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Abstract 
 

Chaos-based cryptography emerged in the early 
1990s as an innovative application of nonlinear 
dynamics in the chaotic regime.  Even if in theory 
chaotic dynamics was thought to evolve into a new 
revolution in cryptography, in real-life an efficient and 
reliable chaos-based cryptosystem didn’t emerge. The 
main but not the only reason is the dynamic 
degradation of digital chaotic systems, a subject that 
became very popular in the last few years. This paper 
presents a new theoretical background related to this 
issue that proves the inefficiency of chaos-based 
encryption algorithms. Even more, in one of the two 
relevant case studies presented, another myth is 
demolished: the analog encryption base on 
synchronized chaos. 
 
1. Introduction 
 

In the last two decades the use of chaos in 
cryptography has been a growing interest. Although 
conceptually the solutions proposed by the professional 
community seem correct, serious problems can arise 
when implementing chaotic cryptographic systems. 
What are the causes for these problems? Answering 
this question is not an easy task at all. First let us start 
by having a look at the evolution of chaotic 
cryptosystems. 

The use of chaos in cryptography has emerged as a 
potential solution to many problems due to the 
following fundamentals of chaotic systems: (a) chaotic 
systems are determinist dynamical systems; and (b) 
chaotic systems exhibit sensitive dependence on initial 
conditions. 

The suggested chaotic cryptosystems can be divided 
in two main categories:  
(a) Cryptosystems that use the idea of synchronized 
chaos, initially developed by L.M. Pecora and T.L. 

Carroll [1]. From the implementation point of view 
there are two types of synchronized chaotic systems:  

(1) synchronized chaotic systems which are 
implemented on digital equipment, and 
(2) synchronized chaotic systems that are 
implemented on analog equipment. 

(b) Cryptosystems that do not use synchronized chaos. 
Examples of such cryptosystems are the Baptista-
cryptosystem [2] and the Alvarez-cryptosystem [3]. 

Nevertheless employing chaotic dynamics in order 
to develop secure cryptosystems proved to be a 
difficult task. All the cryptosystems mentioned above 
has been shown to have some weaknesses, e.g., attacks 
on Baptista-type systems were presented in [4], [5], [6] 
and [7]. However, the most important problem is that 
trying to generate a chaotic signal on a finite precision 
machine leads to dynamical degradation of chaotic 
properties. The problem of dynamical degradation has 
already been addressed in [8], [9] and [10], but as we 
will show in the next section, the degradation is more 
dramatic than what has been presented in the literature 
so far. Intuitively, when a chaotic signal is generated 
on a finite-precision machine, the state space does not 
provide an infinity of possible states anymore, thus a 
state trajectory will pass through the same point more 
than once, which makes the trajectory to lose its 
chaotic properties.  

The main source for all the problems encountered 
when implementing a chaotic cryptosystem is 
represented by the lack of serious investigation of 
discrete-time chaotic systems when implemented on 
digital equipments. We are going to show that chaotic 
systems cannot be implemented on digital computers 
without losing the property of being chaotic. As a 
result, the implementation of a chaotic system is 
pseudo-chaotic at most and not chaotic. Since all 
analog equipments have a certain tolerance, we are 
going to show that the problem of chaos degradation is 
true in this case also. 
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In the following paragraphs we will prove why 
there can not be chaos when finite precision is 
considered. After that, we will present what are the 
side effects of implementing chaotic cryptosystems on 
finite precision equipments, together with the related 
limitations of chaotic cryptosystems. In the end we will 
discuss two case studies one for each chaotic 
cryptosystem category. 
 
2. Non-existence of discrete chaos in finite-
length implementations 
 

In this section we will prove that implementing a 
chaotic system on a finite precision machine will make 
the system entirely lose its chaotic behavior. Thus the 
chaotic systems implemented on finite precision 
machine are not chaotic anymore, but pseudo-chaotic 
systems.  

A fundamental theorem in the chaos theory is the 
following: 
The no-intersection theorem: Two distinct chaotic 
state space trajectories cannot intersect each other (in a 
finite period of time). Nor can a single chaotic 
trajectory cross itself at a later time [11]. 

