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describing a system, and thus are intrinsically difficult to characterize. In this paper, we

consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analyt-

ically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials

to quantify scrambling, Haar-randomness, and circuit complexity. While our random ma-

trix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic

systems, we find unphysical behavior at early times including an O(1) scrambling time

and the apparent breakdown of spatial and temporal locality. The salient feature of GUE

Hamiltonians which gives us computational traction is the Haar-invariance of the ensem-

ble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated

by this property of the GUE, we introduce k-invariance as a precise definition of what it

means for the dynamics of a quantum system to be described by random matrix theory.

We envision that the dynamical onset of approximate k-invariance will be a useful tool for

capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as

seen by random matrix theory.
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1 Introduction

Quantum chaos is a general feature of strongly-interacting systems and has recently pro-

vided new insight into both strongly-coupled many-body systems and the quantum nature

of black holes. Even though a precise definition of quantum chaos is not at hand, un-

derstanding how chaotic dynamics process quantum information has proven valuable. For

instance, Hayden and Preskill [1] considered a simple model of random unitary evolution

to show that black holes rapidly process and scramble information. The suggestion that

black holes are the fastest scramblers in nature [2, 3] has led to a new probe of chaos

in quantum systems, namely the 4-point out-of-time-order correlation function (OTOC).

Starting with the work of Shenker and Stanford [4, 5], it was shown [6] that black holes are

maximally chaotic in the sense that a bound on the early time behavior of the OTOC is

saturated. Seperately, Kitaev proposed a soluble model of strongly-interacting Majorana

fermions [7, 8], which reproduces many features of gravity and black holes, including the

saturation of the chaos bound [9, 10]. The Sachdev-Ye-Kitaev model (SYK) has since been

used as a testing ground for questions about black hole information loss and scrambling.

In recent work, [11] found evidence that the late time behavior of the SYK model

can be described by random matrix theory, emphasizing a dynamical perspective on more

standard notions of quantum chaos. Random matrix theory (RMT) has its roots in nuclear

physics [12, 13] as a statistical approach to understand the spectra of heavy atomic nuclei,

famously reproducing the distribution of nearest neighbor eigenvalue spacings of nuclear

resonances. Random matrix theory’s early success was later followed by its adoption in

a number of subfields, including large N quantum field theory, string theory, transport

in disordered quantum systems, and quantum chaos. Indeed, random matrix eigenvalue

statistics have been proposed as a defining characteristic of quantum chaos, and it is thought

that a generic classically chaotic system, when quantized, has the spectral statistics of a

random matrix ensemble consistent with its symmetries [14].

Current thinking holds that both spectral statistics and the behavior of the OTOC

serve as central diagnostics of chaos, although the precise relation between the two is

unclear. OTOCs have recently been studied using techniques from quantum information

theory, and it was found that their decay as a function of time quantifies scrambling [15] and

randomness [16]. The goal of this paper is to connect various concepts as a step towards a

quantum information-theoretic definition of quantum chaos that incorporates scrambling,

chaotic correlation functions, complexity, approximate randomness, and random matrix

universality.

As alluded to above, an important first step to bridge early-time chaos and late-time

dynamics is to understand the relation between the OTOC and the spectral statistics. We

derive an explicit analytical formula relating certain averages of OTOCs and spectral form

factors which holds for arbitrary quantum mechanical systems. A simple corollary is that

spectral form factors can be approximated by OTOCs defined with respect to random (typ-

ically non-local) operators, highlighting the fact that spectral statistics are good probes of

macroscopic thermodynamic properties, but may miss important microscopic physics such

as early-time chaos. We also compute correlation functions for an ensemble of Hamiltoni-
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ans given by the Gaussian Unitary Ensemble (GUE), and find that 4-point OTOCs decay

faster than 2-point correlators contrary to findings for local quantum Hamiltonians [6].

Due to the basis independence of the GUE, averaged correlation functions do not depend

on sizes of operators, and thus can be expressed solely in terms of spectral form factors.

Furthermore, we find that correlators for GUE Hamiltonians do not even depend on the

time-ordering of operators. These results imply that the GUE ignores not only spatial but

also temporal locality.

Another important question is to understand the approach to entropic (as well as

quantum complexity) equilibrium via pseudorandomization at late times in strongly cou-

pled systems. We consider the ensemble of unitaries generated by fixed GUE Hamiltonians,

namely

EGUE
t =

{
e−iHt, for H ∈ GUE

}
, (1.1)

and study its approach to Haar-randomness by computing frame potentials which quantify

the ensemble’s ability to reproduce Haar moments. We find that the ensemble forms an

approximate k-design at an intermediate time scale, but then deviates from a k-design at

late times. These results highlight that the k-design property fails to capture late time

behavior of correlation functions. An interesting application of unitary k-designs is that

Haar-randomness is a probe of quantum complexity. We apply techniques from [16] to

lower bound the quantum circuit complexity of time evolution by GUE Hamiltonians and

find a quadratic growth in time.

In order to make precise claims about the behavior of OTOCs and frame potentials for

GUE Hamiltonians, we need explicit expressions for certain spectral quantities. Accord-

ingly, we compute the 2-point and 4-point spectral form factors for the GUE at infinite

temperature, as well as the 2-point form factor at finite temperature. We then use these

expressions to discuss time scales for the frame potentials. We also analytically compute

the late-time value of the k-th frame potential for arbitrary k.

Under time evolution by strongly-coupled systems, correlations are spread throughout

the system and the locality of operators as well as time-ordering appear to be lost from

the viewpoint of correlation functions, as implied by the late-time universality of random

matrix theory. Also motivated by the k-design property’s failure to capture late-time chaos

(i.e., EGUE
t fails to be Haar-random at late times), we propose a new property called k-

invariance, which may provide a better probe of chaos at both early and late times. The

property of k-invariance characterizes the degree to which an ensemble is Haar-invariant,

meaning that the ensemble is invariant under a change of basis. When the dynamics

becomes approximately Haar-invariant, correlation functions can be captured solely in

terms of spectral functions, which signifies the onset of an effective random matrix theory

description. We thus provide an information theoretically precise definition of what it

means for a system’s dynamics to be described by random matrix theory. Specifically, we

say that an ensemble of Hamiltonian time evolutions Et is described by random matrix

theory at times greater than or equal to t with respect to 2k-point OTOCs when Et is

approximately k-invariant with respect to its symmetry class, for example the symmetry

class of either the unitary, orthogonal, or symplectic groups.

– 2 –
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The paper is organized as follows: in section 2, we provide a brief overview of random

matrix theory and explicitly compute the spectral form factors for the GUE at infinite and

finite temperature. In section 3, we compute correlation functions for the GUE, including

the OTOC, and demonstrate that they can be expressed in terms of spectral correlators as

well. In section 4, we compute frame potentials for the GUE, and extract the timescales

when it becomes an approximate k-design both at finite and infinite temperatures. We

show that the frame potentials can be also expressed as products of sums of spectral

correlators. In section 5, we discuss complexity bounds and complexity growth for the

GUE. In section 6, we discuss Haar-invariance as a diagnostic of delocalization of spatial

degrees of freedom and random matrix universality at late times. We conclude with a

discussion in section 7. The appendices contain an review of various information-theoretic

definitions of scrambling in the literature, a discussion of information scrambling in black

holes, more details of our random matrix calculations, and numerics.

2 Form factors and random matrices

For a long time, the spectral statistics of a random matrix were seen as a defining feature

of quantum chaos. More recently, it has been proposed that the late time behavior of

certain strongly coupled theories with large numbers of degrees of freedom also exhibit a

dynamical form of random matrix universality at late times [11]. The central object of

study in this recent work is the 2-point spectral form factor,1 which is defined in terms of

the analytically continued partition function

R2(β, t) ≡
〈
|Z(β, t)|2

〉
, where Z(β, t) ≡ Tr

(
e−βH−iHt

)
(2.1)

and where 〈 · 〉 denotes the average over an ensemble of Hamiltonians. In SYK as well as

standard RMT ensembles, the 2-point spectral form factor decays from its initial value and

then climbs linearly back up to a floor value at late times. The early time decay of the

form factor is called the slope, the small value at intermediate times is called the dip, the

steady linear rise is called the ramp, and the late time floor is called the plateau. In figure 1

we observe these features in SYK with N = 26 Majoranas, which has GUE statistics at

late times.2 Furthermore, it was found that in SYK, time scales and many features of the

slope, dip, ramp and plateau agree with predictions from RMT.

In this section, we briefly review random matrix theory. Further, we study the 2-

point spectral form factor for the GUE at both infinite and finite temperature, compute its

1One motivation for studying this object is a simple version of the information loss problem in

AdS/CFT [17], where the apparent exponential decay of 2-point correlation functions in bulk effective

field theory contradicts the finite late-time value of e−O(S) implied by the discreteness of the spectrum. As

we shall see in the next section, the 2-point form factor is equivalent to the average of 2-point correlation

functions. More recently, chaos and information loss in correlation functions and form factors have also

been studied in holographic CFTs [18–22].
2For SYK with N Majoranas, particle-hole symmetry dictates the symmetry class of the spectrum,

where N (mod 8) ≡ 2 or 6 corresponds to GUE statistics [23]. Furthermore, the spectral density of SYK

and its relation to random matrices has also been discussed in [24].
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Figure 1. The 2-point spectral form factor for SYK with N = 26 Majoranas at inverse temperature

β = 5, computed for 1000 random samples. The slope, dip, ramp, and plateau are labeled.

analytic form, and extract its dip and plateau times and values.3 In addition, we compute

the 4-point form factor and extract relevant time scales and values. We find that the

late-time rise in the 4-point form factor is quadratic in t, in contrast to the linear rise

in the 2-point form factor. The expressions derived in this section will give us analytic

control over the correlation functions and frame potentials discussed in later sections. For

a detailed treatment of the random matrix ensembles, we refer the reader to [25–27].

2.1 Random matrix theory

The Gaussian Unitary Ensemble GUE(L, µ, σ) is an ensemble of L×L random Hermitian

matrices, where the off-diagonal components are independent complex Gaussian random

variables N(µ, σ)C with mean µ and variance σ2, and the diagonal components are inde-

pendent real Gaussian random variables N(µ, σ)R. It is common in the math literature to

work with GUE(L, 0, 1) which has zero mean and unit variance, but we will instead use

the normalization GUE(L, 0, 1/
√
L) so that the eigenvalues do not scale with the system

size.4 The probability density function of the ensemble has a Gaussian form

P (H) ∝ e−
L
2
TrH2

, (2.2)

up to a normalizing factor. As the GUE is invariant under unitary conjugation H → UHU †,

the integration measure dH = d(UHU †) is likewise invariant. The probability measure

P (H) dH on the ensemble integrates to unity.

3We consider the GUE since it corresponds to the least restrictive symmetry class of Hamiltonians. The

generalization of our analysis to the GOE or GSE is left for future work.
4The reason for using the normalization GUE(L, 0, 1/

√
L) instead of GUE(L, 0, 1) is as follows: with

the standard normalization GUE(L, 0, 1), the energy spectrum ranges from −2
√
L to 2

√
L. This implies

that by applying a local operator, one may change the energy of the system by O(
√
L). With the physical

normalization GUE(L, 0, 1/
√
L), the energies lie within the range −2 to 2, and local operators act with

O(1) energy. See [28] for discussions on normalizing q-local Hamiltonians.

– 4 –
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Instead of integrating over dH directly, it is convenient to change variables to eigen-

values and diagonalizing unitaries. Up to a normalizing constant C defined in eq. (C.1) in

appendix C, the measure becomes

dH = C |∆(λ)|2
∏

i

dλidU , (2.3)

where dU is the Haar measure on the unitary group U(L) and ∆(λ) is the Vandermonde

determinant

∆(λ) =
∏

i>j

(λi − λj) . (2.4)

The joint probability distribution of eigenvalues is

P (λ1, . . . , λL) = Ce−
L
2

∑
i λ

2
i |∆(λ)|2 , (2.5)

and is symmetric under permutations of its variables. For simplicity, we define a measure

Dλ which absorbs the Gaussian weights, eigenvalue determinant, and constant factors. We

integrate over the GUE in the eigenvalue basis as

〈O(λ)〉GUE ≡
∫
DλO(λ) where

∫
Dλ = C

∫ ∏

i

dλi|∆(λ)|2e−L
2

∑
i λ

2
i = 1 . (2.6)

The probability density of eigenvalues ρ(λ), where
∫
dλ ρ(λ) = 1 , (2.7)

can be written in terms of the joint eigenvalue probability density by integrating over all

but one argument

ρ(λ) =

∫
dλ1 . . . dλL−1P (λ1, . . . , λL−1, λ) . (2.8)

The spectral n-point correlation function, i.e. the joint probability distribution of n eigen-

values, ρ(n) is defined as

ρ(n)(λ1, . . . , λn) ≡
∫
dλn+1 . . . dλLP (λ1, . . . , λL) . (2.9)

With these definitions at hand, we quote a few central results. In the large L limit,

the density of states for the Gaussian ensembles gives Wigner’s famous semicircle law,

ρ(λ) =
1

2π

√
4− λ2 as L→ ∞ , (2.10)

where the semicircle diameter is fixed by our chosen eigenvalue normalization. Also in the

large L limit, the spectral 2-point function

ρ(n)(λ1, λ2) =

∫
dλ3 . . . dλLP (λ1, . . . , λL) , (2.11)

can be expressed in terms of a disconnected piece and a squared sine kernel as [25]

ρ(2)(λ1, λ2) =
L2

L(L− 1)
ρ(λ1)ρ(λ2)−

L2

L(L− 1)

sin2
(
L(λ1 − λ2)

)
(
Lπ(λ1 − λ2)

)2 . (2.12)

– 5 –
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2.2 Spectral form factors

The 2-point spectral form factor for a single Hamiltonian H is given in terms of the ana-

lytically continued partition function Z(β, t) = Tr (e−βH−iHt) as

RH
2 (β, t) ≡ Z(β, t)Z∗(β, t) = Tr (e−βH−iHt)Tr (e−βH+iHt) . (2.13)

Similarly, the spectral form factor averaged over the GUE is denoted by

R2(β, t) ≡
〈
Z(β, t)Z∗(β, t)

〉
GUE

=

∫
Dλ

∑

i,j

ei(λi−λj)te−β(λi+λj) , (2.14)

which is the Fourier transform of the spectral 2-point function. At infinite temperature

β = 0, the Fourier transform of the density of states is just Z(t) = Tr (e−iHt), the trace of

unitary time evolution. Using the semicircle law, we take the average of Z(t) at large L

〈Z(t)〉GUE =

∫
Dλ

∑

i

e−iλit = L

∫ 2

−2
dλ ρ(λ)e−iλt =

LJ1(2t)

t
, (2.15)

where J1(t) is a Bessel function of the first kind. The function J1(2t)/t is one at t = 0 and

oscillates around zero with decreasing amplitude that goes as ∼ 1/t3/2, decaying at late

times. At infinite temperature, the 2-point spectral form factor for the GUE is

R2(t) =
〈
Z(t)Z∗(t)

〉
GUE

=

∫
dH Tr

(
e−iHt

)
Tr

(
eiHt

)
=

∫
Dλ

∑

i,j

ei(λi−λj)t . (2.16)

More generally, we will also be interested in computing 2k-point spectral form factors

R2k(t) =
〈(
Z(t)Z∗(t)

)k〉

GUE
=

∫
Dλ

∑

i′s,j′s

ei(λi1
+...+λik

−λj1
−...−λjk

)t , (2.17)

the Fourier transform of the spectral 2k-point function ρ(2k).5 Although the form factors

can be written exactly at finite L, our analysis will focus on analytic expressions that

capture the large L behavior.6

Note that in [11], 2-point form factors were normalized via dividing by Z(β)2. At

infinite temperature, this simply amounts to dividing by L2, but at finite temperature

the situation is more subtle. As we will comment on later, the correct object to study

is the quenched form factor 〈Z(β, t)Z∗(β, t)/Z(β)2〉, but since we only have analytic con-

trol over the numerator and denominator averaged separately, we instead work with the

unnormalized form factor R2 as defined above.

5In the random matrix literature, the 2-point form factor is often defined as the Fourier transform of

the connected piece of the spectral 2-point correlation function, where the connected piece of the spectral

2k-point function is often referred to as the 2k-level cluster function. Our definition for the 2k-point spectral

form factor R2k includes both connected and disconnected pieces.
6In addition to relating the form factor to the fidelty of certain states, [29] also studies the 2-point spectral

form factor for the GUE, computing an analytic form at finite L and discussing the dip and plateau.

