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Chaos-Based
Cryptography:
A Brief Overview
by Ljupčo Kocarev*

Abstract—In this brief article, chaos-

based cryptography is discussed from

a point of view which I believe is closer

to the spirit of both cryptography and

chaos theory than the way the subject

has been treated recently by many re-

searchers. I hope that, although this

paper raises more questions than pro-

vides answers, it nevertheless contains

seeds for future work.
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Introduction

Over the past decade, there has

been tremendous interest in studying

the behavior of chaotic systems. They

are characterized by sensitive depen-

dence on initial conditions, similarity

to random behavior, and continuous

broad-band power spectrum. Chaos

has potential applications in several

functional blocks of a digital commu-

nication system: compression, encryp-

tion and modulation. The possibility

for self-synchronization of chaotic os-

cillations [1] has sparked an avalanche

of works on application of chaos in

cryptography. An attempt only to men-

tion all related papers on chaos and

cryptography in this short presentation

will result in a prohibitively long list;

and, therefore, we refer the reader to

some recent work [2]. Despite a huge

number of papers published in the field

of chaos-based cryptography, the im-

pact that this research has made on

conventional cryptography is rather

marginal. This is due to two reasons:

• First, almost all chaos-based crypto-

graphic algorithms use dynamical

systems defined on the set of real

numbers, and therefore are difficult

for practical realization and circuit

implementation.

• Second, security and performance of

almost all proposed chaos-based

methods are not analyzed in terms of

the techniques developed in cryptog-

raphy. Moreover, most of the pro-

posed methods generate cryptographi-

cally weak and slow algorithms.

Cryptography is generally ac-

knowledged as the best method of data

protection against passive and active

fraud [3]. An overview of recent devel-

opments in the design of conventional

cryptographic algorithms is given in

[4]. The main conclusion of the paper

can be summarized in the following

quote:

“It is quite clear that someone

with a good understanding of

present day cryptanalysis can de-

sign secure but slow algorithms

with very little effort:

For a block cipher, it is sufficient

to define a round function based on

a nonlinear operation (avoid lin-

ear rotations) and a simple mixing

component (to spread local

changes); add round keys in be-

tween the rounds (and at the begin-

ning and the end of the cipher),

which are derived in a complex

way from the key (e.g., by using the

block cipher itself with fixed round

keys). If the number of rounds is

32, or even better 64, breaking this

slow cipher will be very difficult.

(Of course it is possible to follow

this “recipe” and to come up with

a weak cipher, but this will require

some cryptographic skills!).”

Unfortunately many researchers in

chaos-based cryptography, while rush-

ing to publish a novel cryptographic

algorithm, do not follow the above

recipe and come up, although without

any cryptographic skills, with both

weak and slow ciphers. For example,

in an algorithm proposed in [5] each

character of the message is encrypted

as the integer number of iterations per-
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formed in the logistic equation. This

results in a weak and slow cipher. In-

deed, while in conventional crypto-

graphic ciphers the number of rounds

(iterations) performed by an encryp-

tion transformation is usually less than

32, in [5] this number can be as large

as 65536, and is always larger then

250. On the other hand the algorithm

is also weak: it can be easily broken

using known-plaintext attack [6].

The author of this note strongly

believes that the research on chaos-

based cryptography should be shifted

from the ad hoc design of algorithms

that are usually weak and slow, and

therefore not comparable with conven-

tional algorithms, toward better under-

standing of possible relationships be-

tween chaos and cryptography. Many

fundamental concepts in chaos theory

such as mixing, measure preserving

transformations and sensitivity have

been already applied for a long time in

cryptography. Almost 15 years before

the dawn of chaos, Shannon in his

masterpiece wrote [7]:

“Good mixing transformations

are often formed by repeated prod-

ucts of two simple non-commuting

operations. Hopf has shown, for

example, that pastry dough can be

mixed by such a sequence of op-

erations. The dough is first rolled

out into a thin slab, then folded

over, then rolled, and then folded

again, etc. . . .

In a good mixing transforma-

tion . . . functions are complicated,

involving all variables in a sensi-

tive way. A small variation of any

one (variable) changes (the out-

puts) considerably.”

