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Abstract

We consider a credit cycle model introduced by Matsuyama, which is defined

by a one-dimensional piecewise smooth map with upward, downward and flat

branches. We offer a detailed analysis of this model for the case where asymp-

totic dynamics does not involve the flat branch, under the additional assumption

that the production function is Cobb-Douglas. In particular, using skew tent

map (which is a one-dimensional map defined by two linear functions) as a

border collision normal form we obtain conditions of abrupt transition from

an attracting fixed point to an attracting cycle or a chaotic attractor (cyclic

chaotic intervals). These conditions allow us to describe the overall bifurcation

structure of the parameter space of the map in a neighborhood of the boundary

related to the border collision bifurcation of the fixed point. Such a structure

confirms, in particular, that chaotic attractors of the considered map are robust,

that is, they are persistent under parameter perturbations.
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1. Introduction

The idea that market mechanisms are inherently dynamically unstable can

be traced back at least to Goodwin [12]. Recent events have also renewed

interest in the hypothesis that financial frictions are responsible not only for

amplifying the effects of exogenous shocks but also for causing macroeconomic

instability (see, e.g., [17] and [24]). Although a vast majority of the macroeco-

nomics literature on financial frictions that follow the seminal work of [6] and

[18] continue to study amplification effects of financial frictions within a setting

that ensures the existence of a stable steady state toward which the economy

would gravitate in the absence of recurring exogenous shocks, there exist sev-

eral micro-founded, dynamic general equilibrium models of financial frictions,

in which the steady state is unstable and persistent fluctuations occur without

exogenous shocks; see, for example, [1], [3], [21]. The model developed by Mat-

suyama ([20], [22]) which we study in the present paper is in the same vein.

It generates endogenous fluctuations of borrower net worth and aggregate in-

vestment. This model considers an overlapping-generation economy in which

entrepreneurs arrive sequentially. When they arrive, they first sell their labor

and other inputs to the production of the consumption good to acquire some

net worth, which they could later use to finance their own projects or lend to

finance the projects run by others. There are two types of projects, the Good

and the Bad. The Good projects produce capital, which contributes to the

production, together with labor and other inputs supplied by others who could

undertake projects in the future. By competing for these inputs, more Good

projects drive up the prices of these inputs, thereby improving the net worth

of next generations of entrepreneurs who supply these inputs. This also means

that they are subject to diminishing returns. In contrast, the Bad projects are

independently profitable as they directly produce the consumption good. In

other words, they do not require the inputs supplied by others. This means

that they fail to improve the net worth of next generations of entrepreneurs,

and that they are not subject to diminishing returns. However, they are sub-
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ject to borrowing constraints because their revenues are not fully pledgeable,

which means that the entrepreneurs need to have some net worth of their own

to finance them. In this setting, [22] showed that the trajectory of the economy

is described by a one-dimensional map in the entrepreneurs net worth, which

consists of upward, downward, and flat branches, as follows:

• When the current net worth is low, the entrepreneurs cannot finance the

Bad projects, because the borrowing constraint is too tight. All credit

thus flows into the Good projects, even after the rate of return of the

Good projects become lower than that of the Bad projects, and hence, a

higher current net worth leads to a higher net worth in the next period.

This explains the upward branch of the model.

• When the current net worth is in the intermediate range, the Bad projects

are financed but still subject to the borrowing constraint, so that the

rate of return of the Bad projects remain strictly higher than that of the

Good projects. Thus, a higher current net worth, by easing the borrowing

constraint of the Bad projects, thereby making them more appealing to

the lenders, reduces the credit flow to the Good, which causes a net worth

decline in the next period. This explains the downward branch of the

model.

• When the current net worth is high, the Bad projects are no longer subject

to the borrowing constraint, so that both Good and Bad projects earn

the same rate of return in equilibrium. With the Good being subject to

diminishing returns, all additional credit flow into the Bad, not at all to

the Good, hence the net worth in the next period, is independent of the

current net worth. This explains the flat branch.

Furthermore, as discussed in [30], when the production function is Cobb-

Douglas, the map depends on four parameters, the share of capital in the Cobb-

Douglas production function (α), the profitability of the Bad projects (B); the

pledgeability of the Bad projects (µ); and the fixed investment size of the Bad
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projects (m). The bifurcation structure of this map differs significantly depend-

ing on whether the constant branch is involved into asymptotic dynamics. In

the present paper we propose a detailed analysis of dynamics of the map in case

when the constant branch does not participate in the asymptotic dynamics. Our

companion paper [30] offers a detailed study of the case where all three branches

are involved. It is characterized by periodicity regions related to superstable cy-

cles existing due the constant branch of the function. It is shown that these

regions are ordered according to the well known U-sequence characteristic for

unimodal maps (first described in [23], see also [13]) which is adjusted to the

considered map.

The map which defines the model belongs to a class of one-dimensional (1D

for short) piecewise smooth continuous noninvertible maps. It possesses quite

complicated dynamics which, depending on parameters, is characterized by not

only attracting fixed points and cycles of any period but chaotic attractors as

well. Our main purpose is to unfold the mechanisms governing transitions be-

tween such attractors under variation of parameters and to describe the overall

bifurcation structure of the parameter space of the map. From the point of

view of the nonlinear dynamics theory the main feature of the considered map

is its nonsmoothness. In fact, as we mentioned above, the map is given by three

different smooth functions whose definition regions are separated by two border

points at which the system function is not differentiable. As a result, under

variation of a parameter one can observe not only bifurcations typical for 1D

smooth maps (such as, for example, flip bifurcation of a fixed point related to its

eigenvalue crossing −1, or homoclinic bifurcation related to a contact of stable

and unstable sets of a repelling fixed point), but border collision bifurcations

as well which are characteristic for nonsmooth systems (see [15], [14], [25], [5]).

Recall that a border collision bifurcation (BCB for short) occurs when an in-

variant set, for example, a fixed point or cycle, collides with a border point.

