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CHAOS IN AN ANHARMONIC OSCILLATOR
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Abstract

Using Melnikov's method, the existence of chaotic behaviour in the sense of Smale
in a particular time-periodically perturbed planar autonomous system of ordinary
differential equations is established. Examples of planar autonomous differential
systems with homoclinic orbits are provided, and an application to the dynamics of a
one-dimensional anharmonic oscillator is given.

1. Introduction

There has been considerable interest recently in the study of problems related to chaotic
behaviour of deterministic dynamical systems. Chaos refers to the unpredictable and
apparently random motion of orbits of a dynamical system; the dynamical system
may be described by a differential equation or by a map such as that of a difference
equation.

Chaotic behaviour of some dynamical systems can be explained by the existence
of transverse homoclinic points. For example, let F denote a diffeomorphism on a
two dimensional manifold which has a saddle point, say p, and suppose the stable
and unstable manifolds of p intersect transversely at a point q ^ p. Then, it has been
shown (Smale [13, 14]) that there exists a set A in a neighbourhood of p, invariant
with respect to some positive iterate Fm of F, such that the dynamics of Fm on A
are topologically conjugate to the dynamics of the Bernoulli shift map on the space
E of bi-infinite sequences of two symbols; the map originally constructed by Smale
is commonly known as a horseshoe map. In this article, by chaotic behaviour of a
map we mean the behaviour of the Bernoulli shift map on S. The Smale horseshoe
map is known to be topologically conjugate to the Bernoulli shift map (for details see
Guckenheimer and Holmes [5], Wiggins [16]). We will call the associated chaotic
behaviour "horseshoe chaos". Examples of diffeomorphisms of the above type occur
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[2] Chaos in an anharmonic oscillator 187

as period maps (also known as Poincar6 maps) of planar autonomous systems of
ordinary differential equations subjected to time-periodic perturbations.

It was Poincar6 [12] who first noticed the existence of transverse homoclinic points
and conjectured the complex dynamical behaviour which we now call chaos. More
recently, Melnikov [11] has provided an analytical sufficient condition for the ex-
istence of transverse homoclinic points of period maps resulting from time-periodic
perturbations of planar autonomous systems with a saddle point and an associated
homoclinic orbit. Well-known examples of the application of Melnikov's method to
investigations of chaotic behaviour in planar autonomous systems analyse the dynam-
ics of the simple pendulum (Holmes [7], Holmes and Marsden [8], Marsden [10]) and
the Duffing oscillator (Guckenheimer and Holmes [5], Holmes [6], Lichtenberg and
Lieberman [9], Wiggins [16]).

One of the essential requirements for the application of Melnikov's technique to
planar systems is the explicit knowledge of a homoclinic orbit associated with a saddle
point of the unperturbed differential system. This requirement has been quite a severe
restriction for the application of Melnikov's method. The authors have been driven by
curiosity to find planar systems for which the explicit knowledge of a homoclinic orbit
is possible. The rest of the paper is organised as follows : in Section 2, we formulate
a planar system and obtain a homoclinic orbit to a saddle point of this system; in
Section 3, we parametrise some of the periodic orbits of the system; in Section 4, we
demonstrate, by an application of the Melnikov technique, the existence of transverse
homoclinic points for the Poincare' map of the time-periodically perturbed system, and
we display computer simulations of the chaotic dynamics of the system for different
choices of parameters. The integrals appearing in the calculation of the Melnikov
function are listed in the Appendix. More examples of planar autonomous systems
with homoclinic orbits are discussed in Section 5; the examples given follow from
a generalisation of Section 2. Finally, in Section 6, we give an application to the
dynamics of a one-dimensional anharmonic oscillator.

