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The transmission of information can couple two entities of very different nature, one of them serving as a

memory for the other. Here we study the situation in which information is stored in a wave field and serves

as a memory that pilots the dynamics of a particle. Such a system can be implemented by a bouncing drop

generating surface waves sustained by a parametric forcing. The motion of the resulting “walker” when

confined in a harmonic potential well is generally disordered. Here we show that these trajectories

correspond to chaotic regimes characterized by intermittent transitions between a discrete set of states. At

any given time, the system is in one of these states characterized by a double quantization of size and

angular momentum. A low dimensional intermittency determines their respective probabilities. They thus

form an eigenstate basis of decomposition for what would be observed as a superposition of states if all

measurements were intrusive.

DOI: 10.1103/PhysRevLett.113.104101 PACS numbers: 05.45.-a, 05.65.+b

One of the initial insights on the specificity of memory-

based systems is due to E. Schrödinger [1]. Discussing the

need for stability of the biological transmission of infor-

mation to progeny, he argued that a memory had to be

encoded in a permanent structure of small size. Even

though their observation in purely physical processes is

still scarce, memory effects are no longer limited to

biology; they appear in, e.g., non-Markovian quantum

effects [2,3], crack propagations [4], looped neuronal

networks [5], or walking droplets [6]. In all these systems,

information is encoded and stored in various ways. The

nature of the information repository defines the possible

behaviors. Here we study the case of walkers in which

information is emitted and received by a localized object

(a droplet) and stored in a spread-out surface wave. Because

of interferences, the local object and its associated wave

exhibit peculiar quantumlike duality [6–10]. The present

Letter is devoted to the emergence of chaos-induced

statistical properties in this system.

The experiments are performed in a cell of diameter

13 cm containing a 6 mm deep layer of silicon oil of

viscosity μL ¼ 20 × 10−3 Pa⋅s [11]. It is oscillated verti-

cally with an acceleration γ ¼ γ0 cosð2πf0tÞ where

f0 ¼ 80 Hz, and γ0 is tunable. In this system, when γ0
exceeds a threshold γF ¼ 4.5g (where g is gravity), a

pattern of parametrically forced standing waves of fre-

quency f0=2, due to the Faraday instability, forms sponta-

neously. Our experiments are performed below this

threshold. On the vibrated interface, a droplet of diameter

d ≈ 0.7 mm of the same fluid can bounce indefinitely if

γ0 > g [12]. When γ0 is larger than 3.5g, the bouncing

becomes subharmonic and the droplet acts as a local exciter

of Faraday waves [13,14]. The droplet and the wave it

generates are phase locked. Correlatively, the drop starts

moving at a velocity V of the order of 9 mm=s. We call a

walker the resulting wave-particle association. Of particular

relevance is the structure of the wave field that drives the

drop motion. At each impact, the drop excites a Bessel-like

Faraday wave of period TF ¼ 2=f0 and wavelength

λF ¼ 4.75 mm, centered at the impact point. Since

γ0 < γF, the waves are damped with a typical nondimen-

sional time: Me ¼ τ=TF. The global wave field that pilots

the drop is the linear superposition of all the waves

generated by the successive impacts located along a

memory length SMe ¼ Vτ=λF of the past trajectory. It thus

contains in its interference pattern a path memory of the

particle motion [6,15]. Since Me ≈ γF=ðγF − γ0Þ [15], its

value can be chosen by tuning γ0 in the vicinity of γF.

Previous works have shown that the memory has major

effects on the drop motion whenever the walker is confined:

in cavities [16], due to a Coriolis force [17,18], or in a

potential well [11].

Here, we investigate the latter situation obtained by

applying a central force to the drop. The setup, schematized

in Fig. 1(a), is described in detail in Ref. [11]. The bouncing

drop is loaded with a ferrofluid and polarized by a

homogeneous magnetic field B0. It thus forms a magnetic

dipole perpendicular to the bath surface. A magnet, placed

on the cell’s axis provides a second spatially varying

magnetic field BdðrÞ, where r is the distance to the axis.

The drop is thus trapped by a magnetic force:

FðdÞ ¼ −κðdÞr. The spring constant κ can be tuned by

changing the distance d of the magnet to the liquid surface.

The walker confinement is controlled by the nondimen-

sional half-width of the potential well Λ ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffi

mW=κ
p

=λF,
where mW is the drop effective mass. The nature of the
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motion changes when the walker revisits regions where

Faraday wave sources created in the past are still active. For

orbital motions, this occurs when the memory length SMe ¼
Vτ=λF is of the order of the nondimensional orbital

perimeter 2πΛ.