The result of such a bifurcation can be a direct transition from an attracting

fixed point to a chaotic attractor that is impossible in smooth systems. Such an

abrupt transition to chaos in a 1D piecewise smooth map can be observed also
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due to a degenerate bifurcation which is related to eigenvalue of a fixed point

(or cycle) crossing 1 or −1 in presence of a particular degeneracy of the system

function. For example, a degenerate flip bifurcation (DFB for short) of a fixed

point occurs when its eigenvalue crosses −1 and the related branch of the func-

tion at the bifurcation value is linear or linear fractional (see [29]). Note that

general bifurcation theory of nonsmooth dynamical systems has not yet such

a complete form as the one established for smooth systems. As an important

advancement towards such a theory we refer to the books [32], [10]. Examples

of piecewise smooth models coming from economic applications can be found in

[9], [15], [27], [11], to cite a few.

As one of the main contributions of the present paper we get conditions

under which in the Matsuyama model of credit cycles abrupt transitions from

an attracting fixed point to an attracting cycle or to a chaotic attractor are

observed. Such conditions are obtained with help of a 1D piecewise linear map

defined by two linear functions, called skew tent map. The dynamics of the

skew tent map are completely described depending on the slopes of the linear

branches (see [16], [19]) that makes it possible to use this map as a border

collision normal form ([26], [5], [28]).

Remarkably, the skew tent map helps to classify not only border collision

bifurcations but homoclinic bifurcations as well which are responsible for par-

ticular transformations of chaotic attractors. In fact, it is known that one more

distinctive feature of piecewise smooth maps is associated with robust chaos (see

[4]). A chaotic attractor which is robust is characterized by persistence under

parameter perturbations, that is, in the parameter space of the map there exists

an open region, called chaotic domain, related to a chaotic attractor. We recall

that in a 1D continuous map a chaotic attractor consists of n cyclic intervals,

n ≥ 1. Varying some parameter inside a chaotic domain one can observe bi-

furcations at which the number of intervals constituting the chaotic attractor

changes. In particular, a merging bifurcation is related to the transition from

2n- to n-cyclic chaotic attractor. It is caused by the first homoclinic bifurcation

of a repelling cycle with negative eigenvalue, located at the immediate basin
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boundary of the attractor. An expansion bifurcation occurs when a chaotic

attractor abruptly increases in size filling the complete absorbing interval due

to the first homoclinic bifurcation of a repelling cycle with positive eigenvalue

(see [2] for details). Using skew tent map we describe merging and expansion

bifurcations occurring in the considered map.

The paper is organized as follows. In Sec.2 we introduce the map, list its

fixed points and obtain conditions of their stability. The parameter region we

are interested in is confined by three boundaries. One of them is related to a

contact of the absorbing interval with the border point of the map and two other

boundaries are related to the bifurcations of a fixed point associated with the

downward branch of the map. Namely, crossing one of such boundaries a border

collision bifurcation of this fixed point occurs results of which are summarized

in Proposition 1 in Sec.3. The second boundary is related to the flip bifurcation

described in Proposition 2 in Sec.4. The overall bifurcation structure of the

parameter space is discussed in Sec.5. Sec.6 concludes.

2. Description of the map, its fixed points and their bifurcations

We consider a 4-parameter family of 1D piecewise smooth maps defined as

T : w 7→ T (w) =


wα if 0 < w < wc,[

1
µβ

(
1− w

m

)] α
1−α

if wc < w < wµ,

β
α
α−1 if w ≥ max {wc, wµ} ,

(1)

where α, β, µ and m are real parameters such that

0 < α, µ < 1, β ≡ B 1− α
α

> 0, 1 < m <
1

1− α
, (2)

wc and wµ are the border points defined by

w1−α
c =

1

µβ
max

{
1− wc

m
,µ
}
, wµ = m(1− µ). (3)

The map T describes the dynamic trajectory of the entrepreneur net worth w in

a credit cycle model, first introduced in [20], under the additional assumption
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that the aggregate production function is Cobb-Douglas (see [30]). The branches

of the map T are defined as follows:

TL(w) ≡ wα (the upward branch);

TM (w) ≡
[

1
µβ

(
1− w

m

)] α
1−α

(the downward branch);

TR(w) ≡ β
α
α−1 ≡ wB (the flat branch).

The map T in the simplest case is given by the branches TL(w) and TR(w)

only with the border point wc = (wB)
1/α

. The boundary in the parameter space

defined by

β = (m(1− µ))α−1 (4)

is related to the appearance of the middle branch in the definition of T . Namely,

for β > (m(1− µ))α−1 the map T can be written in the following form:

T : w 7→ T (w) =


TL(w) = wα if 0 ≤ w ≤ wc,

TM (w) =
[

1
µβ

(
1− w

m

)] α
1−α

if wc < w < wµ,

TR(w) = wB if w > wµ.

(5)

Note that T maps (0, 1] into itself, so that we restrict T on (0, 1] from now on.

Let us recall fist the simplest bifurcation conditions presented in [30] related

to existence and stability of the fixed points of the map T. We illustrate the cor-

responding regions and bifurcation curves in Fig.1 which shows the bifurcation

diagram of map T in the (µ, β)-parameter plane.

The fixed points associated with the upward, downward and flat branches of

the map T are denoted w∗L, w
∗
M and w∗R, respectively. The fixed point w∗L = 1

exists and is globally attracting for the parameter values belonging to the region

A : β ≤ max

{
1

µ

(
1− 1

m

)
, 1

}
, (6)

two boundaries of which correspond to BCBs of w∗L, namely, for

BCLM : β =
1

µ

(
1− 1

m

)
, (7)

we have w∗L = 1 = w∗M , and for

BCLR : β = 1, (8)
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the equality w∗L = 1 = w∗R holds. The fixed point w∗R = wB (which is obvioulsy

superstable) exists for the parameter region

1 < β < (m(1− µ))1−
1
α .

At the boundary β = 1 (denoted as BCLR) we have w∗R = w∗L = 1. If the

parameter point crosses BCLR we observe a border collision leading from the

superstable fixed point w∗R to the stable fixed point w∗L.1 The region of existence

of w∗R is divided by the boundary given in (4) in two subregions:

B : 1 < β < (m(1− µ))α−1,

C : (m(1− µ))α−1 < β < (m(1− µ))1−
1
α ,

(see Fig.1). While at the boundary

BCMR : β = (m(1− µ))1−
1
α (9)

we have w∗R = wµ = w∗M , so that BCMR is related to one more border collision

of w∗R. The fixed point w∗M exists if wc ≤ w∗M ≤ wµ that holds for

β ≥ max

{
1

µ

(
1− 1

m

)
, (m(1− µ))1−

1
α

}
. (10)

Both boundaries of this parameter region are related to the border collision

of w∗M , namely, at the boundary BCLM (see (7)) w∗M = 1 = w∗L, as already

mentioned. The possible results of this BCB are described in Proposition 1

below. While at the boundary BCMR (see (9)) we have w∗M = wµ = w∗R.

