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CHAOS–BASED TRUE RANDOM NUMBER
GENERATOR EMBEDDED IN A MIXED–SIGNAL

RECONFIGURABLE HARDWARE

Miloš Drutarovský — Pavol Galajda
∗

The paper presents a chaos-based True Random Number Generator (TRNG) implemented in commercially available
mixed-signal PSoC reconfigurable devices without any external components. Contrary to the traditionally used sources of
randomness (eg various ”well-behaved” analog noise sources) it uses well-defined deterministic analog circuit that exhibits

chaos. A new simple method of mapping the deterministic chaos into the switched capacitor based mixed-signal PSoC devices
is proposed. The design is optimized for reduction of influence of circuit non-idealities to the quality of generated random bit
stream. The influence of circuit non-idealities is significantly reduced by the proposed XOR corrector and optimized circuit

topology. The high quality of generated true random numbers is confirmed by passing standard NIST statistical tests.
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1 INTRODUCTION

Random number generators represent basic crypto-
graphic primitives. They are widely used for example
as confidential key generators for symmetric key and
public-key crypto-systems (eg RSA-moduli) and as pass-
word sources. In some algorithms (eg DSA) or proto-
cols (eg zero-knowledge), random numbers are intrinsic
to the computation [1]. In all these applications, security
depends greatly on the randomness of the source. Be-
cause security algorithms and protocols rely on the un-
predictability of the random bits they use, True Random
Number Generators (TRNGs) play an important role in
cryptographic applications.

Classical TRNG uses some random physical phe-
nomenon [2]. Currently the most frequently used phe-
nomenon in embedded TRNGs is a jitter noise of digi-
tal clock signals (see eg [3], [4]). Embedded TRNGs fre-
quently use some external devices [5] or rather heuristic
source of randomness [6]. Although these drawbacks can
be overcomed by a design of proper custom circuits, ran-
domness extraction is still a big challenge in the designs
based on of the shelf devices as FPGA [7], [8], [9] or
general microprocessors [10].

Chaotic circuits represent an efficient alternative to the
classical TRNGs. Contrary to traditionally used sources
of randomness (eg various ”well-behaved” analog noise
sources like jitter noise, thermal or shoot noise, etc.) they
use a well-defined analog deterministic circuit that ex-
hibits chaos. Chaotic systems are characterized by a ”sen-
sitive dependence on initial conditions”, ie a small pertur-
bation eventually causes a large change in the state of the
system [11]. However, the slightest uncertainty about the

initial state (which is unavoidable in all analogue imple-
mentations) leads to a very large uncertainty after some
time. With such initial uncertainties, the system’s behav-
ior can be predicted only for a short time period. Addi-
tionally as it has been recently shown, if the state variable
is not available to the observer, and the system is well de-
signed, the output of the system cannot be predicted at
all [12]. Such implementation is a source of infinite en-
tropy that is absolutely required for good TRNG.

Many random number generators based on analog and
deterministic chaotic phenomena have been proposed, see
eg [13], [14], [15] and references in [12]. Some of them have
been simulated only. Others have not been sufficiently
optimized for cryptographic applications (they provide
certain bias or other deviations). This paper describes a
practical implementation of recently proposed determin-
istic chaos circuit based on Markov map [11], [12], [16]. In
contrary with Field Programmable Analog Array (FPAA)
implementation [16], proposed chaos based TRNG im-
plementation [17] uses mixed-signal PSoC reconfigurable
hardware [18], [19]. It is shown that after suitable modi-
fication of originally proposed Markov map it can be eas-
ily embedded in the selected PSoC hardware. Although
proposed realization provides much lower output speeds
than pure FPAA implementation [16], used mixed-signal
hardware includes also embedded microcontroller. Such
hardware can be in principle used for other cryptographic
tasks. Moreover, special attention is devoted to the iden-
tification of analog circuit non-idealities. The design is
optimized for reduction of their influence to the quality of
generated random bit stream. By using NIST statistical
tests, it is demonstrated that proposed implementation
provide very good quality of generated bit stream.
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The paper is organized as follows. A brief overview of
the theory of Markov chaotic sources is given in Section
2. In Section 3, a new method of mapping chaos based
TRNG into PSoC devices is presented. The experimental
TRNG hardware used to test the proposed method is
described in Section 4. In Section 5, statistical evaluations
of internal and output TRNG signals are made. Finally,
concluding remarks are presented in Section 6.