2. The homoclinic lemniscate

We consider the autonomous system of differential equations

dx ,
— = a2x

^ = -a2y + {Mx(x2 + y2) (2.1)
at

in which a and fj. are positive real numbers. One can verify that (0,0), (-§=, -4=) and
(— -^=, — -|=) are the equilibrium points ofthe system (2.1); we shall briefly consider
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the nature of these equilibrium points. The linear variational system corresponding to
(0, 0) is given by

dt

It can be easily verified that (0,0) is a saddle point for (2.2) and hence for (2.1); fur-
thermore, the unstable and stable manifolds of the linear system (2.2) are respectively
the x and v axes of the x, y-plane. For each of the other two equilibrium points, the
corresponding linear variational system is

** = -»r.
dt
^- = 2a2X. (2.3)
dt

We can verify that (-4=, -4=) and (— -4=, — -4=) are both centres for (2.3) and hence
for (2.1). We shall now find a Hamiltonian H = H(x, y) for (2.1). By definition, H
satisfies

dx 2 2 , dH
— =alx- ixy(xl + y2) = — ,
dt dy

ay + vx(x + y2) = -?£-. (2.4)

One ofthe ways of determining H is to find the set of level curves, H(x, y) = constant,
which are solution curves of (2.1). We have from (2.1),

dy _ — a2y + (ix(x2 + y2)
dx a2x - /xy(x2 + y2)

or equivalently

[a2x - w(x2 + y2)]dy + [a2y - \xx{x2 + y2)]dx = 0

leading to
d[a2xy - fx(x2 + y2)2/4\ = 0. (2.5)

Hence, (2.1) is a Hamiltonian system with Hamiltonian H given by

H(x, y) = a2xy - /x(x2 + y2f/A, (x, y) G K2, (2.6)

so the solution curves of (2.1) are given by the family of curves

(i(x2 + y2)2 = 4a2xy + constant.
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We shall consider the solution curves approaching the origin, namely

fi(x2 + y2)2 = Aa2xy.

For convenience in the following, we shall choose fi = 2; this entails no loss of
generality. The consequent solution curves

(x2 + y2)2 = 2a2xy (2.7)

are together commonly known as Bernoulli's lemniscate, which is usually recognised
by the polar equation

r2 = a2sin(20), 0 e R. (2.8)

For our subsequent study of the dynamics of the system (2.1), we need an explicit
solution of (2.1) in terms of the parameter t; furthermore, we want to explore the
possibility of finding a solution (x(t), y(t)) such that

lim (x(t), y(t)) = (0, 0) (2.9)
«->±oo

and the convergence in (2.9) is exponential. To obtain x(t) and y(t) satisfying (2.9),
we first of all rewrite the system (2.1) (with /x = 2) in polar coordinates

-^ =a2rcos(20),
at

— = 2r2-a2sin(2<9). (2.10)
at

Substituting (2.8) in the second equation of (2.10) gives

— =a2sin(20) (2.11)
dt

and after separating the variables and integrating we find that

tan(0(O) = ke2*2', t e R, (2.12)

where k is any positive constant. For convenience, we choose k = 1, so

y(t)/x«) = tan(0(O) = f*\ t € R, (2.13)
and hence

y(t)=e2ahx(t), t € R. (2.14)

Choosing k = 1 means that

(*(0), y(0)) = (±4=. ±4=) • (2-15)
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Substituting (2.14) in (2.7), we obtain that

^ ' ' e K l ( 2 J 6 )

are explicit solutions of (2.1) for our choice of /A = 2. It is easily seen that the
solutions in (2.16) satisfy (2.9) and the convergence is exponential. Hence, the orbits
of the solutions in (2.16) are both homoclinic orbits for (2.1). Thus, the saddle point
(0,0) of (2.1) has a double separatrix (homoclinic) orbit lying in the first and third
quadrants of the x,y-plane as shown in Figure 1.

3. Parametrisation of periodic orbits

We first of all examine the phase space structure of (2.1) (with /u, = 2). Computer
simulations indicate that all solutions of (2.1) (with fi = 2) are bounded and the
following argument provides a proof of this. From (2.6), we deduce that the solution
curves of (2.1) are

a2xy - |(JC2 + y2)2 = a, (3.1)

where a is a constant such that a < ^-. since standard techniques of several variable
calculus show that

H{x, y) < a4/8, (JC, y) e K2.

