
(x, y, z, w, u)⟶ ( ±x,∓y, − z, − w, − u).

Equilibrium points of system (4) are obtained by setting
its right-hand side to zero, that is,

− ax + yz � 0,

by − xz � 0,

xy − cz + dw f + 3gu2( ) � 0,

xy − ew � 0,

− z � 0.


(5)

According to equation (5), it is easy to see that system (4)
has a line equilibrium point O � {(x, y, z, w, u) |x �
y � z � w � 0, u � l}, where l is any real constant. 3e
Jacobian matrix at the online equilibrium point O of system
(4) is

Jo �

− a z y 0 0

− z b − x 0 0

y x − c d f + 3gu2( ) 6dwgu

y x 0 − e 0

0 0 − 1 0 0




. (6)

According to (6), the characteristic equation can be
obtained as

λ(λ + e)(λ + c)(λ + a)(λ − b) � 0. (7)

It is easy to get λ1 � 0, λ2 � − e, λ3 � − a, λ4 � − c, and λ5 � b
because the values of system parameters a, b, c, and e are
greater than zero, so λ2, λ3, and λ4 are negative, λ5 is
positive, so system (4) has unstable saddle point. 3e
dissipativity of memristive chaotic system (4) can be de-
scribed as

∇V � d _x

dx
+
d _y

dy
+
d _z

dz
+
d _w

dw
+
d _u

du
� − a + b − c − e. (8)

Since − a + b − c − e � − 32 satisfies ∇V < 0, system (4) is
dissipative.

3. DynamicAnalysis of theNovel 5DMemristive
Chaotic System

In this section, we will use the tools of bifurcation dia-
gram, Lyapunov exponent spectrum, time series, and
phase diagram and use the fourth-order Runge–Kutta
algorithm to study the complex dynamic behavior of
system (4) through MATLAB. 3e proposed memristive
chaotic system (4) has particularly complex dynamic
characteristics, including coexistence attractors of the
same type and different types, multistability, and transient
transfer phenomena.

3.1. Lyapunov Exponent Spectrum and Bifurcation Diagram.
It is very interesting that there are different dynamic be-
haviors (such as periodic phenomena, quasi-periodic, cha-
otic attractors, and hyperchaotic attractors), according to
different differential equations of parameter values. 3e
system parameters are set as b � 12, c � 30, d � 2, e � 4, m �
0.1, and n � 0.01, the initial conditions are chosen as
x(0) � 2, y(0) � 1, z(0) � 1, w(0) � 2, and u(0) � 2, and
the parameter a is the bifurcation parameter of the system.
Figure 2(a) is the corresponding Lyapunov exponent
spectrum (in order to make the graph display clear, the fifth
Lyapunov index is omitted here), and Figure 2(b) is the
bifurcation diagram when the parameter a of the system
changes from 0 to 20 with the state variable x. It can be seen
from Figure 2(b) that as the parameter a gradually increases
in the range, the system leads from periodic state to chaos
and then to period, with some quasi-periodic windows and
transient transfer phenomena in the middle. Table 1 lists the
dynamic behavior of parameter a in different ranges and its
Lyapunov exponent. 3erefore, it can be shown that system
(4) has a very rich and complex dynamic behavior:

(i) When 0 ≤ a ≤ 1.6, the maximum Lyapunov ex-
ponent of system (4) is zero (λ1 � 0, λ2,3,4,5 < 0), so
the system is in a multiperiod state.

(ii) When 1.6 ≤ a < 2.2, 5.8 < a < 11.5, and 12.4 < a <
13.1, the system has a positive Lyapunov exponent
(λ1>0, λ2 � 0, λ3,4,5 < 0) and is in a chaotic state.
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(iii) When 3.1 ≤ a ≤ 14.8, system (4) has two positive
Lyapunov exponents (λ1,2 > 0, λ3 � 0, λ4,5 < 0), so the
system is hyperchaotic.