2 AN OVERVIEW OF THE THEORY

OF MARKOV CHAOTIC SOURCES

An ideal Random Number Generator (RNG) is a
discrete memory-less information source that generates
equiprobable symbols. We consider an ideal state chain
(Fig. 1), which corresponds to the ideal RNG.

Fig. 1. State chain of an ideal RNG

The system is in the state S0 when an output of
the RNG has been ”0” and in the state S1 when an
output has been ”1”. A RNG output has always the same
probability (1/2) to get the system in either state, S0

or S1 . It is known that these sources can be build up
from Piece-Wise Affine (PWA) Markov chaotic maps [12].
These maps are one dimensional, discrete- time, in which
the state variable x(n) is computed as

x(n + 1) = M [x(n)] (1)

where M : [−1, 1] → [−1, 1], and x(0) is the initial
condition. We focus on the recently proposed piece-wise
chaotic map [12], [16]

M(x) = (2x + 1) mod 2 − 1 (2)

which is plotted in Fig. 2 together with its Markov par-
tition X0 = [−1, −1/2], X1 = [−1/2, 0], X2 = [0, 1/2]
and X3 = [1/2, 1]. The map M(x) can be equivalently
expressed as

x(n + 1) =











2x(n) − 2 for x > 1/2

2x(n) for x < −1/2 < 1/2

2x(n) + 2 for x < −1/2

(3)

The main advantage of this chaotic map is its increased
robustness in the case of an analogue implementation [12],
[16]. The dynamics of equation (1) can be represented by
the Markov chain and that the evolution can be studied
through a square matrix (often referred to as the kneading
matrix ) defined for the map (3) in Fig. 2 [11], [12].

Fig. 2. Proposed piece-wise chaotic map based on (3) and its
kneading matrix K

Each partition set Xi , i = 0, 1, 2, 3 is associated with
a Markov state xi , so that x(n) ∈ Xi ⇔ x(n) = xi (ie,
x i is a quantization of xi ), and each entry Kij is the
conditional probability Pr(xn+1 = j|xn = i). The entry
in the i-th row and j -th column of matrix K corresponds
to the fraction of Xi that is mapped into Xj . From this
it easily follows that the sum of the rows entries of any
kneading matrix is always equal to 1.

It is interesting to try to give a meaning to the indi-
vidual entries in matrix K . We suppose that it is known
only that the initial condition x(0) falls in X0 (as it is
shown in Fig. 2). The state variable in the next time step
x(1) obviously falls either in X2 with probability 1/2, or
in X3 with the same probability (1/2), but not in X0 ,
nor X1 .

In other words, the entry Kij of K represents the
probability by which a trajectory starting in Xi falls in
Xj at the next time step. This iterative process can be
interpreted as a Markov state chain with 4 states (Fig.
3). The state machine is in its discrete state xi when
the chaotic system has its continuous state variable x in
the partition interval Xi . The weights assigned to the
graph arrows represent the probabilities by which the
state machine changes from a one state to another.

The chain in Fig. 3 is not suitable for a direct real-
ization of the ideal RNG since it is sequential (it has a
memory). However, it is possible to easily build a rig-
orously independent binary sequence from x(n) [12]. In
fact, it is sufficient to aggregate the Markov states into
two macro-states S0 and S1 shown with dotted lines in
Fig. 3. Note, that this aggregation is different from that
introduced in [12], [16] for the purpose of a better imple-
mentation in PSoC devices as it will be described in the
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Fig. 3. Markov chain of the RNG

next section. It can be easily shown that the resulting
diagram is also identical to the state chain of the ideal
RNG shown in Fig. 1.