A deep relation between chaos and

cryptography has not been established

yet. An important difference between

the two scientific areas lies in the fact

that the systems used in cryptography

work on a finite set, while those ap-

plied in chaos have meaning only on

a continuum. The main aim of this

short communication is to discuss pos-

sible connections between chaos and

cryptography and to point out some

directions for future research.

Preliminaries

We assume that the reader is famil-

iar with chaos theory†. In order to make

this paper self-contained we now

briefly describe three most common

cryptographic objects (called also

primitives): block-encryption algo-

rithms (private-key algorithms),

pseudo-random number generators

(additive stream ciphers) and crypto-

graphic hash functions. The complete

description of these primitives and

their properties can be found in [4].

Block ciphers transform a rela-

tively short string (typically 64 or 128

bits) to a string of the same length un-

der control of a secret key. A block-

encryption algorithm is usually written

in the form of a mapping xn + 1 =

E(xn, z), n = 0, …, k – 1, where the

plaintext x0, the cryptogram xk and the

secret key z are sequences of letters in

finite alphabets. The advantage of

block ciphers is that they form a

flexible tool that can be used in cryp-

tography: they can be used to construct

other primitives.

A pseudo-random number genera-

tor is a deterministic method, usually

described with a mapping, to produce

from a small set of “random” numbers,

called the seed, a larger set of random-

looking numbers called pseudo-ran-

dom numbers. The pseudo-random

† Editor’s comment: See “Nonlinear Dynamics of

Discrete-Time Electronic Systems” by Orla Feely,

March 2000 IEEE CAS Newsletter, http://

www.nd.edu/~stjoseph/newscas.



9

number generator is cryptographically

secure if, given the mapping that

defines the generator and an arbitrary

sequence of numbers generated by the

generator, but not knowing the seed of

the generator, it is hard to compute the

next and the previous numbers in the

sequence.

A one-way function H operates on

an arbitrary-length pre-image message

M and returns a fixed-length value, h,

h = H(M), such that given M it is easy

to compute h, given h it is hard to com-

pute M, and it is hard to find two dif-

ferent inputs with the same hash result.

Note that the above definitions are only

informal and to some level useless

without defining the word “hard”. This

may be related to the question of when

a cryptographic object is secure which

at popular level is discussed in the sec-

tion Cryptography from an Informa-

tion-Theory Point of View. However,

we should stress that primitives which

are probable secure (based on some

reasonable assumptions) are several

orders of magnitude slower than the

fastest algorithms currently in use.

Figure 1 summarizes similarities

and differences between chaotic maps

and cryptographic algorithms. Chaotic

maps and cryptographic algorithms (or

more generally maps defined on finite

sets) have some similar properties:

sensitivity to a change in initial con-

ditions and parameters, random-like

behavior and unstable periodic orbits

with long periods. Encryption rounds

of a cryptographic algorithm lead to

the desired diffusion and confusion

properties of the algorithm. Iterations

of a chaotic map spread the initial re-

gion over the entire phase space. The

parameters of the chaotic map may

represent the key of the encryption al-

gorithm. An important difference be-

tween chaos and cryptography is that

encryption transformations are defined

on finite sets, while chaos has mean-

ing only on real numbers. Moreover,

for the time being, the notions of cryp-

tographic security and performance of

cryptographic algorithms have no

counterpart in chaos theory.

We now illustrate with two simple

examples the similarities and differ-

ences between chaotic systems and

maps defined on finite sets. As an ex-

ample of a chaotic map we consider

the shift map,

x(t + 1) = ax(t) (mod 1) (1)

where the phase space X = [0, 1] is the

Figure 1. Similarities and differences between chaotic systems and

cryptographic algorithms.

Chaotic

systems

Cryptographic

algorithms

Phase space:

(sub)set of real

numbers

Phase space:

finite set

of integers

Iterations Rounds

Parameters Key

Sensitivity to a change

in initial conditions

and parameters
Diffusion

?
Security

and

performance



10

unit interval and a > 1 is an integer. In

other words, (1) is a shift over a sym-

bols. The resulting dynamics mirrors

the properties of the digits in base a of

the numbers in the unit interval. The

map is chaotic for all a > 1 with posi-

tive Lyapunov exponent.