– 6 –
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2.2.1 2-point spectral form factor at infinite temperature

Here we calculate the 2-point form factor at β = 0. Working at large L, we can evaluate

R2 by first pulling out the contribution from coincident eigenvalues

R2(t) =

∫
Dλ

∑

i,j

ei(λi−λj)t = L+ L(L− 1)

∫
dλ1dλ2 ρ

(2)(λ1, λ2)e
i(λ1−λ2)t . (2.18)

In the large L limit, we can make use of the sine kernel form of the 2-point function

eq. (2.12). Using eq. (2.15), we integrate the first term, a product of 1-point functions,

and find ∫
dλ1dλ2 ρ(λ1) ρ(λ2) e

i(λ1−λ2)t =
J2
1 (2t)

t2
. (2.19)

In order to integrate the sine kernel, we make the change of variables:

u1 = λ1 − λ2 and u2 = λ2 , (2.20)

which allows us to rewrite the integral

L2

∫
dλ1dλ2

sin2
(
L(λ1 − λ2)

)
(
Lπ(λ1 − λ2)

)2 ei(λ1−λ2)t = L2

∫
du2

∫
du1

sin2(Lu1)

Lπu21
eiu1t . (2.21)

Having decoupled the variables, in order to integrate over u1 and u2, we must employ a

short distance cutoff. We develop a certain approximation method which we refer to as the

‘box approximation,’ and explain its justification in appendix C. Specifically, we integrate

u1 from 0 to u2, and integrate u2 from −π/2 to π/2,

L2

∫
du1du2

sin2(Lu1)

Lπu21
eiu1t = L

{
1− t

2L , for t < 2L

0 , for t > 2L
. (2.22)

Note that in the random matrix theory literature, a common treatment [30] is to approx-

imate the short-distance behavior of ρ(2)(λ1, λ2) by adding a delta function for coincident

points λ1 = λ2 and inserting a 1-point function into the sine kernel. For R2 this gives the

same result as the approximation above, but this short-distance approximation does not

generalize to higher k-point form factors, as discussed in appendix C. The 2-point form

factor we compute is7

R2(t) = L2r21(t)− Lr2(t) + L , (2.23)

where we define the functions

r1(t) ≡
J1(2t)

t
, and r2(t) ≡

{
1− t

2L , for t < 2L

0 , for t > 2L
. (2.24)

As was discussed in [11], we can extract the dip and plateau times and values from R2.

From the ramp function r2, we observe that the plateau time is given by

tp = 2L (2.25)

7We emphasize that this function relied on an approximation and while it captures certain desired

behavior, it should not be viewed as exact. In appendix D we provide numerical checks and discuss an

improvement of the ramp function r2(t).

– 7 –
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Figure 2. The 2-point spectral form factor at infinite temperature, as given in eq. (2.23), plotted

for various values of L and normalized by the initial value L2. We observe the linear ramp and

scaling of the dip and plateau with L.

where after the plateau time, the height of the function R2 is the constant L. This value

can also be derived by taking the infinite time average of R2.

The other important time scale is the dip time td, which we can estimate using the

asymptotic form of the Bessel function at large t, which gives

r1(t) ≈
1

t

cos(2t− 3π/4)√
πt

, (2.26)

oscillating at times ∼ O(1) with decaying envelope ∼ t−3/2. While the first dip time is

O(1), we will be interested in the dip time as seen by the envelope, especially because

the oscillatory behavior disappears at finite temperature (see figure 3). Solving for the

minimum of the envelope of R2, we find

td ≈
√
L , (2.27)

up to order one factors. The true minimum of the envelope and ramp is (6/π)1/4
√
L ≈

1.18
√
L, but in light of the approximations we made, and the fact that the precise ramp

behavior is somewhat ambiguous, we simply quote the dip time as td ≈
√
L. At td, we

find the dip value R2(td) ≈
√
L. We plot the 2-point form factor for different dimensions

L in figure 2.

The oscillations in the early time slope behavior of the form factor simply arise from the

oscillatory behavior of the Bessel function, i.e. the zeros of r1(t)
2.

2.2.2 2-point spectral form factor at finite temperature

Recall that spectral 2-point function at finite temperature is defined as

R2(t, β) ≡
〈
Z(t, β)Z∗(t, β)

〉
GUE

=

∫
Dλ

∑

i,j

ei(λi−λj)te−β(λi+λj) .

– 8 –
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As described in appendix C, we insert the spectral 2-point function ρ(2) and, using the

short-distance kernel, find R2(t, β) in terms of the above functions:

R2(t, β) = L2r1(t+ iβ)r1(−t+ iβ) + Lr1(2iβ)− Lr1(2iβ)r2(t) . (2.28)

First we comment on the validity of the approximations used in the finite temperature

case. The first and third terms of eq. (2.28), dominating at early and late times respectively,

are computed from the 1-point function. Therefore, the expression captures the early time,

slope, and plateau behaviors. The dip and ramp behavior, encoded in the r2 term, are

more subtle. The expression correctly captures the slope of the ramp, but deviates from

the true ramp at large β. We will discuss this more in appendix C, but here only discuss

quantities around the dip for small β, where eq. (2.28) is a good approximation.

The ramp function r2, which is the same as at infinite temperature, gives the

plateau time

tp = 2L . (2.29)

For convenience we define the function h1(β) ≡ J1(2iβ)/iβ, which is real-valued in β.8 The

initial value and plateau value are thus given by

R2(0) = (h1(β))
2L2 , R2(tp) = h1(2β)L . (2.30)

To find the dip time, we make use of the asymptotic expansion of the Bessel function as

L2r1(t+ iβ)r1(−t+ iβ) ∼ L2

2πt3
(
cosh(4β)− sin(4t)

)
≈ L2

πt3
cosh2(2β) . (2.31)

Finding the minimum of the expression gives the dip time

td = h2(β)
√
L where h2(β) ≈

(
1 +

β2

2
+O(β4)

)
, (2.32)

and evaluating R2 at the dip gives

R2(td) ≈ h3(β)
√
L where h3(β) ≈

(
1 +

5β2

2
+O(β4)

)
, (2.33)

up to order one factors. While we could write down full expressions for the dip time h2
and dip value h3 in terms of the Bessel function, we only trust eq. (2.28) in this regime for

small β, and thus report the functions perturbatively.

The 2-point form factor is plotted in figure 3 for various values of L and β. While

increasing the dimension L lowers the dip and plateau values and delays the dip and

plateau times, decreasing temperature raises the dip and plateau values and delays the dip

times. We also note that lowering the temperature smooths out oscillations from the Bessel

function.9 After normalizing R2(β, t) by its initial value, the late-time value is ≃ 2−S(2)

where S(2) is the thermal Rényi-2 entropy.

8For instance, to emphasize its real-valuedness, we could equivalently write h1(β) as a regularized hy-

pergeometric function h1(β) ≡ 0F̃1(2;β
2).

9While the oscillatory behavior still persists at finite temperature, the width of the dips become very

sharp as we increase β and thus the oscillations are not observed when plotted. Furthermore, if we average

over a small time window, the oscillations are also smoothed out.
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Figure 3. The 2-point spectral form factor at finite temperature as per eq. (2.28), on the left

plotted at different values of L, and on the right plotted at different temperatures, normalized by

the initial value. We see that the dip and plateau both scale with β and L and that lowering the

temperature smooths out the oscillations in R2.

2.3 4-point spectral form factor at infinite temperature

We can also compute the 4-point form factor at infinite temperature, defined as

R4(t) ≡
〈
Z(t)Z(t)Z∗(t)Z∗(t)

〉
GUE

=

∫
Dλ

∑

i,j,k,ℓ

ei(λi+λj−λk−λℓ)t . (2.34)

As we explain in appendix C, we compute R4 by replacing ρ(4) by a determinant of sine

kernels and carefully integrating each term using the box approximation. The result is

R4(t)=L4r41(t)+2L2r22(t)−4L2r2(t)−7Lr2(2t)+4Lr2(3t)+4Lr2(t)+2L2−L, (2.35)

given in terms of the functions r1(t) and r2(t) defined above. The initial value of R4 is L4.

Given the dependence on the ramp function, the plateau time is still tp = 2L. The plateau

value 2L2 −L matches the infinite time average of eq. (2.34). The dip time is found again

by considering the leading behavior of R4 and expanding the Bessel functions

R4 ≈ L4J
4
1 (2t)

t4
+
t

2
(t− 2) ∼ L4

t6π2
+
t

2
(t− 2) . (2.36)

Solving for the minimum, we find the dip time

td ≈
√
L , (2.37)

where at the dip time R4(td) ≈ L. We plot the R4(t) for various values of L in figure 4.
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1

R4/L
4

GUE R4 at β = 0

Figure 4. The GUE 4-point spectral form factor at infinite temperature, plotted for different

values of L and normalized by their initial values. We observe the scaling of the dip and plateau,

and the quadratic rise ∼ t2.

Let us summarize the time scales and values for the form factors considered above:

form factor time scale time value

R2(t) initial 0 L2

dip
√
L

√
L

plateau 2L L

R2(t, β) initial 0 h21(β)L
2

dip h2(β)
√
L h3(β)

√
L

plateau 2L h1(2β)L

R4(t) initial 0 L4

dip
√
L L

plateau 2L 2L2

The β-dependent functions were defined above.

With an understanding of the first few form factors, we briefly describe the expected

behavior for 2k-point form factors R2k(t) (with k ≪ L). Initially, R2k decays from L2k as

∼ J2k
1 (2t)/t2k, reaching the dip at time td ≈

√
L where R2k(td) ≈ Lk/2. The ∼ tk growth

after the dip levels off at the plateau time 2L, with plateau value ∼ kLk.

Given that we employed some approximation to compute the form factors, we perform

numerical checks for the expressions above in appendix D. At both infinite and finite

temperature, we correctly capture the time scales, early time decay, dip behavior, and the

late-time plateau, but find slight deviations from the analytic prediction for the ramp. We

discuss this and possible improvements to the ramp function in appendix D.

Later we will study frame potentials which diagnose whether an ensemble forms a

k-design. We will find that the frame potentials for the ensemble of unitaries generated

by the GUE can be written in terms of the spectral form factors discussed here, thereby

allowing us to extract important time scales pertaining to k-designs.
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3 Out-of-time-order correlation functions

3.1 Spectral form factor from OTOCs

Although quantum chaos has traditionally focused on spectral statistics, recent develop-

ments from black hole physics and quantum information theory suggest an alternative way

of characterizing quantum chaos via OTOCs [1, 4, 6, 15]. In this subsection, we bridge

the two notions by relating the average of 2k-point OTOCs to spectral form factors. We

work at infinite temperature (β = 0), but note that by distributing operator insertions

around the thermal circle, the generalization to finite temperature is straightforward. The

results in this subsection are not specific to GUE and are applicable to any quantum

mechanical system.

Consider some Hamiltonian H acting on an L = 2n-dimensional Hilbert space, i.e.

consisting of n qubits. We start by considering the 2-point autocorrelation function

〈A(0)A†(t)〉, time evolved by H. We are interested in the averaged 2-point function:

∫
dA〈A(0)A†(t)〉 ≡ 1

L

∫
dA Tr(Ae−iHtA†eiHt) (3.1)

where
∫
dA represents an integral with respect to a unitary operator A over the Haar mea-

sure on U(2n). We note that since the 2-point Haar integral concerns only the first moment

of the Haar ensemble, we can instead average over the ensemble of Pauli operators10

∫
dA〈A(0)A†(t)〉 = 1

L3

L2∑

j=1

Tr(Aje
−iHtA†

je
iHt) , (3.2)

where Aj are Pauli operators and L2 = 4n is the number of total Pauli operators for a

system of n qubits. To derive the spectral form factor, we will need the first moment of

the Haar ensemble
∫
dAAj

kA
†ℓ
m =

1

L
δjmδ

ℓ
k , or equivalently

∫
dA AOA† =

1

L
Tr(O)I. (3.3)

Applying eq. (3.3) to eq. (3.1), we obtain

∫
dA〈A(0)A†(t)〉 = |Tr(e−iHt)|2

L2
=

RH
2 (t)

L2
, (3.4)

where RH
2k(t) ≡ |Tr(e−iHt)|2k is the same as R2k(t) from before, but written for a sin-

gle Hamiltonian H instead of averaged over the GUE. Thus, the 2-point form factor is

proportional to the averaged 2-point function.

This formula naturally generalizes to 2k-point OTOCs and 2k-point form factors. Con-

sider 2k-point OTOCs with some particular ordering of operators

〈A1(0)B1(t) · · ·Ak(0)Bk(t)〉 where A1B1 · · ·AkBk = I. (3.5)

10This is because the Pauli operators form a 1-design.
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Operators which do not multiply to the identity have zero expectation value at t = 0, and

the value stays small as we time-evolve. We are interested in the average of such 2k-point

OTOCs. By using eq. (3.3) 2k − 1 times, we obtain

∫
dA1 · · · dBk−1dAk〈A1(0)B1(t) · · ·Ak(0)Bk(t)〉 =

|Tr(e−iHt)|2k
L2k

=
RH

2k(t)

L2k
(3.6)

where Bk = A†
k · · ·B

†
1A

†
1. Thus, higher-point spectral form factors can be also computed

from OTOCs. In fact, by changing the way we take an average, we can access various

types of form factors. For instance, let us consider OTOCs 〈A1(0)B1(t) · · ·Ak(0)Bk(t)〉
with Bj = A†

j . We then have

∫
dA1dA2 · · · dAk〈A1(0)A

†
1(t) · · ·Ak(0)A

†
k(t)〉 =

Tr(e−iHt)kTr(eiHkt)

Lk+1
. (3.7)

The fact that the expression on the right-hand side is asymmetric is because the operator

A1(0)A
†
1(t) · · ·Ak(0)A

†
k(t) is not Hermitian.11

These expressions not only provides a direct link between spectral statistics and phys-

ical observables, but also give a practical way of computing the spectral form factor. If

one wishes to compute or experimentally measure the 2-point form factor R2(t), one just

needs to pick a random unitary operator A and study the behavior of the 2-point correlator

〈A(0)A†(t)〉. In order to obtain the exact value of R2(t), we should measure 〈A(0)A(t)〉
for all possible Pauli operators and take their average. Yet, it is possible to obtain a pretty

good estimate of R2(t) from 〈A(0)A(t)〉 with only a few instances of unitary operator A.

Consider the variance of 〈A(0)A(t)〉,

∆〈A(0)A†(t)〉2avg ≡
∫
dA|〈A(0)A†(t)〉|2 −

∣∣∣
∫
dA〈A(0)A†(t)〉

∣∣∣
2
. (3.8)

If the variance is small, then the estimation by a single A would suffice to obtain a good

estimate of R2(t). Computing this, we obtain

∆〈A(0)A†(t)〉2avg ∼ O
(

1

L2

)
. (3.9)

This implies that the estimation error is suppressed by 1/L. By choosing a Haar unitary

operator A (or 2-design operator, such as a random Clifford operator), one can obtain a

good estimate of R2(t).

A check in a non-local spin system. To verify eq. (3.4) and the claim that the variance

of the 2-point functions is small, consider a random non-local (RNL) spin system with the

Hamiltonian given as the sum over all 2-body operators with random Gaussian couplings

Jijαβ [31]:

HRNL = −
∑

i,j,α,β

JijαβS
α
i S

β
j , (3.10)

11BY learned eq. (3.7) from Daniel Roberts.
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Figure 5. The 2-point form factor and the 2-point functions 〈AjAj(t)〉 of Pauli operators for HRNL

for n = 5 sites and averaged over 500 samples. The thick blue line is R2/L
2 and surrounding bands

of lines are all 1024 Pauli 2-point functions of different weight.

where i, j sum over the number of sites and α, β sum over the Pauli operators at a given

site. Such Hamiltonians have a particularly useful property where locally rotating the spins

of HRNL with couplings Jijαβ creates another Hamiltonian H ′
RNL with different couplings

J ′
ijαβ . More precisely, if we consider an ensemble of such 2-local Hamiltonians;

ERNL = {HRNL, for Jijαβ ∈ Gaussian} (3.11)

the ensemble is invariant under conjugation by any 1-local Clifford operator

ERNL = V ERNLV
† , V ∈ 1-body Clifford. (3.12)

Here a Clifford operator refers to unitary operators which transform a Pauli operator to a

Pauli operator. For this reason, the 2-point correlation function 〈A(0)A†(t)〉ERNL
depends

only of the weight of Pauli operator A:

〈A(0)A†(t)〉ERNL
= cm , where A is an m-body Pauli operator (3.13)

and where 〈 · 〉ERNL
denotes the ensemble (disorder) average. Thus, this system is desirable

for studying the weight dependence of 2-point correlation functions.

As mentioned above, we can write the average over 2-point correlation functions as

the average over all Paulis as

∫
dA〈A(0)A†(t)〉 = 1

4n

∑

A∈Pauli
〈A(0)A†(t)〉 = RHRNL

2 (t)

L2
, (3.14)

time evolving with HRNL. Numerically, for a single instance of HRNL, we find that the

average over all 2-point functions of Pauli operators gives R2 as expected. In figure 5, for
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n = 5 sites and averaged over 500 random instances of HRNL to suppress fluctuations, we

plot R2 along side all 2-point functions of Pauli operators. We observe that correlation

functions depend only on the weight of A, with the higher weight Pauli operators clustered

around R2. The arrangement of the 2-point functions for Paulis of different weight depends

on the number of sites n. But for n = 5, the even and odd weight Paulis are respectively

below and above R2 at later times and weight 2 and 3 Paulis are the closest to R2. We

will comment on the size dependence of correlators in section 6.

The conclusion is that we can choose a few random Paulis, and by computing 2-point

functions, quickly approximate R2. We also checked that by increasing the number of

spins, the variance becomes small and 2-point functions become closer to R2.

Operator averages and locality. Let us pause for a moment and discuss the meaning

of considering the operator average from the perspective of spatial locality in quantum

mechanical systems. In deriving the above exact formulae relating the spectrum and cor-

relators, we considered the average of OTOCs over all the possible Pauli operators. For a

system of n qubits, a typical Pauli operator has support on ≃ 3n/4 qubits because there

are four one-body Pauli operators, I,X, Y, Z. It is essential to recognize that the average of

correlation functions is dominated by correlations of non-local operators with big supports

covering the whole system. Thus, the spectral statistics have a tendency to ignore the

spatial locality of operators in correlation functions.12

In fact, the spectral statistics ignore not only spatial locality but also temporal locality

of operators. Namely, similar formulas can be derived for correlation functions with various

ordering of time. For instance, consider the following 4-point correlation function:

〈A(0)B(t)C(2t)D(t)〉 (3.15)

where the C operator acts at time 2t instead of 0 such that the correlator is not out-of-

time-ordered. Computing the average of the correlator with ABCD = I, we obtain

∫
dAdBdC〈A(0)B(t)C(2t)D(t)〉 = R4(t)

L4
(3.16)

which is exactly the same result as the average of 4-point OTOCs in eq. (3.6). Indeed,

time-ordering is washed away since GUE Hamiltonians cause a system to rapidly delocalize,

thus destroying all local temporal correlations.