3 PSOC BASED TRNG

3.1 An Overview of PSoC Architecture

The PSoC device family [18] consists of a mixed-signal
array with an on-chip CPU. A PSoC device includes con-
figurable Analog Blocks (AB) [19] and Digital Blocks
(DB), as well as programmable interconnections. This
versatile architecture allows the user to create customized
peripheral configurations to match the requirements of
each individual application. Additionally, a fast CPU,
flash program memory, SRAM data memory, and config-
urable IO interfaces are included in a PSoC device. The
basic features of the device are as follows:

• Powerful Harvard CPU architecture

• Advanced peripherals (PSoC Blocks):

4 rail-to-rail continuous analog PSoC blocks

8 Switched Capacitor (SC) analog blocks

8 digital PSoC blocks

• Programmable references voltage Vref = 1.3 V (set by
internal bandgap reference) or Vref = Vcc/2

• Internal 24 MHz oscillator (allows to build a real single
chip application)

• Precision, programmable clocking (provides two phase
clocks – Φ1 , Φ2 for SC)

• Flexible On-Chip Memory

• Programmable pin configurations

The discussed architecture is quite versatile. It allows
for many different functions merely by altering the in-
ternal circuits switches. The on-chip CPU controls the
functionality of the digital and analog blocks and it can
dynamically change the parameters (eg gain of SC block
can be set by specifying CA and CF capacitors shown in
Fig. 4) and topology of these blocks [18], [19].

3.2 TRNG Architecture

As shown in [12], the chaotic map in Fig. 2 can be
implemented by a pipeline-ADC with 1.5-bit/stage ar-
chitecture. Here, we introduce different implementations
of the chaotic map (3) by using four SC (4-SC) analog
PSoC blocks. The equation (3) can be rewritten accord-
ing to Tab. 1, where b(n + 1) is a binary output of the
TRNG at time step n + 1. The steps given by equations
in Tab. 1 can be directly mapped into four PSoC SC
blocks shown in Fig. 4. Addition/subtraction of the ref-
erence voltage and comparison operations from steps one
and two are mapped to SC1 and SC3, respectively. Mul-
tiplication by 2.0 from step three is realized in SC3 and
SC4. Comparison from step three is implemented in SC3.
We have chosen a common SC implementation operat-
ing on two-phase clocks (Φ1 and Φ2 driven by the on-
chip oscillator). During the first phase, block SC1 adds
the reference voltage ±Vref (actual polarity is controlled
by on-chip CPU) to the input voltage Vin according to

Table 1. TRNG chaotic map equations optimized for PSoC SC blocks

1st step 2nd step

x′(n) =

{

x(n) − Vref for x(n) > 0

x(n) + Vref for x(n) < 0
x′′(n) =

{

x′(n) − Vref for x′(n) > 0

x′(n) + Vref for x′(n) < 0

3rd step

x(n + 1) = 2x′′(n) for all n b(n + 1) =

{

”1” for x(n + 1) > 0

”0” for x(n + 1) < 0
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Fig. 4. PSoC implementation of the 4-SC blocks TRNG

the polarity of the analogue voltage at the output of the
block SC3. If this voltage is negative, the reference volt-
age Vref+ = +Vref = 1.3 V, will be added in the next
clock phase to the input voltage, otherwise the voltage
Vref− = −Vref = −1.3 V must be added. During the
second clock phase, the block SC1 tests the polarity of
the output voltage for the block SC3. The operation of
the block SC3 is similar to that of the SC1.