Crossing BCMR in a generic case we observe either persistence border collision,

or flip BCB2 (see [30]).

The fixed point w∗M may become unstable via a flip bifurcation (see Propo-

sition 2 below). The flip bifurcation curve of w∗M is given by

FBM : β =
α

µ
(m(1− α))1−

1
α . (11)

1Border collision at which neither kind nor stability properties of the colliding invariant
set change is called persistence border collision.

2Border collision of a fixed point due to which the fixed point changes stability while a 2-
cycle emerges from the border point is called flip BCB. Simillarly to the smooth flip bifurcation
a flip BCB can be sub- or supercritical. Note, however, that it is not related to an eigenvalue
passing through −1. Moreover, it may result in a chaotic attractor that is impossible for the
smooth flip bifurcation.
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Figure 1: 2D bifurcation diagram in the (µ, β)-parameter plane at m = 1.2 and α = 0.47 in
a), α = 0.52 in b).

So, for parameter values belonging to the region

D : β > max

{
α

µ
(m(1− α))1−

1
α , (m(1− µ))1−

1
α

}
(see Fig.1) there exists the locally attracting fixed point w∗M .

We have the following two possibilities for an invariant absorbing interval J

of map T :

1) In the absorbing interval J only the functions TL(w) and TM (w) are

defined, that holds for parameter values belonging to the region

E-I :

 β < α
µ (m(1− α))1−

1
α ,

β > max
{

1
µ

(
1− 1

m

)
, 1− 1

µ + 1
µ (m(1− µ))1−

1
α

} (12)

In such a case J = [T 2(wc), T (wc)].

2) All the three functions, TL(w), TM (w) and TR(w), are involved in J , that

holds in the region

E-II :

 β > (m(1− µ))1−
1
α ,

β < min
{

1− 1
µ + 1

µ (m(1− µ))1−
1
α , α

µ (m(1− α))1−
1
α

} (13)

In such a case J = [T (wµ), T (wc)] = [wB , T (wc)].

The boundary between the two regions corresponds to the contact of J with

the border point wµ, occurring when the condition T (wc) = wµ is satisfied,

leading to the curve BCJ having the following equation:

BCJ : β = 1− 1

µ
+

1

µ
(m(1− µ))1−

1
α . (14)
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The bifurcation structure of the region E-II formed by the periodicity re-

gions related to superstable cycles of the map T (existing due to its flat branch)

is described in [30]. In the following we first describe the border collision and

flip bifurcations of the fixed point w∗M in detail and then we discuss the overall

bifurcation structure of the region E-I.

3. Crossing the curve BCLM : BCB of the fixed point

Let us consider first the BCB of the fixed point w∗M , occurring when a

parameter point crosses the boundary BCLM given in (7) of the region E-I. To

describe the possible results of this BCB we can use the skew tent map defined

by

q : x 7→ q(x) =

 alx+ ε if x ≤ 0,

arx+ ε if x > 0,
(15)

as a border collision normal form. This approach is based on the following

statement (see [26], [5], [29]): For a family of 1D piecewise smooth continuous

maps g : x 7→ g(x, c) depending smoothly on a parameter c and having a border

point x = d, suppose that

g(d, c∗) = d (16)

and let

a∗l = lim
x↑d

d

dx
g(x, c∗), a∗r = lim

x↓d

d

dx
g(x, c∗). (17)

Then in the generic case the border collision occurring in the map g as c varies

through c∗ is of the same kind as the one occurring in the skew tent map (15)

as ε varies through 0 at (al, ar) = (a∗l , a
∗
r).

Clearly, this statement refers to the border collision of a fixed point x = x∗

of the map g (its existence before or/and after the collision follows from the

conditions of the statement).3 Generic case means that at c = c∗ the fixed

point x = x∗ of the map g undergoes only one bifurcation, i.e. a codimension-one

3The skew tent map can be also used as a border collision normal form for a BCB of an
n-cycle of the map g, in which case the statment has to be applied to the map gn and its fixed
point corresponding to the periodic point of g colliding with the border point.
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BCB. An example of codimention-two bifurcation is when a border collision and

a flip bifurcation occur simultaneously at the same point in the parameter space

(in fact, this can happen in the map T , as we discuss later). For the detailed

classification of the possible BCBs in the skew tent map and explanation how

to use this map as a border collision normal form we refer to [2].

So, to construct a normal form for the border collision occurring in the

map T when its fixed point collides with the border point wc (in which case

w∗M = w∗L = wc = 1) we have to evaluate the left- and right-side derivatives of

T at w = 1 for the parameter values belonging to the boundary BCLM given in

(7):

a∗l = lim
w↑1

d

dx
T (w) = α, a∗r = lim

w↓1

d

dx
T (w) = − α

(1− α)(m− 1)
. (18)

The relation between a point belonging to BCLM and the parameters al, ar of

the skew tent map is given by

(al, ar) =

(
α,− α

(1− α)(m− 1)

)
,

so, if a parameter point moves along the boundary BCLM the related point in

the (al, ar)-parameter plane moves along the curve denoted Bm:

Bm : ar = − al
(1− al)(m− 1)

. (19)

Recall that the curve BCLM is valid for β = B 1−α
α > 1, that is, for α < B

B+1 .

Moreover, α > 1 − 1
m (see (2)). Thus, the curve Bm is to be considered in the

range

1− 1

m
< al <

B

B + 1
, or

−B
m− 1

< ar < −1, (20)

which is nonempty for B > m− 1.