In strongly coupled systems with local Hamiltonians, correlation functions behave

rather differently depending on the time ordering of operators, as long as the time gaps

involved are small or comparable to the scrambling time [4, 5, 9, 33]. This observation hints

that the spectral statistics are good probes of correlations at long time scales, but may miss

some important physical signatures at shorter time scales, such as the exponential growth

of OTOCs with some Lyapunov exponent.

12Signatures of the locality of an individual Hamiltonian may be seen in properties of its spectrum, as

argued in [32].
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3.2 OTOCs in random matrix theory

Next, we turn our attention to correlators averaged over random matrices, analytically

computing the 2-point correlation functions and 4-point OTOCs for the GUE. We begin

with the 2-point correlation functions for the GUE

〈A(0)B(t)〉GUE ≡
∫
dH〈A(0)B(t)〉 where B(t) = e−iHtB(0)eiHt , (3.17)

where
∫
dH represents an integral over Hamiltonians H drawn from the GUE. Since the

GUE measure dH is invariant under unitary conjugation dH = d(UHU †) for all U , we can

express the GUE average as

〈A(0)B(t)〉GUE =

∫∫
dHdU

〈
AUe−iHtU †BUeiHtU †〉 (3.18)

by inserting U,U † where dU is the Haar measure. Haar integrating, we obtain

〈A(0)B(t)〉GUE = 〈A〉〈B〉+ R2(t)− 1

L2 − 1
〈〈AB〉〉 , 〈〈AB〉〉 ≡ 〈AB〉 − 〈A〉〈B〉 (3.19)

where 〈〈AB〉〉 represents the connected correlator. If A,B are non-identity Pauli operators,

we have

〈A(0)B(t)〉GUE =
R2(t)− 1

L2 − 1
(A = B)

= 0 (A 6= B) .

(3.20)

If R2(t) ≫ 1, we have

〈A(0)A†(t)〉GUE ≃ R2(t)

L2
(3.21)

for any non-identity Pauli operator A. It is worth emphasizing the similarity between

eq. (3.21) and eq. (3.4). Recall that eq. (3.4) was derived by taking an average over all

Pauli operators A and is valid for any quantum mechanical system while eq. (3.21) was

derived without any additional assumption on the locality of Pauli operator A. Namely,

the key ingredient in deriving eq. (3.21) was the Haar-invariance of the GUE measure dH.

The resemblance of eq. (3.21) and eq. (3.4) implies that the GUE is suited for studying

physical properties of chaotic Hamiltonians at macroscopic scales such as thermodynamic

quantities.

Next, we compute the 4-point OTOCs for the GUE

〈A(0)B(t)C(0)D(t)〉GUE . (3.22)

Inserting U,U †, we must compute the fourth Haar moment

〈A(0)B(t)C(0)D(t)〉GUE =

∫∫
dHdU

〈
AUe−iHtU †BUeiHtU †CUe−iHtU †DUeiHtU †〉 .

(3.23)
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We can avoid dealing directly with the (4!)2 terms generated by integrating here and

focus on the leading behavior. Assuming that A,B,C,D are non-identity Pauli operators,

we obtain

〈A(0)B(t)C(0)D(t)〉GUE ≃ 〈ABCD〉R4(t)

L4
. (3.24)

Thus, OTOCs are almost zero unless ABCD = I.13,14 A similar analysis allows us to

obtain the following result for 2k-point OTOCs:

〈A1(0)B1(t) . . . Ak(0)Bk(t)〉GUE ≃ 〈A1B1 . . . AkBk〉
R2k(t)

L2k
. (3.25)

The above equation is nonzero when A1B1 . . . AkBk = I. Again, note the similarity between

eq. (3.25) and eq. (3.6). Recall that in order to derive eq. (3.6), we took an average over

OTOCs with A1B1 . . . AkBk = I. This analysis also supports our observation that the

GUE tends to capture global-scale physics very well.

Similar calculations can be carried out for correlation functions with arbitrary time-

ordering. For m-point correlators, at the leading order, we have

〈A1(t1)A2(t2) . . . Am(tm)〉GUE ≃ 〈A1 . . . Am〉 1

Lm
Tr(e−it12H)Tr(e−it23H) . . .Tr(e−itm1H)

(3.26)

where tij = tj − ti. Namely, we have:

〈A(0)B(t)C(2t)D(t)〉GUE ≃ 〈ABCD〉R4(t)

L4
. (3.27)

So, for the GUE, 〈A(0)B(t)C(2t)D(t)〉GUE ≃ 〈A(0)B(t)C(0)D(t)〉GUE. This implies that

the GUE does not care if operators in the correlator are out-of-time-ordered or not, ignoring

both spatial and temporal locality.

Careful readers may have noticed that the only property we used in the above deriva-

tions is the unitary invariance of the GUE ensemble. If one is interested in computing

correlation functions for an ensemble of Hamiltonians which are invariant under conjuga-

tion by unitary operators, then correlation functions can be expressed in terms of spectral

form factors. Such techniques have been recently used to study thermalization in many-

body systems, see [35] for instance. We discuss this point further in section 6.

3.3 Scrambling in random matrices

Finally, we discuss thermalization and scrambling phenomena in random matrices by study-

ing the time scales for correlation functions to decay.

We begin with 2-point correlators and thermalization. In a black hole (or any thermal

system), quantum information appears to be lost from the viewpoint of local observers.

This apparent loss of quantum information is called thermalization, and is often associated

13In fact, one can prove that the GUE averaged OTOCs are exactly zero if ABCD is non-identity Pauli

operator for all times.
14For analysis related to eq. (3.24) in the context of SYK, see [34].
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with the decay of 2-point correlation functions 〈A(0)B(t)〉 where A and B are some local

operators acting on subsystems HA and HB which local observers have access to. In the

context of black hole physics, HA and HB correspond to infalling and outgoing Hawking

radiation and such 2-point correlation functions can be computed from the standard anal-

ysis of Hawking and Unruh [36, 37]. 2-point correlation functions of the form 〈A(0)B(t)〉
have an interpretation as how much information about initial perturbations on HA can be

detected from local measurements on HB at time t. A precise and quantitative relation

between quantum information (mutual information) and 2-point correlation functions is

derived in appendix B. The upshot is that the smallness of 〈A(0)B(t)〉 implies the infor-

mation theoretic impossibility of reconstructing from Hawking radiation (defined on HB)

an unknown quantum state (supported on HA) that has fallen into a black hole.

Is the GUE a good model for describing thermalization? For the GUE, we found

〈A(0)B(t)〉 ≃ R2(t)/L
2 for non-identity Pauli operators with AB = I. Since the early

time behavior of R2(t) factorizes and is given by

〈A(0)A†(t)〉GUE ≃ J1(2t)
2

t2
, (3.28)

the time scale for the decay of 2-point correlation functions, denoted by t2, is O(1). This

is consistent with our intuition from thermalization in strongly coupled systems where

t2 ≃ β. As such, quantum information appears to be lost in O(1) time for local observers

in systems governed by GUE Hamiltonians.

Next, let us consider 4-point OTOCs and scrambling. To recap the relation between

OTOCs and scrambling in the context of black hole physics, consider a scenario where Alice

has thrown an unknown quantum state into a black hole and Bob attempts to reconstruct

Alice’s quantum state by collecting the Hawking radiation. Hayden and Preskill added an

interesting twist to this classic setting of black hole information problem by assuming that

the black hole has already emitted half of its contents and Bob has collected and stored

early radiation in some quantum memory he possesses. The surprising result by Hayden

and Preskill is that, if time evolution U = e−iHt is approximated by a Haar random unitary

operator, then Bob is able to reconstruct Alice’s quantum state by collecting only a few

Hawking quanta [1]. This mysterious phenomenon, where a black hole reflects a quantum

information like a mirror, relies on scrambling of quantum information where Alice’s input

quantum information is delocalized over the whole system [15]. The definition of scrambling

can be made precise and quantitative by using quantum information theoretic quantities

as briefly reviewed in appendix A and appendix B.

The scrambling of quantum information can be probed by the decay of 4-point OTOCs

of the form 〈A(0)B(t)A†(0)B†(t)〉 where A,B are some local unitary operators. An intu-

ition is that an initially local operator B(0) grows into some non-local operator under time

evolution via conjugation by e−iHt, and OTOCs measure how non-locally B(t) has spread.

For this reason, the time scale t4 when OTOCs start decaying is called the scrambling time.

Having reviewed the concepts of scrambling and OTOCs, let us study scrambling in

random matrices. For the GUE, we found 〈A(0)B(t)C(0)D(t)〉 ≃ R4(t)/L
4 for non-identity

Pauli operators with ABCD = I. Since one can approximate R4 as R4(t) ≃ R2(t)
2 at
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early times, we obtain

〈A(0)B(t)C(0)D(t)〉GUE ≃ J1(2t)
4

t4
. (3.29)

This implies that the decay time scale of 4-point OTOCs is t4 ≃ 1
2 t2, which is O(1) and

is faster than the decay time of 2-point correlation functions. This behavior is in strong

contrast with behaviors in chaotic systems studied in the context of black hole physics.

Namely, in holographic large-N CFTs with classical gravity duals, the decay times are

t2 ≃ β , t4 ≃ β logN2 (3.30)

with t4 ≫ t2. Also, the scrambling time t4 ∼ O(1) violates a bound on quantum signalling

which would hold for quantum systems with local interactions [1, 3]. The pathology can be

also seen from the viewpoint of black hole information problems. If black hole dynamics is

modeled by the time evolution of some Hamiltonian sampled from GUE random matrices,

then the scrambling time for OTOC decay is O(1). So Bob might be able to reconstruct

Alice’s quantum state in O(1) time. If Bob jumps into the black hole after decoding Alice’s

quantum state, Alice can send a quantum message with O(1) energy to Bob and verify the

quantum cloning.

Another difference between GUEs and actual chaotic systems can be seen from the

behaviors of correlators of the form 〈A(0)B(t)C(2t)D(t)〉. In the previous subsection, we

showed that 〈A(0)B(t)C(2t)D(t)〉 ≃ 〈A(0)B(t)C(0)D(t)〉. In strongly chaotic large-N

systems, we expect the following behaviors [6, 9]:

〈A(0)B(t)A(0)B(t)〉 = 1− 1

N
eλt , β ≪ t≪ β logN. (3.31)

〈A(0)B(t)C(2t)B(t)〉 = 〈A〉〈B〉〈C〉〈B〉 , t ≃ β. (3.32)

Thus these two types of correlators should behave in a rather different manner.

These discrepancies clearly highlight the failure of GUE to capture early-time quantum

chaos behavior which is present in realistic strongly-coupled systems. What was wrong

about random matrices? Recent developments from black hole physics teach us that the

butterfly effect in chaotic systems stems from delocalization of quantum information where

initially local operators grow into non-local operators. However, for the GUE, the system

does not distinguish local and non-local operators. To be concrete, let Alocal be some one-

qubit Pauli operator, and Anon-local = UAlocalU
† be some non-local operator created by

conjugating Alocal via some non-local unitary U . Due to the Haar invariance of the GUE

measure, we have

〈Alocal(0)Alocal(t)〉GUE = 〈Anon-local(0)Anon-local(t)〉GUE . (3.33)

As this argument suggests, the GUE is a good description of quantum systems which have

no notion of locality. After the scrambling time, we expect that an initially local operator

Alocal(0) will time evolve to Alocal(t) which has support on the whole system, and the notion

of locality is lost (or at least obfuscated) after the scrambling time. We thus expect that
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〈Alocal(0)Alocal(t)〉GUE will be a good description of two-point correlation functions after

the scrambling time. Similarly, the GUE does not distinguish time-ordering as seen from

〈A(0)B(t)C(2t)D(t)〉 ≃ 〈A(0)B(t)C(0)D(t)〉. This implies that, at late time scales when

the GUE becomes a good description, the system forgets the locality of time. In this sense,

the GUE captures physics of quantum chaos after the locality of spacetime is forgotten.

We will elaborate on this issue in section 6.

4 Frame potentials and random matrices

In discussions of black hole information loss, we often approximate the chaotic internal

dynamics of a black hole as evolution by a Haar random unitary [1, 4], and talk about

typical black hole states as random pure states generated by Haar unitaries [38]. While

it is impractical to generate a Haar random unitary operator — due to its exponential

quantum circuit complexity, as noted by [1] — it often suffices to sample from an ensemble

that only reproduces the first few moments of the Haar ensemble. [16] made significant

progress in quantifying chaos in OTOCs by relating the late-time decay of 2k-point OTOCs

to the k-th frame potential, measuring the distance to Haar-randomness.15

One efficient way of generating a unitary k-design is to employ random local quantum

circuits where one applies random two-qubit unitary gates at each unit time [1, 40, 41]

and the ensemble monotonically becomes a k-design as time evolves. Motivated by tensor

network descriptions of the AdS/CFT correspondence [42, 43], random local quantum

circuits have been used as a toy model of the Einstein-Rosen bridge and the dynamics

of the two-sided AdS black hole [15]. While such toy models are successful in capturing

key qualitative features such as fast scrambling and complexity growth, their dynamics

is not invariant under time translations. A natural question is to ask if systems of time-

independent Hamiltonians are able to form k-designs or not.

In this section we study time-evolution by the ensemble of GUE Hamiltonians and

quantify its approach to Haar-randomness by asking when it forms a unitary k-design.

We consider the ensemble of unitary time evolutions at a fixed time t, with Hamiltonians

drawn from the GUE

EGUE
t =

{
e−iHt, for H ∈ GUE

}
. (4.1)

As the frame potential quantifies the ensemble’s ability to reproduce Haar moments, i.e.

form a k-design, we will be interested in the time scales at which we approach “Haar

values.” Making use of the spectral form factors computed for the GUE, we derive explicit

expressions for the frame potentials and extract the key time scales. We find that the GUE

ensemble forms an approximate k-design after some time scales, but then deviates from

being a k-design.

4.1 Overview of QI machinery

We begin by introducing the formalism of unitary k-designs and defining the frame poten-

tial. Consider a finite dimensional Hilbert space H of dimension L. In this paper we are

15Also of interest, [39] recently discussed scrambling and randomness and showed that the Rényi

k-entropies averaged k-designs are typically near maximal.
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primarily interested in ensembles of unitary operators E = {pi, Ui}, where the unitary Ui

appears with some probability pi. A familiar ensemble might be the Haar ensemble. The

Haar ensemble is the unique left and right invariant measure on the unitary group U(L),

where
∫

Haar
dU = 1 ,

∫

Haar
dU f(U) =

∫

Haar
dU f(V U) =

∫

Haar
dU f(UV ) , (4.2)

for some function f and for all V ∈ U(L). Taking k copies of H, we can consider an

operator O acting on H⊗k, i.e. O ∈ A(H⊗k) the algebra of operators on the Hilbert space.

The k-fold channel of O with respect to Haar is16

Φ
(k)
Haar(O) ≡

∫

Haar
dU (U⊗k)†OU⊗k . (4.3)

Given an ensemble of unitary operators E = {pi, Ui}, we might ask how Haar-random

it is. More specifically, we should ask to what extent our ensemble reproduces the first

k moments of the Haar ensemble, a notion quantified by unitary k-designs.17 The k-fold

channel with respect to the ensemble E is

Φ
(k)
E (O) ≡

∫

U∈E
dU(U⊗k)†OU⊗k , (4.4)

written here for a continuous ensemble. We say that an ensemble E is a unitary k-design

if and only if

Φ
(k)
E (O) = Φ

(k)
Haar(O) , (4.5)

meaning we reproduce the first k moments of the Haar ensemble. But it does not make

sense to compute the k-fold channels and check this equality for all operators in the algebra.

Thus, we want a quantity which measures how close our ensemble is to being Haar-random.

The frame potential, defined with respect to an ensemble as [44]

F (k)
E =

∫

U,V ∈E
dUdV

∣∣Tr(U †V )
∣∣2k , (4.6)

measures Haar-randomness in the sense that is tells us how close the ensemble is to forming

a unitary k-design. More precisely, it measures the 2-norm distance between the k-fold

channel Φ
(k)
E with respect to the ensemble E , and the k-fold twirl Φ

(k)
Haar with respect to the

Haar ensemble. The frame potential will be a central object of study in this section.

The k-th frame potential for the Haar ensemble is given by

F (k)
Haar = k! for k ≤ L . (4.7)

Furthermore, for any ensemble E of unitaries, the frame potential is lower bounded by the

Haar value

F (k)
E ≥ F (k)

Haar , (4.8)

16The k-fold channel of O is also referred to in the literature as the k-fold twirl of O.
17Note that in the quantum information literature, these are often referred to as unitary t-designs. But

here t will always denote time.
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with equality if and only if E is a k-design. In particular, the deviation from the Haar value

F (k)
E − F (k)

Haar corresponds to the 2-norm distance of 2-fold quantum channels. The notion

of an approximate k-design is reviewed in appendix A.

