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1. Materials and methods of the mesocosm experiment 

In spring 1989, the mesocosm was filled with a 10 cm sediment layer from the Darss-

Zingst estuary (southern Baltic Sea, 54° 26’ N, 12° 42’ E). After preincubation for one 

week to stabilize the sediment, the mesocosm was filled with 90 litres of water from the 

same location, which had been filtered through a 200 µm gauze. This inoculum 
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provided all species in the food web. During the first weeks, several plankton species 

were lost, as they were not able to survive the laboratory conditions. The sediment layer 

served as a source and refuge for resting stages and buffered the nutrient cycles. 

The mesocosm was placed in a 15 
o
C climate room, and heated by an aquarium 

thermostat (Rena Cal Excel aquarium heater, 100 Watt, Aquarium Pharmaceuticals, 

Chalfont, PA, USA) to maintain the mesocosm temperature at 20 
o
C. The mesocosm 

was illuminated from above, by neon fluorescent lamps providing an incident irradiation 

of 50 µmol photons m
-2

 s
-1

 (16 hours/8 hours light-dark cycle). The mesocosm walls 

were not transparent. Salinity was maintained at 9‰, reflecting the salinity of the Darrs-

Zingst estuary. The mesocosm was constantly aerated by bubbling with compressed air. 

Nutrients were measured weekly after filtration of 20-mL samples through glass 

fiber filters (Whatman GF/F, 0.7 µm). Concentrations of soluble reactive phosphorous 

and dissolved inorganic nitrogen (nitrate, nitrite and ammonium) were analyzed 

according to standard methods (Rohde & Nehring 1979, Grasshoff et al. 1983) using a 

flow-injection autoanalyzer (Alpkem RFA-300, Alpkem, Wilsonville, OR, USA).  

Species abundances were measured twice a week. Picophytoplankton, 

nanophytoplankton, and protozoa were counted alive, immediately after sampling, in a 

Kolkwitz plankton chamber under fluorescence light using an interference contrast 

microscope (Olympus research microscope BH-2). Bacteria were counted using 

fluorescence microscopy, in samples fixed with 2% glutaraldehyde and stained with 

DAPI (Porter & Feig 1980). Zooplankton, detritivores, and filamentous diatoms were 

sampled by scooping 10 litres from the mesocosm using a 2-litre beaker. The water was 

sieved through a 50 µm net to retain the plankton, and the filtrate was returned to the 

mesocosm. The sieved material was washed off into 20 ml aged biotope water and fixed 

with neutralized formaldehyde to a final concentration of 4%. For the abundant species, 

100 to 200 individuals were counted. For less abundant species (i.e., with less than 100 

individuals per sample), the total number of individuals per sample were counted. It was 
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difficult to take a representative sample of the cyclopoid copepods. The adults and later 

copepodite stages moved very fast, and escaped the scooping procedure by the beaker. 

Therefore, only the nauplii of the cyclopoid copepods were counted. The abundances of 

the species were converted into biomass using geometric equivalents of the body 

volumes. A list of the geometric conversion factors of the different species is provided 

in Heerkloss et al. (1991). 

Attached algae were brushed from the walls of the mesocosm once a month.  

During the entire experiment, small quantities of biotope water filtered (0.4 µm pore 

size) from the Darss-Zingst estuary were added to compensate for water losses due to 

sampling. In addition, small quantities of distilled water were added to compensate for 

water loss due to evaporation. 

 

2. Earlier analyses of the same time series 

Part of the same time series has been presented in earlier publications (Heerkloss & 

Klinkenberg 1993, 1998; Dippner et al. 2002). The papers of Heerkloss & Klinkenberg 

(1993, 1998) present graphs of the time series, and suggest from visual inspection of the 

irregular ups and downs of the species that this food web might display chaotic 

dynamics. However, a nonlinear analysis of the data is not presented in their papers. 

In contrast, Dippner et al. (2002) present a nonlinear analysis of the mesocosm 

data. However, they could not detect chaos in these time series. Why did Dippner et al. 

(2002) reach a conclusion that is completely different from our findings? 

There were several differences between the approach of Dippner et al. (2002) 

and our approach. 

First, Dippner et al. (2002) analyzed a shorter time series. They used the 

mesocosm data obtained until May 11, 1995 (day 1425 in our time series). 
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Second, Dippner et al. (2002) did not transform the time series to obtain 

stationary data with homogenized variances. As a consequence, their time series showed 

sharp spikes which may have hampered the interpretation of their results.  