Blocks SC2 and SC4 realize the Sample and Hold func-
tion between blocks SC1 and SC3. This is needed for a
correct operation of SC blocks connected as a ring oscil-
lator. Additionally, blocks SC3 and SC4 define the gain
of the circuit, which has to be as close as possible to the
ideal gain equal to 2.0. In our case the gain is limited by
discrete values of capacitors CF and CA to the value

(27 × 19)/(16 × 16) = 513/256
.
= 2.004 (4)

It can be shown that the structure in Fig. 4 pro-
cesses two independent bit streams, b1(n) and b2(n) in
a pipeline processing structure. The bit streams are read
out sequentially from this structure and they are over-
lapped according to the equations

b1(n) = b(2n), n = 0, 1, . . .

b2(n) = b(2n + 1), n = 0, 1, . . .
(5)

Properties of the proposed 4-SC TRNG:

• it uses voltage range from AGND= Vcc/2 to ±2Vref

(x(n) is actually between and 5V, with a low distor-

tion in power supply boundary voltages),

• there exist two independent bit streams (this fact can

be used for effective post-processing, as will be shown

in Section 3.5),

• it requires relatively simple control that must be per-

formed by the on-chip CPU (only one analog compara-

tor interrupt is used), the rate of the output TRNG

data is limited by the speed of the on-chip CPU and

can be up to 60 Kbit/s

• it uses no external devices.

3.3 Simulation of a possible TRNG deviation

A deviation of the SC gain from the optimal value

equal to 2.0 can cause an increased autocorrelation of the

generated data, as it is shown in Fig. 5 for the map (3)

with the nominal gain 513/256. Moreover, additional gain

deviations can be caused by deviations of internal capac-

itors (according to [18], SC components have 0.1% tol-

erances). Autocorrelation can be computed by standard

equations [20]:

corr (b(k)) = corr (b(n), b(n − k)) =

=
E [{b(n) − E [b(n)]}{b)n − k) − E [b(n − k)]}]

√

var (b(n))var (b(n − k)) (6)
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Fig. 5. Simulation of autocorrelation of generated binary data for
the map (3) with the gain 513/256. The values were evaluated for
L = 1000 000 bits. Estimated mean value of the generated binary

data is E[b] ≈ 0.4993 and maximal value of the autocorrelation is
ρ = max{corr (k), k = 1, 2 . . . , 100} ≈ 0.011

where variation in the case of stationary (and ergodic)
random bits can be computed as

var (b(n)) = var (b) = E
[

{b − E[b]}2
]

= E[b]{1 − E[b]}
(7)

and mean value E[b] = Pr(b = 1) can be estimated by
long run time average. Correlations given by (6) are al-
ways between -1 and 1. When two variables are statis-
tically independent, the correlation of (6) is zero. Since
we can estimate (6) and (7) only for data records with
the limited length L , we can expect small deviation from
zero. It can be shown (see [1] page 182 combined with
[20]) that for random variables with E[b] ≈ 1/2 (that

is guaranteed by the map symmetry) and time averages
with sufficiently large length L , the test value

T (k) = corr (k)
√

(L) (8)

approximately follows an N(0.1) distribution. This prop-
erty will be used in the following sections for testing
TRNG deviations.

Although the deviation is relatively small, it can cause
failures of many statistical tests used in cryptography and
therefore an additional corrector must correct it.

3.4 Analysis of XOR corrector performance

The exclusive or (XOR) operation is commonly used to
reduce the bias from the bits generated by hardware ran-
dom number generators [20]. Typically, the uncorrected
bits generated by a TRNG will have mean value different
from the ideal value of 1/2. A XOR corrector can reduce
a bias (difference from the value 1/2) by XOR-ing two or
more independent bits followed by decimation.

The bias of XOR corrected sequence is further de-
creased and can be computed as (Eq. (3) in [20])

E [b1 ⊕ b2] =
1

2
− 2

(

E[b1] −
1

2

)(

E[b2] −
1

2

)

(9)

2
(

E[b1]− 1

2

)(

E[b2]− 1

2

)

being the bias, therefore the XOR
correction will always improve bias properties of a TRNG.
In our case, this possibility is enabled by the existence of
two independent data streams b1(n) and b2(n) that can
be read out sequentially according to (5).