We will also need to compute moments of the Haar ensemble, i.e. the ability to integrate

monomials of Haar random unitaries. The exact formula [45, 46] for evaluating these

moments is given by

∫
dU U j1

k1
. . . U jn

kn
U †ℓ1

m1
. . . U †ℓn

mn
=

∑

σ,τ∈Sn

δj1mσ(1)
. . . δjnmσ(n)

δℓ1kτ(1) . . . δ
ℓn
kτ(n)

Wg(τσ−1) , (4.9)

where, for the n-th moment, we sum over cycles of the permutation group Sn. The Wein-

garten function Wg, a function of cycles σ ∈ Sn, is defined in appendix C.3. Performing

Haar integrals then simply amounts to contracting indices and computing the Weingarten

functions.

4.2 Frame potentials for the GUE

k = 1 frame potential. The first frame potential for the GUE is written as

F (1)
GUE =

∫
dH1dH2 e

−L
2
TrH2

1 e−
L
2
TrH2

2

∣∣∣Tr
(
eiH1te−iH2t

)∣∣∣
2
. (4.10)

Noting that the GUE measure is invariant under unitary conjugation, we find

F (1)
GUE =

∫

Haar
dUdV

∫
dH1dH2 e

−L
2
TrH2

1 e−
L
2
TrH2

2

∣∣∣Tr
(
U †Λ†

1UV
†Λ2V

)∣∣∣
2
, (4.11)

where we define Λ ≡ Ue−iHtU †, i.e. the matrix exponential of the GUE matrix in the

diagonal basis. Going into the eigenvalue basis, we can express the GUE integral as

F (1)
GUE =

∫
Dλ1Dλ2

∫
dU Tr

(
U †Λ†

1UΛ2

)
Tr

(
Λ†
2U

†Λ1U
)
, (4.12)

where we have used the left and right invariance of the Haar measure to write the expression

as a single Haar integral. Written out explicitly with indices,

F (1)
GUE =

∫
Dλ1Dλ2

∫
dU

(
U j1
k1
U j2
k2
U †ℓ1

m1
U †ℓ2

m2
Λ†
1
m1
j1

Λ2
k1
ℓ1
Λ†
2
k2
ℓ2
Λ1

m2
j2

)
, (4.13)

and we can do the Haar integral using the second moment

∫
dU U j1

k1
U j2
k2
U †ℓ1

m1
U †ℓ2

m2
=

1

L2 − 1

(
δj1m1

δj2m2
δℓ1k1δ

ℓ2
k2

+ δj1m2
δj2m1

δℓ1k2δ
ℓ2
k1

− 1

L
δj1m1

δj2m2
δℓ1k2δ

ℓ2
k1

− 1

L
δj1m2

δj2m1
δℓ1k1δ

ℓ2
k2

)
. (4.14)

We find

F (1)
GUE =

∫
Dλ1Dλ2

1

L2 − 1

(
TrΛ†

1TrΛ1TrΛ
†
2TrΛ2 + L2 − 1

L

(
LTrΛ†

1TrΛ1 + LTrΛ†
2TrΛ2

))
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Figure 6. The first and second frame potentials for the GUE, using the infinite temperature 2-point

and 4-point form factors computed in section 2, plotted for L = 200 and L = 1000, respectively.

We observe the decay to the Haar value at the dip time and a subsequent rise at late times.

or equivalently

F (1)
GUE =

1

L2 − 1

(
R2

2 + L2 − 2R2

)
, (4.15)

written in terms of the 2-point form factor

R2 =

∫
Dλ

∑

i,j

ei(λi−λj)t . (4.16)

We know from the expression found in section 2, that at early times R2 ∼ L2, so the

early time behavior of the frame potential is dominated by the R2
2 term until near the dip

time. At the dip time, R2 ≈
√
L and F (1)

GUE ≈ 1, achieving the Haar value and forming a

1-design. At late times t→ ∞, we take the late time limit of R2 where only the δij terms

contribute, and find R2 ≈ L, meaning that the first frame potential F (1)
GUE ≈ 2 or double

the Haar value. The first frame potential is plotted in figure 6.

A common intuition is that physical systems will become more and more uniformly

random as time goes passes. Then one might expect that the frame potential, a measure

of Haar randomness, would be a monotonically decreasing function with time. While it is

monotonic for random local quantum circuits, we found that it is not generically monotonic

for ensembles of unitaries generated by fixed Hamiltonians.18 In section 6, we propose an

alternative quantity which may be monotonic at late times.

k = 2 frame potential. We can similarly compute the second frame potential using the

unitary invariance of the GUE measure:

F (2)
GUE =

∫
dH1dH2 e

−L
2
TrH2

1 e−
L
2
TrH2

2
∣∣Tr

(
eiH1te−iH2t

)∣∣4 (4.17)

=

∫
Dλ1Dλ2

∫
dU Tr

(
U †Λ†

1UΛ2

)
Tr

(
Λ†
2U

†Λ1U
)
Tr

(
U †Λ†

1UΛ2

)
Tr

(
Λ†
2U

†Λ1U
)
,

18Frame potentials monotonically decrease in local random circuits and Brownian circuits [3, 40] where

the time evolution is Markovian in the sense that the system samples different Hamiltonians, or infinitesimal

time evolution operators, at random at each time step. In Markovian ensembles, spectral form factors are

monotonically decreasing, and there is no ramp behavior. If the ensemble E is generated by a Markovian

process and is invariant under complex transposition E = E†, then we have F (k)(t) = R2k(2t).
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where again, Λ is the exponentiated diagonal matrix. The fourth moment of the Haar

ensemble that appears here generates 4!2 = 576 terms. Recalling eq. (4.9), we can compute

the fourth moment by computing the necessary Weingarten functions and summing over

δ-function contractions.

We relegate the presentation of the full expression for the k = 2 frame potential, and

the definitions of the spectral quantities on which it depends, to appendix C.2. While F (2)
GUE

depends on a number of spectral form factors, the dominant and interesting behavior is

entirely captured by the 2-point and 4-point spectral form factors. At early times, the

dominant contribution is

Early : F (2)
GUE ≈ R2

4

L4
. (4.18)

As we approach the dip time, the spectral quantities in the second frame potential,

F (2)
GUE ≈ 2 +

R2
4

L4
− 8R2

4

L6
+

6R2
4

L8
− 36R2

2

L4
+

4R2
2

L2
+

64R2R4

L6
− 8R2R4

L4
+ . . . , (4.19)

are suppressed. From the calculation in section 2, we have R2 ≈
√
L and R4 ≈ L at the

dip, meaning all terms are suppressed, with the exception of the leading constant. Thus,

at the dip time, the EGUE
t achieves the Haar value F (2)

Haar ≈ 2 and forms an approximate

unitary 2-design.

At late times, in the infinite time average, we know that R2 → L, and R4 → 2L2 − L

from the two eigenvalue pairings in the sum where the exponent vanishes, i.e. δikδjℓ and

δiℓδjk, and accounting for the i = j = k = ℓ terms. This tells us that the only terms that

survive at late times, and are not suppressed in L, are

Late : F (2)
GUE ≈ 2 +

R2
4

L4
+

4R2
2

L2
, (4.20)

which gives us F (2)
GUE ≈ 10, to leading order in 1/L.

4.3 Higher k frame potentials

Let us review what we have discussed so far.

k = 1 frame potential. We computed the first frame potential for the GUE to be

F (1)
GUE =

1

L2 − 1

(
R2

2 + L2 − 2R2

)
≈ 1 +

R2
2

L2
− 2R2

L2
(4.21)

for large L. In the late time limit, where t→ ∞, we have that R2 → L, and the late time

behavior goes like F (1)
GUE ∼ 1 +R2

2/L
2, and F (1)

GUE → 2 or double the Haar value.

Early : F (1)
GUE ≈ R2

2

L2
, Dip : F (1)

GUE ≈ 1 , Late : F (1)
GUE ≈ 2 . (4.22)

k = 2 frame potential. We discussed the early and dip behaviors above. The terms

unsuppressed at late times are

F (2)
GUE, late ≈ 2 +

R2
4

L4
+

4R2
2

L2
. (4.23)

Since R2 → L and R4 → 2L2 − L in the late time limit, F (2)
GUE approaches 10.

Early : F (2)
GUE ≈ R2

4

L4
, Dip : F (2)

GUE ≈ 2 , Late : F (2)
GUE ≈ 10 . (4.24)
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k = 3 frame potential. The full expression for the third frame potential is given in

appendix C.2. The leading order behavior at early times is R2
6/L

6, and at the dip time,

the third frame potential approaches its Haar value. Again, the late time behavior above is

better understood by looking at the dominant form factors. At late times, the terms that

contribute at zeroth order in L are

F (3)
GUE, late ≈ 6 +

R2
6

L6
+

9R2
4

L4
+

18R2
2

L2
→ 96 , (4.25)

as R2 → L, R4 → 2L2, and R6 → 6L3 to leading order in L. In summary,

Early : F (3)
GUE ≈ R2

6

L6
, Dip : F (3)

GUE ≈ 6 , Late : F (3)
GUE ≈ 96 . (4.26)

k = 4 frame potential. It is not tractable to compute the k = 4 frame potential, as the

Haar integrals involved (the eighth moment of the Haar ensemble), generate (8!)2 ∼ 1.6

billion terms. But the interesting behavior can be understood from the dominant terms

at leading order in L at different time scales. Recall that the 2k-th moment of the Haar

ensemble can be written as the sum of δ-functions and the Weingarten function Wg (defined
in appendix C.3) over elements of the permutation group S2k. At large L, the Weingarten

functions go as [46, 47]

Wg(σ) ∼ 1

L4k−#cycles
, (4.27)

where ‘#cycles’ denotes the number of cycles in the permutation σ. The Weingarten

function contributing at leading order in 1/L is the one labeled by the partitioning of 2k

into ones, i.e. the trivial permutation of S2k, which contributes as

W({1, 1, . . .}) ∼ 1

L2k
. (4.28)

All other Weingarten functions, labeled by the integer partitions of 2k, contribute at sub-

leading order at early and late times. Thus, instead of computing the full fourth frame

potential, we can compute the terms of combinations of spectral functions with this Wein-

garten function as their coefficient. In the sum over elements of the permutation group

σ, τ ∈ S2k, we simply need the terms where τσ−1 is the trivial permutation, i.e. τ = σ.

Computing this we find the dominant contribution to the k = 4 frame potential, at leading

order in 1/L. The full expression is still too large to reproduce here, but we can comment

on the relevant features. The early time behavior is

F (4)
GUE, early ≈ R2

8

L8
. (4.29)

At the dip, where Rn ∼ Ln/2, all terms are suppressed, leaving only the constant Haar

value 24. Lastly, the late time behavior is

F (4)
GUE, late ≈ 24 +

R2
8

L8
+

16R2
6

L8
+

72R2
4

L4
+

96R2
2

L2
→ 1560 , (4.30)

In summary,

Early : F (4)
GUE ≈ R2

8

L8
, Dip : F (4)

GUE ≈ 24 , Late : F (4)
GUE ≈ 1560 . (4.31)
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k-th frame potential. We are now poised to discuss the general form of the k-th frame

potential

Early : F (k)
GUE ≈ (R2k)

2

L2k
, Dip : F (k)

GUE ≈ k! . (4.32)

We can also determine what the general late time value should look like. Above, we

understood that the plateau value of the k-th frame potential is the sum of the Haar

value and the contributions of the spectral functions. It was only the squares of the

spectral functions that gave contributions which were not suppressed by 1/L at late times.

Extrapolating from above, we expect the k-th frame potential to have

F (k)
GUE, late ≈ Haar + spectral functions ≈ k! +

R2
2k

L2k
+ c1

R2
2k−2

L2k−2
+ . . .+ ck−1

R2
2

L2
, (4.33)

with coefficients cℓ. Given the way the spectral form factors are generated from Haar

integration, we can understand these coefficients as the number of partial bijections of a

given length. For example, for k = 3 there are 24 partial bijections on a 3 element set of

length 2, i.e. 24 nonclosed cycles of length two, which gives us 24 ways of constructing the

2-point functions for k = 3. More generally, the coefficients above can be written as

cℓ(k) =

(
k

ℓ

)2

ℓ! , (4.34)

where for k = 4, we have the coefficients 1, 16, 72, 96, 24. The k-th coefficient is the

Haar value ck(k) = k!, i.e. the number of ways to construct 0-point functions in the Haar

integration. We can then write down the general late time behavior for the k-th frame

potential

F (k)
GUE, late ≈

k∑

ℓ=0

cℓ(k)
R2

2(k−ℓ)

L2(k−ℓ)
. (4.35)

Since the late time value of the 2k-point spectral form factor is, to leading order in L,

R2k = k!Lk, the late time floor value for the k-th frame potential of the GUE is

F (k)
GUE, late ≈

k∑

ℓ=0

(
k

ℓ

)2

ℓ!
(
(k − ℓ)!

)2
=

k∑

ℓ=0

k!2

ℓ!
. (4.36)

where the first few terms of this sequence are 2, 10, 96, 1560.

We emphasize that while the purpose of this section is to understand GUE Hamilto-

nians, the derivations in this subsection where we relate the frame potential to spectral

2k-point functions only used the unitary invariance of the measure to proceed in doing the

calculations by Haar integration. Thus, if we are handed an ensemble whose measure is

unitarily invariant, the same relations hold.

4.4 Frame potentials at finite temperature

We now generalize the discussion of the frame potential to ensembles at finite temperature

and compute the thermal frame potential for the GUE. Again we consider the ensemble of
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unitary time evolutions at a fixed time t, with H drawn from an ensemble E . One might

consider generalizing the frame potential to finite temperature by defining the frame po-

tential with respect to a thermal density matrix ρβ = e−βH/Tr(e−βH), and taking thermal

expectation values. With this in mind, we define the frame potential at finite temperature

by taking the average over all thermal 2k-point functions, with the operator insertions A

and B spaced equidistant on the thermal circle

〈AB(t) . . . AB(t)〉 = Tr
(
(e−βH/2kAe−βH/2kB(t) . . . e−βH/2kAe−βH/2kB(t)

)
/Tre−βH .

(4.37)

Averaging the norm-squared 2k-point correlation function over all operators and then av-

eraging over the ensemble, we find

F (k)
Eβ =

∫
dH1dH2

∣∣Tr
(
e−(β/2k−it)H1e−(β/2k+it)H2

)∣∣2k

Tr(e−βH1)Tr(e−βH2)/L2
. (4.38)

Note that this definition differs from the one in the appendix of [16] by a factor of L2.

With this slight change in normalization, we reduce to the usual frame potential F (k)
E at

infinite temperature.

k = 1 frame potential. Let us compute the first thermal frame potential for GUE

Hamiltonians:

F (1)
GUE(t, β) =

∫
Dλ1Dλ2

∫
dU

∣∣Tr
(
U †e−(β/2−it)D1Ue−(β/2+it)D2

)∣∣2

Tr(e−βH1)Tr(e−βH2)/L2
. (4.39)

where we use the invariance of the GUE measure under unitary conjugation, diagonalize

H where D is the diagonalized Hamiltonian, and use the left and right invariance of the

Haar measure to write a single Haar integral. Doing the Haar integral, we find

F (1)
GUE(t, β) =

1

L2 − 1

(
R̃2

2(t, β/2) + L2 − 2R̃2(t, β/2)
)
, (4.40)

where we define

R̃2(t, β) ≡
〈
Z(t, β)Z∗(t, β)

Z(2β)/L

〉

GUE

=

∫
Dλ

∑
ij e

it(λi−λj)e−β(λi+λj)

∑
i e

−2βλi/L
, (4.41)

which is normalized such that we recover the infinite temperature form factor R2(t) when

β → 0. This normalization differs from 〈|Z(t, β)|2/Z(β)2〉, which gives an initial value of

one. Here the thermal form factor which naturally arises from the thermal frame potential

has a late time value which is β-independent. The initial value of R2(t, β), and thus

F (1)
GUE(t, β), depends on the β.

In stating the time scales for the thermal frame potential, we will work with the

‘quenched’ version of eq. (4.41) where the numerator and denominator are averaged sep-

arately. As we mentioned in section 2.2, the ‘annealed’ 2-point form factor is the correct

object to consider, but we opt to work with the more analytically tractable quenched form

factor. Numerically, the two functions are in close agreement with each other.
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4.5 Time scales from GUE form factors

With an understanding of the behavior of the GUE spectral form factors from section 2.2,

we can now look at the time scales for the dip and plateau of the first frame potential

F (1)
GUE =

1

(L2 − 1)

(
R2

2 + L2 − 2R2

)
. (4.42)

At td ≈
√
L, when R2 ≈

√
L, we reach the minimal Haar value of 1, and at the plateau

time tp = 2L, when R2 = L, we reach the late time value of 2.

There is another time scale at play here which is an artifact of working at infinite

temperature. We might also ask what is the first time the form factor or frame potential

reaches its minimal value. This time scale can be attributed to the first zero of the Bessel

function, J1(2t) = 0 at t ≈ 1.92, and is universal for all values of L. This is the first time

at which the ensemble becomes a 1-design. Something like the scrambling time, where the

frame potential begins to deviate rapidly from its initial value, occurs at O(1) time.

Using the explicit expression for the GUE 4-point form factor, we can also verify the

expected time scales in the second frame potential F (2)
GUE. At the dip time, td ≈

√
L, we

have that all the form factors appearing in the F (2)
GUE are suppressed by powers of L, and

thus the leading term is the Haar value, F (2)
GUE(td) ≈ 2. Further, the plateau values of the

spectral form factors R2 and R4 give us the late time value of F (2)
GUE ≈ 10.