Let us recall in short the curves forming the bifurcation structure in the

(al, ar)-parameter plane of the skew tent map for any ε > 0.4 Let qn denote a

cycle of period n, n ≥ 2, of the skew tent map. The stability region of qn is

4For details see, for example, [19], [2].
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bounded from above by the curve φn and from below by the curve ψn defined

as

φn : ar = −
1− an−1l

(1− al)an−2l

, (21)

ψn : ar =
−1

an−1l

, (22)

(see Fig.2a). The curve φn is related to the fold BCB5 leading to the appearance

of the basic cycle6 qn and its complementary cycle7 q̃n. The curve ψn is related

to the DFB of qn leading to 2n-cyclic chaotic intervals Qn,2n, n ≥ 3, where the

first index n means that this chaotic attractor is born due to a DFB of the n-

cycle, while 2n indicates that the chaotic intervals constituting the attractor are

2n-cyclic. The transitions Qn,2n ⇒ Qn,n (merging bifurcation) and Qn,n ⇒ Q1

(expansion bifurcation) take place crossing the curves γn and γ̃n, respectively,

whose equations are given by

γn : a
2(n−1)
l a3r − ar + al = 0, (23)

γ̃n : an−1l a2r + ar − al = 0. (24)

For the description of merging and expansion bifurcations we refer to [2]. The

curves γn and γ̃n are related to the first homoclinic bifurcation of the cycles qn

and q̃n, respectively. There is also a set of curves σ2i , i ≥ 0, given by

σ2i :
(
aδil a

δi+1
r

)2
+ (al/ar)

(−1)i+1

− 1 = 0, (25)

where δi = (2i − (−1)i)/3. The curve σ2i for i ≥ 1 corresponds to the first

homoclinic bifurcation of harmonic 2i-cycle, causing the merging bifurcation

5Border collision at which two fixed points (one attracting and one repelling, or both
repelling) simultaneously collide with the border point and disappear after the collision is
called fold BCB. It is worth to emphasize that a fold BCB is not associated with an eigenvalue
passing through 1.

6For a 1D piecewise smooth map defined on two partitions, L and R, an n-cycle with
symbolic sequence LRn−1 or RLn−1 for any n ≥ 2 is called basic. The basic cycle qn of the
skew tent map (15) for ε > 0 has symbolic sequence RLn−1. It can be shown that only such
cycles can be stable.

7The symbolic sequences of two complementary cycles differ by one symbol. The symbolic
sequence of the cycle q̃n which is complementary to the basic cycle qn is RLn−2R.
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Q2,2i+1 ⇒ Q2,2i , and the curve σ1 (i = 0) is related to the first homoclinic

bifurcation of the fixed point leading to the merging bifurcation Q2,2 ⇒ Q1.

The curves σ2i for i→∞ are accumulating to the point (al, ar) = (1,−1) (see

Fig.2a).

Using the bifurcation curves of the skew tent map we can state the following

Proposition 1. Consider the map T given in (5) for some fixed parameter

values satisfying (2), and let β = (1−1/m)/µ (the boundary BCLM ). Consider

the bifurcation structure of the (al, ar)-parameter plane of the skew tent map

(15) for ε > 0, defined by the curves (21)-(25), and let (al, ar) = (a∗l , a
∗
r) as in

(18). Then the BCB occurring in the map T when its parameter point crosses

transversely the boundary BCLM leads from the attracting fixed point w∗L to the

following attractor:

• n-cycle gn, n ≥ 2, if (a∗l , a
∗
r) is below φn and above ψn;

• 2n-cyclic chaotic intervals Gn,2n, n ≥ 3, if (a∗l , a
∗
r) is below φn, ψn, and

above γn;

• n-cyclic chaotic intervals Gn,n, n ≥ 3, if (a∗l , a
∗
r) is below φn, γn and above

γ̃n;

• 2i-cyclic chaotic intervals G2,2i , i ≥ 1, if (a∗l , a
∗
r) is below φ2, ψ2, σ2i and

above σ2i−1 ;

• Otherwise, the attractor is chaotic interval G1 = [T 2(wc), T (wc)].

To illustrate this proposition we present in Fig.2a the bifurcation structure

of the (al, ar)-parameter plane of the skew tent map together with the curves Bm
for different values of m, and in Fig.2b it is shown the 2D bifurcation diagram

in the (µ, α)-parameter plane for m = 1.05, B = 1.5, where the curve BCLM

corresponds to the curve B1.05.

Let us associate the regions which the curve B1.05 intersects (see Fig.2a) with

the attractors which are born when the curve BCLM is crossed (see Fig.2b).

First note that due to (20) the curve B1.05 is valid for −30 < ar < −1. Starting

from the point p′0 of B1.05 with ar = −1, the curve B1.05 intersects (moving

from above to below) the curve ψ2 at the point p′1, the curves σ2 and σ1 at the

13



Figure 2: a) Bifurcation structure of the (al, ar)-parameter plane of the skew tent map, where
the border collision curves Bm are shown for m = 1.05, 1.2, 2, 3 and 8; b) Bifurcation structure
of the (µ, α)-parameter plane of the map T at m = 1.05, B = 1.5.

points p′2, p
′
3, the curve φ3 at the point p′4, ψ3 at p′5, γ3 at p′6, γ̃3 at p′7, and so

on, up to the intersection with the curve γ̃5 at the point p′15. It can be checked

that B1.05 does not intersect any other bifurcation curve. Substituting (19) to

the related equation (21)-(25), we obtain the al-coordinates of the intersection

points, that is, al = α ≡ αj , j = 0, ..., 15, which then can be substituted to (7)

(recall that β = B 1−α
α ). In such a way we obtain the corresponding points pi of

the curve BCLM (see Fig.2b). Namely, the α-coordinates of the points pj are

the following: α0 = 0.047619, α1 ≈ 0.199961, α2 ≈ 0.201786, α3 ≈ 0.203248,

α4 ≈ 0.218205, α5 ≈ 0.322973, α6 ≈ 0.324797, α7 ≈ 0.326245, and so on. The

intersection point of BCLM and BCLR is (µ, α) = (0.047619, 0.6) related to the

end point of B1.05 with ar = −30.

Let BCLM |
pj+1
pj denote an open arc of the curve BCLM bounded by the

points pj and pj+1. Now we can state, for example, that if the parameter point

crosses the arc BCLM |p1p0 then an attracting 2-cycle g2 is born due to this BCB,

because the related arc B1.05|
p′1
p′0

belongs to the stability region of the 2-cycle of

the skew tent map. Similarly we can conclude that crossing BCLM |p2p1 , BCLM |
p3
p2
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and BCLM |p4p3 leads to chaotic intervals G2,4, G2,2 and G1, respectively, while

crossing BCLM |p5p4 leads to an attracting 3-cycle g3, and so on.