The no-intersection theorem is valid only for 
autonomous chaotic system; this does not limit our 
results to only autonomous systems, since one can 
easily extrapolate our results to non-autonomous 
systems. 
Theorem of non-existence of discrete chaos in finite-
length implementations: A chaotic state space 
trajectory cannot be generated on a finite-precision 
machine. 
Proof: Given a chaotic trajectory T, one of the 
properties of T is that it is bounded, e.g., there exists a 
bounded subspace S so that ST ⊂ , and as the no-
intersection theorem says T will not pass through the 
same point twice. Thus to prove the theorem it is 
enough to show that if S is bounded and finite 
precision is considered, then the cardinality of S is 
finite. Next we will prove using mathematical 
induction that a bounded n-dimensional subspace S has 
a finite cardinality if finite precision is considered. 
The basis: We consider that S is a one-dimensional 
bounded subspace, i.e. S is a bounded interval. If 
infinite precision is considered then S has an infinite 
cardinality, but if finite precision is considered then S 
has a finite cardinality. 
The inductive step: We consider that a bounded n-
dimensional subspace S has finite cardinality if finite 
precision is considered. Given an (n+1)-dimensional 
subspace S ,̀ we can decompose S  ̀as the product of an 
n-dimensional and a one-dimensional subspace. Since 
both the n-dimensional space and the one-dimensional 

space have a finite cardinality, if finite precision is 
considered, then S ,̀ which is the product of these two 
finite sets, also has finite cardinality if finite precision 
is considered. 

As shown above, an n-dimension bounded subspace 
has an infinite number of points as long as the 
precision is infinite, but if a finite precision is 
considered then the number of points in S is also finite. 
Thus if we consider a chaotic trajectory T that was 
generated on a finite precision machine, it is not 
possible for this trajectory to be bounded and not to 
cross itself at the same time, since the number of points 
in a bounded subspace is finite in case of finite 
precision, therefore T contradicts the no-intersection 
theorem. Thus although T might exhibit a chaotic 
behavior in the beginning, it is not chaotic, but pseudo-
chaotic, provided it was generated on a finite precision 
machine. 

As a consequence of this theorem, the finite 
precision can cause two nearby pseudo-chaotic 
trajectories to intersect when they get very close to 
each other. Similarly, in the case of a singular 
trajectory, it will become periodic due to the finite 
precision. These scenarios are shown in Figure 1, for 
four state trajectories T, T ,̀ T` ,̀ T```, which are 
assumed to be chaotic when infinite precision is 
considered. However, as shown in the figure, if the 
four trajectories are generated on a finite-precision 
machine, trajectory T will become periodic and 
trajectories T ,̀ T``, T``` will intersect T in different 
points and, as a result, will also become periodic. 
 

 
Figure 1. State trajectory intersection due to finite precision. 

 
Similarly, Figure 2 presents the possible scenario 

for a pseudo-chaotic trajectory T, which due to the fact 
that was generated in a finite precision environment, 
falls into an attractor. The degradation of the chaotic 
dynamics is due to the fact that at some point the 
trajectory T will be very close to an attractor and since 
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finite precision is considered it is possible for the 
trajectory to fall in that attractor and never leave it. 

 
Figure 2. Falling into attractor. 

 
3. Chaotic cryptography and the theorem 
of non-existence of discrete chaos in finite-
length implementations 
 

The chaotic systems can be divided in two main 
categories: (a) continuous-time chaotic systems, and 
(b) discrete-time chaotic systems. 

When a continuous-time chaotic system is 
implemented on digital equipment, it will be 
discretized both spatially and temporally. The time 
discretization can be: (a) implicit, i.e. the chaotic 
system is realized in a direct form, under fixed-point or 
floating-point precision, and (b) explicit, i.e. the 
equation system is re-defined in digital form. The 
spatial discretization is always implicit. 

When a discrete chaotic system is implemented on 
digital computer, although there is no need for a 
temporal discretization, the spatial discretization will 
still be implicit. 

As a conclusion, no matter whether the 
cryptosystem is discrete or continuous when it will be 
implemented on a digital computer it will be implicitly 
spatially discretized. Thus, as we have proved in the 
previous section, a chaotic system loses its property of 
being chaotic when it is digitally implemented because 
the space is discretized (e.g., its cardinality is reduced 
to a finite number of points from an infinite one). 

There have been proposed different solutions to 
improve the digital pseudo-chaos, but none of these 
methods can solve the problem. These methods are: 
- using higher finite precision [12], [13]; 
- cascading multiple chaotic systems [14]; 
- using perturbation-based algorithm [15], [16], [17]. 

Using higher finite precision does not solve the 
problem at all, it just makes some pseudo-chaotic 
trajectory to be longer, but they will still become 
periodic, and the worst case (falling in attractor) can 
still happen. Higher precision only increases the 
granularity of the bounded sub-space, so that there will 
be more possible states, but the number of states will 
remain finite. 