A variety of functions and/or dis-

crete-time systems have been proposed

for use in cryptography: in all of them

the phase space of the corresponding

mapping is a finite set of integers and

all the parameters are integers. The

simplest example is the discrete phase-

space version of the shift map (1):

p(t + 1) = ap(t) (mod N) (2)

where a > 1, N, and p are integers,

and p ∈ {0, 1, …, N – 1}. If N is co-

prime to a the map (2) is invertible;

note that the shift map (1) is not invert-

ible for all a. All trajectories in finite

phase space dynamical systems are

eventually periodic. Therefore, one

may introduce the period functions PN

to characterize the least period of the

map F, that is F
PN is identity and PN is

minimal, as a function of the system

size N. As a rule, these functions are

among the most complex objects

found in discrete-time dynamical sys-

tems with finite set phase space. To

show this we consider, as an example,

the map (2), with a = 2. PN has two

extreme values, the smallest being

[log log N] + 1, which occurs for N =

2
k
 – 1, and the largest N – 1, which

occurs for prime values of N and for

which 2 is a generator of the multipli-

cative group U(N). However, the main

question remains what is the typical

value of PN. The answer is unknown

and is related to a class of number

theoretical problems, centered around

the so-called Artin’s conjecture (see [8]

and references therein). Computing

typical values of some quantity calls

for ergodic theory. This example

shows the difficulties in developing an

ergodic theory of finite phase space dy-

namical systems. On the other hand,

the ergodic theory of the map (1) is

much simpler.

The Lyapunov exponent (LE) of

the system (2) is trivially equal to 0,

because every orbit is eventually peri-

odic and will repeat itself. Therefore,

the central problem here is to estimate

LE of a typical orbit for time not ex-

ceeding its period. The analysis of pe-

riodic orbits depends crucially on the

ordering with which the orbits are con-

sidered. Two orderings, both corre-

sponding to Lebesgue measure, are

considered in the literature: ordering

according to the system size N, and

ordering according to the minimal pe-

riod PN and then lexicographically

within the same period. In the case of

the map (2), with a = 2, two different

orderings lead to two opposite an-

swers: ordering by system size yields

logarithmic compressibility of infor-

mation and zero finite-time LE (or lack

of randomness) [9], while ordering by

the minimal period leads to positive

finite-time LE and randomness [8].

Choosing a Chaotic Map

Dynamical systems with chaos

seem to be good candidates for encryp-

tion algorithms. Indeed, because
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block-encryption algorithms can be re-

written as discrete-time dynamical sys-

tems, xn + 1 = F(xn) where the initial

condition x0 is plain-text to be en-

crypted, and the final state xk is a

ciphertext, then it is the property of the

map being chaotic that implies

“spreading out of the influence of a

single plaintext digit over many

ciphertext digits”. To ensure a compli-

cated structure of trajectories of the

dynamical system proposed for an en-

cryption algorithm, we postulate that,

except being chaotic, the system

should be mixing (more precisely K-

mixing). Moreover, to ensure that the

parameters of the system can be used as

encryption keys, we postulate that the

system has robust chaos, that is, the sys-

tem is chaotic for a large set of param-

eters. We now explain the effect of K-

mixing and robust chaos on encryption.

Two general principles which

guide the design of practical algo-

rithms are diffusion and confusion.

Diffusion means spreading out of the

influence of a single plaintext digit

over many ciphertext digits so as to

hide the statistical structure of the

plaintext. An extension of this idea is

to spread the influence of a single key

digit over many digits of ciphertext.

Confusion means use of transforma-

tions which complicate dependence of

the statistics of ciphertext on the sta-

tistics of plaintext. The mixing prop-

erty of chaotic maps is closely related

to the property of diffusion in encryp-

tion transformations (algorithms). The

system F possesses the mixing prop-

erty (or simply, is mixing), if for any

two measurable sets A1 and A2, we

have limn → ∞ µ( F
– n

A1 ∩ A2 ) =

µ (A1) µ (A2) [10]. In other words, any

set of initial conditions of nonzero

measure will eventually spread over

the whole phase space as the system

evolves [10]. If we think of the set of

possible (sensible) plaintexts as an ini-

tial region in the phase space of the

map (transformation), then it is the

mixing property (or in other terms,

sensitivity to initial conditions) that

implies “spreading out of the influence

of a single plaintext digit over many

ciphertext digits”.