Lastly, we can extract the time scales and values of the finite temperature frame

potential from our discussion of R2(t, β). The initial value of the first frame potential is

F (1)
GUE(t = 0, β) = L2h1(β/2)

4

h1(β)2
, (4.43)

where h1(β) = J1(2iβ)/iβ. At the dip time, td ≈ h2(β/2)
√
L, the thermal form factor

defined above R̃2(td, β/2) ≈
√
Lh3(β/2)/h1(β), with the functions defined in section 2.2.

For β ≪ L, we have

F (1)
GUE(td, β) ≈ 1 . (4.44)

Finally, as we can see from time averaging eq. (4.41), at the plateau time

F (1)
GUE(tp, β) = 2 , (4.45)

for any β, as the late time value of the thermal frame potential does not depend on the

temperature.

Let us briefly comment on the dip value of the k-th frame potential at infinite temper-

ature. As we discussed, at the dip time td ≈
√
L, the frame potentials reached the Haar

value and form an approximate k-design for some k. Determining the size of k requires

an understanding of the corrections to the dip value. The leading order correction to the

Haar value at the dip comes from R2
2/L

2 ∼ 1/L, the coefficient of which is ck−1(k) = k! k.

So at the dip time

F (k)
GUE(td) ≈ k!

(
1 +

k

L

)
, (4.46)

meaning we form an approximate k-design for k ≪ L.
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The claim that the GUE forms a k-design at intermediate times but then deviates

from this behavior at late times might at first seem surprising, but the late time behavior

makes sense if we consider the dephasing of GUE eigenvalues in the t → ∞ limit. Under

the exponential map λ → eiλt, the GUE eigenvalues are distributed around the circle and

at early times will still be correlated and logarithmically repel. However, at late times

the eigenvalues will spread uniformly around the circle. Moreover, explicitly computing

the level density for the GUE under the exponential map and taking the long time limit,

one finds that the density becomes constant and the eigenvalues are independently and

uniformly distributed. Eigenvalue statistics of Haar random unitary operators can be

characterized by the following well-known relation [48]19

∫

Haar
dU tr(U t)tr(U †t) = t k ≤ L . (4.47)

If we suppose that the eigenvalue distribution of U is random, then
∫
dU tr(U t)tr(U †t)

would not depend on t. Therefore, the late-time eigenvalue statistics of unitaries generated

by fixed GUE matrices is quite different from those of Haar unitaries, which have eigenvalue

repulsion.

5 Complexity and random matrices

In recent years, the notion of quantum complexity has attracted significant attention in

the study of quantum many-body systems [49–51]. By quantum complexity of a quantum

state |ψ〉, we mean the minimal number of elementary local quantum gates necessary to

(approximately) create |ψ〉 from a trivial product state with no entanglement. A simi-

lar characterization applies to the quantum complexity of unitary operators constructed

from the identity operator. Quantum complexity provides deep insight into what kinds

of physical operations are allowed (or prohibited) in a given physical system as states or

operators of very large complexity cannot be prepared or implemented in a short period of

time by the evolution of local Hamiltonians with finite energy density. Quantum complex-

ity has also proven useful in condensed matter physics where topological phases of matter

can be classified in terms of the quantum complexity of ground state wavefunctions [52].

More recently, it was asked whether the AMPS thought experiment can be carried out in a

physically reasonable amount of time and resources by considering the computational com-

plexity of decoding the Hawking radiation [53]. In the past few years, quantum complexity

has been considered in holography as a possible CFT observable20 to study the late-time

dynamics of the AdS black holes [50, 51].

Despite all the promises of the usefulness of quantum complexity, a precise understand-

ing of the growth of quantum complexity in quantum many-body systems, especially in

AdS/CFT, continues to elude us. While it is possible to see a hint of complexity growth

from entanglement dynamics at early times before the scrambling time,21 the late-time

19If one views t as a discrete time and U as a time evolution in a unit time with a Hamiltonian H = i logU ,

then the above equation mimics the late-time ramp and plateau behavior.
20At least with respect to some subspace of states of the boundary CFT.
21For example, from the level-statistics of the entanglement spectrum [54].

– 29 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
8

complexity growth remains difficult to observe as the extremal surfaces do not go through

the interior of the black hole and entanglement entropies get saturated at late times. From

a mathematical perspective, it is extremely challenging to compute the quantum gate com-

plexity of a given quantum state |ψ〉 as one essentially needs to consider all the possible

quantum circuits creating |ψ〉 and find the one with the minimal number of gates. Thus

it would be valuable to have an analytical toy example of Hamiltonians whose dynamics

indeed makes the quantum complexity of wavefunctions increase even after the scrambling

time by providing a rigorous lower bound on quantum complexity.

Here, we present analysis of complexity growth of typical Hamiltonian time evolution

by GUEs and show that quantum complexity indeed grows in time. A lower bound on

a typical unitary operator in an ensemble E can be computed from a simple counting

argument. Observe that short depth quantum circuits can prepare only a small number

of unitary operators which occupy a tiny fraction of the whole space of unitary operators.

The idea is that, if there are so many unitary operators in E which are sufficiently far

apart and distinguishable, then most of operators in E cannot be created by a short depth

circuit. Furthermore, it has been found that lower bounds on the number of distinguishable

unitary operators in E can be obtained by frame potentials, a measure of randomness in

E . Although such a counting argument often gives a rather loose lower bound, it is still

possible to obtain a rigorous complexity lower bound for a system of quantum many-body

Hamiltonians. See [16] for a rigorous treatment and details.

To be concrete, let us consider a system of qubits where we pick a pair of qubits and

apply an arbitrary two-qubit gate at each step. While the circuit complexity for generating

an ensemble and the circuit complexity for generating a particular unitary in the ensemble

are different, the former provides an approximate lower bound for the circuit complexity

of typical unitary operators in the ensemble [16]. We define the number of quantum gates

necessary to create an ensemble E by a quantum gate complexity Cgate. The lower bound

on the quantum gate complexity is then given by

Cgate ≥
2kn− log2F (k)

2 log(n)
, (5.1)

up to some constant multiplicative factor. Let us consider the bound for small k. In

section 4, we found that F (k) drops to its minimal value ∼ k! at t ∼ O(1) (the first zero of

the Bessel function). We thus have

Cgate(t) ≥
2kn− log2

R2
2k(t)

L2k

2 log(n)
≃ 4kn− log2R2

2k(t)

2 log(n)
≃ 4k(n− log2R1(t))

2 log(n)
(5.2)

up to the first dip time tdip ∼ O(1) where we have used an approximation R2k ≃ (R1)
2k.

Thus, at t ∼ O(1), the following lower bound on the complexity is obtained:

Cgate(tdip) ≥ O
(

kn

log(n)

)
. (5.3)

Converting it into a quantum circuit complexity, we obtain

Ccircuit(tdip) ≥ O
(

k

log(n)

)
. (5.4)
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This lower bound should be valid as long as k ∼ O(1). As we have discussed in section 2 and

section 4, the early-time oscillations of spectral form factors and frame potentials disappear

at finite temperature. It would be then useful to consider the complexity lower bound based

on envelope functions of form factors and frame potentials. Since the asymptotic behavior

is given by R1(t) ∼ 1/t3/2, we would have

Cgate(β, t) ≥ O
(
k log t

log(n)

)
(5.5)

where β implies that we consider the asymptotic behaviors of the envelope. Thus, the

quantum circuit complexity grows at least logarithmically in t up to the thermal dip time.

While the above studies are able to provide rigorous lower bounds on quantum circuit

complexity, the bounds are not meaningful when k is small. To obtain a meaningful lower

bound on quantum complexity, we need to evaluate the frame potential and form factor

for large k. Analytically computing R2k and F (k) for large k seems rather challenging.

Instead, we employ a certain heuristic argument to derive the decay of R2k and F (k). Let

us begin by recalling the early-time behavior of 1-point form factor. The 1-point form

factor R1(t) can be analytically written via a contour integral as follows [55]

R1(t) = Le−
t2

2L

∮
du

2πi

(
1

−it

)(
1− it

Lu

)L

e−itu. (5.6)

For L→ ∞, the integral gives the Bessel function:

∮
du

2πi

(
1

−it

)(
1− it

Lu

)L

e−itu ≃ J1(2t)

t
. (5.7)

But J1(2t) ≃ t for t≪ 1, so we have

R1(t) ≃ Le−
t2

2L
J1(2t)

t
(5.8)

where the Gaussian decay is dominant for t≪ 1 while, for 1 ≪ t≪
√
L, the Bessel function

dominates the decay. In a similar manner, the 2k-point form factor can be analytically

written as

R2k(t)=L2ke−
kt2

L

∮ 2k∏

j=1

duj
2πi

(
1+(−1)j

it

Luj

)L

e(−1)jituj det

(
1

uj−uk+(−1)jit/L

)
(5.9)

where the sign of ±it depends on the index of ui and the integral part is equal to unity at

t = 0. In previous sections, we have neglected the Gaussian decay because our discussions

were mostly centered on small k spectral form factors. But, for large k, the Gaussian decay

part is no longer negligible. Let us bound the form factor by using the Gaussian decay

part only by neglecting the decay contribution from Bessel functions in the integral part:

R2k(t) ≤ L2ke−
kt2

L . (5.10)

While the validity of this inequality for large k remains unclear, we assume its validity up

to the dip time ∼
√
L when ramp behavior kicks in. The notion of unitary k-design and its
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application to complexity would be meaningful only up to k ∼ O(L) (see [16] for instance).

By using this approximate bound for k = cL with c ∼ O(1), we will have

F (cL) . L2ke−2ct2 (5.11)

up to the dip time ∼
√
L. This leads to the following estimate of quantum complexity

growth for the GUE:

Cgate &
ct2

log(n)
(5.12)

which predicts a quadratic growth of quantum complexity.

Let us compare our estimate with predictions from the AdS/CFT correspondence.

According to the conjecture that quantum complexity is proportional to the volume in the

bulk, the early-time complexity (volume) growth is quadratic in time, and then becomes

linear in time. Our analysis above suggests that the complexity growth for the GUE is

(at least) quadratic in t for a long time until very close to the saturation of quantum

complexity ∼ L. One may find that t2 complexity growth is unphysical as the system has

evolved only for time t. The point is that the GUE Hamiltonian is generically non-local

and is comprised of O(n)-body terms whereas we measure quantum complexity by using

two-local quantum gates as building blocks.

6 Characterization of Haar-invariance

From the perspective of operator delocalization, it is clear why the GUE fails to characterize

information scrambling and dynamics in local quantum systems at early times. Recall that

the GUE is Haar-invariant, meaning
∫

U∈Haar
dU

∫

H∈GUE
dH f(UHU †) =

∫

H∈GUE
dH f(H) (6.1)

where U is integrated over the unitary group U(L) and where f(H) is an arbitrary func-

tion. As a consequence, a typical GUE Hamiltonian is non-local (or O(n)-local), so local

operators are delocalized essentially immediately. Indeed, the Haar-invariance of the GUE

ensemble and non-locality of its Hamiltonians resulted in unusual behaviors of OTOCs

whose decay time was shorter than that of 2-point correlation functions. It thus appears

that local chaotic Hamiltonians and a typical Hamiltonian from a Haar-invariant ensemble

behave in a dramatically different way.

However, previous studies on chaotic Hamiltonians suggest that at late times, Haar-

invariant Hamiltonian ensembles, such as the GUE, GOE and GSE, capture behaviors of

correlation functions remarkably well. This apparent tension between early time and late

time behaviors may be resolved in the following manner. Initially, any ensemble of local

Hamiltonians is not Haar-invariant because Hamiltonians are made of local terms. This

can be clearly seen from the fact that the OTOC, 〈A(0)B(t)A(0)B(t)〉, behaves rather

differently depending on the sizes of operators A,B. Yet, after the scrambling time when

local operators become delocalized by Hamiltonian evolution, it becomes harder to tell
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whether the original operators A(0), B(0) were local or not, and we expect that the unitary

ensemble becomes ‘approximately’ Haar-invariant.

With this observation in mind, we are naturally led to consider a fine-grained char-

acterization of Haar-invariance which we shall call k-invariance. Intuitively, k-invariance

refers to an ensemble of unitary operators which appear to be Haar-invariant up to k-th

moments. More precisely, let E be an ensemble of unitary operators. We define a Haar-

invariant extension Ẽ of this ensemble by:

∫

U∈Ẽ
dU =

∫

W∈Haar
dW

∫

U∈E
d(WUW †) . (6.2)

From the construction, we can easily see W ẼW † = Ẽ for any unitary operator W , and

so the Haar’ed ensemble is independent of any basis. Let us consider the k-fold twirl

superoperator:

Φ
(k)
E (·) =

∫

U∈E
dU U⊗k(·)U †⊗k

. (6.3)

Then, E is said to be k-invariant if and only if

Φ
(k)
E (·) = Φ

(k)

Ẽ
(·) . (6.4)

An ensemble of unitaries is Haar-invariant if and only if it is k-invariant for all k ≥ 1. Sim-

ilar definitions apply to Haar-invariance with respect to orthogonal and symplectic groups.

The utility of k-invariance can be seen from an explicit relation between correlation

functions and spectral statistics. Recall that we have derived the following relation in the

GUE by using the Haar-invariance of the GUE measure:

〈A1(0)B1(t) . . . Ak(0)Bk(t)〉GUE ≃ 〈A1B1 . . . AkBk〉
R2k(t)

L2k
. (6.5)

It is clear that the same derivation applies to any ensemble which is k-invariant. The

implication is that, after the k-invariance time, the behavior of 2k-point OTOCs can be

completely determined by the spectral statistics alone. The physical significance of the k-

invariance time is that it is the time scale when OTOCs behave in a similar way regardless

of the locality or non-locality of the operators Aj , Bj (as well as their time-ordering). A

similar conclusion holds for k-th frame potentials which can be written only in terms of

spectral form factors for k-invariant ensembles. Thus, k-invariance and its associated time

scale will be a useful notion to characterize the loss of locality from the perspective of

2k-point OTOCs and the onset of random matrix behavior.

How can one verify that some ensemble E is k-invariant? One formal approach is to

use frame potentials. Let us define the following operator

S =

∫

E
dUU⊗k ⊗ U †⊗k −

∫

Ẽ
dUU⊗k ⊗ U †⊗k

(6.6)
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which corresponds to the difference between tensor expanders from E and its Haar-invariant

extension Ẽ . Then we have

0 ≤ tr(S†S) =

∫

U,V ∈E
dUdV |tr(U †V )|2k

−
∫

U,V ∈E
dUdV

∫

W∈Haar
dU |tr(U †WVW †)|2k

−
∫

U,V ∈E
dUdV

∫

W∈Haar
dU |tr(WU †W †V )|2k

+

∫

U,V ∈E
dUdV

∫

W,Y ∈Haar
dWdY |tr(WU †W †Y V Y †)|2k

= F (k)
E −F (k)

Ẽ

(6.7)

where F (k)
E is the k-th frame potential for an ensemble E . Here we used the fact that the

Haar unitary ensemble is left and right invariant. Therefore, we arrive at the following

inequality

F (k)
E ≥ F (k)

Ẽ
(6.8)

with equality if and only if E being k-invariant. The difference F (k)
E − F (k)

Ẽ
measures

the 2-norm distance to being k-invariant.22 The above derivation is a straightforward

generalization of a method used in [44].

Haar-invariance in a spin system. Let us examine k-invariance for the random non-

local (RNL) spin system discussed in section 3.1 where we defined the Hamiltonian in

eq. (3.10) as the sum over all 2-body operators with random Gaussian couplings Jijαβ . The

time evolution of the first frame potential for this ensemble as well as its Haar-conjugated

generalization are shown in figure 7 along side the difference F (1)
E − F (1)

Ẽ
, measuring the

distance to 1-invariance. We only report numerics for a modest spin system of n = 6 spins.

The difficulty of performing frame potential numerics is mentioned in appendix D.

We find that in this chaotic spin system, at early times we quickly deviate from

1-invariance, but after evolution by the system’s chaotic dynamics, we observe an approach

to approximate 1-invariance at late times. For this system, we see that the frame potential

approaches, but does not equal, its Haar-invariant counterpart at later times. But we found

numerically that increasing the number of sites makes this late time difference smaller.

Thus we expect that at large N for chaotic systems, we reach k-invariance at late times.

Comments on k-invariance. While frame potentials provide a quantitative way of

judging if an ensemble E is k-invariant or not, it would be beneficial to relate it to some

physical observables such as correlation functions. It is perhaps not a big surprise that

22For a more rigorous analysis, the diamond distance should be considered. While the diamond norm is

difficult to compute in general, there are some examples of ensembles of realistic Hamiltonians where the

diamond norm can be analytically computed. We hope to address this in a future publication.
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Figure 7. On the left we plot the first frame potential F (1)
ERNL

for HRNL along side the first frame

potential for its Haar-invariant extension F (1)

ẼRNL
, computed numerically using the 2-point form factor

as in eq. (4.15). On the right we plot the difference, measuring the 2-norm distance to 1-invariance

and observe approximate 1-invariance at late times.

k-invariance can be verified by 2k-point OTOCs. The following statement holds:

〈A1(0)B1(t) . . . Ak(0)Bk(t)〉E
= 〈Ã1(0)B̃1(t) . . . Ãk(0)B̃k(t)〉E ∀Ãj , B̃j ⇐⇒ E is k-invariant (6.9)

where Aj , Bj are Pauli operators, and Ãj , B̃j are some transformations from Aj , Bj

such that

Ãj =WAjW
† B̃j =WBjW

† (6.10)

where W is an arbitrary element of unitary 2k-design. The proof is straightforward and

thus is skipped.