We shall prove that the solution curves are bounded.
Writing (3.1) in polar coordinates, we have

±aV sin(26>) - \rA = a. (3.2)

If lim sup r(t) == oo, then there is a sequence {/„} -* T as n -> oo such that
<->r<oo

where the left hand side tends to - o o in the limit as n -*• oo; this contradicts the
right hand side and hence lim sup r(t) < oo, so all solutions of (2.1) (with fi = 2) are

r-»T<oo

bounded.
A property of all n-degree-of-freedom integrable Hamiltonian systems is that their

bounded motions lie on sets homeomorphic to n -dimensional tori or on homoclinic or
heteroclinic orbits (see Abraham and Marsden [1], Arnold [2]). Since all one-degree-
of-freedom Hamiltonian systems are integrable, their bounded motions lie on either
periodic, homoclinic or heteroclinic orbits. As all solutions of (2.1) (with fi = 2)
are bounded, we can deduce that all orbits apart from those which are homoclinic
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FIGURE 1. Phase space of (2.1) with a = 1 and /x = 2.

are periodic. Hence, the interior of each homoclinic orbit is filled with a continuous
family of periodic orbits surrounding a centre, as shown in Figure 1. We note that all
solution curves are ovals of Cassini.

For a = £ , the two centres (-f, - § ) and ( | , §) are solutions. For 0 < a < £ ,
the solution curves are the periodic orbits inside the double homoclinic loop. For
a = 0, the solution curves are the double homoclinic loop. For a < 0, the solution
curves are the periodic orbits outside the double homoclinic loop. We would like to
parametrise the inner periodic orbits; hence, we consider the case where 0 < o < y .
We rearrange the polar system (2.10) to obtain the equations

If we use the transformation u = r2, the first equation of (3.3) reduces to

(3.4)

where u{
2 = UaA - 4a - aVfl4 - 8CT) and u2

2 = ka 4 - 4CT + a V a 4 - 8a), and
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(3.4) has solution of the form

u2 =

where

— = 2M = 2v/M 2
2-(«2

2-M1
2)sin2A',

and if we choose x(0) = 0, then (3.6) gives

Jl-k2sin2d> = 2"2' '

[7]

(3.5)

(3.6)

(3.7)

in which kx = —-—'-. Equation (3.7) implies that

= sn(2u2t,ki), (3.8)

where sn denotes a Jacobi elliptic function (see Byrd and Friedman [3]). We note that
0 <ki < 1. Using (3.5) and (3.8), we have

r(t) = (u2
2 + (M,2 - «2

2) sn2(2«2f, te

If we choose 9(0) = j , then the second equation of (3.3) gives

r2<"-S> dcf>I
Jo

(3.9)

(3.10)

where k2 = , °_8 • Equation (3.10) implies that

sin h (e - -\\ = sn(2y/a4 - 8CT t, k2). (3.11)

Now k2 > 1 but we want the modulus of the sn term in (3.11) to belong to the interval
(0,1). We apply the reciprocal modulus transformation (see Byrd and Friedman [3])
to the right hand side to get

sin

which after some simplification gives

2a2 sn (3.13)
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Hence

0(0 = arcsin ± J ^ — — - sn 2a2/, - + - , i g B . (3.14)

When we now find expressions for x(t) and y{t), we would like the Jacobi elliptic
functions in (3.8) and (3.13) to have the same modulus. To do this, we use Gauss'
transformation (see Byrd and Friedman [3]) on the right hand side of (3.8) to get

2M, sn2(a2f, f )
sn(2«2f, *,) = —±— , *» (3.15)

«i +"2 1 + j-2sa(a2t, £)
By using properties of the Jacobi elliptic functions we eventually get a continuous
family of periodic solutions in the first quadrant given in Cartesian coordinates by

k _ ajk + 1 dn(a2r, k) - ksn(a2t, k)cn(a2t, k)

2 £sn2(a2/, k) + 1 '
k)cn(a2t, k). a-Jk + 1 dn(a2/, k) - ksn(a2t, k)cn(a2t, k)

" ^ ;—TT~—a2/, k) + 1

where A: = */a"-Sa e (0, 1) and en and dn denote Jacobi elliptic functions. Using
properties of the Jacobi elliptic functions, we have from (2.16) that

Hm (**(*), / ( 0 ) = (**+(0, %+(0), / e R, (3.17)

and the period of the solution (xk(t), yk(t)) is

T(k) = (2/a2)K(k), (3.18)

where AT (&) is the complete elliptic integral of the first kind. Therefore

= oo. (3.19)

For the purpose of applying Melnikov's method in the next section, we do not need to
parametrise the periodic orbits outside the double homoclinic loop.