Mixing systems have also the fol-

lowing useful property [10]: if µ0 is

arbitrary measure (normalized and ab-

solutely continuous with respect to µ),

and µn = µ0(F
– n

 A), then µn(A) → µ(A)

for any measurable A. Thus we can say

that in dynamical systems with the

mixing property, any non-equilibrium

distribution tends to an equilibrium. In

other words, in the limit when the

Two general principles which guide

the design of practical algorithms are

diffusion and confusion. Diffusion

means spreading out of the influence

of a single plaintext digit over many

ciphertext digits so as to hide the sta-

tistical structure of the plaintext. An

extension of this idea is to spread the

influence of a single key digit over

many digits of ciphertext. Confusion

means use of transformations which

complicate dependence of the statis-

tics of ciphertext on the statistics of

plaintext.
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number of iterations tends to infinity,

the statistics of the ciphertext (com-

puted through the invariant measure)

do not depend on the statistics of the

plaintext (which correspond to the ini-

tial region in the phase space of the map).

A good encryption algorithm

spreads also the influence of a single

key digit over many digits of

ciphertext. The keys of an encryption

algorithm represent its parameters.

Therefore, we should consider only

such transformations in which both

parameters and variables are involved

in a sensitive way, that is “a small

variation of any one” (variable, param-

eter) “changes the outputs consider-

ably”. In other words, a kind of “mix-

ing property” should hold also in the

parameter space of the map, if we

would like to use chaotic maps as en-

cryption algorithm. This implies that

we consider only the maps for which

chaos is persistent under small pertur-

bations of parameters (keys).

A dynamical system is structurally

stable when small C
1
 perturbations

yield a topologically equivalent sys-

tem. In another words, a structurally

stable or robust system retrains its

qualitative properties under small per-

turbations. Robust or structurally

stable chaotic attractors can, eventu-

ally, ensure the diffusion property in

the key space. Algorithms based on

non-robust systems may have weak

keys. However, the majority of chaotic

attractors are structurally unstable [11].

Therefore, one should take great cau-

tion in choosing chaotic maps. It is

known that robust chaos cannot occur

in smooth systems, while structurally

stable chaos can occur in piece-wise

smooth maps [12].

One should consider only systems

that have robust chaos for a large set

of parameters (keys). The entropy of

a crypto-system is the measure of the

size of the key-space and is usually ap-

proximated by log2 K, where K is the

number of keys. Therefore, a larger pa-

rameter space of the dynamical system

implies that its discretized version will

have larger K.

Chaos from an Information-
Theory Point of View

Chaos theory, as a branch of the

theory of nonlinear dynamical sys-

tems, has brought to our attention a

somewhat surprising fact: low-dimen-

sional dynamical systems are capable

of complex and unpredictable behav-

ior. What is the origin of chaos in de-

terministic systems?

For simplicity we consider here a

discrete-time dynamical system de-

fined by iteration of the function

F: X → X, X — R
N
. The set of points

{x, F(x), F
2
(x), …} is called a trajec-

tory (or orbit) of the initial condition

x. We assume that F has a chaotic

attractor. Informally, an attractor is

called chaotic if the motion on it is un-

predictable: two nearby states on the

attractor have different and unrelated

behavior within the attractor.

The evolution of a deterministic

system is completely determined by

the vector field F and the initial con-

dition x. However, to specify com-

pletely the initial condition an infinite

Chaos-Based Cryptography:

A Brief Overview

⊃
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Figure 2. A procedure for a design

of a chaos-based block-encryption

algorithm.
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amount of information and a measur-

ing system with an infinite precision

are required, which are both intrac-

table. What are the effects of a mea-

suring system’s finite precision? Mea-

suring an initial (and future) state is

equivalent to partitioning the state

space into a finite number of regions,

and observing the evolution in this

macroscopic world. Any set of a finite

number of disjoint regions which

cover the state space is called a parti-

tion of the system. The process of par-

titioning the state space, assigning

symbols to every region from the par-

tition, and the resulting macroscopic

dynamics are called symbolic dynamics.

If the system is chaotic, then dif-

ferent initial states belonging to the

same region will produce different ob-

servations at some later time. From the

viewpoint of our measuring system,

identical macroscopic initial states

evolve differently. A loss of determin-

ism occurred, and transitions between

the regions of the partition can only be

specified by means of probabilities.