Third, Dippner et al. (2002) applied a different analysis. They used a graphical 

method known as recurrence quantification analysis (RQA). RQA is based on the 

analysis of recurrence plots, which were introduced by Eckmann et al. (1987). A recent 

review of recurrence plots is provided by Marwan et al. (2007). In essence, recurrence 

plots visualize the times at which a trajectory visits roughly the same area in phase 

space. The recurrence of the trajectory to similar states, after some time of divergence, 

is one of the key features of deterministic dynamical systems. To draw a recurrence 

plot, one needs to define when trajectories are considered as ‘nearby’ (i.e., when they 

pass through roughly the same area). For this purpose, a ‘neighbourhood’ of radius r is 

defined in phase space and two trajectories are assigned as ‘nearby’ if they both pass 

through the same neighbourhood. Unfortunately, in retrospect, the size of the 

neighbourhood in Dippner et al. was chosen much too large. For calanoid copepods, for 

instance, Dippner et al. (2002, p.33) used a neighbourhood with radius of r = 5 mg l
-1

. 

However, this radius is about 30% of the maximum biomass measured in the calanoid 

time series. Moreover, population abundances of the calanoids remained below 5 mg l
-1

 

for long stretches of time. In fact, the complete population dynamics of the calanoids 

from t=400 to 600 days (index=110 to 170), and also from t=850 to 1250 days 

(index=250 to 350) vanished within the same neighbourhood (this yielded the large 

black areas in their recurrence plots; compare Figure 1C and Figure 5 in Dippner et al. 

2002). Thus, in retrospect, many of the interesting ups and downs in the population 

dynamics of the calanoids remained undetected in their recurrence quantification 

analysis, and, hence, their resolution was too coarse to detect rapid chaotic fluctuations 

with a predictability of only 15-30 days. The same comment applies to their analysis of 

the other phytoplankton and zooplankton species. 
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3. Transformation of the time series 

We transformed the original time series, shown in Fig. 1b-g of the main text, to obtain 

stationary time series with equidistant data and homogeneous units of measurement. 

The transformation steps are illustrated for the bacteria (Fig. S1).  

First, the time series were interpolated using cubic hermite interpolation, to 

obtain data with equidistant time intervals of 3.35 days (Fig. S1a).  

Next, because the original time series showed many sharp spikes, the time series 

were rescaled using a fourth-root power transformation (Fig. S1b). The sharp spikes 

bias "direct method" estimates of the Lyapunov exponent, because nearby pairs of 

reconstructed state vectors mostly occurred in the troughs between spikes. The average 

rate of subsequent trajectory divergence from these pairs is therefore an estimate of the 

local Lyapunov exponent in the troughs, which may be very different from the global 

Lyapunov exponent. By making spikes and troughs more nearly symmetric, the power 

transformation resulted in a much more even spread of nearby state vector pairs across 

the full range of the data for all functional groups in the food web. The transformation is 

also useful for fitting nonlinear models of the deterministic skeleton (used for nonlinear 

predictability and indirect method estimates of the Lyapunov exponent), which was 

done by least squares and therefore is most efficient when error variances are stabilized. 

Fourth-root transformation is intermediate between the square-root transformation that 

would approximately stabilize the measurement error variance in count data from 

random subsamples, and the log transformation that is usually recommended for 

stabilizing process noise variance due to stochastic variation in birth and death rates.  

 The time series were then detrended using a Gaussian kernel with a bandwidth 

of 300 days (red line in Fig. S1b), to obtain stationary time series. Most species did not 

show long-term trends, except for the bacteria, detritivores (ostracods and harpacticoid 

copepods), dissolved inorganic nitrogen and soluble reactive phosphorus. One possible 
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explanation for these trends in the microbial loop could be the slow accumulation of 

refractory organic material in the mesocosm, but we have not measured this component.  

Finally, the time series were linearly rescaled to have zero mean and a standard 

deviation of 1 (Fig. S1c). 

 The time series of cyclopoid copepods, protozoa, filamentous diatoms, 

harpacticoid copepods and ostracods contained long sequences of zero values. This does 

not imply that these species were absent from the food web during these periods, but 

that their concentrations were below the detection limit. Time series dominated by many 

zeros can bias the statistical analysis. Therefore, these time series were shortened to 

remove long sequences of zero values, before the data transformation. 

 The transformed data of all species in the food web are shown in Figure S2. 

   

4. Spectral analysis 

We applied spectral analysis to obtain a better understanding of the predominant 

periodicities in the species fluctuations. The discrete Fourier transform X for a time 

series of length N, with observations x0,…,xN-1, is: 
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where k = 0,…,N-1 is the frequency index. The power spectrum is defined as: 

P(k)= X(k) X
*
(k),        (2) 

where X
*
(k) is the complex conjugate of X(k). 

We present both raw power spectra (Fig. S3) and smoothed power spectra (Fig. 

S4). The raw periodogram is not a consistent estimators of the spectral density, as its 

variance does not converge to zero when increasing the length of a time series (Percival 
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& Walden 1993). Consistent estimators can be derived by smoothing the raw 

periodogram. However, smoothing might introduce substantial bias at frequencies near 

spectral peaks by spreading and flattening the signal. Thus, there is a tradeoff between 

bias and variance. We smoothed the power spectrum using the modified Welch 

periodogram (Welch 1967). This method splits the time series in overlapping segments, 

called Hamming windows, and calculates the periodogram for each window separately. 