4. Horseshoe chaos and Melnikov's method

Chaotic behaviour is a form of complex behaviour in deterministic dynamical
systems; such behaviour involves aperiodic solutions, Smale horseshoes, strange
attractors and fractal limit sets. A dynamical system displaying horseshoe chaos
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possesses a compact invariant set containing a countably infinite number of periodic
orbits of all periods and uncountably infinite aperiodic orbits emanating from certain
portions of the phase space exhibiting sensitivity to initial conditions, and a dense
orbit. The majority of the cases in which chaotic behaviour has been published in
the literature are based on numerical simulation or intuitive arguments. A technique
due to Melnikov [11] provides an analytical procedure for the determination of the
presence of a horseshoe in a class of time-periodically perturbed nonlinear dynamical
systems. The greatest advantage of the Melnikov technique is that only the homoclinic
solution of the unperturbed system is involved in the calculations, so we do not have
to solve the perturbed system; while this is an advantage, the explicit knowledge of a
homoclinic solution is unobtainable in most interesting cases for applications in such
areas as mechanics, optics and population dynamics, especially when the unperturbed
system is non-Hamiltonian.

We consider systems of the form

-r = fi(x,y) + e gi(x,y,t),
at

^ ) + €g2(x,y,t), (xj,f)el3, (4.1)

where f\, f2, gi and g2 are at least C2 on the region of interest, and 0 < e <C 1 is a
perturbation parameter. We assume that gx and g2 are periodic in t with period ^ , for
some co > 0. To apply Melnikov's method, we also need the following assumptions
(Wiggins [16]):

(1) The unperturbed system (€ = 0) possesses a saddle point, p0, connected to itself
by a homoclinic orbit qo(t) = (xo(t), yo(t)),t e K.

(2) Let rpo = {q € K2 : q = qo(t), t e R} U {p0} = W*(p0) n W(p0) U {p0}.
The interior of rpo is filled with a continuous family of periodic orbits qa (t) with
period Ta, a € (0, 1). We assume that lim qa(t) = qo(t), and lim T" = oo.

or-»l~ a-*l~

We have shown in Sections 2 and 3 that these two assumptions are satisfied for the
system (2.1) (with n = 2). Let us consider a time-periodic perturbation of the system
(2.1) in the form of (4.1) where

fi(x, y) = -a2y + 2x(x2 + y2),

gi (x, y,t) = b sin(wr) + ex,

g2(x, y, t) = 0, (4.2)

in which b and c are real numbers. It is convenient to suspend the system (4.1) in K3

to the form
dx
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dy

I-
where 9 e [0, 2n) with 0 and 2n identified, that is, 9 e S1 so that (x, y,9) e K x K x S 1

where S1 = OS (mod27r). Now (4.3) is an autonomous system which is periodic in 9
with period 2n. Define the global cross-section at time t = t0 as

E'° = {(x, y, 9) e K x OS x [0, 2n) : 9 = cot0 (mod2jr)}.

Consider the map P? : E'° -*• E'° defined by

P'€" • (x(t0), y(t0), 9(t0)) - • (x(t0 + —\ y(t0 + — V 6>(r0 + — ) ) • (4.4)

As 0(fo + 7j) = #('o), we have to consider only the map P'e° : OS2 ->• OS2, where

(4.5)

for some fixed but arbitrary t0. This map P'J> is known as the period map or Poincar6
map and it captures the same dynamics as (4.1). It is known (Guckenheimer and
Holmes [5, page 186]) that for sufficiently small e, the saddle point (0, 0) of the
unperturbed Poincar6 map gets perturbed to a saddle point (x'°, y'°) of the Poincar6
map of (4.3); furthermore when e ^ 0, the homoclinic manifold splits, leading to
the stable and unstable manifolds of the new saddle point of the Poincare" map. We
now examine whether the stable and unstable manifolds of the perturbed saddle point
can intersect transversely at some point of the phase space on the cross-section E'°
by calculating the distance between them. The importance in evaluating the distance
between the stable and unstable manifolds arises from the fact that if they intersect
transversely once, then they intersect each other transversely infinitely many times.
This leads to the formation of a Smale horseshoe in the dynamics of some positive
iterate of the Poincare" map.