(iv) When 14.8 < a ≤ 17.9, the Lyapunov exponent of the
system has two zeros (λ1,2 � 0, λ3,4,5 < 0), and the
system is quasi-periodic.

(v) When 17.9 < a ≤ 20, the maximum Lyapunov
exponent of system (4) is zero (λ1 � 0, λ2,3,4,5 <
0), which is different from that of the system in
the multiperiod state (0 ≤ a ≤ 1.6), but the
parameter a is only in the limit cycle state in this
range.
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Figure 2: (a) Lyapunov exponent spectrum (the fifth LE is out of plot) and (b) bifurcation diagram for increasing parameter a ∈ [0, 20].

Table 1: Dynamical behavior and Lyapunov exponents under different parameter ranges of a.

a (λ1, λ2, λ3, λ4, λ5) Behavior of dynamics

0 ≤ a ≤ 1.6 (0, − , − , − , − ) Multiperiod
1.6 ≤ a < 2.2 (+, 0, − , − , − ) Chaotic attractor
2.2 ≤ a ≤ 5.8 (0, − , − , − , − ) Transient chaos, stable state period-2
5.8 < a < 11.5 (+, 0, − , − , − ) Chaotic attractor
11.5 ≤ a ≤ 12.4 (0, − , − , − , − ) Transient chaos, stable state period-3
12.4 < a < 13.1 (+, 0, − , − , − ) Chaotic attractor
13.1 ≤ a ≤ 14.8 (+,+, 0, − , − ) Hyperchaotic attractor
14.8 < a ≤ 17.9 (0, 0, − , − , − ) Quasi-periodic state
17.9 < a ≤ 20 (0, − , − , − , − ) Limit cycle
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Figure 1: 3e four-wing chaotic attractor of system (4): (a) in the x − y − z plane, (b) in the y − z plane, (c) in the x − z plane, and (d) time-
domain waveform of x.
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(vi) When 2.2 ≤ a ≤ 5.8 and 11.5 ≤ a ≤ 12.4, the most
interesting and also very important is the existence
of transient chaos and steady-state periodic phe-
nomena. Firstly, the system has a positive Lya-
punov exponent, but when it reaches a certain time
range, the maximum Lyapunov exponent becomes
zero.

3.2. Multistability in the 5D Memristive Chaotic System.
In order to study the coexistence attractors and other
characteristics of the system better, it is necessary to give
some disturbance to the initial conditions under the
condition of keeping the system parameters constant.
Figure 3 shows the dynamic behavior with coexistence
bifurcation, in which the initial conditions of blue
trajectory and red trajectory are (2, 1, 1, 2, 2) and
(− 2, − 1, 1, 2, 2), respectively. It can be seen from Figure 3
that, under these two initial conditions, the bifurcation
mode of the system is almost the same, so the system has
exactly the same coexistence attractor under these two
conditions. Table 2 is a summary of the dynamic char-
acteristics of different parameter values a. Figure 4 shows
coexisting multiple attractors of system (4) for different
parameter values a. Figure 4(a) shows that the system has
the coexisting two-wing period-1 attractors for a � 1;
Figure 4(b) shows that the system has two-wing chaotic
attractors coexisting when a � 2; Figure 4(c) shows that
the phenomenon is very rare, the system has transient
chaos, and then transfers to stable state of period-2
for a � 3.2. When a � 8, Figure 4(d) is very similar to the
two-wing chaotic attractors, as shown in Figure 4(b);
3e system has four-wing chaotic attractors coexisting
for a � 10.1 (see Figure 4(e)). It is very similar to the
phenomenon in Figure 4(c), but it is different that
Figure 4(f ) has the coexistence of stable state of period-3
for a � 11.7. It is different from the previous two kinds of
two-wing chaotic attractors; when a � 14.6, the system has
the coexisting two-wing hyperchaotic attractors, as shown
in Figure 4(g). Figure 4(h) shows that when a � 17, the
system has coexistence quasi-periodic phenomenon.
Figure 4(i) shows that when a � 18.2, the system has
coexistence limit cycle with period-1 under two different
initial conditions.