Partitioning of the state space turns the

deterministic chaotic system into an

ergodic information source which can

be analyzed in terms of information

theory. The Kolmogorov-Sinai entropy

(denoted by hKS ) is the measure of as-

ymptotic rate of creation of informa-

tion by iterating F. Systems with posi-

tive entropy are usually considered as

chaotic. The unpredictability of cha-

otic trajectories is caused by exponen-

tial separation of nearby points.

Unpredictability means uncertainty;

therefore, one should expect that the

entropy of a dynamical system is re-

lated to its positive Lyapunov expo-

nents. This deep mathematical result

(known as the Pesin theorem [13]) is

rigorously proven only for so called

Sinai-Ruelle-Bowen measure.

From the viewpoint of any measur-

ing device, if the dynamical system

produces unpredictable sequences,

then the dynamical system is called

chaotic. While the motion of the dy-

namical system in the continuous (mi-

croscopic) state space is deterministic,

its motion in the partitioned (macro-

scopic) space is stochastic and the tra-

jectories are sequences of symbols. On

the basis of the knowledge of the past

coarse-grained trajectory of the system

we can predict its future macroscopic

states only in probabilistic terms. Turn-

ing a deterministic chaotic system into

an information source via partitioning

of the state space is not in collision
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with Shannon’s note [14] that a deter-

ministic system cannot generate infor-

mation. Actually, a chaotic system

does not generate information, that is,

its evolution is completely determined

by its initial state. A chaotic system

merely converts the information about

its initial state into a form which is vis-

ible to the measuring system. Every

letter in the coarse-grained trajectory,

which is a sequence of letters, brings

an additional amount of information

about the initial state.

The word random in deterministic

dynamical systems is linked to incom-

pressibility of information: a trajectory

of the system is termed random when

the shortest program that generates it

has (essentially) the same size as the

trajectory itself. The trajectory of a

point x is called random if its algorith-

mic complexity is positive. The fol-

lowing theorem is of essential signifi-

cance in this case [15]: For chaotic

systems the trajectories of almost all

state points x ∈ X are random and their

algorithmic complexity is equal to the

Kolmogorov-Sinai entropy hKS. As a

disturbing consequence, no finite com-

puter program can produce or predict

a chaotic trajectory, or in the language

of Joseph Ford [16], for any additional

bit of the initial state, a computer pro-

gram can output only one additional bit

about the chaotic trajectory.

Clearly, positive algorithmic com-

plexity of almost all initial states does

not suffice for the randomness of tra-

jectories of a dynamical system; for

example a dynamical system with a

stable equilibrium would contradict

such a conjecture. What is the source

of the unpredictability and information

generation of a chaotic behavior? The

finite precision of any real measuring

system and the sensitive dependence

of a chaotic evolution to a change in

initial states combine to an inability for

long-term prediction of chaotic behav-

ior.

Hopefully, this section resolves the

juxtaposition of three seemingly con-

tradictory terms: “random”, “deter-

ministic” and “chaos”. Determinism of

the defining equations implies exist-

ence and uniqueness of solutions, but

it does not imply computability of so-

lutions. Chaoticity of the behavior im-

plies random trajectories that are not

computable by any finite computer

program. More on this relationship can

be found in the inspired papers by Jo-

seph Ford [16, 17].

Cryptography from an
Information-Theory Point of View

Cryptography has come to be un-

derstood to be the science of secure

communication. The publication in

1949 by C. E. Shannon of the paper

“Communication Theory of Secrecy

Systems” [7] ushered in the era of sci-

entific secret-key cryptography. Shan-

non provided a theory of secrecy sys-

tems almost as comprehensive as the

theory of communication that he had

The publication in 1949 by C. E. Shannon of the paper “Communication

Theory of Secrecy Systems” [7] ushered in the era of scientific secret-key cryp-

tography. Shannon provided a theory of secrecy systems almost as compre-

hensive as the theory of communication that he had published a year before.

Indeed, he built his 1949 paper on the foundation of the 1948 one, which had

established the new discipline of information theory [14].
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published a year before. Indeed, he

built his 1949 paper on the foundation

of the 1948 one, which had established

the new discipline of information

theory [14]. However, Shannon’s 1949

paper did not lead to the same explo-

sion of research in cryptography that

his 1948 paper had triggered in infor-

mation theory. The real explosion

came with the publication in 1976 by

W. Diffie and M. E. Hellman of their

paper, “New Directions in Cryptogra-

phy” [18]. Diffie and Hellman showed

for the first time that secret communi-

cation was possible without any trans-

fer of a secret key between sender and

receiver, thus establishing the turbulent

epoch of public-key cryptography.