Let (xo(t), yo(t)) be a homoclinic solution to the saddle point (0,0) of the un-
perturbed system (2.1). A measure of the distance between the stable and unstable
manifolds of the Poincare" map of (4.3) at the point (xo(O), yo(Q), wt0) on E'° is given
by (for details see Guckenheimer and Holmes [5], Wiggins [16])

r f/ifoC ~ f°)' yoC ~ '<>»] A UiiMt - h), yo(t - t0), t)l
" L UCxofr - <b). yo(t - to))\

 A [g2(x0(t - to), yo(t - to), t)\ dt' ( 4 '6 )

where A denotes the wedge product
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M is called the Melnikov function and the Melnikov method calculates M(t0) which is
an approximation to a scaled version of the actual distance between the two manifolds.
Consequently, if the Melnikov function has a simple zero, that is, if there exists a f0 e K
such that

dM _
M(t0) = 0, (t0) # 0, (4.7)

dt0

then it follows that the Poincare" map has a transverse homoclinic point to the saddle
point (x'f°, y'°). It is known then by the Smale-Birkhoff homoclinic theorem (Guck-
enheimer and Holmes [5], Wiggins [16]) that there exists an invariant Cantor set on
which the dynamics of some positive iterate of the Poincar6 map are topologically
conjugate to those of Bernoulli's shift map on the space of bi-infinite sequences of
two symbols. Since the dynamics of the shift map are " chaotic", we can conclude
that the Poincar6 map of (4.3) and hence the time-periodically perturbed system (4.1)
possess chaotic behaviour. Substituting (4.2) in (4.6), we obtain

M{t0) = - I fi(xo(t - to), yo(t - to))[b sin(cot) + cxo(t - t0)] dt, (4.8)
J—oo

where (xo(t), yo(O) is one of the loops of the homoclinic lemniscate (ix = 2) given
from (2.16) by

' 0 " " a ' ' ° " " ^ , f e i (4.9)

From (2.1), (4.2) and (4.8), we derive, after making the change of variable s = t —10,
that, for roelR,

coo

M(tQ) = —b I -j^(s)sin[(o(s + t0)]ds + a2c I xo(.s)yo(s)ds
J-oo ds J_x

-2c f xo\s)ds-2c( xo\s)yo2(s)ds, (4.10)

and using integration by parts on the first integral, we get

dyo °°
-—(s) sin[&>(s + t0)] ds = yo(s) sin[co(s + t0)]- o ods

/•OO

yo(s) cos[co(s + t0)] ds
J - oo

oo

yo(s) cos[o) (s + t0)] ds,

where we have used (2.9). From (4.9) and (4.10) we now have

M(t0) = V2ab co cos(coto) I —rcos(cos)ds
I l - i - p^° s

J-oo L i e
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/-co e3a2s

—V2ab co sin(coto) I —sin(cos)ds
y_oo 1 + e4" s

oo 4a2 s roo 4a2

-Sa4c ( - r— ds. (4.11)
/ ( 1 - 4 - p4a2s)4

The integrals in (4.11) are evaluated using the calculus of residues and are listed in
the Appendix; we have from (4.11) and the integrals of the Appendix that

M(t0) = K[A cos(otfo) + B sin(&tfo)] + 2a4c-—7 — 8a4c — 8a4c
4a2 12a2 24a2

+ B2 sin(w;0 + a) - -a2c, t0 e K, (4.12)

where

nbco exp(£f) . . /7̂ G;̂

and this simplifies to

M(r0) = ^ ^ e X P ( g )=sin(q>f0 + a) - ^ 2 c , /0 € R. (4.13)
V2a y i + expT^) 2

From (4.13), the Melnikov function has infinitely many zeros provided

ac Jl+exp(f)
sin(a>t0 + a) = -= ^ - £ ^ . (4.14)

Vlnbco exp(0)

The zeros of the Melnikov function will be simple if ^ ^ 0 at the zeros of M. We
have from (4.13) that

, o 6 R .