The Welch periodogram is then obtained by averaging the resulting periodograms. This 

yields a smooth periodogram, which is a consistent and asymptotically unbiased 

estimator of the spectral density. Visual inspection of the raw power spectra and Welch 

periodograms indicated that we obtained good results using 5 Hamming windows with 

50% overlap. 

All species in the food web showed reddened power spectra (i.e., decreasing 

power with increasing frequency; Fig. S3, S4), indicating some persistence in the data. 

Therefore, the power spectra of the species were compared with the power spectrum of 

red noise. A simple model for red noise is the univariate lag-1 autoregressive [AR(1)] 

process (e.g., Torrence & Compo 1998): 

ttt zxx += −1α ,        (3) 

where α is the lag-1 autocorrelation calculated from the time series under investigation, 

x0=0, and zt is taken from Gaussian white noise. Following Gilman et al. (1963), the 

power spectrum of red noise calculated from Eq.3 is: 
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where k=0,…,N-1 is the frequency index.  

Both the raw spectra and Welch periodograms show that picophytoplankton, 

rotifers, and calanoid copepods fluctuated with periodicities of ~30 days, and its 

possible harmonics at ~60 and ~120 days (Fig. S3, S4). This is consistent with earlier 
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studies reporting periodicities of ~30 days for phytoplankton-zooplankton oscillations 

(Scheffer & Rinaldi 2000, Fussmann et al. 2000). 

The raw spectra further suggest that ostracods and harpacticoid copepods, which 

are connected to bacterial activity, may have fluctuated with periodicities of ~15 days 

(Fig. S3). Other periodicities in the raw spectra can be observed at ~25 days (bacteria, 

dissolved inorganic nitrogen, ostracods, harpacticoid copepods), ~75 days (dissolved 

inorganic nitrogen), ~150 days (soluble reactive phosphorus, ostracods), and ~225 days 

(bacteria), which points at intriguing linkages between nutrients and the microbial loop 

at a range of commensurate frequencies (Fig. S3). However, many of these periodicities 

are evident only in the raw spectra and less in the Welch periodogram. For this reason 

we cannot tell with certainty whether these periodicities of the nutrients and microbial 

loop are real features of the food web.  

 

5. Predictability  

5.1. Neural network 

To investigate the predictability of the food-web dynamics, we employed a neural 

network model for each species in the food web. The neural network model assumes 

that the population dynamics of the focal species is a (complex nonlinear) function of 

the population abundances of this focal species and the species that have a direct link to 

this focal species (cf. Eq.1 in the Methods section): 

),...,,,( ,,2,1,,, tmtttiTiTti NNNNfN =+      (5) 

where Ni,t is the population abundance (or nutrient concentration) of species i at time t, 

the subscripts 1 to m indicate all species directly linked to species i, T is the prediction 

time (i.e., the number of days that we want to predict in advance), and fi,T is an unknown 

function estimated by the neural network model. 
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The architecture of the neural network model is shown in Figure S5. The input 

of the network is received by input units, which monitor the population abundances of 

the focal species and the species linked to this focal species. The input values are passed 

on to a layer of hidden units. Each connection between input unit j and hidden unit k 

(indicated by an arrow in Fig. S5) performs a linear transformation determined by the 

connection strength γkj. Hence, the total input for hidden unit k at time t is given by: 

ktj

m

j
kjtikik NNin αγγ ++= ∑

=
,

1
,      (6) 

where the first term on the right-hand side describes the neuron’s activity due to input 

from the focal species i, the second term describes the neuron’s activity due to input 

from the connected species, and the third term, αk, describes the neuron’s intrinsic 

activity level. In other words, each hidden unit receives its own input, depending on its 

connection strengths to the input units and its intrinsic activity level. 

The hidden unit performs a non-linear transformation on its total input, defined by 

the activation function ψ. This activation function is the same for all hidden units. 

Typically, the activation function is a sigmoid function, which approaches zero if the 

total input is very negative, while it approaches 1 if the total input is very positive. 

Following Nychka et al. (1992), we used the following activation function: 
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The activation signals from the hidden units are collected by a single output unit, which 

performs a linear transformation on the activation signals to present the output of the 

neural network. The network output can therefore be written as: 

∑
=

+=
n

k
kk inOut

1
0 )(ψββ       (8) 

where β0 is the intrinsic output level, the βk’s are the weights given to the activation 

signals from different hidden units, and n is the total number of hidden units. This 
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output represents the model prediction, by the neural network, of the population 

abundance of the focal species. 

The total number of hidden units, n, should be sufficiently large to avoid 

inaccurate predictions, but should not be too large either as a large number of hidden 

units increases the computation time substantially. We selected the total number of 

hidden units by minimizing a generalized cross-validation statistic (GCV2) with 2-fold 

overweighting of model degrees of freedom to avoid overfitting (Nychka et al. 1992). 