Analyzing Fig.2a one can conclude also that for larger values of m less

periodicity regions are intersected by Bm. For example, the curve B2 intersects

only the 2-periodicity region (which is in fact intersected by Bm for any m),

thus, besides an attracting 2-cycle only chaotic attractors can appear due to the

BCB. It is clear also that for fixed B the interval of valid values of α (see (20))

decreases for increasing m.

As one more example of application of the Proposition 1 we can check that

for m = 1.2, α = 0.47 the point (al, ar) = (a∗l , a
∗
r) belongs to the 3-periodicity

region (see the curve B1.2 in Fig.2a at al = 0.47), thus, such a BCB of w∗L leads

to the attracting 3-cycle g3, that is confirmed by Fig.1a, while for m = 1.2,

α = 0.52 the point (al, ar) = (a∗l , a
∗
r) is in the region related to a one-piece

chaotic attractor, thus, in Fig.1b the crossing BCLM leads from the fixed point

w∗L to a chaotic attractor G1.

4. Crossing the curve FBM : flip bifurcation of the fixed point

Let us consider now the flip bifurcation of the fixed point x∗M which occurs if

the parameter point crosses the boundary of the region D, the curve FBM given

in (11). As we show below, this bifurcation can be supercritical, subcritical or

degenerate as illustrated in Fig.3 by means of 1D bifurcation diagrams.

Namely, in Fig.3a one can see that decreasing µ a pair of 2-cycles (g2 at-

tracting and g̃2 repelling) are born due to a fold BCB before the subcritical

flip bifurcation of the fixed point. So, in the interval between these two bi-

furcations the attracting fixed point w∗M coexists with the 2-cycles g2 and g̃2.

Then, if we continue to decrease µ, at the subcritical flip bifurcation the fixed

point w∗M loses stability merging with g̃2 so that after the bifurcation the map

T has the attracting 2-cycle g2 and the repelling fixed point. The DFB of w∗M

illustrated in Fig.3b also leads to an attracting 2-cycle g2, but the characteris-

tic feature of this bifurcation is that at the bifurcation value any point of the

interval [wc, T (wc)], except for the fixed point w∗M , is 2-periodic, including the
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Figure 3: 1D bifurcation diagrams illustrating subcritical a), degenerate b) and supercritical
c) flip bifurcation of the fixed point w∗

M . Here m = 1.2 and α = 0.47, β = 2.25 in a), α = 0.5,
β = 2.25 in b), α = 0.6, β = 2 in c).

end points of this interval. Thus, we have T 2(wc) = wc, that is, the BCB of the

2-cycle g2 occurs simultaneously with the DFB of w∗M . As for the supercritical

flip bifurcation (see Fig.3c) note that soon after this bifurcation the attracting

2-cycle g2 changes its symbolic sequence, from MM to LM, due to a persistence

border collision. That is, one periodic point of the 2-cycle crosses the boundary

wc (from the region M to the region L) so that a border collision occurs, but

the attractor is a 2-cycle before the bifurcation with symbolic sequence MM

and persists as a 2-cycle after the bifurcation, with symbolic sequence LM .

Proposition 2. The flip bifurcation of the fixed point w∗M of the map T

defined in (5) occurs for parameter values satisfying (2) and (10) at β = α(m(1−

α))1−
1
α /µ (the boundary FBM ). The flip bifurcation of w∗M is supercritical for

α > 0.5, subcritical for α < 0.5 and degenerate for α = 0.5.

To prove this statement we have to check the sign of (T 2
M )′′′(w) evalu-

ated at the fixed point w∗M for the bifurcation parameter value, namely, if

we have (T 2
M )′′′(w∗M ) < 0 then the flip bifurcation is supercritical, while for

(T 2
M )′′′(w∗M ) > 0 it is subcritical (see, e.g., [31]). In the case of a DFB (when it

is (T 2
M )′′′(w∗M ) = 0), it is enough to show that T 2

M (w) ≡ w occurs in an interval

around w∗M (see [29]).

In order to simplify calculations let us introduce a change of variable, x :=
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(1− w/m), and let also γ = α/(1− α), C = (µβ)γ/m. Now the middle branch

TM of the map T has the form t(x) = 1−Cxγ , and its fixed point satisfies x∗M =

1−C(x∗M )γ . It is easy to see that at the flip bifurcation value we have x∗M = α.

Using this equality after some algebraic computations and rearrangements we

get

(t2)′′′(x∗M ) = (γC)2(1− γ)(x∗M )2(γ−2)(1 + γ),

so that the sign of this expression depends on γ, namely, (t2)′′′(x∗M ) < 0 for

γ > 1, and (t2)′′′(x∗M ) > 0 for γ < 1. Coming back to the map T and the original

parameters we conclude that for α > 0.5 we have (T 2
M )′′′(w∗M ) < 0, thus, the

flip bifurcation is supercritical, while for α < 0.5 the inequality (T 2
M )′′′(w∗M ) > 0

holds, so that the flip bifurcation is subcritical. For α = 0.5 corresponding to

γ = 1 we have C = 1, so that

t2(x) = 1− C(1− Cxγ)γ |C=1,γ=1 ≡ x.

Thus, the flip bifurcation is degenerate. For the map T this means that any

point of the absorbing interval, except for the fixed point w∗M , is 2-periodic. The

absorbing interval in such a case is J = [wc, T (wc)] for the parameter region

E-I, and J = [wB , T (wB)] for the region E-II.

As we can see, all the bifurcation sequences described above include a border

collision of a 2-cycle. Let us consider it in more details. The condition which is

to be satisfied is

TM ◦ TL(wc) = wc

and the related boundary in the parameter space is denoted BC2:

BC2 :

[
1

µβ

(
1− wαc

m

)] α
1−α

= wc. (26)

(See, for example, the curves BC2 and FB2 shown in case of subcritical flip

bifurcation of w∗M in Fig.1a and supercritical in Fig.1b). To see the result of

this bifurcation we can use the skew tent map as a normal form for the border

collision of the related fixed point of the map T 2. For this we need to evaluate

the left- and right-side derivatives of T 2 at w = wc for the parameter values
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belonging to BC2. Obviously, a∗l = (TM ◦TL)′(wc) < 0 and a∗r = (T 2
M )′(wc) > 0,

and the skew tent map (15) with ε < 0 can to be used as a normal form.