Thus a sufficient condition for ^(fo) 7̂  0 when A/(/o) = 0 is that sin2(a;/0 + a) < 1,
and using (4.14), this reduces after some simplification to

+ a V < 0. (4.16)
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It is found from (4.16) that the Melnikov function has simple zeroes for c = 0, and
if c ^ 0, then c has to be small enough to satisfy (4.16). The existence of transverse
homoclinic points for the Poincar6 map of (4.2) - (4.3) for sufficiently small e follows
from the result due to Melnikov [11]. The "chaotic behaviour" (or horseshoe chaos) of
the perturbed system will now follow from the Smale-Birkhoff homoclinic theorem.
Consider the case when a = b = w = 1. The inequality (4.16) now becomes

cV - : + c2 <0

which simplifies approximately to

\c\ < 1.98. (4.17)

We now present some computer simulations in Figures 2-7.

FIGURE 2. An orbit of (4.1)-(4.2) with a = b = co= 1, c = -0.05 and e = 0.5.
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>. o

-0.5

-1.5

F I G U R E 3 . A n attractor of (4.1)-(4.2) with a = b = io=l, c = - 0 . 0 5 and e = 0 .5 .

0.4 0.6 0.8

FIGURE 4. An orbit of (4.1)-(4.2) with a = b = a> = 1, c = -1.9 and € =0.2.
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>~0.2

.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

FIGURE 5. An attractor of (4.1)-(4.2) with a = b = co = 1, c = -1.9ande = 0.2.

0.4 -0.2 0 0.2 0.4 0.6 0.8

FIGURE 6 . A n o r b i t o f ( 4 . 1 ) - ( 4 . 2 ) w i t h a = b = w=l, c = - 2 a n d e = 0 . 2 .
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8 -0.6 -0.4 -0.2 0.2 0.4 0.6

FIGURE 7. An attractor of (4.1)-(4.2) with a = b = w = 1, c = -2ande = 0.2.

In Figures 2-5, the values of c satisfy the Melnikov condition (4.17) and the
computer simulations demonstrate the chaotic behaviour for sufficiently small e.
However, in the case c = — 2 in Figures 6 and 7, the Melnikov condition (4.17) is not
satisfied but the computer simulations still indicate the presence of chaos; this is not
contradictory because Melnikov's method only provides a sufficient condition for the
existence of horseshoe chaos.

5. A class of homoclinic orbits

We now present a class of homoclinic orbits for systems of planar autonomous
ordinary differential equations in the nonnegative quadrant of the x,y-plane. We
begin by considering the system of differential equations

-^-=ax- nmnyn-\xn

at

at
•-V + yy-1, (5.1)

where m,n are such that m > \,n > 1 and mn > 2; and a > 0, n > 0.
The equilibrium points of the system (5.1) in the nonnegative quadrant are (0,0)
and (\21-ma/(timn)]mmn~2), [^-"a/l/MH/i)]1"™'8); the variational systemcorres-
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ponding to (0, 0) is

dX _
~~dt ~a '

^ = -aY, (5.2)

from which we observe that (0, 0) is a saddle point for (5.1); the unstable and stable
manifolds of the linear system (5.2) are respectively the x and _y axes of the x,y-plane.
For the other equilibrium point, the corresponding variational system is

dX a a
= - (2 - mn + n)X + - (2 - mn - n)Y,

dt 2 2
dY a a
— = --(2-mn-n)X--(2-mn + n)Y, (5.3)
dt 2 2

and one can show that this equilibrium point is a centre for (5.1). The nonlinear
system (5.1) has a Hamiltonian H such that

dx „ , „ _. oH
— = ax - fxmny" l(x" + y")m = -—,
dt dy

-2. = -ay + /xmnx"-1 ( / + y")"1'1 = , (5.4)
dt dx

where
4-/)m, ( ^ j ) e l 2 . (5.5)

The set of level curves H(x, y) = constant are solution curves of (5.1), since we have
from (5.1)

dy -ay + \xmnxn~x (xn + y")"1'1

dx ax — fimny"'1 (xn + yn)m~l

which gives

[ax - (xmny"-l(xn + y")m-l]dy + [ay - lxmnxr-\xn + y")m~l]dx = 0,

simplifying to
d[axy - Ai(x" + yn)m] = 0. (5.6)