However, while the biases of individual bits are rela-
tively small (E[b] ≈ 1/2), they have significant autocor-
relation. The question is: can the influence of the auto-
correlation be decreased by a simple XOR corrector using
independent data streams b1(n) and b2(n)? This case was

Fig. 6. a) Schematic diagram of the TRNG hardware with the 8-Pin PSoC device and output waveforms of the 4-SC TRNG

implementation. Outputs J1, J2 are for the testing purposes only. b) Waveforms 1, 2, 3, and 4 represent x′(n) (Block2out), x(n + 1)
(Block4out), b(n) (Comparator2out), and SC clock (Clkout), respectively.
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Fig. 7. Results of testing of internal 1 000 000 bit data records for 4-SC TRNG @ 5 V: a) autocorrelation of b1(n) , b) autocorrelation of
b2(n) and c) cross-correlation of b1(n) and b2(n) for different shift values k

analyzed in [20] for correlation of independent autocorre-
lated pairs (see section 3.4 in [20]). It was shown that

corr
(

b1(n) ⊕ b2(n), b1(n − k) ⊕ b2(n − k)
)

≈ ρ2 + 8ρ
(

E[b1] −
1

2

)(

E[b2] −
1

2

)

(10)

where ρ is the correlation of autocorrelated pairs that we
can (conservatively) approximate it by equation

ρ ≤ max{corr
(

b1(k)
)

, corr
(

b2(k)
)

, k = 1, 2, . . . , 100}
(11)

From our simulated data we can expect a reduction of
the maximal autocorrelation coefficient ρ to the level
(supposing that E[b1] = E[b2] ≈ 1/2 and ρ ≈ 0.011
as given in Fig. 5)

corr
(

b1(n) ⊕ b2(n), b1(n − k) ⊕ b2(n − k)
)

≈ 0.0001
(12)

Such a level of the autocorrelation should allow to pass
standard statistical tests used in cryptography also for
relatively strict test conditions as will be shown in Section
5.

4 EXPERIMENTAL HARDWARE

IMPLEMENTATION

The experimental TRNG bit streams were acquired
from a PSoC based TRNG implementation depicted in

Fig. 6. In the Fig. 6, particular testing signals acquired
from oscilloscope are shown, as well. These signals are
connected to the output pins just for testing purposes.
During normal TRNG operations their output is dis-
abled. Presented results have been obtained using 8-pin
CY8C27143 PSoC device.

5 STATISTICAL EVALUATION

OF TRNG DATA

If we know the design of the TRNG we can tailor some
statistical tests to be appropriate for this design. From
previous analysis we know, that there exist certain auto-
correlation of internal TRNG signals. The first tests that
we propose for our TRNG are standard cross and auto-
correlation tests of internal signals. For complex statisti-
cal evaluation of proposed TRNG we use NIST statistical
test suite [21].

5.1 Correlation and autocorrelation tests

5.1.1 T e s t s o f i n t e r n a l u n c o r r e c t e d
T R N G d a t a s t r e a m s

Two interleaved internal data streams, b1(n) and
b2(n) have been aquired from testing hardware shown
in Fig. 6 for 4-SC @ 5V configuration and 60 Kbit/s out-
put rate. Autocorrelation and cross-correlation values for
sequences b1(n) and b2(n) computed according (6) are
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Table 2. NIST test results (uniformity of P-values and proportion of passing sequences) for 1- Gbit 4-SC @ 5V record that passed all
tests. Testing used 1000 1-Mbit subsequences and significance level α = 0.01

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P − value Proportion Statistical test

109 88 97 114 98 90 88 95 118 103 0.322135 0.9880 Frequency

111 124 105 84 93 95 100 99 87 102 0.199045 0.9860 Block.–Freq.