However, it is easy to show that bifurcation structure of the (al, ar)-parameter

plane for ε < 0 is symmetric with respect to al = ar to the one for ε > 0. Thus,

we can use the results related to dynamics of the skew tent map presented

in the previous section considering the symmetric point (al, ar) = (a∗r , a
∗
l ). In

particular, one can check that a∗l = (TM ◦ TL)′(wc) > −1 for

wαc

(
1 +

α2

1− α

)
< m (27)

and a∗r = (T 2
M )′(wc) > 1 for α < 0.5. The point (al, ar) = (a∗r , a

∗
l ) with al > 1

and 0 < ar < 1 belongs to the region at which the skew tent map has an

attracting and repelling fixed points (in Fig.2a a small part of this region can

be seen), and a fold BCB occurs in the skew tent map if ε passes through 0.

Thus, in the map T 2 also a fold BCB occurs. For the map T this means that

the border collision occurring at BC2 is also a fold BCB leading to a pair of

2-cycles, an attracting g2 and a repelling g̃2, with symbolic sequences LM and

MM, respectively. We can check also that crossing BC2 for α = 0.5 always leads

to one attracting 2-cycle. To see this, note that the curve FBM at α = 0.5 is

defined by

FBM |α=0.5 : µβ =
1

m
,

and the branches of the map T are TL(w) =
√
w and TM (w) = m − x with

the border point wc =
(
−1 +

√
1 + 4m

)2
/4. We have (T 2

M )′(wc) = 1, while

(TM ◦ TL)′(wc) > −1, where the last inequality holds for m > 3/4, that is

always true given that m > 1. Thus, the 2-cycle born due to this bifurcation

(with symbolic sequence LM) is attracting. For α > 0.5 we have (T 2
M )′(wc) < 1

and (TL ◦ TM )′(wc) > −1 (for the parameter values satisfying (27)), so that

due to collision with w = wc the 2-cycle remains attracting and only changes

its symbolic sequence from MM to LM (persistence border collision). If the

condition (27) does not hold, that is, if (TL ◦ TM )′(wc) < −1, then the crossing

of the curve BC2 leads to two repelling 2-cycles and to a chaotic attractor. An

example of such a bifurcation is shown in Fig.4.
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Figure 4: 1D bifurcation diagram in the map T for α = 0.9,m = 1.005, β = 1.315, µ ∈
[0.86, 0.885] is shown in a), and its enlargments are in b). Here the BCB of the 2-cycle leads
to 8-cyclic chaotic intervals.

Suppose that the map T has an attracting 2-cycle g2 = {w1, w2} with sym-

bolic sequence LM. Let us obtain the condition of its flip bifurcation. First,

from TM ◦ TL(w1) = w1 we get that w1 = [(1 − wα1 /m)/µβ]
α

1−α . Then, from

(TM ◦ TL)′(w)|w=w1
= −1 we get wα1 = m(1− α)/(α2 − α+ 1), so that the flip

bifurcation of g2 occurs for

FB2 : µβ =
α2

α2 − α+ 1

(
(α2 − α+ 1)

m(1− α)

) 1−α
α2

. (28)

Note that for α = 0.5 the curve FB2 is given by

FB2|α=0.5 : µβ =
3

4m2
.

5. Overall bifurcation structure of the region E-I

In this section we discuss the overall bifurcation structure of the region E-I

defined in (12). The bifurcation structure of the region E-II defined in (13) is

studied in detail in [30]. Recall that the region E-I is confined by the boundaries

BCLM (7), FBM (11) and BCJ (14). Using Proposition 1 which describes the

dynamics of the map T in a neighborhood of the curve BCLM we can state

which bifurcation curves issue from this boundary, namely, from the points
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pj , j = 0, ..., l (where l depends on the parameters). Recall that these points

correspond to the intersection points of the curve Bm (19) with the bifurcation

curves (21)-(25) of the skew tent map.

Note that all the points pj are codimention-two bifurcation points, for which,

as we have already mentioned, the skew tent map does not help to state precisely

which attractor is born after the BCB. Consider, for example, the codimension-

two bifurcation point p0, at which the BCB of the fixed point occurs simultane-

ously with its flip bifurcation, that is, the fixed point is (one-side) nonhyperbolic.

Such a point is called border-flip codimention-two bifurcation point. It is shown

in [8], focusing, in particular, on the geometric shapes of the bifurcation curves

around a border-flip point, that in general three bifurcation curves are issuing

from such a point, among which one is a curve related to the smooth bifurcation

and the other two curves are BCB curves. In fact, in Fig.2b we see that besides

the curve BCLM two more curves issue from the border-flip point p0, namely,

the curve FBM corresponding to the subcritical flip bifurcation of the fixed

point w∗M and the curve BC2 related to the fold BCB of the 2-cycle. Clearly, if

the curve BCLM is crossed at the point p0, then the parameter point can enter

to the narrow region bounded by the curves BC2 and FBM , where an attracting

2-cycle coexists with the attracting fixed point. Such a coexistence obviously

cannot be classified using only the skew tent map. In fact, any border-flip point

of BCLM corresponding to the intersection of the BCB curve Bm and DFB

curve ψn, n ≥ 2 (as, e.g., the points p1 and p5 indicated in Fig.2b), is an issue

point of two curves, namely, a flip bifurcation curve FBn and a border collision

curve BC2n.

Let us suppose that the curve Bm crosses an n-periodicity region of the skew

tent map, for n ≥ 3, that is, there is an arc Bm|
p′j+1

p′j
belonging to this region (as

shown in Fig.2a for several values of m). A neighborhood of the curve BCLM

in such a case is shown schematically in Fig.5. According to Proposition 1 in

the one-side neighborhood of the arc BCLM |
pj+1
pj there must be a region related

to an attracting n-cycle gn of the map T (to simplify, the region related to the

attracting cycle gn is denoted in Fig.5 in the same way as the cycle, that is,
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Figure 5: A neighborhood of the curve BCLM shown schematically in case when the BCB
curve Bm given in (19) related to BCLM crosses an n-periodicity region of the skew tent map.
The flip bifurcation at FBn is subcritical in a) and superscritical in b). The point pj+1 is a
border-flip codimention-two blifurcation point.

gn. Similar notations are used for the regions related to other attractors). Its

boundary issuing from the point pj is related to the fold BCB satisfying the

condition

BCn : Tn−2L ◦ TM ◦ TL(wc) = wc.