If a chaotic system has different states of coexistence
attractors under different initial conditions, the system has
better randomness and is more suitable for random
number generation, image encryption, secure communi-
cation, and other fields. As shown in Figure 5, system (4)
has coexistence of various types of attractors under the
initial conditions (2, 1, 1, 2, 2) and (− 2, 1, 1, 2, 2), such as
two-wing multiperiod and two-wing period-5 coexist
(Figure 5(a)), different two-wing chaotic attractors coexist
(Figure 5(b)), periodic-2 and two-wing chaotic attractors
coexist (Figures 5(c) and 5(d)), two-wing chaotic attractors
coexist with quasi-period (Figure 5(e)), and two-wing
chaotic attractors coexist with four-wing chaotic attractors
(Figure 5(f )).

3.3. TransientChaos. Due to the appearance of nonattractive
saddle point in phase space, chaos appears in the system in a
limited period of time. After a period of time, the system
finally becomes a nonchaotic state, which is called transient
chaos. In practice, transient chaos is more common than
permanent chaos. A close observation of Figure 2 shows that,
in the interval ranges [2.2, 5.8]∪ [11.5, 12.4] of system pa-
rameter a, a periodic window appears in Figure 2(b), but
Figure 2(a) does indicate that the system is in a chaotic state
in this range. 3is dynamic behavior with two different
characteristics is called transient transfer behavior. With the
evolution of time, system (4) changes from chaotic behavior
to periodic behavior.

When a � 3, the time-domain waveform in the time
interval [0,200] is shown in Figure 6(a), and Figures 6(b)–
6(e) are the phase portraits of the system in x-z plane in
different time intervals. It is clear from Figure 6(a) that the
system is chaotic in t ∈ [0, 40] and periodic in
t ∈ [40, 200]. From Figures 6(b)–6(e), it is verified that the
system evolves from chaos to period gradually with time.
Figure 7 also proves that the system does have transient
chaos. Different from Figure 6, with the evolution of time,
Figure 6 finally becomes a stable state period-2, while
Figure 7 tends to a stable state period-3. 3e above-
mentioned two cases show that the nonlinear phenom-
enon from transient chaos to stable state period is not a
sudden phenomenon, and it needs a process like chaos
bifurcation. For example, when t ∈ [0, 40] in Figure 6 is at
a chaotic state but it is not just a stable state periodic
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Figure 3: Bifurcation diagram with different initial values, the blue
is (2, 1, 1, 2, 2) and the red is (− 2, − 1, 1, 2, 2).

Table 2: Dynamical behavior under different parameter of a when
b � 12, c � 30, d � 2, e � 4, m � 0.1, and n � 0.01.

a Dynamics Figure

1.0 Limit cycle with period-1 Figure 4(a)
2.0 Two-wing chaotic attractor Figure 4(b)
3.2 Stable state period-2 Figure 4(c)
8.0 Two-wing chaotic attractor Figure 4(d)
10.1 Four-wing chaotic attractor Figure 4(e)
11.7 Stable state period-3 Figure 4(f )
14.6 Hyperchaotic attractor Figure 4(g)
17.0 Quasi-periodic Figure 4(h)
18.2 Limit cycle with period-1 Figure 4(i)
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burning, the chaotic phase portraits will change from
Figures 6(b)–6(e), which needs the same time interval
(about [0, 100]) to completely change from chaos to
period. Figures 6(b) and 6(c) are transient chaotic
attractors, and Figures 6(d) and 6(e) are steady-state
periodic states. Figure 6(a) is the time-domain waveform
of state variable x, which is different from the time series
generated by the general chaotic system. Before t � 40, the
system is in chaotic state, and then it will slowly convert to
periodic state.