Moreover, they suggested that compu-

tational complexity theory might serve

as a basis for future research in cryp-

tography. Another line of research was

established by A. C. Yao in 1982 [19]

in such a way as to preserve the origi-

nal Shannon’s information-theory

based approach to cryptography.

What is information? The amount

of randomness in a probability distri-

bution is measured by its entropy (or

information) which for a discrete prob-

ability distribution P is

H(P) = – ∑ p(x) log p(x)

where x runs over the atoms of P. In a

fundamental sense, the concept of in-

formation proposed by Shannon in his

1948 paper captures only the case

when unlimited computing power is

available. However, computational

cost may play a central role in cryptog-

raphy, and, therefore, the classical in-

formation theory may not provide a

complete framework for the analysis

of cryptographic algorithms. After

Diffie and Hellman proposed the use

of a trapdoor function as the corner-

stone for a new form of cryptography,

this deficiency was practically drama-

tized. Indeed, it may happen that al-

though the ciphertext contains all the

information about the plaintext, this

information is inaccessible, and there-

fore cannot be efficiently computed.

Thus, the question in the beginning of

this paragraph should be replaced

with: What is accessible information?

Can two successful theories, namely

Information Theory and Computa-

tional Complexity Theory, be com-

bined to capture the notion of acces-

sible information? A. C. Yao in 1982

provided the affirmative answer to this

question. Yao proposed the definition

of computationally accessible infor-

mation and used it to discuss security

for conventional cryptosystems,

pseudo-random number generators,

and trapdoor functions, subjects where

information and computational com-

plexity are closely intertwined.

The central question in cryptogra-

phy is security. The basic properties

characterizing a secure object are “ran-

domness-increasing” and “computa-

However, Shannon’s 1949 paper did not lead to the same explosion of re-

search in cryptography that his 1948 paper had triggered in information theory.

The real explosion came with the publication in 1976 by W. Diffie and M. E.

Hellman of their paper, “New Directions in Cryptography” [18].  Diffie and

Hellman showed for the first time that secret communication was possible

without any transfer of a secret key between sender and receiver, thus estab-

lishing the turbulent epoch of public-key cryptography.
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tionally unpredictable”. It is well

known that, if one of the following ob-

jects exist—a secure pseudo-random

number generator, a secure one-way

function, and a secure block encryp-

tion algorithm—then all exist. The rig-

orous definitions for “randomness-in-

creasing” and “computationally unpre-

dictable” are far beyond the scope of

this paper and we refer the reader to

[19]. The following informal defini-

tions of “randomness-increasing” and

“computationally unpredictable” are

adopted from Largarias [20] and Blum,

Blum and Shub [21]. Without loss of

generality, in the following we con-

sider only pseudo-random number

generators. A pseudo-random bit (or

number) generator is a deterministic

method (usually defined as a mapping

G : M1 → M2, where Mi are finite sets)

to produce from a small set of random

bits (called the seed) a larger set of ran-

dom-looking bits (called pseudo-ran-

dom bits). The notion of randomness-

increasing is impossible in classical

information theory because any deter-

ministic mapping G applied to a dis-

crete probability distribution P never

increases entropy, i.e., H(G(P)) ≤ H(P).

However, this may be possible when

computer power is limited. Indeed,

what may happen is that G(P) may ap-

proximate a target distribution Q hav-

ing a much higher entropy so well that,

within the limits of computing power

available, one cannot tell the distribu-

tions G(P) and Q apart. If H(Q) is

much larger than H(P), then we can

say G is computationally randomness-

increasing.

Yao [19] provided the basic insight

on the nature of cryptographically se-

cure objects: it is the notion of

computationally unpredictable. The

following informal definition of

computationally unpredictable is due

to Blum, Blum and Shub [21]. We say

that a pseudo-random number genera-

tor is polynomial-time unpredictable if

and only if for every finite initial seg-

ment of a sequence that has been pro-

duced by such a generator, but with

any element deleted from that seg-

ment, a probabilistic Turing machine

cannot, roughly speaking, do better in

guessing in polynomial time what the

missing element is, than by flipping a

fair coin. Yao proved that a pseudo-

random number generator is secure if

and only if it is polynomial-time un-

predictable.