Note that due to continuity of the map T at w = wc an equivalent condition of

BCn is Tn−2L ◦T 2
M (wc) = wc. Crossing the boundary BCn (from the right to the

left in Fig.5) two n-cycles are born, an attracting cycle gn and a repelling cycle

g̃n. The cycle gn has a periodic point wn which satisfies Tn−1L ◦TM ◦ TL(wn) =

wn, while the cycle q̃n has a periodic point w̃n satisfying Tn−2L ◦T 2
M (w̃n) = w̃n.

The boundary of the n-periodicity region issuing from the point pj+1 is

related to the flip bifurcation of gn defined by the condition

FBn : (Tn−2L ◦ TM ◦ TL)′(wn) = −1. (29)

As already mentioned, one more bifurcation curve issues from pj+1, namely, the

curve BC2n related to the border collision of a 2n-cycle g2n (as show in [8], it

is tangent to the flip bifurcation curve). The curve BC2n satisfies the condition

BC2n :
(
Tn−2L ◦ TM ◦ TL

)2
(wc) = wc. (30)

Given that the arc Bm|
p′j+2

p′j+1
belongs to the region related to a 2n-cyclic chaotic

intervals Qn,2n of the skew tent map, in the one-side neighborhood of the arc

BCLM |
pj+2
pj+1 there is a region related to 2n-cyclic chaotic intervals Gn,2n (see
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the dashed region in Fig.5). There are two possibilities: if the flip bifurcation

FBn is subcritical, as in Fig.5a, then in the region between FBn and BC2n

an attracting n-cycle gn coexists with a chaotic attractor Gn,2n, while if the

flip bifurcation FBn is supercritical, as in Fig.5b, the region between BC2n and

FBn is related to an attracting 2n-cycle g2n. More precisely, in Fig.5a the curve

BC2n belongs to the stability region of gn, and the bifurcation occurring at

BC2n is a fold BCB leading to a pair of repelling 2n-cycles, g2n, g̃2n, and to a

chaotic attractor Gn,2n coexisting with the n-cycle gn (in fact, as we illustrate

in Fig.8b, or Fig.9b, the cycle g̃2n separates the basins of Gn,2n and gn, while

the cycle g2n belongs to Gn,2n). Then, moving from the right to the left the

curve FBn is crossed at which the repelling cycle g̃2n merges with the attracting

cycle gn due to a subcritical flip bifurcation, so that after this bifurcation the

attractor is Gn,2n. In case of supercritical flip bifurcation, the crossing of the

curve BC2n leads from an attracting cycle g2n to a chaotic attractor Gn,2n (see

Fig.5b).

Next, we can state that the one-side neighborhood of the arc BCLM |
pj+3
pj+2

(see Fig.5) is related to n-cyclic chaotic intervals Gn,n of the map T because

the related arc Bm|
p′j+3

p′j+2
belongs to the region of n-cyclic chaotic intervals Qn,n

of the skew tent map. Its boundary issuing from the point pj+2 is related to the

first homoclinic bifurcation of the cycle gn, which satisfies the conditions

Hn :

 (Tn−2L ◦ TM ◦ TL)2(wc) = wn,

Tn−2L ◦ TM ◦ TL(wn) = wn.
(31)

So, crossing the curve Hn we observe the merging bifurcation Gn,2n ⇒ Gn,n.

See, for example, the curve H3 in Fig.6 and the related merging bifurcation

G3,6
H3⇒ G3,3 in Fig.9a. The boundary issuing from the point pj+3 corresponds

to the first homoclinic bifurcation of the cycle g̃n and satisfies the conditions

H̃n :

 Tn−2L ◦ TM ◦ TL(wc) = w̃n,

Tn−2L ◦ T 2
M (w̃n) = w̃n.

(32)

Thus, crossing the curve H̃n an expansion bifurcation Gn,n ⇒ G1 occurs. An

example of the curve H̃3 is shown in Fig.6, and the related expansion bifurcation

22



Figure 6: 2D bifurcation diagram in the (m,µB)-parameter plane at α = 0.5. 1D bifurcation
diagram for m = 1.2 and its enlargements are shown in Fig.s8 and 9.

G3,3
H̃3⇒ G1 is illustrated in Fig.9a.

As we have seen, the curve Bm may not intersect the n-periodicity regions for

n ≥ 3, of the skew tent map (see Fig.2a). The description presented above can

be easily adjusted to such a case. However, the 2-periodicity region is intersected

for any m, and this case differs from the one described above. In fact, we know

that from the border-flip point p0 of the curve BCLM the boundaries FBM

and BC2 issue related to the flip bifurcation of the fixed point w∗M and border

collision of the 2-cycle g2, as we show schematically in Fig.7. Differently from

the generic case we have three possibilities as stated in Proposition 2 (see also

Fig.3):

1) if the flip bifurcation is subcritical, that holds for α < 0.5, then the curve

BC2 is related to a fold BCB leading to a pair of 2-cycles, an attracting one

(g2) and a repelling one (g̃2), in which case the region between BC2 and FBM

23



Figure 7: A neighborhood of the curve BCLM shown schematically near the border-flip point
p0. The flip bifurcation at FBM is subcritical in a) and supercritical in b). The point p1 is
also a border-flip codimention-two blifurcation point.

is related to coexisting attractors, the fixed point w∗M and the 2-cycle g2 (see

Fig.7a);

2) if the flip bifurcation is supercritical, that holds for α > 0.5, then the curve

BC2 a is persistence border collision curve crossing which the 2-cycle g2 born

before due to supercritical flip bifurcation just changes its symbolic sequence,

remaining attracting (see Fig.7b);

3) if the flip bifurcation is degenerate that holds for α = 0.5, we have

FBM = BC2, so that crossing this boundary one attracting cycle g2 appears

(with symbolic sequence LM).