Motivated by late-time random matrix universality of chaotic quantum systems, we

have introduced a novel quantum information theoretic concept, k-invariance, as a possible

way of bridging early-time and late-time physics. We would like to comment on a few

caveats. First, consider an ensemble of unitary operators E generated by some Hamiltoni-

ans. Since Et=0 = {I}, the ensemble is Haar-invariant at time t = 0. Thus, an ensemble is

initially k-invariant and is expected to immediately deviate at t > 0 and then eventually

become approximately k-invariant. Therefore F (k)
E − F (k)

Ẽ
, which quantifies k-invariance,

is not a monotonic quantity under time evolution. However, we expect that it is mono-

tonically decreasing at late times. We observe these features in the non-local spin system

described above. Depending on the symmetries of the system of interest, we would need

to consider the Haar measure with respect to an appropriate Lie group G ⊂ U(L).

Second, for realistic physical systems with local Hamiltonians, it is not likely that an

ensemble Et becomes k-invariant in an exact sense even at very late times. This can be seen

from a recent work which shows that the late-time value of infinite temperature OTOCs

〈A(0)B(t)A(0)B(t)〉 of q-local Hamiltonians is O(1/N) if operators A,B are local and have

overlaps with the Hamiltonian [56], based on an Eigenstate Thermalization Hypothesis

(ETH) argument. A similar argument applies to late-time values of two-point correlators.
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On the other hand, the Haar average of OTOCs is O(1/L2) (or O(1/L) for an average of

absolute values). Thus, OTOCs for local operators and OTOCs for non-local operators may

have significantly different late-time values. However, it should be noted that a prediction

from the AdS/CFT seems to suggest that correlation functions may become exponentially

small e−O(S) even if A,B are local operators. This may suggest a subtle but important

distinction between ordinary strongly interacting systems and gravitational systems which

leads to a far-reaching question concerning the universality of gravity and the universality

of random matrix theory, seen from the lens of k-invariance.

Let us conclude the section with a brief remark on the Eigenstate Thermalization

Hypothesis (ETH). The notion of k-invariance may be viewed a dynamical analog of Berry’s

conjecture about random eigenvectors, which was the motivation behind ETH [57–59]. A

basic assumption of ETH is that matrix elements of a local operator O, with respect to

energy eigenstates, look “random” inside some sufficiently small energy window ∆E. A

system achieving k-invariance roughly tells us that energy eigenstates may be treated as

random vectors after sufficiently long times for studying dynamics via OTOCs.23 Given

the prevalence of eigenstate thermalization in strongly correlated many-body systems,24 a

precise relation between k-invariance, ETH and OTOCs would provide clarity on defining

what it means for a quantum system to be chaotic.

7 Discussion

Random matrix theory provides a powerful paradigm for studying late-time chaos. We have

leveraged the technology of random matrix theory and Haar-invariance to study correlation

functions like OTOCs which diagnose early-time chaos, and frame potentials which diagnose

randomness and complexity. The salient feature of the GUE which gave us computational

traction is its Haar-invariance, namely that the ensemble looks the same in any basis.

As a result, the dynamics induced by GUE Hamiltonians is non-local (O(N)-local) with

respect to any tensor factor decomposition of the Hilbert space, and so the dynamics

immediately delocalizes quantum information and other more subtle forms of correlations.

Accordingly, the GUE captures features of the long-time physics of a local system that has

been delocalized.

In a chaotic quantum system described by a local Hamiltonian, there are two tem-

poral regimes of interest: times before the system scrambles and thus has mostly local

correlations, and times after the system scrambles when correlations have effectively delo-

calized. We suggested that the transition between these two regimes may be due to the

onset of approximate Haar-invariance, and we defined k-invariance as a precise characteri-

zation. A careful understanding of Haar-invariance for ensembles of local quantum systems

could yield precise insights into the apparent breakdown of locality, and tell us in what

time regimes we can use Haar-invariance to calculate late-time physics (i.e., correlation

functions, frame potentials, complexity, etc.) A concrete way of studying delocalization

23The related notion of quantum ergodicity and randomness of eigenstates was recently discussed in [60].
24See [59] and references therein. Interestingly, evidence for ETH has also been discussed recently both

in the SYK model [61] as well as in its free fermion counterpart [62].
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of operators and the emergence of k-invariance would be to compare connected pieces of

OTOCs with local and non-local operators and observe their eventual convergence. Of

particular interest is to find the 2-invariance time when all the 4-point OTOCs, regardless

of sizes of operators, start to behave in a similar manner. This time scale must be at

least the scrambling time since OTOCs with local operators start to decay only around the

scrambling time while OTOCs with non-local operators decay immediately. Relatedly, we

would like to draw attention to an upcoming work [63] which studies the onset of random

matrix behavior at early times.

In this paper, we computed correlation functions averaged over an ensemble of Hamil-

tonians. Chaotic systems described by disordered ensembles tend to have small variance

in their correlators, and their averaged correlation functions are close to those computed

for a simple instance of the ensemble. Even in regimes where replica symmetries are bro-

ken, performing time bin averaging reproduces the averaged behaviors very well. We find

in appendix D.3 that the time bin-averaged frame potential in the large L limit for two

samples agrees with averaging over the whole ensemble.

We conclude by mentioning a far reaching goal, but one that provides the conceptual

pillars for these ideas, namely understanding black holes as quantum systems. While

black holes are thermodynamic systems whose microscopic details remain elusive, questions

about information loss can be precisely framed by late-time values of correlation functions

within AdS/CFT [17], where unitary evolution can be discussed in terms of the boundary

CFT. Ultimately, we would like to use random matrix theory to characterize chaos and

complexity in local quantum systems and identify late-time behaviors which are universal

for gravitational systems. An interesting future question is to see if gravitational systems

are described by random matrices in the sense of k-invariance and pinpoint some late-time

behavior which results from gravitational universality.
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A Scrambling and 2-designs

Recently there has been growing interest in scrambling and unitary designs from the high

energy and quantum information communities. Here we provide a short summary of dif-

ferent ways of quantifying them for infinite temperature cases.

A.1 Scrambling

We begin with scrambling. Consider a system of qubits and non-overlapping local (O(1)-

body) Pauli operators V,W and compute OTOC = 〈VW (t)VW (t)〉 whereW (t) = UWU †.

The initial value of OTOC at t = 0 is 1. Scrambling is a phenomenon where the OTOC

becomes O(ǫ) with ǫ≪ 1 being a small but finite constant:

〈VW (t)VW (t)〉 = O(ǫ) for all pairs of local operators V,W (A.1)

It is often the case that OTOCs with local operators are the slowest to decay. This can be

seen from our analysis on 4-point spectral form factors. So, by the scrambling time, OTOCs

with non-local operators are already O(ǫ) or smaller. The scrambling time is lower bounded

by O(log(n)) in the case of 0-dimensional O(1)-local systems due to a Lieb-Robinson-like

argument [3].

Scrambling has caught significant attention from the quantum gravity community since

it is closely related to the Hayden-Preskill thought experiment on black hole information

problems [1]. Assume that V,W act on qubits on some local regions A,D respectively, and

define their complements by B = Ac, C = Dc. Imagine that A is an unknown quantum state

|ψ〉 thrown into a “black hole” B, and the whole system evolves by some time-evolution

operator U = e−iHt. At time t, we collect the “Hawking radiation” D and attempt to

reconstruct (an unknown) |ψ〉 from measurement on D. Such a thought experiment was

considered by Page who argued that, if a black hole’s dynamics U is approximated by a

random unitary operator, then reconstructing |ψ〉 is not possible unless we collect more

than n/2 qubits of the Hawking radiation [64]. As we shall show in appendix B, the

impossibility of reconstruction of A from D is reflected in the smallness of the 2-point

correlation functions:

|〈VW (t)〉| = O(ǫ) for local V,W −→ no reconstruction of A from D. (A.2)

The famous calculations by Hawking and Unruh imply that these two-point correlators are

thermal, and quickly become small.

Hayden and Preskill considered a situation where a black hole B has already emitted

half of its contents, and we have collected its early radiation and stored it in some secure

quantum memory M . The quantum memory M is maximally entangled with B, and the

question is whether we can reconstruct |ψ〉 by having access to M . It has been shown that

scrambling, as defined above, implies that we can reconstruct |ψ〉 with some good average

fidelity by collecting the Hawking radiation on D at time t:

〈VW (t)VW (t)〉 = O(ǫ) −→ reconstruction of A from D and M . (A.3)
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Therefore, scrambling implies the possibility of recovering local quantum information via

local measurements on the Hawking radiation. A random unitary operator U typically

gives very small OTOCs which enables reconstruction of A in the Hayden-Preskill thought

experiment.

Reconstruction problems in the Hayden-Preskill setting are closely related to the prob-

lem of decoupling. A crucial difference between scrambling and decoupling is that decou-

pling typically considers A,D to be some finite fraction of the whole system and concerns

the reconstruction of unknown many-body quantum states supported on a big region A.

Since we quantify the reconstruction via fidelity for many-body quantum states, the re-

quirement tends to be more stringent. The relation between scrambling and decoupling is

discussed in [65] in the context of local random circuits.

A.2 Unitary designs

Next let us discuss unitary 2-designs. Consider an ensemble of time evolution operators

Uj with probability distributions pj ; E = {Uj , pj} with
∑

j pj = 1. The 2-fold channels of

E and the Haar ensemble are

ΦE(ρ) =
∑

j

pjUj ⊗ Uj(ρ)U
†
j ⊗ U †

j ΦHaar(ρ) =

∫

Haar
dU U ⊗ U(ρ)U † ⊗ U †. (A.4)

If ΦE(ρ) = ΦHaar(ρ) for all ρ, then we say E is 2-design. One can check if E is 2-design

or not by looking at OTOCs. Consider the OTOC 〈VW (t)VW (t)〉 for arbitrary Pauli

operators V,W which are not necessarily local operators. We will be interested in the

ensemble averages of OTOCs:

〈VW (t)VW (t)〉E ≡
∑

j

pj〈V UjWU †
j V UjWU †

j 〉. (A.5)

If 〈VW (t)VW (t)〉E = 〈VW (t)VW (t)〉Haar for all pairs of Pauli operators V,W , then the

ensemble forms a unitary 2-design [16].

A typical unitary operator from a 2-design achieves scrambling because

|〈VW (t)VW (t)〉|Haar ≃
1

L
〈VW (t)VW (t)〉Haar ≃

1

L2
(A.6)

for any (possibly non-local) Pauli operators V,W . The first equation implies that the

OTOC value for a single instance from the ensemble is typically 1/L in absolute value

while the second equation implies that the OTOC, after ensemble averaging, is 1/L2.

Since OTOCs are small, a typical 2-design unitary operator U implies scrambling, but the

converse is not always true. Recall that scrambling only requires OTOC = O(ǫ). There is

thus a big separation in the smallness of the OTOC, and the scrambling time may be much

shorter than the 2-design time. Also, scrambling requires OTOC = O(ǫ) only for local

operators while a 2-design unitary makes the OTOC small for all pairs of Pauli operators.

The lower bound for the exact 2-design time is O(log(n)), but no known protocol achieves

this time scale.

One important distinction between scrambling and the 2-design time is how small the

OTOCs becomes. The phenomena of scrambling concerns the deviation of OTOC values
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from the maximal value 1. The concept of a 2-design concerns the deviation of OTOC

values from the minimal value O(1/L). The former is related to early-time chaos and the

latter is related to late-time chaos.

A.3 Approximate 2-designs

Finally, let us briefly discuss the notion of approximate 2-design. When two quantum

operations ΦE and ΦHaar are close to each other, we say that E is an approximate 2-design.

In order to be quantitative, however, we need to pick appropriate norms with which two

quantum operations can be compared. The 2-norm distance can be defined in a simple

way via

2-norm =
√
tr(SS†)

S =

∫ ∑

j

pjUj ⊗ Uj ⊗ U †
j ⊗ U †

j −
∫

Haar
dU U ⊗ U ⊗ U † ⊗ U †.

(A.7)

If S = 0, then ΦE and ΦHaar would be the same. We say that E is a δ-approximate 2-design

in the 2-norm if
√
tr(SS†) ≤ δ.

Frame potentials are closely related to the 2-norm distance because tr(SS†) = FE −
FHaar ≥ 0. In [16], a relation between the frame potential and OTOCs has been derived

∫
dAdBdCdD|〈AB(t)CD(t)〉E |2 =

F (2)
E
L6

. (A.8)

In practice, the main contribution to the left-hand side comes from OTOCs of the form

〈AB(t)AB(t)〉E . For simplicity of discussion, let us assume that 〈AB(t)CD(t)〉E = 0 when

C 6= A or D 6= B (where A,B,C,D are non-identity Pauli operators). Then, a simple

analysis leads to

|〈AB(t)AB(t)〉E |2 ≃ δ2 (A.9)

for typical non-identity Pauli operators A,B. Thus, being a δ-approximate 2-design in the

2-norm implies that OTOCs are typically small. However, this does not necessarily imply

scrambling because OTOCs with local operators are often the slowest to decay. In order

to guarantee scrambling, we would need a δ
L -approximate design in the 2-norm (under an

assumption on 〈AB(t)CD(t)〉E = 0 for C 6= A or D 6= B). For this reason, an alternative

distance measure called the diamond norm is often used in quantum information literature.

See [66] for relations between different norms.

B Information scrambling in black holes

In this appendix, we discuss behaviors of 2-point correlators and 4-point OTOCs from the

viewpoint of information scrambling in black holes. We begin by deriving a formula which

relates two-point autocorrelation functions and mutual information. We will be interested

in the following quantity

∣∣〈OAOD(t)〉avg
∣∣2 ≡ 1

L2
AL

2
D

∑

OA∈PA

∑

OD∈PD

|〈OAOD(t)〉|2 (B.1)
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where 〈OAOD(t)〉 = 1
LTr(OAUODU

†) and U is the time-evolution operator of the system,

and PA and PD are sets of Pauli operators on A and D. There are L2
A and L2

D Pauli

operators.

The relation between apparent information loss and two-point correlators can be un-

derstood by using the state representation |U〉 of a unitary operator U . Given a unitary

operator U acting on an n-qubit Hilbert space H, one can view U as a pure quantum state

|U〉 defined on a 2n-qubit Hilbert space H⊗H:

|U〉 ≡ U ⊗ I|EPR〉, |EPR〉 = 1√
2n

2n∑

j=1

|j〉 ⊗ |j〉. (B.2)

Or equivalently, |U〉 ≡ 1√
2n

∑
i,j Ui,j |i〉 ⊗ |j〉 where U =

∑
i,j Ui,j |i〉〈j|. One easily see

that the quantum state |U〉 is uniquely determined by a unitary operator U . The state

representation allows us to view |U〉ABCD as a four-partite quantum state:

|U〉 = 1√
2n

(B.3)

where B = Ac and D = Cc in the original system of qubits. Given the state representation

|U〉 of a unitary operator, we can derive the following formula

∣∣〈OAOD(t)〉avg
∣∣2 = 1

L2
AL

2
D

2I
(2)(A,D) (B.4)

where I(2)(A,D) is the Rényi-2 mutual information between A and D for |Ψ〉, defined by

I(2)(A,D) ≡ S
(2)
A + S

(2)
D − S

(2)
AD.

To derive the formula, let ρAD be the reduced density matrix of |U〉 on AD. Its

graphical representation is

ρAD =
1

L
(B.5)
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The averaged 2-point correlator is given by

∣∣〈OAOD(t)〉avg
∣∣2 = 1

L2
(B.6)

where dotted lines represent averaging over Pauli operators. By using 1
L

∑
O∈P O ⊗ O† =

SWAP, we obtain

|〈OAOD(t)〉ave|2 =
Tr(ρ2AD)

LALD
=

1

L2
AL

2
D

2I
(2)(A,D). (B.7)

Let us further ponder this formula. For strongly interacting systems, it is typically the

case that

〈OAOD(t)〉 ≃ 0 if Tr(OAOD) = 0. (B.8)

So, the following relation for the autocorrelation functions holds approximately:

∑

OA∈PA

|〈OAOA(t)〉|2 ≃ 2I
(2)(A,D) (B.9)

where we took A and D to be the same subset of qubits.

The above formula has an interpretation as information retrieval from the early Hawk-

ing radiation. Consider scenarios where Alice throws a quantum state |ψ〉 into a black hole

and Bob attempts to reconstruct it from the Hawking radiation. In accordance with such

thought experiments, let A be qubits for Alice’s quantum state, B be the black hole, C

be the remaining black hole and D be the Hawking radiation. Then, the averaged 2-point

correlation functions have an operational interpretation as Bob’s strategy to retrieve Alice’s

quantum state. Let us assume that the initial state of the black hole is unknown to Bob

and model it by a maximally mixed state ρB = IB
LB

. Alice prepares an EPR pair |EPR〉AR

on her qubits and her register qubits. Notice the difference from the Hayden-Preskill setup

where Bob had access to some reference system B′ which is maximally entangled with the

black hole B. In this decoding problem, we do not grant such access to Bob. He just

collects the Hawking radiation D and tries to reconstruct Alice’s quantum state.