98 115 97 94 107 102 98 99 85 105 0.757790 0.9910 Cusum

118 104 103 109 93 101 75 99 104 94 0.238035 0.9930 Runs

79 106 90 106 116 108 82 102 108 103 0.147815 0.9920 Long–Run

104 102 101 102 94 90 92 113 94 108 0.839507 0.9920 Rank

99 98 103 107 108 96 91 109 91 98 0.917870 0.9880 FFT

97 120 101 90 114 102 85 100 92 99 0.350485 0.9820 Periodic–Template

88 121 85 102 87 92 116 124 100 85 0.012474 0.9870 Universal

112 95 112 98 85 83 122 101 101 91 0.123038 0.9840 Apen

107 96 98 80 118 111 90 103 105 92 0.267573 0.9880 Serial

102 103 93 96 99 113 98 99 106 91 0.930026 0.9890 Linear–Complexity

shown in Fig. 7. These results follow closely the simula-
tion results given in Section 3. They confirm the fact that
the gain errors are really the most important source of
non-idealities of the proposed TRNG. An efficiency of the
proposed XOR corrector is tested by the autocorrelation
test applied on TRNG output data.

5.1.2 A u t o c o r r e l a t i o n t e s t o f o u t p u t
T R N G d a t a s t r e a m s

In order to check the possible deviation of autocorrela-
tion values of the TRNG output b′(n) = b1(n)⊕b2(n) we
have tested validity of N(0, 1) assumption for value T (k)
given by (8). For an ideal TRNG all points of the normal-
ized test statistic T (k) should fall into interval with a 99%
probability [1, page 177]. Applying this function for aver-
ages based on L = 10 000 000 bit records we have found
no particular deviation from N(0, 1) assumption. This
confirms the fact that the autocorrelation was suppressed

to the level lower than ≈ ±1
√

10 000 000 ≈ ±0.0003.

5.2 NIST statistical tests

It seems that the NIST statistical test suite is the
most comprehensive tool publicly available. It must be
used very carefully, as it has been recently shown that it
contains some fundamental errors in FFT and Lempel-Ziv
tests [22]. These changes were adopted also in the latest
NIST suite release (v.1.8, March 15, 2005) [23] that was
used in our simulation. A good TRNG should pass all
kinds of NIST tests.

Our NIST statistical tests were performed on 1-Gbit
of continuous TRNG output records and followed testing
strategy, general recommendations and result interpreta-
tion described in [21]. We have used a set of m = 1000

1-Mbit sequences produced by the 4-SC generator and
we have evaluated the set of P-values (some typical val-
ues for 4-SC @ 5V TRNG records are shown in Tab. 2)
at a significance level α = 0.01. The count of acceptable
sequences was within the expected confidence intervals
[21] for all performed tests and P -values were uniformly
distributed over (0,1) interval as expected for ideal RNG.
There were no deviations detectable with the NIST test
package for given setting and quality of 4-SC TRNGs can
be considered as a very good source of random data.

6 CONCLUSIONS

In this paper we have described and evaluated a chaos-
based method of true random numbers generation em-
bedded in a mixed signal reconfigurable hardware. The
circuit topology and the proposed XOR corrector were
optimized in order to suppress the circuit non-idealities.
The randomness of the sequence of numbers has been ex-
tensively tested and no differences from the ideal TRNG
have been detected for up to 1-Gbit testing records us-
ing NIST testing strategy. The proposed TRNG provides
good quality random data at up to 60 Kbit/s data rates.
It can be easily extended to custom circuits that can pro-
vide significantly higher output data rates.
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1988 and 1995, respectively. He defended his habilitation work
in digital signal processing in 2000. He is currently working as
an Associated Professor at the Department of Electronics and
Multimedia Communications, Technical University of Košice.
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