Thus, in the one-side neighborhood of the arc BCLM |p1p0 there is a region

related to an attracting 2-cycle g2 of the map T . From the border-flip point p1

the boundaries FB2 and BC4 originate related to the flip bifurcation of g2 and

BCB of g4. The next point p2 corresponds to the intersection of Bm with the

curve σ2i (25) for some i ≥ 1. From p2 a curve denoted H2i issues (see Fig.7),

related to the first homoclinic bifurcation of the harmonic 2i-cycle of the map

T. For the skew tent map crossing the curve σ2i leads to the merging bifurcation

Q2,2i+1 ⇒ Q2,2i . Thus, in the one-side neighborhood of the arc BCLM |p2p1 there
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is a region related to 2i+1-cyclic chaotic intervals G2,2i+1 , and crossing BC4

leads to a chaotic attractor G2,2i+1 . Similarly, the point p3 is an issue point

for the curve H2i−1 related to the first homoclinic bifurcation of the harmonic

2i−1-cycle of the map T, and so on, up to the point pi+2 which is an issue point

of the curve H1 related to the first homoclinic bifurcation of the fixed point w∗M

(see Fig.7). For example, from the point pi+1 of the curve BCLM related to the

intersection of Bm with the curve σ2 (see (25) for i = 1), the curve H2 issues

which corresponds to the first homoclinic bifurcation the cycle g2, satisfying the

conditions

H2 :

 (TM ◦ TL)2(wc) = w2,

TM ◦ TL(w2) = w2.
(33)

The crossing of this curve leads to the merging bifurcation G2,4
H2⇒ G2,2 (see,

e.g., Fig.8a and the curve H2 in Fig.6 issuing from the point p2). From the

point pi+2 the curve H1 issues corresponding to the first homoclinic bifurcation

of the fixed point w∗M , satisfying the conditions

H1 :

 TL ◦ TM ◦ TL(wc) = w∗M ,

TM (w∗M ) = w∗M .
(34)

The crossing of this curve leads to the merging bifurcation G2,2
H1⇒ G1 (see, e.g.,

Fig.8a and the corresponding curve H1 is Fig.6 issuing from the point p3).

The bifurcation structure described above is illustrated in Fig.6 in the (m,µB)-

parameter plane at α = 0.5. The curve BCLM in such a case is defined by

BCLM |α=0.5 : µB = 1− 1

m

(note that for α = 0.5 we have B = β). The curve Bm (19) in the (al, ar)-

parameter plane of the skew tent map represents a vertical line al = 0.5 where

−B
m−1 < ar < −1 (see (20)):

Bm|α=0.5 : al = 0.5, ar = − 1

m− 1
. (35)

Using the equations (21)-(25) we can obtain the points p′j , j = 0, ..., 15, related

to the intersection of Bm|α=0.5 with the bifurcation curves of the skew tent map.
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Figure 8: In a) 1D bifurcation diagram of the map T is shown for α = 0.5, m = 1.2 and
µB ∈ [0, 1] related to the vertical line with an arrow in Fig.6. In b) the window I indicated in
a) is shown enlarged.

Then, substituting the related values ar into (35) we obtain the m-coordinates of

the point pj of the curve BCLM (see Fig.6). The curves issuing from the points

pj in Fig.6 are obtained numerically using the related conditions (29)-(34).

To illustrate the bifurcations (29)-(34) occurring in the map T we present

in Fig.8a 1D bifurcation diagram related to the vertical line with an arrow

indicated in Fig.6. Enlargements of this diagram are shown in Fig.8b and Fig.9.

The sequence of observed bifurcations for decreasing µB can be summarized as
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Figure 9: In a) an enlargement of window II indicated in Fig.8a is shown, and in b) the
window indicated in a) is enlarged.

follows:

w∗M
FBM=BC2⇒ g2

BC4⇒ {g2, G2,4}
FB2⇒ G2,4

H2⇒ G2,2
H1⇒ G1

BC3⇒ g3
BC6⇒ {g3, G3,6}

FB3⇒ G3,6
H3⇒ G3,3

H̃3⇒ G1
BCLM⇒ w∗L

6. Conclusion

In the present paper we studied dynamics of a credit cycle model, first intro-

duced in [20], under the additional assumption that the aggregate production
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function is Cobb-Douglas. In generic case this model is defined by a 4-parameter

family of 1D piecewise smooth maps with upward, downward and flat branches.

We considered the case when the flat branch is not involved into asymptotic

dynamics that corresponds to the region E-I given in (12).

Bifurcation structure of the region E-I is described in detail, which is formed

by the boundaries related to border collision bifurcations characteristic for non-

smooth systems, as well as flip bifurcations and homoclinic bifurcations (causing

merging and expansion of the chaotic attractors). These boundaries separate re-

gions corresponding to different attractors of the map, namely, attracting cycles

and chaotic attractors (cyclic chaotic intervals). In particular, possible results

of a BCB of the fixed point are classified in Proposition 1 using skew tent map

as a border collision normal form. The conditions are obtained under which

this BCB leads directly to an attracting cycle of period n, or to an n-cyclic

chaotic attractor, n ≥ 1. The skew tent map helps also to describe the overall

bifurcation structure of the region E-I in a neighborhood of the BCB boundary.

Proposition 2 states that the flip bifurcation of the fixed point is supercritical

for α > 0.5, subcritical for α < 0.5 and degenerate for α = 0.5. It is shown that

an attracting 2-cycle which appears due to the supercritical flip bifurcation soon

after collides with the border point. In fact, a cascade of flip bifurcations char-

acteristic for smooth unimodal maps cannot be realized in the considered map

(that obviously is related to the absence of a smooth extremum in the map).

Subcritical flip bifurcation is characterized by bistability related to coexistence

of an attracting fixed point and attracting 2-cycle which is born, together with

a repelling 2-cycle, due to a fold BCB before the flip bifurcation. From an eco-

nomic point of view this implies corridor stability, i.e., the steady state of the

economy is stable against small shocks but unstable against large shocks. Fur-

thermore, when the steady state loses its stability as a parameter change causes

such a subcritical flip bifurcation, the effect is catastrophic and irreversible in

that restoring the stability of the steady state by reversing the parameter change

is not enough for the economy to return to the steady state. Examples of an

attracting cycle coexisting with a cyclic chaotic attractor are also presented.
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It is important to emphasize that chaotic attractors of the considered map are

robust, that is, they are persistent under parameter perturbations.
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