In the high memory regime (SMe > 2πΛ), the trapping

leads to the appearance of states, as described previously

[11]. Each of them associates a stable periodic orbit with a

specific global wave field. The orbits have different shapes

(circles, ovals, lemniscates, trefoils, etc.) and two observ-

ables are needed to characterize them. Figure 1(b), adapted

from Ref. [11], shows the mean nondimensional radius

R̄ ¼ h
ffiffiffiffiffiffi

R2
p

=λFi as a function of the mean nondimensional

angular momentum L̄ ¼ hLi=mWλFhVi. The experimental

data are located at the nodes (n, m) of a lattice as both

observables can only take discrete values. They correspond

for R̄ to the successive zeros of the Bessel function J0ð2πrÞ:
fr1 ¼ 0.37; r2 ¼ 0.87; r3 ¼ 1.87g. For each given level n
the mean angular momentum L̄ is also quantized:

L̄m ∈ f−rn;−rn−2;…; 0;…; rn−2; rng. These states are

only observed in narrow ranges Λ−

n;m < Λ < Λþ
n;m centered

around a set of discrete values Λn;m [Fig. 1(c)].

The present article deals with the complex trajectories

observed when Λ is tuned outside the stability ranges of the

periodic orbits. Figure 1(d) shows a typical example for

Me ≈ 200 and SMe=2πΛ ¼ 1.6. While the complexity

increases with memory, it is remarkable that the regular

orbits (n,m) still show up during short time intervals. In

Fig. 1(d) seven of them are present: circles (1, �1),

lemniscates (2,0), ovals (2, �2), and loops (3, �1).

In order to put this coexistence of modes on a

quantitative basis, we study the chaotic motion in the

first two regions of instability (Λþ
1;1 < Λ < Λ−

2;0 and

Λ
þ
2;0 < Λ < Λ−

2;2), for intermediate values of the memory

for which SMe=2πΛ is close to 1. Figure 2(a) shows an

example of a complex trajectory obtained for Λ ¼ 0.49 at a

memory (Me ≈ 63 and SMe=2πΛ ≈ 1). Only three unstable

states, the small orbits (1, �1), and the lemniscate (2,0)

coexist. Figure 2(b) shows a typical scenario of a circular

orbit destabilization. It originates in a mismatch of the

classical orbiting radius (due to the central force) and the

orbiting radius induced by the wave field. The transition

from a circle to a lemniscate, occurs when the wobbling

brings the trajectory close to the center. A topological

change then leads to a lemniscate. This multilooped motion

appears unstable and mediates a return to orbiting motion

with a possible flip of the angular momentum [19,20] [21].

Figure 2(c) shows the time recording of nondimensional L

associated to the trajectory of Fig. 2(a). The transitions are

typical of low-dimensional chaos in dissipative systems

[22–24].

The multistability can be characterized using a map of

first return relating the nondimensional distance R to the

center at time tþ TI to its value at time t. The discretization
is obtained by considering the evolution of the successive

maxima. The time interval TI is then self-determined. The

resulting iterative map of Rkþ1 as a function of Rk is

shown in Fig. 2(d). The dynamics is described by the

application of first return. The two fixed points A and B

correspond to circles and lemniscates, respectively. Here,

the tuning value of Λ sets the system in a regime where

both these attractors are unstable. Starting from A, the

wobbling grows corresponding to a drift from A to B along

the upper branch. In the neighborhood of B, the motion is

a lemniscate. After a few loops, its instability triggers a

return to A. The route back depends on the memory. For

Me ≈ 40 with SMe=2πΛ ≈ 0.8, the iterative points drift

directly from C to the upper branch in the vicinity of A.
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FIG. 1 (color online). (a) Sketch of the experiment. The droplet

loaded with ferrofluid is located in an axisymmetric spatially

varying magnetic field BdðrÞ and thus trapped in a two-

dimensional attractive harmonic potential well. (b) The eigenm-

odes defined by a plot of their mean nondimensional spatial

extension R̄ versus their mean nondimensional angular momen-

tum L̄. (c) When the control parameter Λ changes, the stable

modes (n, m) are observed in narrow ranges of Λ shown in grey.

(d) A highly intermittent trajectory of a drop of velocity < V >¼
8.1 mms−1 at Me ≈ 200 for Λ ¼ 0.83 and SMe=2πΛ ¼ 1.6.

The selected sections show the coexistence of orbits (1, �1),

ovals (2, �2), lemniscates (2,0), and loops (3, �1).
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For a slightly larger memory Me ¼ 60 with SMe=2πΛ ≈ 1,

the transition is mediated by an orbital motion of decreas-

ing wobbling amplitude. This is observed as a new branch

in the map. The first return application becomes multi-

valued and the dynamics can no longer be described in a

deterministic manner by a one-dimensional map: another

dimension has to be added. This new degree of freedom

originates in the role of information stored in the wave

field. For each periodic orbit, the global wave field can be

decomposed in a Bessel function basis Jkð2πrÞ centered

at the magnet axis. For instance, a circular state (m ¼ �n)
is known to inhibit the J0 mode and a lemniscate to

minimize the J2 mode [11]. The two branches of the

iterative map could be distinguished by, e.g., the amplitude

of the J0 mode. This iterative map shows that the quantized

lemniscates and circular orbits remain fixed points of the

time evolution of R but both unstable. The instability

increases with memory. This is a non-Markovian process:

the past contributes to the instability of the present. As a

result the typical time between flips decreases with increas-

ing memory, an effect beyond the scope of the present

Letter.