This yielded an estimate of 4 hidden units for bacteria, nanophytoplankton and 

protozoa, 5 hidden units for cyclopoid and calanoid copepods, rotifers, 

picophytoplankton, phosphorus, nitrogen, ostracods and harpacticoid copepods, and 6 

hidden units for filamentous diatoms. 

The parameters (αk, βi, γij) of the neural network models were estimated using the 

software package LENNS (Ellner et al. 1992, Nychka et al. 1992), which fits neural 

networks to data using a least-squares approach.  

 

5.2 Testing for differences between the nonlinear and linear model 

We tested whether the nonlinear neural network model yielded significantly higher 

predictabilities than the corresponding linear model. For this purpose, we calculated the 

Pearson product-moment correlation coefficient (r) between predicted and observed 

values, for both the nonlinear model (r1) and the linear model (r2). These correlation 

coefficients are simply the square roots of the coefficients of determination (R
2
) shown 

in Figure 2 of the main text. 

 For each prediction time, we tested the null hypothesis that the linear model and 

nonlinear model yielded the same predictability (i.e., r1 = r2) against the alternative 

hypothesis that the nonlinear model yielded better predictions than the linear model 
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(i.e., r1 > r2). The two correlation coefficients were both transformed with the Fisher z-

transformation (Sokal & Rohlf 1995): 
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The sampling distribution of the z statistic is known to be approximately normal, with a 

standard error of 

3

1

−
=

N
zσ         (10) 

where N is the number of observations. We note that, in our case, N is the same for both 

correlation coefficients, since they are calculated for the same time series. Accordingly, 

we calculated the difference 
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Under the null hypothesis, the sampling distribution of ∆z has a standard normal 

distribution with mean of 0 and standard deviation of 1. Hence, in view of the 

alternative hypothesis, we rejected the null hypothesis if the calculated value of ∆z 

exceeded the 95
th

 percentile of the standard normal distribution. 

The results show that, already after one time step, the nonlinear model yielded 

significantly better predictions than the linear model for all species (Table S1).  

 

6. Methods for estimating Lyapunov exponents  

Numerous methods have been proposed and studied for estimating Lyapunov exponents 

from time series data. Essentially, these methods can be classified into two types of 

approaches, direct methods and indirect methods (the latter are also called Jacobian 

methods); we applied both approaches.  
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6.1 Direct method by time-delay embedding 

Direct methods descend from Guckenheimer (1982) and Wolf et al. (1985). The data are 

searched to find nearby pairs of state vectors (or reconstructed state vectors). In other 

words, the data are searched for different points in the time series at which all species 

abundances in the food web are in a similar state. The rate of trajectory divergence at 

subsequent times, averaged over many such pairs, is an estimate of the dominant 

Lyapunov exponent λ.  

All calculations to estimate the Lyapunov exponent by the direct method were 

performed using the software of the Tisean package (Hegger et al. 1999). We chose the 

procedure of Rosenstein et al. (1993), because it was specifically developed and tested 

for short, noisy time series (which ours are by the standards of theoretical physics). This 

method uses attractor reconstruction by time-delay embedding (Takens 1981, Strogatz 

1994, Kantz & Schreiber 1997), so that separate estimates could be obtained for each 

species in the food web, providing an additional check on the robustness of our 

conclusions.   

Time-delay embedding requires a suitable choice of time delay and embedding 

dimension. Since all data are from the same dynamical system, we chose a single value 

of the time delay and embedding dimension representative for the entire food web. 

Rosenstein et al. (1993) suggested that a good choice of time delay is the time lag where 

the autocorrelation function drops to a fraction 1-1/e (i.e., 63%) of its initial value.  

Following this criterion, we estimated time delays ranging from 1 to 4 time steps, 

depending on the species (where 1 time step equals 3.35 days). Turchin (2003) 

suggested a time delay of 1 time step for organisms with generation times less than the 

unit time interval. In our food web, several species have a generation time equal or less 

than ~3.35 days (e.g., bacteria, picophytoplankton, nanophytoplankton, filamentous 

diatoms, ostracods, rotifers). Hence, a time delay of 1 time step would seem suitable. A 

time delay of 1 also gave robust results in terms of the linear scaling region in the 
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exponential divergence which is used to calculate the Lyapunov exponent. Accordingly, 

we chose a time delay of 1 time step. 

Theory suggests that the embedding dimension, m, can be estimated by the value 

where the number of false nearest neighbours drops to zero (Kantz & Schreiber 1997). 

Following this criterion, we estimated embedding dimensions ranging from m=4 to 

m=9, depending on the species. At embedding dimensions of 6 and higher, the initial 

slope of the exponential divergence became independent of embedding dimension (Fig. 

S6). Hence, we chose an embedding dimension of m=6. 