Cascading multiple chaotic systems consists of 
interconnecting two pseudo-chaotic systems. This 
method again only increases the length of the cycle of 
some (most of) pseudo-chaotic orbit, but does not 

make the orbit chaotic. The two cascaded systems will 
be implemented on finite precision machines. This 
method just increases the bounds of the bounded sub-
space, but the problems still remain. 

The perturbation-based algorithm consists of using 
a second system to perturb the pseudo-chaotic orbits. 
This solution is also far from being perfect. First the 
pseudo-random generator will be implemented on the 
same finite-precision machine, which can make this 
system to run into the same problem as the chaotic one. 
Second the perturbation of a trajectory will do nothing 
more but to switch to a different trajectory which in the 
end will lead to the same problems, plus there is no 
guarantee that at some time the perturbation will not 
make the trajectory to jump exactly on a closed loop. 
Third the key for the new cryptosystem will have to 
contain the parameters which describe the used 
pseudo-random generator, which will make the key to 
become even bigger. 

With all this limitations it is obvious that pseudo-
chaotic cryptosystems have to be used carefully, only 
for short messages and only when the information is 
valid a short period of time. We proposed the use of an 
off-line keys validation, which will ensure that a 
message of a given length will be encrypted.  

 

 
Figure 3. Off-line key validation. 

 
In Figure 3 it can be see that we have introduced 

the “Validation” block between the “Key” and 
“Chaotic Cryptosystem” blocks. This block will check 
the keys so that one can be sure that a message of a 
given length will be encrypted no matter what its 
content will be, using the specified crypto-system. 
Obviously this solution will reduce the key space and 
will weaken the cryptosystem against brute force 
attack, however, if the encrypted message has a short 
life time (a few hours) the cryptosystem could still be 
useful. 

In the last part of the paper we will present two case 
studies regarding the useless of chaos in 
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cryptosystems, taking into consideration both 
categories of cryptosystems. 
 
4. Case study 
 
4.1. Baptista-type cryptosystems 
 

The Baptista-type cryptosystem is based on 
partitioning the visiting interval of chaotic orbits of the 
logistic map and associating each partition to a 
character. The encryption of a character consists of 
iterating the chaotic system until the partition 
associated with the character is reached and counting 
the number of iterations. The encoding of the character 
will be represented by the number of iterations. The 
decoding of a character consists of iterating the same 
chaotic system as in the case of encryption, starting 
from the same initial condition for the number of times 
indicated by the encoding. The partition that was 
reached in the last iteration will give us the decoded 
character. 

First let us have a look at the original Baptista-type 
cryptosystem [2], [10]: BC = (F, K, Ae, Ad), where F is 
a chaotic map XXF →:  , K is a secret key, Ae is an 
encryption algorithm and Ad is a decryption algorithm. 
The chaotic map F is represented by the logistic map 

)1()( xbxxF −= , where *+∈ Rb  is a parameter. It 
is well known that the logistic map exhibits chaotic 
behavior for  ]4,57.3[∈b . The key K = ( Sf , 0x , β) , 

with Sf  a bijective function: 

},,,{},,,{: 2121 SSS AXXXXf αααε …… =→= , 

where *NS ∈  
In order to define the subintervals iX , Si ,1= , a 

new interval XX ⊆′  is defined as ),[ maxmin xxX =′ , 
then X ′  is divided in S subintervals 

),)1([ minmin εε ixixXi +−+= , where 
S

xx minmax −
=ε  

and Si ,1= . A is a set of characters, 0x  is the initial 
condition for the chaotic map and β is the value of the 
parameter b. Another function Sf ′  is defined as: 

}{: β∪→′ AXf S , where  A∉β  and 
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The encryption algorithm Ae for a message 
…… immmM 21= , where Ami ∈  consists of the 

following steps: 
• take each character Tmi ∈ ; 
• compute the initial condition 

)( 0
)1(

0
121 xFx iCCCi −+++− = … , 0

)0(
0 xx = ; 

• iterate the chaotic map F starting from initial  

condition )1(
0

−ix  until a state x  will be reached 

so that iS mxf =′ )( ; the number of iterations iC  

represents the encoding of im . 
 
The decryption algorithm Ad for a message 

…… immmM 21= , where Ami ∈  is represented 
by the following steps: 

• take each encoding iC  of a character im ; 

• iterate the chaotic map F for iC  times starting 

from initial condition )1(
0

−ix ; the initial 
condition is computed as in the case of Ae, the 

value )( 0
)(

0
21 xFx iCCCi +++= …  obtained after 

iterating the map F will be used to find the 

decrypted character )( )(
0

i
Si xfm ′= . 