Particularly interesting is the intermittency between two

levels having the same spatial extension. Figure 3 presents

the multistability observed in the range Λþ
2;0 < Λ < Λ−

2;�2
.

Four time recordings of the nondimensional angular

momentum for increasing values of Λ are given in

Figs. 3(a)–3(d). The signal is not erratic, but composed

of three types of domains. In two of them L̄ ≈�0.87 while

in the third one, L oscillates rapidly so that L̄ ≈ 0. The

corresponding trajectory fragments are oval orbits (2, �2)

and lemniscates (2,0), respectively. The system thus spends

time in a given eigenstate before undergoing an abrupt

transition to another. Such an intermittency is observed for

all values of Λ in the range separating the pure lemniscate at

Λ
þ
2;0 from the pure circle at Λ−

2;�2
. Using long recordings of

duration TR ≃ 1500 s, we measure the probabilities p2;þ2,

p2;−2, and p2;0 of being in each state. We find p2;þ2 and

p2;−2 to be equal. As shown in Fig. 3(e), their sum p2;�2

increases while p2;0 decreases when Λ goes from Λ
þ
2;0 to

Λ−

2;�2
. The sum p2;�2 þ p2;0 is close to but slightly smaller

than 1 because the angular momentum is ill-defined during

the mode switching.

In our previous work [11], we had shown that the

confinement of walkers led to stable orbital motions only

if both the orbit size and the mean angular momentum

satisfy quantization conditions. This is a nonquantum

quantization: our system has no relation with the Planck

constant. As discussed in Ref. [6], an analogy appears by

considering that the Faraday wavelength here plays a role

similar to the de Broglie wavelength in quantum mechan-

ics. Here, we have demonstrated how the chaotic motion is

characterized by transitions between these periodic orbits.

Even in a complex situation, the walker, at any given time,

is in one of the possible discrete modes. At higher memory

[see Fig. 1(d)] the phenomena are the same but the number

of modes involved in the decomposition increases. This

justifies the use of the term eigenstate in Ref. [11] for the

states (n, m): they form a basis of decomposition on which

complex trajectories can be decomposed. Only a perfect

tuning of Λ permits the preparation of a “pure” state for

which any time evolution appears forbidden. Finally, we

can note that we have in this system the opportunity of

performing a continuous nonintrusive observation. It is

interesting to consider a gedanken situation in which, in

FIG. 2 (color online). (a) A complex trajectory obtained for a

walker of velocity < V >¼ 9.7 mms−1 and memory Me ¼ 63,

SMe=2πΛ ¼ 1 and for Λ ¼ 0.49, a value located in the range

Λ
þ
1;1 < Λ < Λ−

2;0. (b) A transition from a wobbling orbit (1,1) to a

lemniscate (2,0). (c) A short sample of the time recording of the

nondimensional angular momentum L. The wobbling of increas-

ing amplitude of a circular orbit (1,1) leads to a reversal (1, −1).

These transitions are mediated by unstable lemniscates. (d) Map

of first return of the local maximum Rkþ1 as a function of the

previous one Rk for a recording lasting 40 min. The light grey

points are all the iterates, the colored ones are averaged. The red

dots correspond to increasing values of Rk while the black ones

are obtained for decreasing Rk.
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this system, we could only have a single glimpse of

duration TI, during which an intrusive measurement would

be done. The glimpse would lead to the observation of one

of the eigenstates only. With many realizations, a proba-

bility of each result would emerge. A superposition of

states would then be the best reachable description and the

probabilities would appear intrinsic.
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FIG. 3 (color online). Analysis of the evolution of the multi-

stability obtained for increasing values of the control parameter in

a range where the three eigenstates corresponding to n ¼ 2 are

lemniscates (2,0) and oval shaped orbits (2;�2). (a)–(d) Four

time recordings of the normalized angular momentum L obtained

for a walker of velocity < V >¼ 9.7 mms−1 for Me ¼ 60 are

shown corresponding to Λ ¼ 0.74, Λ ¼ 0.807, Λ ¼ 0.828,

Λ ¼ 0.875, respectively. The typical intermittency time can be

large, e.g., ∼150 orbital periods in (d). (e) Evolution of the

probability p2;0 and p2;�2 of being in lemniscate (square) and

oval-shaped states (o) as a function of Λ obtained with 12

different drops for Me ¼ 60� 10. The sum of the two proba-

bilities p2;�2 þ p2;0 is close to 1.
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