 Estimates of trajectory divergence, and therefore of the Lyapunov exponent, 

may be distorted if nearby state vectors (in state space) are also near in time. For 

example, the time-delay state vector consisting of samples 101-106 is near to that 

consisting of samples 102-107, and their future histories never diverge very far. The 

Theiler window offers a classical and effective solution to this problem (Theiler 1986, 

Kantz & Schreiber 1997). A Theiler window removes temporally nearby data points 

from the set of pairs used to estimate trajectory divergence. We estimated a suitable size 

of the Theiler window by visual inspection of space time separation plots (Provenzale et 

al. 1992). Space time separation plots show how the temporal distance between pairs of 

data points affects their spatial distance on the reconstructed attractor (Fig. S7). The 

Theiler window should be sufficiently large to exclude those data points for which the 

spatial distance on the attractor is affected by their temporal distance. For our species, 

the effect of temporal distance on spatial distance vanished when data points were 

separated by more than 10 to 20 time steps (Fig. S7). To be on the safe side, we 

therefore introduced a Theiler window of 50 time steps (~170 days) for each species in 

the food web. 

 

doi: 10.1038/nature06512                                                                                                                                                  SUPPLEMENTARY INFORMATION

www.nature.com/nature 13



 

6.2 Jacobian method: a neural network food web model  

Jacobian methods descend from Eckmann et al. (1986). These are based on the 

development of a deterministic model of the underlying dynamics of the system. This 

deterministic model will henceforth be called the ‘deterministic skeleton’. The 

deterministic skeleton is differentiated to estimate the Jacobian matrices. The Lyapunov 

exponent is then defined in terms of the sequence of Jacobian matrices of the 

deterministic skeleton, evaluated at the time series of observed or reconstructed state 

vectors. Thus, Jacobian methods require the preliminary step of estimating the 

deterministic skeleton, either locally or by fitting a global map to the time series. For 

theoretical properties of Jacobian methods, see McCaffrey et al. (1992), Bailey et al. 

(1997), Lu and Smith (1997). 

The length of our time series and the high dimensionality of the system (i.e., the 

relatively large number of interlinked species in the food web) favour the use of a neural 

network regression model to estimate the deterministic skeleton, as discussed by Ellner 

and Turchin (1995). However, our analysis here incorporates some subsequent 

developments. In particular, follow-up studies have shown that semi-mechanistic (also 

called semi-parametric) models should be preferred over state space reconstruction in 

time-delay coordinates (Ellner et al. 1998, Smith et al. 2000). "Semi-mechanistic" 

means that the structure of the model is based on biological knowledge about the system 

(when that is available), as are any process rate equations for which independent data 

are available, while nonparametric methods are used to fit aspects about which little is 

known. Here we used the food web structure (Fig. 1a) to dictate the structure of the 

model, exactly as in the estimates of nonlinear predictability. Hence, functional 

relationships in the model include only those species that have a direct link in the food 

web to the focal species. So for example, the deterministic skeleton for rotifers is 

assumed a priori to have the form   

 rotifers(t+1) = frot[rotifers(t),cyclopoids(t),pico(t),nano(t),bacteria(t)] 
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where t is the time measured in time steps of 3.35 days. The omission of other 

dependencies (e.g., absence of nutrients on the right-hand side of the last equation) leads 

to structural zeros in the fitted Jacobians, which avoids "fitting the noise" or 

incorporating functional relationships in the model that are absent in the real system. 

Another advantage of adopting the food web structure is that it eliminates the potential 

problem of spurious exponents in Jacobian-based estimates using state space 

reconstruction (Sauer et al. 1998).  

 As in the direct method estimates, the forecasting interval (one sample time) is 

chosen on mechanistic grounds (generation time) rather than a statistical rule-of-thumb. 

However, the skeleton maps f were estimated by fitting a neural network regression 

model with no a priori limits on the number of hidden units, so that any model shape 

and complexity can be fitted, if there is evidence for it in the data.  

  Hence, the final issue is selecting the complexity (number of hidden units) of 

the skeleton map for each species in the food web. This has no simple resolution. To 

avoid overfitting we need a conservative criterion. Ellner and Turchin (1995), following 

Nychka et al. (1992), used GCV2, a modification of the Generalized Cross Validation 

criterion in which model degrees of freedom are overweighted by a factor of 2. 

Subsequent work suggested that twofold overweighting may be excessive. With short, 

noisy time series Kendall (2001) found that GCV2 model selection had a substantial risk 

of drastically underfitting, leading to spurious strongly negative estimates of λ. For 

longer and less noisy data sets, McCaffrey et al. (1992) and Nychka et al. (1992) 

obtained good results using the Bayesian Information Criterion (BIC) with neural 

network models. Assuming Gaussian errors and using the maximum likelihood estimate 

of the error variance (i.e. the mean squared residual error, MSE), the BIC criterion is 

equivalent to chosing the model that minimizes log(MSE)+Plog(N)/N, where P is the 

number of model parameters and N is the sample size. GCV2 is equivalent to selecting 

the model that minimizes log(MSE)-2log(1-2P/N). For our time series length, the BIC 

criterion is more conservative.   
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 Based on these considerations, we applied both the GCV2 and BIC criteria to 

estimate the number of hidden units. However, in our case, both criteria gave rather 

similar results. Depending on the species, we obtained skeleton maps f with up to 8 

hidden units, which was sufficient for model selection under all criteria.  