4. Electronic Circuit Design

Using hardware circuit to realize the chaos mathematical
model is a hot issue in practical application. 3e circuit
design diagram of the 5D memristive hyperchaotic
system (4) is shown in Figure 8. In the circuit design,
LF347 is used as the operational amplifier, AD633JN is
used as the multiplier chip, and the multiplication factor
is 0.1/V. 3e operating voltage of the operational am-
plifier is ±E � ±15 V, and the actual saturation voltage
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Figure 6: Transient chaos, steady-state period-2. (a) Time-domain waveform of x in the time interval [0, 200], (b) phase portrait of the
chaotic attractor in the x-z, (c) chaotic attractor, (d) phase portrait of multiperiod, and (e) steady-state period-2. Under the initial values
(2, 1, 1, 2, 2) and system parameter a � 3.2.
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measured by the operational amplifier and multiplier
is ±|Vsat|≈±13.5V. Since the variables in the phase
portraits shown in Figure 1 are beyond the linear dy-
namic range, we must scale the system, and the relevant
circuit equations are as follows:

_vx � −
1

R1Cx
vx +

1

10 · R2Cx
vyvz,

_vy �
1

R3Cy
vy −

1

10 · R4Cy
vxvz,

_vz �
1

10 · R5Cz
vxvy −

1

R6Cz
vz −

1

Cz

Rvw
R11

+
R

100R12

v2uvw( ),
_vw �

1

10 · R8Cw
vxvy −

1

R9Cw
vw,

_vu �
1

R10Cu
vz,


(9)

where R1 � R/a, R3 � R/b, R6 � R/c, R9 � R/e,
R11 � R/dm, andR12 � R/(100 · 3dn). According to the pa-
rameters given in system (4), b� 12, c� 30, d � 2, e � 4,m� 0.1,
and n � 0.01, we set Cx � Cy � Cz � Cw � Cu � C � 10 nF, R �
100 kΩ, R2 � R4 � R5 � R8 � 10 kΩ, R3 � 8.25 kΩ, R6 � 3.32 kΩ,
R9 � 25 kΩ, R11 � 500 kΩ, and R12 � 16.5 kΩ. Figure 9 shows
the phase portraits which are obtained by Multisim simulator.
Compared with the MATLAB simulation Figure 4, it can be
clearly seen that the phase portraits of Figure 9 and system (4)
in initial condition (2, 1, 1, 2, 2) are exactly the same, which
confirm the correctness of the proposed 5D memristive
hyperchaotic system (4).

5. RNG Design with the Novel Multistable 5D
Memristive Hyperchaotic System

5.1.5eDesign of RNG. Random numbers are widely used in
image encryption, information security, computer, and
other fields, so the research on RNGs is particularly

important. Because the chaotic system has high sensitivity
and strong complexity to parameters and initial conditions,
random numbers generated by using the chaotic system as
an entropy source of RNG have strong randomness. Al-
gorithm 1 is a pseudocode for designing a RNG. As shown in
Algorithm 1, (1) the initial conditions of the chaotic system,
step value Δh, and sampling interval are given; (2) the
fourth-order Runge–Kutta algorithm (RK4) is used to solve
the differential equation of the chaotic system to obtain the
32 bit output of the chaotic system, in which 0–21 bit are
used for the design of the RNG; (3) XOR the output 22 bit x,
y, z, and w, respectively, to improve the randomness; (4) the
abovementioned two steps to obtain the test bit stream are
combined

In order to better evaluate the performance of generating
random numbers of chaotic systems, NIST 800.22 with
international high standard is used for random test. NIST
800.22 includes 15 test methods: frequency test, run test,
overlapping templates test, linear complexity test, etc.3e 22
bit sequence generated from the chaotic system must be
large enough for RNG test. If the p valueT of NIST 800.22 is
more than 0.0001, it shows that the p valueT is uniformly
distributed and the sequence is random. NIST test is carried
out with 130 sample sequences of 1M bit length generated by
the chaotic random number generator. 3e test results are
shown in Table 3. All p valueT are greater than the threshold
value of 0.0001, so RNG passed the test. 3e lowest pass rate
for each statistical test is about 0.975.