The central unsolved question in

the theory outlined above is whether a

secure object exists. A major difficulty

in settling the existence problem for

this theory is summarized in the fol-

lowing heuristic unpredictability para-

dox [19]: If a deterministic function is

unpredictable, then it is difficult to

prove anything about it, in particular,

it is difficult to prove that is unpredict-

able. Most of the results about

unpredictability and cryptographic se-

curity follow from certain assumptions

concerning the intractability of certain

number-theoretical problems by proba-

bilistic polynomial-time procedures. For

example, the statement that the x
2
 mod N

generator is unpredictable is proven un-

der the so called quadratic residuacity

assumption; see [21] for details.
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Conclusion: What Is Next?

We may summarize our discussion

in previous sections as follows.

(i) The word random in determin-

istic dynamical systems is linked to in-

compressibility of information: a tra-

jectory of the system is termed random

when the shortest program that gener-

ates it has (essentially) the same size

as the trajectory itself. Determinism of

the defining equations implies exist-

ence and uniqueness of solutions, but

it does not imply computability of so-

lutions. Chaoticity of the behavior im-

plies random trajectories that are not

computable by any finite computer

program.

(ii) The amount of randomness in

a probability distribution is measured

by its entropy. A deterministic map-

ping applied to a discrete probability

distribution never increases entropy.

However, a computationally random-

ness-increasing deterministic mapping

has the property that when computer

power is limited it may increase the en-

tropy of the distribution within the lim-

its of computing power available.

Equivalently we may say that this

mapping generates computationally

unpredictable sequences of numbers.

A deterministic mapping defined

on a (sub)set of real numbers may have

chaotic behavior; in this case the map-

ping is computationally unpredictable:

a trajectory of the system is not com-

putable by any finite computer pro-

gram. A deterministic mapping defined

on a finite set is always predictable: all

its trajectories are eventually periodic.

However, it may happen that when

computer power is limited the map-

ping is computationally unpredictable:

a probabilistic Turing machine cannot

do better in guessing in polynomial

time what is the next (previous) state

of the trajectory, than by flipping a fair

coin. Whether and under what condi-

tions these two different properties of

being computationally unpredictable

can be related to each other is a cen-

tral problem of chaos-based cryptog-

raphy. The future impact chaos-based

cryptography may have on conven-

tional cryptography depends strongly

on the successful solution of this prob-

lem. A good cryptographic algorithm

offers an optimal trade-off between

security and performance. Therefore,

another important problem in chaos-

based cryptography is whether chaos

can offer improvements to the perfor-

mances of cryptographic algorithms.

In closing this paper, more detailed de-

scriptions of the problems that are of

importance for the future research on

chaos-based cryptography will be of-

fered.

• Chaos and security—Chaos is a nec-

essary but not sufficient property of

encryption algorithms. In accor-

dance with Shannon’s prescriptions

[7], every encryption algorithm pos-

sesses properties of confusion, diffu-

sion, mixing and sensitivity to

changes in plaintext and secret key.

This almost guarantees that an exten-

sion of the domain of an encryption

algorithm from a lattice to a con-

tinuum will give rise to a chaotic

map. We have done the domain ex-
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tension for the round function of the

international data encryption algo-

rithm (IDEA) [22, 23], and have nu-

merically confirmed that the newly

obtained map is chaotic. A linear in-

terpolation between the points of the

lattice was used to extend definition

of the round function to the con-

tinuum. The other way around, if a

nonlinear map is chaotic when de-

fined on a continuum, then it will

exhibit properties of confusion, dif-

fusion, mixing, and sensitivity to

changes in variables. However, in

addition a good encryption algorithm

must also be irreducible to any other

(simpler) form which makes its

cryptanalysis tractable. An excellent

example is IDEA whose basic de-

signing principle is the usage of three

different algebraic groups: XOR,

addition modulo 2
16

 and multiplica-

tion modulo 2
16

 + 1. The groups are

not mutually isomorphic, which Lai

and Massey, the authors of IDEA,

employ to prove that it is impossible

to reduce IDEA to a simpler form

[22, 23]. Therefore, sensitivity to

changes in initial conditions and pa-

rameters, and the mixing property of

a chaotic map do not guarantee that

its discrete version is a good crypto-

algorithm. It is a must that one

proves its cryptographic security. At

present, the notion of cryptographic

security has no counterpart in chaos

theory, and the cryptographic secu-

rity of a chaos-derived encryption

algorithm can be checked only by

means of crypto-tools.