The result of encoding a character iC  should 
satisfy the restriction ]65532,250[∈iC . 

The Baptista-type cryptosystem is far from being 
perfect. It is a relatively slow cryptosystem due to the 
large number of iterations needed to encrypt a 
character and because the size of the encrypted 
message is greater then the size of the original text. 
Another problem is that the distribution of the 
encrypted text is not uniform [2]. There are also some 
security issues concerning the Baptista cryptosystem. 
[3], [4], and [10] lists a few more defects of this 
cryptosystem: 

• problems regarding the logistic map used for 
encryption: 
o non-uniform visiting probability of each ε-

interval: this problem is due to the fact that 
the logistic map has a non-uniform 
invariant density function [2] 

o limits on the control parameter b: to ensure 
that the generated pseudo-chaotic orbit is 
pseudo-chaotic enough, the parameter b has 
to be close enough to 4, which limits the 
range of values that b can take. 
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• problems regarding the secret key: including Sf  
in the secret key will make it difficult to be 
remembered by a user (in [10] it is suggested that 
an algorithm should be used to generate this 
function) 

• dynamic degradation of digital chaotic systems 
• an obvious problem arises when 65532>iC . 
 
As it can be seen, the problem of dynamic 

degradation of digital chaotic systems has been 
mentioned in [10], but the problem is even more 
dramatic than presented there. The reason is that, a 
chaotic system can not be simulated on a finite-
precision machine. Thus implementing the Baptista-
type cryptosystem on a finite-precision machine, as in 
the real case, will make the cryptosystem unusable, 
since it is very hard to find an initial state 0x  and a 

function Sf  so that for any possible text message (in 
terms of length and number of similar characters) as an 
input to the system, the cryptosystem does not run intro 
troubles due to non-existence of discrete chaos in 
finite-length implementations. There is no guarantee 
that the trajectory used to encrypt a message will not 
end up on a closed loop or even in an attractor due to 
rounding problems, as shown in the previous section. 
Another issue could be that due to the same rounding 
problem the trajectory will not visit all small 
subintervals iX ′ . The reason is that in the end all the 
trajectories become periodic, thus it is possible for a 
trajectory to become periodic before it visits all the 
cells. The longer the message to be encrypted, the more 
important this problem is.  

 
4.2. Synchronized cryptosystems 
 

The synchronization is realized by using two “very-
similar” chaotic systems: subsystem D which is the 
drive subsystem and subsystem R which is the 
response subsystem. The drive subsystem is used to 
generate a chaotic signal to which the plain message is 
added, the resulting signal will be sent to the receiver. 
On the receiver side the signal is used as input for the 
response subsystem, and the output of this subsystem 
is subtracted from the received signal. The result will 
be the decrypted message. The main idea behind this 
method is that the behavior of chaotic systems R and D 
are exactly the same with an infinite precision. An 
overview on the synchronized chaotic cryptosystems 
can be found in [19]. In Figure 4 we present a 
synchronized chaotic cryptosystem which is based on 
the Lorenz chaotic system. 

 

 
Figure 4. Synchronized chaotic cryptosystem using Lorenz 

chaotic system. 
 

As it was presented in the Introduction, the 
synchronized cryptosystems were implemented both on 
analog devices and on digital computers. In case of 
digital computers the problem is that they have finite 
precision so the chaotic behavior disapeare, while in 
the analog case the precision is still finite, due to the 
fact that each analog device has a certain class of 
precision. Moreover, in practice, one analog device 
cannot be replicated exactly (with infinite precision). 
This means that R is not exactly a copy of D, thus the 
decryption is not done correctly. 

As in the digital case, in the analog case the orbits 
will either become periodic or will fall into an 
attractor, due to the finite precision of the analog 
devices. Imagine what would happen if the chaotic 
system on which a cryptosystem is based will fall into 
attractor, the encrypted message will be computed as 
an exclusive OR between the plain text and a constant 
number. 
 
5. Conclusion 
 

In this paper we have shown that a chaotic 
cryptosystem becomes a pseudo-chaotic cryptosystem 
when it is implemented on a finite precision machine, 
even more we have shown that not even the analog 
implementation is good enough. We have proved that 
once a chaotic system is implemented on a digital 
computer, it will not be a chaotic system anymore. We 
have also presented what are the limitations when 
using a pseudo-chaotic cryptosystem. 
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