All calculations to estimate the Lyapunov exponent by the Jacobian method were 

performed using the LENNS software (Ellner et al. 1992, Nychka et al. 1992).  An R (R 

Development Core Team 2006) version of LENNS for the Windows operating system is 

available on request from S.P.E. or can be downloaded from 

www.eeb.cornell.edu/ellner/software. 

To place confidence limits on the estimate of λ we used bootstrapping in 

particular the "resampling errors" approach to bootstrapping regression models 

(Davison and Hinkley 1997, section 6.2.3), as follows. For each functional group i in 

the food web, let ˆ ( )i if X denote the fitted deterministic skeleton map, where iX  is the 

vector of all functional groups linked with species i, including itself. From this we 

obtain a time series of forecasting errors ˆ( ) ( ) ( ( 1))i i i ie t x t f X t= − − . Each bootstrap 

sample for functional group i was generated by first sampling with replacement from 

{ }
2

( )
N

i t
e t

=
 to generate a series  { }*

2
( )

N

i t
e t

=
. These reshuffled error terms were subsequently 

used to create a new time series consisting of fictitious "one step ahead" data  

* *ˆ( ) ( ( 1)) ( )i i i ix t f X t e t= − +       (12) 

For each such "data set" we then refitted the neural network model (with *

ix  as the 

response variable, and the real data series Xi(t-1) as the predictors), including selection 

of model complexity by the BIC criterion. Due to the high computational time required 

for fitting neural network models reliably, we limited the complexity of the refitted 

networks to at most 1 more hidden unit than the number selected by BIC for the real 

data. Because more complex models have a tendency to lead to more strongly positive 

estimates of λ, this limitation is conservative for our purposes (assessing the strength of 
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evidence that λ>0). Obtaining 1000 bootstrap replicates required about one month on a 

current desktop PC. 

Based on these 1000 bootstraps, a one-sided confidence interval at the 95% 

confidence level yielded a lower bound of λ=0.03 day
-1

. This confirms that the 

Lyapunov exponent was significantly positive. We also report the two-sided confidence 

interval at the 95% confidence level, which yielded 0.025 < λ < 0.109 day
-1

.  

 We also assessed the robustness of the Jacobian estimates informally in several 

different ways (these were done individually, not in all possible combinations). 

• We modified the food web by completely removing the detritivores (ostracods 

and harpacticoid copepods), and subsequent refitting of the neural network 

model to the remaining time series.  

• We eliminated the first 500 days of the time series, during which the temperature 

was slightly higher than 20 
o
C.  

• Instead of a neural network we used a generalized additive model (GAM) with 

spline ridge functions (Wood 2006, package mgcv package in R). The model for   

functional group i included a univariate self-limitation spline term ( )is x , a 

univariate spline term ( )js x for each group j linked to group i, and a bivariate 

spline term ( , )i js x x  for each group j linked directly to group i (i.e., indirect 

links via the microbial loop were not represented by bivariate spline terms). A 

spline GAM can be fitted quickly and reliably, including selecting model 

complexity by GCV criteria, but it cannot include higher-order interactions (for 

example, all possible 3-way interactions between rotifers and all groups linked 

to them) due to the large number of basis functions required for such a model. 

We fitted the GAM to the shortened time series mentioned just above.  

All of these modifications produced similar results, in particular they all yielded a 

positive value for the dominant Lyapunov exponent. For the GAM model, we obtained 
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a Lyapunov exponent of λ=0.08 day
-1

, and an application of our bootstrap procedure 

(using 200 replicates) resulted in a positive lower bound of the Lyapunov exponent at 

the 95% confidence level of 0.024 day
-1

. Analyses of the shorter time series (without the 

first 500 days) produced a slightly larger estimate of the dominant Lyapunov exponent, 

of λ=0.097 day
-1

, with a positive lower bound at the 95% confidence level of 0.02 day
-1

. 

 

7. Temperature fluctuations 

The mesocosm was placed in a 15 
o
C climate room, and heated by an aquarium 

thermostat to maintain a constant water temperature. During the entire period of 

investigation, for 2,319 days, the temperature of the mesocosm was ~20˚C (mean = 

20.28 ˚C, s.d. =1.07 ˚C, n = 688). Nevertheless, some temperature fluctuations were 

unavoidable (Fig. S8a), either by failure of the climate room or by failure of the 

aquarium thermostat. For instance, accidental failures of the thermostat resulted in a fast 

temperature increase on April 3, 1992 (day 292), June 17, 1993 (day 732), May 18, 

1995 (day 1432), and September 4, 1997 (day 2272). 

One might argue that the chaotic behavior of the food web could have been 

driven by the temperature fluctuations. There are actually two hypotheses: (1) the 

temperature itself fluctuated chaotically, and/or (2) the temperature was not chaotic, but 

temperature variability pushed the species dynamics into a chaotic regime. 