5.2. Security Analyses

5.2.1. Key Space Analysis. 3e main purpose of designing a
random number sequence generator is encryption, and the
size of key space determines the ability to withstand ex-
haustive attack. 3e larger the key space, the better the
encryption effect. In order to ensure the security of en-
cryption, the key space should be greater than 2128. In this
paper, the proposedmultistable 5Dmemristive hyperchaotic
system is used to construct a RNG, which can effectively
increase the size of the key space. Five 16 bit keys are used to
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Figure 7: Transient chaos, stable state period-3. (a) Time-domain waveform of x in the time interval [0, 200] and (b) stable state period-3,
under the initial values (2, 1, 1, 2, 2) and system parameter a � 11.5.
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set the initial conditions (x0, y0, z0, w0, u0) of the hyper-
chaotic system, and seven 16 bit keys are used to set the
parameters a, b, c, d, e, f, and g of the hyperchaotic system.
3ere are 192 bit keys in total, so the key space of this paper is
2192 > 2128, so the method used in this paper can effectively
resist exhaustive attack.

5.2.2. Key Sensitivity Analysis. 3e chaos system is very
sensitive to the initial value, so the random numbers
generated by the chaotic system have good randomness.
Generally, we make small changes to the initial value, and
then judge the initial value sensitivity of the RNG by the bit
change rate of two sequences. 3e closer the bit change rate
is to 50%, the more sensitive it is to the initial value. Given
x(0) � 2, x(0)′ � 2.00000001, a � 10, and a′ � 10.00000001
and the length of random number sequence is 10120000
bits, the change rate of bit with initial value is shown in
Table 4. It can be seen that when the random sequence
changes only 10− 8, the system’s bit change rate is close to
50%, so the random sequence generator is very sensitive to
the initial value of the 5D hyperchaotic system. Figure 10 is
a time-domain waveform obtained by 50 iterations of
the abovementioned two initial values. Figures 10(a) and
10(b) are time-domain oscillograms when the parameter
value a and initial condition x change, respectively. 3e
blue line represents the sequence generated when the
system parameter value remains unchanged, and the red
line represents the sequence generated by iteration when
the initial value changes. As shown in Figure 10, when
t ⊂ [0, 8], the sequence curves of two different initial values
coincide completely. After t � 8, the sequence curves of
different initial values begin to separate, and the difference
is more obvious with the increase of time. All the above

show that the RNG is very sensitive to the initial value and
small initial value changes will have a great impact on the
sequence.

5.2.3. Correlation Analysis. Correlation is another impor-
tant measure of randomness. For an ideal random number
sequence, the autocorrelation function is δ. 3e cross-
correlation function is 0. Figure 11 is the correlation graph
of two random sequences generated by the RNG, given the
initial conditions x(0) � 2 and x(0)′ � 2.00000001.
Figure 11(a) is the autocorrelation graph of the sequence,
and Figure 11(b) is the crosscorrelation graph of the se-
quence. From these two figures, it can be seen that the
random sequence generated by the RNG based on the 5D
hyperchaotic system has strong randomness. In order to
further verify the key sensitivity of the generated random
number, two similar equal length sequences are generated
by the RNG through small changes in the initial value of the
system, and the correlation coefficient is used for testing.
Correlation coefficient can measure the statistical rela-
tionship between sequences. If the correlation coefficient is
zero, then there is no correlation between the two se-
quences. If it is ±1, then there is a strong correlation be-
tween the two sequences. In the experiment, one initial
condition of the 5D chaotic system (4) changes 10− 8, all
system parameters remain unchanged, and two groups of
random sequences with a length of 4048000 bits are
generated. 3e correlation value is calculated by MATLAB,
and Table 5 is obtained. It can be noted that the correlation
values obtained by changing the five initial conditions are
very close to zero, so there is almost no correlation between
the two sequences. 3is shows that the random number
produced in this paper is very sensitive to the initial value.
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6. Image Encryption