Chaotic systems are characterized

by positive Lyapunov exponent,

positive entropy and positive algo-

rithmic complexity. On the other

hand, mappings and/or discrete-time

systems that have been proposed for

use in cryptography are defined on

finite sets of integers. In such sys-

tems, the largest Lyapunov exponent

and the complexity of an infinite se-

quence is trivially equal to 0, because

every orbit is eventually periodic and

will repeat itself. Therefore, the cen-

tral problem here is to estimate the

properties (LE, entropy, complexity

and so on) of a typical orbit for time

not exceeding its period. The ques-

tions one should try to answer are:

What is the impact of these proper-

ties on the security of the crypto-

graphic algorithms? When and under

what conditions is a deterministic

What is information? The amount of randomness in a probability dis-

tribution is measured by its entropy (or information) which for a discrete

probability distribution P is

H(P) = – ∑ p(x) log p(x)

where x runs over the atoms of P. In a fundamental sense, the concept of

information proposed by Shannon in his 1948 paper captures only the case

when unlimited computing power is available. However, computational cost

may play a central role in cryptography, and therefore the classical infor-

mation theory may not provide a complete framework for the analysis of

cryptographic algorithms.
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mapping computationally random-

ness-increasing? Can the property of

being secure be expressed in terms

of the known properties from chaos

theory?

• Chaos and performance—A good

cryptographic algorithm offers an

optimal trade-off between security

and performance. “It is quite clear

that someone with a good under-

standing of present day cryptanalysis

can design secure but slow algo-

rithms with very little effort”. The

properties of chaotic systems are as-

ymptotic ones, however the crypto-

graphic algorithms usually are built

on very rapid diffusion and/or con-

fusion properties.

One may numerically verify the

diffusion property of an algorithm in

a simple way: after how many itera-

tions (rounds) is a small cloud of ini-

tial points (plaintext) spread uni-

formly through the whole space such

that the average number of zeros (or

ones) in the block of 2p bits is p. This

number gives the strength of the dif-

fusion property in an algorithm in a

similar way that LEs measure the

strength of the chaos in continuous

systems. Do there exist measures for

the confusion? What are the proper-

ties of chaotic systems relevant for

the performance of cryptographic al-

gorithms? Can chaos theory gain in-

sight into the theory of designing

cryptographic algorithms? The main

questions to be addressed by a de-

signer of cryptographic algorithms,

including also chaos-based crypto-

graphic algorithms, are: what is the

most efficient way to design an al-

gorithm for a particular environment,

or, on which type of processor is a

particular cipher more efficient than

other ciphers?

• A continuous model of cryptogra-

phy—A central assumption in com-

puter science is that the Turing-ma-

chine model is an appropriate

model of a digital computer and

computer simulation. However, it

was recently argued that another

model of computation based on

real numbers [24, 25] is also appro-

priate and in some cases more use-

ful as a model of a computer. Both

models are, of course, abstractions

(The Turing machine employs a

type of unbounded, infinite length,

while it takes an infinite number of

bits to represent a single real num-

ber). It seems to me that it is also

appropriate, at least at the theoreti-

cal level, to consider a continuous

(real-number) model for solving

some of the problems in cryptog-

raphy. This model when used in

cryptography would be inherently

connected to chaos theory.

Figure 3. Pseudo-random ensembles are unpredictable by probabilistic polynomial-

time machines, but may or may not be predictable by infinite powerful machines.

Chaotic systems are unpredictable by infinite powerful machines (analog

computers), but may or may not be predictable by probabilistic polynomial-time

machines.

Probabilistic

polynomial-time

Turing machines

Infinite powerful

machines

Central question of

chaos-based cryptography:

Whether and under what conditions

a chaotic system is unpredictable

by probabilistic polynomial-time

machines?

Pseudo-random

ensembles

Chaotic systems

Unpredictable

Unpredictable

?
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