To investigate these hypotheses, we carried out several analyses. For this 

purpose, the temperature data were transformed in exactly the same way as the species 

in the food web (i.e., interpolation, fourth-root power transformation, detrending, and 

normalization of the time series). This yielded a stationary time series with equidistant 

data and homogeneous units of measurements (Fig. S8b). 
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First, we investigated whether the observed species variability was associated 

with temperature variability, by calculation of the product-moment correlation 

coefficient between the species abundances and temperature. This revealed that bacteria 

and rotifers showed significantly positive correlations with temperature, whereas the 

other species did not show a significant relationship (Table S2). Visual inspection of the 

data suggested that the positive correlations of bacteria and rotifers could be attributed 

to the slightly elevated temperatures from day 300 to day 475 (Fig. S8a; mean = 21.55 

o
C; s.d. = 0.96 

o
C, n = 47). Indeed, when we shortened the time series by removal of the 

first 500 days, none of the species in the food web showed significant correlations with 

temperature anymore (Table S2). Hence, we conclude that the temperature fluctuations 

may have had some effect on the species abundances, but that this effect was relatively 

minor and mainly concentrated in the first 500 days of the time series. 

Second, we investigated the predictability of the temperature fluctuations by 

developing a neural network model using the same methodology as for the species in 

the food web. However, we could of course not exploit the food web structure to predict 

temperature, and instead we predicted the temperature by time-delay embedding of the 

time series. We used a time delay of d=1 time step, which corresponded to the value 

where the autocorrelation function dropped to 1-1/e. We used an embedding dimension 

of m=3, corresponding to the first minimum of the GCV2 statistics as a function of the 

embedding dimension. The results showed that the predictability of temperature was 

already low for a prediction time of only one time step (R
2
=0.14), and was further 

reduced from the second time step onwards (R
2
<0.08). Hence, the temperature signal 

was noise dominated, with only a very weak deterministic component.  
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Third, we estimated the Lyapunov exponent using both direct and indirect 

methods. In the direct method, the Lyapunov exponent was estimated using attractor 

reconstruction by time-delay embedding, following exactly the same approach as for the 

species. We used a time delay of d=1 time step, an embedding dimension of m=3, and a 

Theiler window of 70 time steps (about 235 days). This yielded a strongly positive 

Lyapunov exponent (λ=0.151 day
-1

). Does this imply that the temperature fluctuations 

were driven by chaotic dynamics? Not necessarily. The direct method may yield 

positive Lyapunov exponents when the dynamics are chaotic, but also when the 

dynamics are not chaotic but dominated by noise (Ellner and Turchin 1995). Moreover, 

the predictability results above had indicated that the temperature fluctuations were 

noise dominated. 

The indirect method is specifically designed for noisy data sets; it avoids the 

noise signal by investigation of the deterministic skeleton underlying the time series. 

For this purpose, we used again a neural network model to estimate the deterministic 

skeleton, and subsequently calculated the Lyapunov exponent by evaluation of the 

Jacobian matrices. The methodology was as described previously (see the earlier section 

on the Jacobian method). However, because we could not exploit the food web 

structure, we used time-delay embedding with a time delay of d=1 time step and an 

embedding dimension of m=3 to generate the neural network model. This yielded a 

strongly negative Lyapunov exponent (λ= –0.091 day
-1

). In fact, a negative Lyapunov 

exponent should have been expected, because the temperature was regulated by a 

thermostat system (i.e., the temperature trajectories should all converge to the same 

point attractor at 20 
o
C). The contrasting results from the direct and indirect method 

emphasize once more that assessment of the chaotic nature of noisy time series (i.e., 
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many ecological time series) requires investigation of the underlying deterministic 

skeleton. 

Thus, we conclude that the temperature fluctuations were not driven by chaotic 

dynamics, but reflected a stable thermostat system disturbed by noise.  

Finally, could the temperature fluctuations have pushed the species dynamics 

into a chaotic regime? In principle, this could have been the case. However, the species 

abundances showed at best only a very weak relationship with temperature (Table S2). 

Moreover, the positive Lyapunov exponent of the entire food web, estimated by the 

indirect method (see main text), points out that the underlying population dynamics 

were chaotic. Hence, we conclude that the chaotic nature of this food web was not 

driven by external forcing, but by the food web interactions themselves.  
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Table S1. Statistical evaluation of differences between the predictability of the 

nonlinear neural network model and the predictability of the best-fitting linear model. 

Data entries show P values, for each species and each prediction time (measured in time 

steps, where one time step equals 3.35 days). If P < 0.05, the nonlinear model had a 

significantly higher predictability than the linear model. n.s. = not significant. 