With the rapid development of computer technology, image
information acquisition, processing, transmission, and other
related technologies have been rapidly developed and ap-
plied and have been widely studied by scholars [101–110].
Among them, image encryption plays an increasingly im-
portant role in the fields of information security, military,
medicine, and meteorology and has become a hot issue of
social concern. Chaotic systems show good randomness

because of their strong initial value and parameter sensi-
tivity, and they are widely used in the field of image en-
cryption [111–120]. In this section, as a typical application,
we will use the random number generated by the proposed
RNG for image encryption.

Suppose the size of the original image is m × n, where m
and n are the number of rows and columns of the image pixel
matrix, respectively, and the pixel gray value is an integer
between 0 and 255. 3e specific operation steps of
encrypting image with random number are as follows:

(1) start
(2) Given the initial condition, parameter value, step value Δh and sampling interval of chaotic system (4);
(3) while (least 100M. Bit data) do
(4) Using RK4 algorithm to solve chaotic system (4), 32 bit x, y, z, w, u has obtained;
(5) Select the last 22 bit number of 32 bit x, y, z, and w;
(6) Obtain the bit stream of the chaotic system (4) by XOR x and y, z, and w;
(7) Get test bit stream according to 5 and 6;
(8) end while

(9) End

ALGORITHM 1: RNG design algorithm pseudocode.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Various attractorswith different values of resistanceR1 in the y-z plane observed frommultisim simulation: (a)R1� 100 kΩ, (b)R1� 50 kΩ,
(c) R1 � 31.6 kΩ, (d) R1 � 12.5 kΩ, (e) R1 � 10 kΩ, (f) R1 � 8.5 kΩ, (g) R1 � 6.81 kΩ, (h) R1 � 6.0 kΩ, and (i) R1 � 5.5 kΩ.
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Figure 11: Correlation of random sequences: (a) autocorrelation and (b) crosscorrelation.
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Figure 10: Time-domain waveform of x in the time interval [0, 50]. (a) parametersa � 10 and a′ � 10.00000001 and (b) initial values x(0) � 2
and x(0)′ � 2.00000001.

Table 3: 3e results of RNG NIST 800.22 tests.

NIST statistical test p valueT Proportion Result

Frequency (monobit) test 0.037157 0.975 Successful
Block frequency test 0.706149 0.983 Successful
Cumulative sums test 0.287306/0.204076 0.983/0.983 Successful
Runs test 0.602458 0.983 Successful
Longest-run test 0.074177 1 Successful
Binary matrix rank test 0.422034 0.983 Successful
Discrete fourier transform test 0.392456 1 Successful
Nonoverlapping templates test 0.605808 0.9875 Successful
Overlapping templates test 0.804337 1 Successful
Maurer’s universal statistical test 0.602458 0.975 Successful
Approximate entropy test 0.195163 0.9917 Successful
Random excursions test 0.407530 0.9844 Successful
Random excursions variant 0.455004 0.9861 Successful
Serial test 1 0.551026 0.975 Successful
Serial test 2 0.637119 1 Successful
Linear complexity test 0.985035 1 Successful

Table 4: Initial value sensitivity analysis of random sequences.

Initial value Amount of change Changed number of bits p (%)

x(0) 10–8 5060283 50.0028
a 10–8 5059553 49.9956
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Step 1: using the proposed multistable 5D memristive
hyperchaotic system, the random sequence is generated
iteratively according to the given system parameters
and initial conditions.

Step 2: transform the pixels in the image into a one-
dimensional sequence I with a length of m × n in the
order of traversal hierarchy.

Step 3: ensure the randomness of the sequence and
discard the previous n iterations. Continue the iteration
to generate the binary sequence ofm × n × 8 bits. 3en,
we convert every 8 bits of binary sequence into an
integer, ranging from 0 to 255. Finally, we get an integer
sequence of length m × n: i � 1, 2, . . ., M × N.