The most obvious strategy is to apply the inverse U †. However, Bob does not have an

access to qubits on C. So, he applies U †
CD ⊗ IR to ρC ⊗ ρDR where ρC = IC

LC
. Graphically,
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this corresponds to

|Ψ〉 = L√
LALBLC

(B.10)

The success of decoding is equivalent to distillation of an EPR pair between A and R. So,

we compute the EPR fidelity. Namely, letting Π be a projector onto an EPR pair between

A and R, we have

F = 〈Ψ|Π|Ψ〉 = 1

L2
(B.11)

which leads to

F = Tr(ρ2BC) = Tr(ρ2AD) = LALD|〈OAOD(t)〉avg|2. (B.12)

Therefore, the decay of 2-point correlation functions indeed implies that Bob cannot re-

construct Alice’s quantum state.

Finally, let us summarize the known relations between correlation functions and mutual

information:

2−I(2)(A,BD) = 〈OAOD(t)OAOD(t)〉avg (B.13)

2I
(2)(A,D) = |〈OAOD(t)〉avg|2 · L2

AL
2
D. (B.14)

Note that the first formula proves that the decay of OTOCs leads to large I(2)(A,BD)

which implies the possibility of Bob decoding Alice’s quantum state by accessing both the

– 43 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
8

early radiation B and the new Hawking radiation D. These two formulae allow us to

formally show that a black hole can be viewed as a quantum error-correcting code. Let

A,D be degrees of freedom corresponding to incoming and outgoing Hawking radiation,

and B,C be degrees of freedom corresponding to other exotic high energy modes at the

stretched horizon. Since a black hole is thermal, we know that |〈OAOD(t)〉avg| decays at

t ∼ O(β). Also, due to the shockwave calculation by Shenker and Stanford [4], we know

that 〈OAOD(t)OAOD(t)〉avg decays at t ∼ O(β logN). These results imply that after the

scrambling time:

I(2)(A,D) ≃ 0 I(2)(A,C) ≃ 0. (B.15)

The implication is that quantum information injected from A gets delocalized and non-

locally is hidden between C and D. The error-correction property can be seen by

I(2)(A,BD) ≃ 2a I(2)(A,BC) ≃ 2a I(2)(A,CD) ≃ 2a (B.16)

where a is the number of qubits on A. Namely, if we see the black hole as a quantum

code which encodes A into BCD, then the code can tolerate erasure of any single region

B,C,D. In other words, accessing any two of B,C,D is enough to reconstruct Alice’s

quantum state. Thus, black hole dynamics, represented as a four-partite state |U〉ABCD,

can be interpreted as a three-party secret sharing quantum code.

C Spectral correlators and higher frame potentials

In this appendix we will present formulas for form factors from random matrix theory.

For GUE(L, 0, 1/
√
L), L× L matrices with off-diagonal complex entries and real diagonal

entries chosen with variance σ2 = 1/L, the joint probability of eigenvalues for GUE, with

normalizing factors, is

P (λ1, . . . , λL) =
LL2/2

(2π)L/2
∏L

p=1 p!
e−

L
2

∑
i λ

2
i

∏

i<j

(λi − λj)
2 (C.1)

and the joint probability distribution of n eigenvalues (i.e., the n-point spectral correlation

function), defined as

ρ(n)(λ1, . . . , λn) =

∫
dλn+1 . . . dλLP (λ1, . . . , λL) . (C.2)

We can compactly express ρ(n)(λ1, . . . , λn) in terms of a kernel K [25, 26] as

ρ(n)(λ1, . . . , λn) =
(L− n)!

L!
det

(
K(λi, λj)

)n
i,j=1

(C.3)

In the large L limit, the kernel K is approximately

K(λi, λj) ≡





L

π

sin(L(λi − λj))

L(λi − λj)
for i 6= j

L

2π

√
4− λ2i for i = j

(C.4)
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where the i 6= j case is called the sine kernel, and the i = j case is simply the Wigner

semicircle. In the large L limit, the basic approach for computing spectral form factors will

be expanding the determinant in eq. (C.3) using the kernel in eq. (C.4), and computing

the Fourier transform of the resulting sums of product of kernels. Thus we will have sums

of integrals of the form [25]

∫ m∏

i=1

dλiK(λ1, λ2)K(λ2, λ3) . . .K(λm−1, λm)K(λm, λ1) e
i
∑m

i=1 kiλi

=
L

π

∫
dλ ei

∑m
i=1 kiλi

∫
dk g(k)g

(
k +

k1
2L

)
g

(
k +

k2
2L

)
. . . g

(
k +

km−1

2L

)
(C.5)

where we define the Fourier transform of the sine kernel

g(k) ≡
∫
dr e2πikr

sin(πr)

πr
=

{
1 for |k| < 1

2

0 for |k| > 1
2

. (C.6)

The delta function singularity from the
∫
dλ e

∑m
i=1 ikiλ integral in eq. (C.5) is an artifact

of our expansion around infinite L, namely that L
π
sin(L(λi−λj))

L(λi−λj)
is not regulated in the

(λi + λj) direction. The most direct method to soften this divergence is to impose a cutoff

L

π

∫
dλ ei

∑m
i=1 kiλi −→ L

π

∫ π/2

−π/2
dλ ei

∑m
i=1 kiλi (C.7)

which is fixed by the normalization condition

L

π

∫ π/2

−π/2
dλei

∑m
i=1 kiλi

∫
dkg(k)g

(
k+

k1
2L

)
g

(
k+

k2
2L

)
. . .g

(
k+

km−1

2L

)∣∣∣∣
k1,...,km=0

=L.

(C.8)

While the ‘box approximation’ of applying the cutoff allows us to compute higher-point

spectral correlators in the large L limit, it does lead to errors relative to an exact answer

whose closed form is not tractable.25 Thus we must be careful to keep track of these

errors and compare with numerics. However, we find that at infinite temperature, the box

approximation of the spectral form factors is analytically controlled at early times like O(1)

and late times greater than O(
√
L).

To understand the errors of the box approximation, we first consider various cases

heuristically: when we have
∑

i ki = 0, the λ integral in eq. (C.5) is directly fixed by

normalization. When
∑

i ki 6= 0, the λ integral in eq. (C.5) dephases and so decays when

|∑i ki| is large, and thus the induced error is unimportant at long times. At small, O(1)

values of the |ki|’s (assuming that m is O(1)), the error induced by the box approximation

is also small and the value is still close to the
∑

i ki = 0 value.

For instance, carefully keeping track of factors of L tells us that in R4, for early times

like O(1) the error is suppressed by O(1/L) relative to largest order terms, while for late

times after O(
√
L) the error is suppressed by O(1/

√
L) relative to the largest order terms.

25For instance, the Fourier transform of the semicircle distribution decays as t−3/2, whereas the Fourier

transform of a box decays as t−1.
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In this discussion, particularly for
∑

i ki = 0, we assumed simple sine kernel correlations

and found r2 to be a pure linear function. However, a more delicate treatment shows some

other transition time scale at early times, which likely complicates the functional form of

r2 and gives a different slope for the ramp. We briefly address this issue for our numerics

in appendix D.

Since the dephasing of the λ integral at large |
∑

i ki| is suppressed at finite temperature,

to better capture long-time finite temperature eigenvalue correlations we use a modified

kernel K̃ which is valid in the short distance limit |λa − λb| ∼ O(1/L) [55, 67],

K̃(λi, λj) =
sin

(
Lπ(λi − λj)ρ

(1)((λi + λj)/2)
)

π(λi − λj)
(C.9)

which naturally provides a cutoff in the (λi + λj) direction. However, this approximation

assumes the continued domination of the regulated integral in the short distance limit,

which may not be true for large β. However, for small β the modified kernel is reliable. In

the generic case, one should consider the full expression of Hermite polynomials as the sine

kernel, and correctly take the limit. A complicated formula has been derived in [55, 67]

from a saddle point approximation.

C.1 Expressions for spectral correlators

Using the analysis above, it is straightforward to compute form spectral correlation func-

tions for the GUE. It is convenient to define

r1(t) ≡
J1(2t)

t
, r2(t) ≡

{
1− t

2L for t < 2L

0 for t > 2L
, r3(t) ≡

sin(πt/2)

πt/2
. (C.10)

as mentioned earlier. The infinite temperature form factors which appear in the calculation

of the first and second frame potentials are

R2(t) =

∫
Dλ

L∑

i,j=1

ei(λi−λj)t , R4,1(t) =

∫
Dλ

L∑

i,j,k=1

ei(λi+λj−2λk)t ,

R4(t) =

∫
Dλ

L∑

i,j,k,ℓ=1

ei(λi+λj−λk−λℓ)t , R4,2(t) =

∫
Dλ

L∑

i,j=1

e2i(λi−λj)t . (C.11)

As R4,2 is simply R2(2t), we only need to compute the first three spectral correlation

functions. We will also investigate the finite temperature version of R2, which we defined as

R2(t, β) ≡
∫
Dλ

L∑

i,j=1

ei(λi−λj)te−β(λi+λj) . (C.12)

R2 at infinite temperature. We start by computing R2 at infinite temperature:

R2(t) = L+

∫
dλ1 dλ2

(
K(λ1, λ1)K(λ2, λ2)−K2(λ1, λ2)

)
ei(λ1−λ2)t . (C.13)
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Evaluating the first term in the integral, we find

∫
dλ1K(λ1, λ1)e

iλ1t

∫
dλ2K(λ2, λ2)e

−iλ2t = L2r21(t) . (C.14)

The second term can be evaluated using eq. (C.5), and we find

∫
dλ1dλ2K

2(λ1, λ2)e
i(λ1−λ2)t = Lr2(t) . (C.15)

The final result is

R2(t) = L+ L2r21(t)− Lr2(t). (C.16)

R2 at finite temperature. As explained above, to better capture long-time correlations

at finite temperature we will use the short-distance-limit kernel K̃. Firstly, for i = j,

we have

L

∫
Dλe−2βλ1 = Lr1(2iβ) . (C.17)

For i 6= j we have

L(L− 1)

∫
Dλei(λ1−λ2)t−β(λ1+λ2)

=

∫
dλ1dλ2

(
K̃(λ1, λ1)K̃(λ2, λ2)− K̃2(λ1, λ2)

)
ei(λ1−λ2)t−β(λ1+λ2)

= L2r1(t+ iβ)r1(−t+ iβ)− Lr1(2iβ)r2(t) . (C.18)

Putting everything together, we obtain

R2 = Lr1(2iβ) + L2r1(t+ iβ)r1(−t+ iβ)− Lr1(2iβ)r2(t) . (C.19)

R4 at infinite temperature. We now compute R4(t), again by separately considering

coincident eigenvalues, using the determinant of kernels, and Fourier transforming to find

R4(t) = L4r41(t)− 2L3r21(t)r2(t)r3(2t)− 4L3r21(t)r2(t) + 2L3r1(2t)r
2
1(t) + 4L3r21(t)

+ 2L2r22(t) + L2r22(t)r
2
3(2t) + 8L2r1(t)r2(t)r3(t)− 2L2r1(2t)r2(t)r3(2t)

− 4L2r1(t)r2(2t)r3(t) + L2r21(2t)− 4L2r21(t)− 4L2r2(t) + 2L2

− 7Lr2(2t) + 4Lr2(3t) + 4Lr2(t)− L . (C.20)

We can simplify this formula at early times of O(1) and late times greater than O(
√
L) by

dropping subdominant terms and find

R4≈L4r41(t)+2L2r22(t)−4L2r2(t)+2L2−7Lr2(2t)+4Lr2(3t)+4Lr2(t)−L, (C.21)

where the 2L2r22 term gives a quadratic rise at late times, akin to the ramp in R2.
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R4,1 at infinite temperature. We find that

R4,1(t) = L3r1(2t)r
2
1(t)− L2r1(2t)r2(t)r3(2t)− 2L2r1(t)r2(2t)r3(t)

+ L2r21(2t) + 2L2r21(t) + 2Lr2(3t)− Lr2(2t)− 2Lr2(t) + L . (C.22)

Just as above, we can approximate R4,1 at early and late times by

R4,1 ≈ L3r1(2t)r
2
1(t) + 2Lr2(3t)− Lr2(2t)− 2Lr2(t) + L . (C.23)

C.2 Expressions for higher frame potentials

k = 2 frame potential. We computed the second frame potential for the GUE to be

F (2)
GUE =

((
L4 − 8L2 + 6

)
R2

4 + 4L2
(
L2 − 9

)
R4 + 4

(
L6 − 9L4 + 4L2 + 24

)
R2

2

− 8L2
(
L4 − 11L2 + 18

)
R2 + 2

(
L4 − 7L2 + 12

)
R2

4,1 − 4L2
(
L2 − 9

)
R4,2

+
(
L4 − 8L2 + 6

)
R2

4,2 − 8
(
L4 − 8L2 + 6

)
R2R4 − 4L

(
L2 − 4

)
R4R4,1

+ 16L
(
L2 − 4

)
R2R4,1 − 8

(
L2 + 6

)
R2R4,2 + 2

(
L2 + 6

)
R4R4,2

− 4L
(
L2 − 4

)
R4,1R4,2 + 2L4

(
L4 − 12L2 + 27

))

/(
(L− 3)(L− 2)(L− 1)L2(L+ 1)(L+ 2)(L+ 3)

)
.

with form factors as defined in eq. (C.11). Let us try and extract the interesting behavior

encoded in the expression. We know the maximal value of the spectral n-point functions

defined above at early times, R2 ∼ L2, R4 ∼ L4, R4,1 ∼ L3, and R4,2 ∼ L2. From the

expression for the frame potential above, we keep the terms that are not suppressed in

1/L, i.e. can contribute at least at zeroth order:

F (2)
GUE ∼ 2− 8R2

L2
− 36R2

2

L4
+

4R2
2

L2
+

4R4

L4
+

6R2
4

L8
− 8R2

4

L6
+

R2
4

L4
+

R2
4,2

L4
−

14R2
4,1

L6

+
2R2

4,1

L4
+

16R2R4,1

L5
+

16R4R4,1

L7
− 4R4R4,1

L5
+

2R4R4,2

L6
− 4R4,1R4,2

L5

+
64R2R4

L6
− 8R2R4

L4
,

with the Haar value appearing at the beginning. At early times, the leading order behavior

is F (2)
GUE ∼ R2

4/L
4. From our calculation of the n-point form factors, we know that at the

dip time all form factor terms above are suppressed in L, meaning the frame potential goes

like the Haar value. Knowing the late time value of the 2-point and 4-point form factors,

the terms above that will contribute at late times are

Late : F (2)
GUE ≈ 2 +

R2
4

L4
+

4R2
2

L2
, (C.24)

which gives ≈ 10 in the large L limit. In the strict t → ∞ limit, where R2 → L,

R4 → 2L2 − L, and R4,1,R4,2 → L, we have

F (2)
GUE =

10L2 + 22L− 20

L2 + 5L+ 6
and F (2)

GUE ≈ 10 for L≫ 1 . (C.25)

As the left-hand side expression is valid for any L at late times, in doing the numerics and

taking the sample size to be large, this is the value for L we should converge to.
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k = 3 frame potential. The full expression for the third frame potential of the GUE is