 

Prediction time 
Species 

     1      2      3    > 3 

Bacteria <0.02 <0.001 <0.001 <0.001 

Harpaticoids <0.001  <0.001  <0.001  <0.001  

Ostracods <0.001  <0.001  <0.001  <0.001  

Nitrogen n.s <0.02 <0.001 <0.001 

Phosphorus n.s. <0.005 <0.001 <0.001 

Picophytoplankton <0.05 <0.001 <0.001 <0.001 

Nanophytoplankton n.s <0.01 <0.001 <0.001 

Filamentous diatoms <0.02 <0.001  <0.001  <0.001  

Rotifers <0.05 <0.001  <0.001  <0.001  

Protozoa n.s <0.01 <0.005 <0.005 

Calanoids n.s. <0.01 <0.001  <0.001  

Cyclopoids n.s. <0.05 <0.05 <0.02 
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Table S2. Correlations between species abundances and temperature. Table entries show the 

product-moment correlation coefficients, after transformation of the data to stationary time 

series (see Methods section). In the shortened time series, the first 500 days were removed from 

the data set. Significance tests were corrected for multiple hypothesis testing by calculation of 

adjusted p-values using the false discovery rate (Benjamini & Hochberg 1995). Significant 

correlations are indicated in bold: *** = P < 0.001, ** = P < 0.01; * = P < 0.05. Filamentous 

diatoms and cyclopoid copepods were not included in the correlation analysis, because their 

time series contained too many zeros. 

 

Correlation coefficient 
Species 

complete time series shortened time series 

Bacteria 0.11* 0.11 

Harpacticoids 0.09 0.09 

Ostracods 0.10 0.11 

N 0.02 0.03 

P 0.07 -0.11 

Picophytoplankton -0.12 -0.04 

Nanophytoplankton -0.07 -0.07 

Rotifers 0.11* 0.08 

Protozoa -0.01 0.00 

Calanoids -0.11 0.05 
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Figure S1. Data treatment of the time series of bacteria. a, First, the time series was 

interpolated to obtain equidistant intervals of 3.35 days. b, Next, the time series was 

transformed by a fourth-root power transformation to suppress large spikes in the data, 

and the trend (red line) was calculated by a Gaussian kernel window with a bandwidth 

of 300 days. c, Finally, the time series was detrended, and subsequently normalized to 

obtain a stationary time series with mean zero and standard deviation of 1. 
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Figure S2. Stationary time series of the functional groups in the food web, after data treatment. 

a, Cyclopoid copepods; b, calanoid copepods (red), rotifers (blue), and protozoa (dark green); 

c, picophytoplankton (black), nanophytoplankton (red), and filamentous diatoms (green); d, 

dissolved inorganic nitrogen (red) and soluble reactive phosphorus (black); e, heterotrophic 

bacteria; f, harpacticoid copepods (violet) and ostracods (light blue). 
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Figure S3. Raw power spectra of the species. a, Picophytoplankton; b, nanophytoplankton; c, 

calanoid copepods; d, ostracods;  e, harpacticoid copepods; f, rotifers; g, soluble reactive 

phosphorus; h, dissolved inorganic nitrogen; i, bacteria. For comparison, the grey line shows 

the red-noise spectrum calculated from an AR1-process. Note the different scale of the y-axes 

in panels g-i. 
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Figure S4. Welch periodogram of the species. a, Picophytoplankton; b, 

nanophytoplankton; c, calanoid copepods; d, ostracods; e, harpacticoid copepods; f, 

rotifers; g, soluble reactive phosphorus; h, dissolved inorganic nitrogen; i, bacteria. For 

comparison, the grey line shows the red-noise spectrum calculated from an AR1-

process. Please note that the power in this graph is plotted on a log scale. 
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Figure S5. Architecture of the neural network model. In this example, the input layer 

consists of 3 input units representing the population abundances of focal species i and 

two connected species at time t, the hidden layer consists of 4 hidden units, and the 

output layer predicts the new population abundance of focal species i at time t+T. 
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Figure S6. Exponential divergence of the trajectories of picophytoplankton as a 

function of time, calculated with different embedding dimensions (m=3, dark green; 

m=4, red; m=5, blue; m=6, pink; m=7, black; m=8, light green). Exponential divergence 

is plotted on a natural-logarithmic scale. Robust estimates of the Lyapunov exponent 

require that the initial slope of the exponential divergence is independent of the exact 

value of the embedding dimension. This requirement is fulfilled with an embedding 

dimension of m ≥ 6. 
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Figure S7. Space time separation plots of the functional groups. a, Rotifers; b, calanoid 

copepods; c, picophytoplankton; d, nanophytoplankton; e, dissolved inorganic nitrogen; f, 

bacteria. The plots indicate how the temporal distance between pairs of data points from the 

time series affects their spatial distance on the reconstructed attractor. Contour lines are shown 

at the spatial distance ε where for a given temporal separation ∆t (in time steps) a fraction of 

1/10, 2/10, … (lines from below) of pairs are found. 
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Figure S8. Time series of the temperature in the mesocosm experiment. a, Original time series. 

b, Stationary time series after data transformation. 
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