Step 4: use the random sequence generated by the
system to scramble all the pixel values in one-dimen-
sional sequence I to get the scrambled sequence I′.
Step 5: store the generated image as the final encrypted
image.

Decryption is the reverse of encryption.

6.1. Simulation Results. In this paper, the Lena image with
the size of 256 × 256 is used as the encrypted plain image
(note that the same photo is used in all subsequent safety
analysis comparisons with other references), and the keys
are a � 10, b � 12, c � 30, d � 2, e � 4, m � 0.1, and n � 0.01
and (x1(0), x2(0), x3(0), x4(0), x5(0)) � (2, 1, 1, 2, 2). 3e
results of encryption and decryption of Lena images are
shown in Figure 12, where Figure 12(a) is the original plain
image, Figure 12(b) is the encrypted image, and
Figure 12(c) is the decrypted image successfully decrypted
using the key. It can be seen that the encrypted image does
not have the characteristics of the original plain image, and
the decrypted image is exactly the same as the original plain
image.

6.2. Security Analyses

6.2.1. Histogram Analysis. Histogram is used to display the
distribution characteristics of pixels. In the encryption al-
gorithm, changing the distribution characteristics is very
important. If the probability of all intensity pixels generated
is equal in the histogram of the encrypted image, the en-
cryption has a high degree of symmetry and good unifor-
mity. Figures 13(a) and 13(b), respectively, represent the
histogram of the plain image and the encrypted image. It can
be seen that the original plain image has obvious statistical
characteristics, while the probability of each gray value of the

encrypted image is almost equal. 3erefore, encrypted im-
ages can effectively resist statistical analysis attacks.

6.2.2. Correlation Analysis. 3ere is usually a strong cor-
relation between adjacent pixels in an image, so a good
encryption algorithm should be able to produce cipher
images with low correlation, so as to hide image information
and resist statistical attacks. 3e correlation of adjacent
pixels is determined by the following formula:

rx,y �
E((x − E(x)))((y − E(y)))���������

D(x)D(y)
√ , (10)

where

E(x) �
1

N
∑N
i�1

xi,

D(x) �
1

N
∑N
i�1

xi − E(x)( )2,
(11)

where E(x) and D(x) represent the expectation and var-
iance of the variable x, and rx,y is the correlation coefficient
of adjacent pixels x and y. Figure 14 shows the phase di-
agrams of Lena plain text image and cipher text image with
adjacent pixel points in all directions upward (where (a)
and (b) are horizontal directions, (c) and (d) are vertical
directions, and (e) and (f ) are diagonal directions). It can be
seen from these figures that the adjacent pixel values of the
plain image are located near the line with slope 1, indicating
that the two adjacent pixels are highly correlated. 3e pixel
values of the cipher image are scattered throughout the
region, indicating a low correlation between the adjacent
pixels. Table 6 shows the test values of correlation in three
directions: horizontal, vertical, and diagonal. It can be seen
that the adjacent pixels of the plain image have high
correlation (rx,y⟶ 1), and the adjacent pixels of the cipher
image have low correlation (rx,y⟶ 0). At the same time,
compared with the corresponding results of References
[111–114], it shows that the proposed encryption algorithm
has lower correlation between adjacent pixels and can more
effectively resist statistical attacks.

6.2.3. Information Entropy. Information entropy is an
important index to reflect the randomness of information.
3e more uniform the distribution of pixel gray value, the
greater the information entropy, the greater the random-
ness, and the higher the security. 3e calculation formula is
as follows:

Table 5: Correlation value of random sequence.