F
(3)
GUE

=
(
6L

14
+18R

2
2L

12
−36R2L

12
−318L

12
−846R

2
2L

10
+9R

2
4L

10
+18R

2
4,1L

10
+9R

2
4,2L

10
+1836R2L

10
−72R2R4L

10
+36R4L

10
−36R4,2L

10
+5550L

10

+144R2R4,1L
9
−36R4R4,1L

9
−36R4,1R4,2L

9
+11574R

2
2L

8
−369R

2
4L

8
+R

2
6L

8
−828R

2
4,1L

8
+9R

2
2R

2
4,2L

8
−18R2R

2
4,2L

8
−441R

2
4,2L

8
+6R

2
6,1L

8

+4R
2
6,2L

8
+12R

2
6,3L

8
+4R

2
6,4L

8
−29772R2L

8
+3276R2R4L

8
−1728R4L

8
+36R2R6L

8
−18R4R6L

8
−12R6L

8
−36R

2
2R4,2L

8
+18R4R4,2L

8

+1800R4,2L
8
−36R4,1R6,1L

8
−24R6,4L

8
−37158L

8
−6192R2R4,1L

7
+1332R4R4,1L

7
+36R6R4,1L

7
+108R2R4,1R4,2L

7
+1548R4,1R4,2L

7

−144R2R6,1L
7
+108R4R6,1L

7
−12R6R6,1L

7
−36R2R4,2R6,1L

7
+36R4,2R6,1L

7
+72R4,1R6,2L

7
−24R6,1R6,2L

7
+144R2R6,3L

7
−72R2R4,2R6,3L

7

+72R4,2R6,3L
7
−24R6,2R6,3L

7
−48R6,3R6,4L

7
−39978R

2
2L

6
+3726R

2
4L

6
−41R

2
6L

6
+11610R

2
4,1L

6
−297R

2
2R

2
4,2L

6
+594R2R

2
4,2L

6
+6750R

2
4,2L

6

−204R
2
6,1L

6
−156R

2
6,2L

6
−348R

2
6,3L

6
−148R

2
6,4L

6
+169812R2L

6
−42768R2R4L

6
+24732R4L

6
−1512R2R6L

6
+738R4R6L

6
+528R6L

6

+1512R
2
2R4,2L

6
−432R2R4,2L

6
−162R2R4R4,2L

6
−486R4R4,2L

6
+18R2R6R4,2L

6
−18R6R4,2L

6
−27972R4,2L

6
+1224R4,1R6,1L

6
+144R2R6,2L

6

−144R4R6,2L
6
+16R6R6,2L

6
+72R2R4,2R6,2L

6
−72R4,2R6,2L

6
−48R6,2L

6
−360R4,1R6,3L

6
+120R6,1R6,3L

6
−144R2R6,4L

6
+72R2R4,2R6,4L

6

−72R4,2R6,4L
6
+32R6,2R6,4L

6
+1032R6,4L

6
+89040L

6
+72576R2R4,1L

5
−11232R4R4,1L

5
−1188R6R4,1L

5
−3132R2R4,1R4,2L

5
−18792R4,1R4,2L

5

+5040R2R6,1L
5
−3564R4R6,1L

5
+396R6R6,1L

5
+1044R2R4,2R6,1L

5
−1044R4,2R6,1L

5
−2232R4,1R6,2L

5
+744R6,1R6,2L

5
−5040R2R6,3L

5

+432R4R6,3L
5
−48R6R6,3L

5
+2088R2R4,2R6,3L

5
−2088R4,2R6,3L

5
+648R6,2R6,3L

5
+288R4,1R6,4L

5
−96R6,1R6,4L

5
+1488R6,3R6,4L

5
−522R

2
4L

4

−52128R
2
2L

4
+458R

2
6L

4
−55692R

2
4,1L

4
+2430R

2
2R

2
4,2L

4
−4860R2R

2
4,2L

4
−35190R

2
4,2L

4
+1794R

2
6,1L

4
+1660R

2
6,2L

4
+2388R

2
6,3L

4
+1440R

2
6,4L

4

−274320R2L
4
+146412R2R4L

4
+17172R2R6L

4
−8244R4R6L

4
−6276R6L

4
−15876R

2
2R4,2L

4
+18144R2R4,2L

4
+3078R2R4R4,2L

4
+324R4R4,2L

4

−342R2R6R4,2L
4
+342R6R4,2L

4
+141408R4,2L

4
−10764R4,1R6,1L

4
−4608R2R6,2L

4
+3672R4R6,2L

4
−408R6R6,2L

4
−1368R2R4,2R6,2L

4

+1368R4,2R6,2L
4
+1968R6,2L

4
+7200R4,1R6,3L

4
−2400R6,1R6,3L

4
+3312R2R6,4L

4
−288R4R6,4L

4
+32R6R6,4L

4
−1368R2R4,2R6,4L

4

+1368R4,2R6,4L
4
−752R6,2R6,4L

4
−11568R6,4L

4
−96000L

4
−199728R2R4,1L

3
−4392R4R4,1L

3
+9144R6R4,1L

3
+26352R2R4,1R4,2L

3

+51552R4,1R4,2L
3
−37296R2R6,1L

3
+27432R4R6,1L

3
−3048R6R6,1L

3
−8784R2R4,2R6,1L

3
+8784R4,2R6,1L

3
+17928R4,1R6,2L

3
−5976R6,1R6,2L

3

+37296R2R6,3L
3
−1080R4R6,3L

3
+120R6R6,3L

3
−17568R2R4,2R6,3L

3
+17568R4,2R6,3L

3
−190512R2R4,2L

2
−100800R4L

4
−5736R6,2R6,3L

3

−720R4,1R6,4L
3
+240R6,1R6,4L

3
−11952R6,3R6,4L

3
+141840R

2
2L

2
−49284R

2
4L

2
−1258R

2
6L

2
+111852R

2
4,1L

2
+1098R

2
2R

2
4,2L

2
−2196R2R

2
4,2L

2

+53712R
2
4,2L

2
−3756R

2
6,1L

2
−3188R

2
6,2L

2
+108R

2
6,3L

2
−2736R

2
6,4L

2
+288000R2L

2
+5472R2R4L

2
−47376R2R6L

2
+22644R4R6L

2
+14400R6L

2

+14400R
2
2R4,2L

2
−9396R2R4R4,2L

2
+49824R4R4,2L

2
+1044R2R6R4,2L

2
−1044R6R4,2L

2
−115200R4,2L

2
+22536R4,1R6,1L

2
+24624R2R6,2L

2

−16488R4R6,2L
2
+1832R6R6,2L

2
+4176R2R4,2R6,2L

2
−4176R4,2R6,2L

2
−19200R6,2L

2
−45720R4,1R6,3L

2
+15240R6,1R6,3L

2
+8352R2R6,4L

2

−8352R4R6,4L
2
+928R6R6,4L

2
+4176R2R4,2R6,4L

2
−4176R4,2R6,4L

2
+5520R6,2R6,4L

2
+19200R6,4L

2
+133200R2R4,1L+53208R4R4,1L

−12312R6R4,1L−62208R2R4,1R4,2L+4608R4,1R4,2L+32400R2R6,1L−36936R4R6,1L+4104R6R6,1L+20736R2R4,2R6,1L−20736R4,2R6,1L

−33048R4,1R6,2L+11016R6,1R6,2L−32400R2R6,3L−25272R4R6,3L+2808R6R6,3L+41472R2R4,2R6,3L−41472R4,2R6,3L+16632R6,2R6,3L

−16848R4,1R6,4L+5616R6,1R6,4L+22032R6,3R6,4L−216000R
2
2−2160R

2
4+240R

2
6−105840R

2
4,1−12960R

2
2R

2
4,2+25920R2R

2
4,2−34560R

2
4,2

−2160R
2
6,1−2160R

2
6,2−19440R

2
6,3−960R

2
6,4+43200R2R4+14400R2R6−4320R4R6+172800R2R4,2+25920R2R4R4,2−69120R4R4,2

−2880R2R6R4,2+2880R6R4,2+12960R4,1R6,1+14400R2R6,2+4320R4R6,2−480R6R6,2−11520R2R4,2R6,2+11520R4,2R6,2+90720R4,1R6,3

−30240R6,1R6,3−28800R2R6,4−2880R6R6,4+25920R4R6,4−11520R2R4,2R6,4+11520R4,2R6,4−6720R6,2R6,4

)

/(
(L−5)(L−4)(L−3)(L−2)(L−1)L

2
(L+1)(L+2)(L+3)(L+4)(L+5)

)
.

The expression is best appreciated from a distance.
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C.3 Expressions for Weingarten

Lastly, we give the definition of the unitary Weingarten function, which appeared in the

integration of Haar random unitaries in eq. (4.9). The 2k-th moment of the Haar ensemble

appeared in the k-th frame potential. For the n-th moment, the Weingarten function is a

function of an element σ of the permutation group Sn and presented as defined in [46],

Wg(σ) = 1

(n!)2

∑

λ

χλ(e)
2χλ(σ)

sλ(1)
, (C.26)

where we sum over integer partitions of n (recall that the conjugacy classes of Sn are

labeled by integer partitions of n). χλ is an irreducible character of Sn labeled by λ (as

each irrep of Sn can be associated to an integer partition) and e is the identity element.

sλ(1) = sλ(1, . . . , 1) is the Schur polynomial evaluated on L arguments and indexed by

the partition λ. For instance, the Weingarten functions needed to compute the first frame

potential were

Wg({1, 1}) = 1

L2 − 1
and Wg({2}) = − 1

L(L2 − 1)
. (C.27)

D Additional numerics

We conclude with a few numerical checks on the formulae we derived for the form factors

and frame potentials.

D.1 Form factors and numerics

As we mentioned in section 2.2 and discussed in appendix C.1, in order to derive expressions

for the form factors for the GUE we had to make approximations which should be compared

to numerics for the GUE.

We briefly remind the reader that at infinite temperature, we derived the expression

R2(t) = L2r21(t)− Lr2(t) + L . (D.1)

Numerical checks of this expression are shown in figure 8. We see that the approximations

employed work well at β = 0, reproducing the early time oscillations, dip, plateau, and

ramp features. But there is some discrepancy in the ramp behavior which merits discussion.

As we take L→ ∞, the difference between the predicted ramp and numerical ramp is not

suppressed. In figure 8, we see that the relative error between the numerics and analytic

prediction does not decrease as we increase L, indicating that this difference in the ramp

prediction is not an artifact of finite L numerics. On a log-log plot, this shift from the

numerics suggests that we capture the correct linear behavior, but with a slightly different

slope for the ramp.

The r2(t) = 1 − t/2L function which controls the slope behavior comes from the

Fourier transform of the square of the sine kernel. Recall that in our approximation, we

integrated over the entire semicircle. A phenomenological observation is that the modified

ramp function defined by r̃2(t) ≡ 1 − 2t/πL, where we change the slope to 2/π, does a
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Numerics for GUE R2 at β = 0
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Figure 8. Numerical checks of the GUE 2-point spectral form factor at infinite temperature for

various values of L and normalized by L2. The analytic expressions derived in section 2 are in

the lighter shades and the numerics for GUE are in darker shades. Numerics were done 10000

samples from the GUE. On the right we plot the relative error between the numerics and analytic

predictions. We observe good agreement at early and late times, and see deviations around the

ramp.
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Numerics for modified R2 at β = 0
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Figure 9. The same numerics as reported in figure 8, but now compared to the analytic expression

with the modified ramp behavior r̃2(t).

much better job of capturing the ramp behavior. Working in the short-distance limit of

the 2-point correlator ρ(2)(λ1, λ2) (as in [30]) and integrating the sine kernel over the entire

semicircle, we obtain r̃2 whose behavior we only trust near the dip.

Numerically, we find that this modified slope of 2π/L better captures the r2 function

near the dip, with error that is suppressed as we take L → ∞. The same numerics are

reported in figure 9, but with the modified ramp behavior. There is still some discrepancy

near the plateau time when we transition to the constant plateau value, but the ramp

behaviors near the dip are in much better agreement.

We understand the Bessel function contribution to R2(t), which arises from 1-point

functions. The subtlety above is really in the connected piece of the 2-point function

R2(t)conn ≡ R2(t)− L2r21(t) . (D.2)
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4
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1
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Connected 2-point form factor for GUE at β=0

Figure 10. Numerics for the connected 2-point spectral form factor for GUE at infinite temperature

plotted for L = 500 with 10000 random samples. The dashed line is the expression eq. (D.4)

approximating the three regimes of the connected form factor.

Numerically, we see that the connected 2-point form factor for the GUE exhibits three

different behaviors: an early time quadratic growth, an intermediate linear growth, and

then a late-time constant plateau. The closed form expression we derived in section 2

should be viewed as a coarse approximation before the plateau, approximately capturing

the linear regime. The modified ramp function r̃2(t) = 1 − 2t/πL appears to capture the

linear behavior near the dip with the correct slope. In [55], a more detailed treatment of

the connected correlator is given at early times. From the integral representation of the

connected 2-point form factor, they find that

Early : R2(t)conn ≈ t2 − 1

2
t4 +

1

3
t6 + . . . (D.3)

to leading order in L (eq. (2.28) in [55]). The three behaviors are compared with numerics

in figure 10.

In summary, the three regimes of the connected 2-point form factor are roughly cap-

tured by

R2(t)conn =





∼ t2 for t . 1 ,

∼ 2
π t for 1 . t . 2L ,

L for t & 2L .

(D.4)

The early time quadratic behavior does not play an important role in our analysis of GUE

correlation functions and frame potentials, but is of independent physical interest. This

intruiging early-time behavior of the connected 2-point form factor will be explored in [63].

At finite temperature we find good agreement between the expression R2(t, β) and

numerics at early and late times, but again see a deviation of the dip and ramp behaviors

from the analytic prediction, as shown in figure 11. Using the modified ramp r̃2 we find

closer agreement at small β, but as we increase β the predicted ramp behavior again starts

to deviate from the numerics, indicating that there is a β-dependence to the slope that we

do not fully understand. But as we discussed in appendix C.1, we only trust the short-

distance approximation at finite temperature, and thus R2(t, β), for small β. We also

report numerics for the R4 expression in figure 12.
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Figure 11. Numerical checks of the finite temperature 2-point spectral form factor for GUE at

β = 0.5, plotted for various values of L and normalized by their initial values. Numerics were

done with a GUE sample size of 10000. The left figure uses the expression for R2(t, β) derived in

section 2.2 and C.1, whereas the right figure uses the modified ramp r̃2 discussed above.
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Figure 12. Numerical checks the infinite temperature 4-point spectral form factor for GUE with

10000 samples, plotted for various values of L and normalized by their initial values. The left figure

uses the R4 expression derived in appendix C.1, and the right figure uses r̃2.

D.2 Frame potentials and numerics

As the frame potential depends on the eigenvectors of the elements in the ensemble (and not

just the eigenvalues as per the form factors) and requires a double sum over the ensemble,

numerical simulation of the frame potential is harder than for the form factors. For an

ensemble of L × L matrices, we need to consider sample sizes greater than L2k for the

k-th frame potential, which amounts to summing over many samples for fairly modest

Hilbert space dimension. Instead, for a given L, we can sequentially increase the sample

size and extrapolate to large |EGUE|. In figure 13 we consider the first frame potential

for the GUE at L = 32 and, in the limit of large sample size, find good agreement with

the analytic expression computed from R2. Alternatively, we can numerically compute

the frame potentials by ignoring the coincident contributions to the double sum in F (k),

i.e. when U = V . For a finite number of samples, these terms contribute L2/|E| to the

sum, meaning we must look at large ensembles before their contribution does not dominate

entirely. Ignoring these terms, we can time average over a sliding window to compute the

frame potential with only a few samples, as shown in figure 13.
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Figure 13. Numerical computation of first frame potential for the GUE at L = 32. On the left, we

sequentially increase the number of samples and extrapolate to large sample size (red line), which

agrees with the both the frame potential computed from R2 numerics as in eq. (4.15) (blue line) and

the analytic expression we derived for F (1)
GUE. On the right, we time bin average F (1)

GUE as described

above and, for L = 32 and 100 samples, we find good agreement with the quantities on the left.

Figure 14. On the left: the time average of the thermal 2-point form factor at β = 5 and L = 500.

On the right: the time average of the first frame potential for L = 500 computed for two instances. In

both figures, the time average of the minimal number of instances agrees with the ensemble average.

D.3 Minimal realizations and time averaging

Given an ensemble of disordered systems, one can ask whether a quantity averaged over

the ensemble is the same as for a single random instance of the ensemble. It is known

that up until the dip time, the spectral form factor is self-averaging, meaning that single

instance captures the average for large L [68]. However, the spectral form factor is not self-

averaging at late times. We can try to extract the averaged behavior from a single instance

in regimes dominated by large fluctuations by averaging over a moving time window. In

figure 14, we see that for a single instance of the GUE, the time average of the spectral

form factor at finite β gives the same result as the ensemble average for sufficiently large

L. For the frame potential, we can consider two instances, the smallest ensemble for which

the frame potential makes sense. Ignoring the coincident terms in the sum, we see that

the frame potential is also self-averaging at early times and that the time average at late

times agrees with the ensemble average and analytic expression.
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[46] B. Collins and P. Śniady, Integration with Respect to the Haar Measure on Unitary,

Orthogonal and Symplectic Group, Commun. Math. Phys. 264 (2006) 773

[math-ph/0402073].

[47] D. Weingarten, Asymptotic Behavior of Group Integrals in the Limit of Infinite Rank,

J. Math. Phys. 19 (1978) 999 [INSPIRE].

[48] P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, J. Appl. Prob. 31

(1994) 49.

[49] S. Bravyi, M.B. Hastings and F. Verstraete, Lieb-Robinson Bounds and the Generation of

Correlations and Topological Quantum Order, Phys. Rev. Lett. 97 (2006) 050401

[quant-ph/0603121].

[50] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)

44 [arXiv:1403.5695] [INSPIRE].

[51] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[52] X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum

entanglement, wave function renormalization and topological order, Phys. Rev. B 82 (2010)

155138 [arXiv:1004.3835] [INSPIRE].

[53] D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085

[arXiv:1301.4504] [INSPIRE].

[54] Z.-C. Yang, A. Hamma, S.M. Giampaolo, E.R. Mucciolo and C. Chamon, Entanglement

complexity in quantum many-body dynamics, thermalization, and localization, Phys. Rev. B

96 (2017) 020408 [arXiv:1703.03420].

– 57 –

https://doi.org/10.1103/PhysRevLett.71.1291
https://arxiv.org/abs/gr-qc/9305007
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9305007
https://arxiv.org/abs/1703.08104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08104
https://doi.org/10.1103/PhysRevA.80.012304
https://arxiv.org/abs/quant-ph/0606161
https://doi.org/10.1007/s00220-016-2706-8
https://arxiv.org/abs/1208.0692
https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/1503.06237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06237
https://doi.org/10.1007/JHEP11(2016)009
https://arxiv.org/abs/1601.01694
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01694
https://doi.org/10.1088/1751-8113/41/5/055308
https://doi.org/10.1088/1751-8113/41/5/055308
https://arxiv.org/abs/0711.1017
http://dx.doi.org/10.1155/S107379280320917X
https://arxiv.org/abs/math-ph/0205010
https://doi.org/10.1007/s00220-006-1554-3
https://arxiv.org/abs/math-ph/0402073
https://doi.org/10.1063/1.523807
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,19,999%22
http://dx.doi.org/10.2307/3214948
http://dx.doi.org/10.2307/3214948
https://doi.org/10.1103/PhysRevLett.97.050401
https://arxiv.org/abs/quant-ph/0603121
https://doi.org/10.1002/prop.201500093
https://doi.org/10.1002/prop.201500093
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5695
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04993
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.82.155138
https://arxiv.org/abs/1004.3835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3835
https://doi.org/10.1007/JHEP06(2013)085
https://arxiv.org/abs/1301.4504
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.4504
https://doi.org/10.1103/PhysRevB.96.020408
https://doi.org/10.1103/PhysRevB.96.020408
https://arxiv.org/abs/1703.03420


J
H
E
P
1
1
(
2
0
1
7
)
0
4
8
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