Initial conditions Amount of change Changed value Correlation value

x(0) � 2 10–8 x(0)′ � 2.00000001 0.00066917
y(0) � 1 10–8 x(0)′ � 1.00000001 − 0.00047467
z(0) � 1 10–8 x(0)′ � 1.00000001 0.0017
w(0) � 2 10–8 x(0)′ � 2.00000001 0.00071957
u(0) � 2 10–8 x(0)′ � 2.00000001 − 0.00069381
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H �∑256
i�1

pilog2
1

pi
, (12)

where pi is the probability of occurrence of pixel points with
a pixel value of i. For grayscale images, the ideal value of
information entropy is 8. As listed in Table 7, by comparing
the information entropy of cipher and the cipher images in
References [115–118], it can be concluded that the infor-
mation entropy value of the encrypted images in the al-
gorithm in this paper is closer to the ideal value 8, and the

encrypted images are closer to the random signal source,
which can effectively resist the entropy attack.

6.2.4. Differential Attack. Pixels change rate (Number of
Pixels Change Rate, NPCR) and normalized pixels flat
change strong degree (Unified Average Changing Intensity,
UACI) can be used to measure to express the sensitivity of
the encryption algorithm, which is an important indicator of
measuring algorithm ability to resist differential attack.
NPCR and UACI, respectively, represent the proportion and
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Figure 13: Histogram of (a) plain image and (b) cipher image.
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Figure 12: Image encryption and decryption. (a) Original plain image, (b) cipher image, and (c) decryption image.
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Figure 14: Correlation of two adjacent pixels of the plain image lena (256 × 256) and its cipher image. (a) Horizontal direction in plain
image, (b) horizontal direction in cipher image, (c) vertical direction in plain image, (d) vertical direction in cipher image, (e) diagonal
direction in plain image, and (f) diagonal direction in cipher image.

Table 6: Correlation coefficients of the plain and cipher images.

Image
Plain image Cipher image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Ours 0.94505 0.96653 0.91917 0.00068299 − 0.0007768 − 0.0036362
Reference [111] 0.964227 0.982430 0.965609 − 0.038118 − 0.029142 0.002736
Reference [112] 0.812688 0.837959 0.782053 0.001251 − 0.003543 0.001449
Reference [113] 0.91848 0.82921 0.80731 0.011899 0.018062 0.036784
Reference [114] 0.97165 0.98730 0.95440 0.00312 − 0.00317 − 0.00310
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degree of change in the pixel value of the corresponding
position.3e larger the proportion and the higher the degree
of change, the stronger the antiattack capability of the al-
gorithm. 3e calculation formulas are as follows:

NPCR �
∑M
i�1∑Nj�1D(i, j)
M ×N

× 100%,

D(i, j) �

c1, P1(i, j)≠P2(i, j),

0, otherwise,



UACI �
1

M ×N

∑Mi�1∑Nj�1 P1(i, j) − P2(i, j)( )
255

× 100%,


(13)

where M × N is the size of the image, P1(i, j) and P2(i, j),
respectively, represent the pixel values of the positions
corresponding to the plain and cipher. When the NPCR and
UACI of the image are close to the ideal values of
99.6094070% and 33.4635070%, the algorithm has good
safety [112, 121]. As listed in Table 8, the algorithm in this
paper is more sensitive to the plain than the NPCR and
UACI values in References [111–120] can meet the security
requirements and have a good ability to resist differential
attacks.

7. Conclusion

In this study, a novel multistable 5D memristive hyper-
chaotic system with line equilibrium is first introduced.
Dynamical analysis is performed in terms of phase portraits,
Lyapunov exponential spectrum, bifurcation diagram, and
spectral entropy. Several interesting properties such as
multistability and transient chaos have been revealed by
using classical nonlinear analysis tools. 3en, an electronic
circuit is designed, and its accuracy is verified by Multisim
simulation. As the engineering application, a new chaos-
based RNG is designed and internationally accepted NIST
800.22 random tests are run. Security analyses are carried
out and they have proved that the design can be used in
cryptography applications. Finally, a chaotic image en-
cryption is proposed based on the random number se-
quences; security analyses show that the algorithm has good
security and can resist common attacks.
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