Thus the solution curves of (5.1) are given by the family of curves

H{x,y)=axy-fi(x"+yn)m = h,

where h is a constant. In particular, when h = 0, we obtain the solution curve
approaching the origin, namely

+ yn)m = axy.
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Since a and \x are both positive constants, without loss of generality we let /x = 1, so
that the solution curve approaching the origin is

(xn + y")m =axy, m > 1, n > 1, mn > 2. (5.7)

To obtain a homoclinic orbit for (5.1), we need to find a solution (x(t), y(t)) of (5.1)
such that

lim(x(0, ?(')) = (0,0). (5.8)
/->±oo

To find x(t) and y(t) satisfying (5.8), we proceed as in Section 2; we differentiate the
equation tan(0(f)) = y(t)/x(t) with respect to time to obtain

2d9 dy dx

and substituting the equations of (5.1) (with /x = 1) and using (5.7) we get

dG 1
— = -a(mn - 2) sin(20) (5.10)
dt 2

and after separating the variables and integrating we find that

tan(6>(0) = kea(mn-2)l, t e R, (5.11)

where k is any positive constant. For convenience, we choose k = 1, so

4 = tan(0(O) = eaimn-2)l, t € 01, (5.12)
x(t)

and hence
y(t) = eaimn-2)'x(t), t 6 R. (5.13)

Choosing k = 1 means that

] [ | r ] ) (5.14)

Substituting (5.13) in (5.7), we obtain that

is a solution of (5.1) for /x = 1. One can easily verify, on using mn > 2, that
the solution in (5.15) satisfies (5.8) and hence the orbit of the solution in (5.15) is a
homoclinic orbit for (5.1). Thus, the saddle point (0,0) of (5.1) has a homoclinic orbit
lying in the nonnegative quadrant of the x, y-plane. By choosing particular values of
a, m and n, we obtain particular homoclinic orbits. Consider the following examples.
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EXAMPLE 1. If m = 2, n = 2 and a is replaced by la1, then (5.1) becomes

^=2a2x- 4y(x2 + y2),
at

^ = -2a2y
at

and (5.7) is
(x2 + v2)2 = 2a2 xy,

which we recognise from Section 2 as Bernoulli's lemniscate. From (5.15), a homo-
clinic parametrisation of this curve (in the nonnegative quadrant) is

EXAMPLE 2. If m = 1, n = 3 and a is replaced by 3a, then (5.1) becomes

and (5.7) is
x3 + y3 = 3axy,

which is known as the folium of Descartes. From (5.15), a homoclinic parametrisation
of this curve (in the nonnegative quadrant) is

3ae3at 3ae6al

EXAMPLE 3.1fm = f ,n = 2 and a is replaced by 2a, then (5.1) becomes

-j- =-2ay + 3x(x2 + y2)*
at

and (5.7) is
(x2 + y2)i =2axy,

which corresponds to two leaves of the four-leaved rose which is usually recognised
by the polar equation

r2=a2sin2(20), 9 e DK.
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From (5.15), a homoclinic parametrisation of this curve (in the nonnegative quadrant)
is

x(t) = r , v(0 = r , / € OS.
( l + e * " ) J (1+«*")*

We conclude this section with the remark that we have presented a class of infinitely
many homoclinic orbits, each one of which is a solution curve of a planar autonomous
system of ordinary differential equations.

6. An application to a one-dimensional oscillator

We consider the dynamics of an anharmonic oscillator parametrically driven at
twice the resonant frequency a)0. Such a system has recently been applied in optics
in relation to the squeezing of light (DiFilippo et al. [4]). Very recently, Wielinga
and Milburn [15] have considered an equivalent model in the context of quantum-
mechanical tunnelling. In this section, we study the potential for a one-dimensional
oscillator with a small (\ct\z2 <5C 1) quartic anharmonic correction whose frequency is
modulated at 2w0 by a weak (et <g 1) parametric drive :

U(z, t) = -mco0
2z2 ( 1+ €, sm(2co0t) + ^ccz2) , (6.1)

2 \ 2 /

where m denotes the mass of a particle undergoing the oscillatory motion. Neglecting
the higher order harmonics, we consider the oscillations with frequency co0 together
with a dynamic phase as follows :

= C{t) cos(<y<,0 + 5(0 sin(av), (6.2)

where C(t) = r(t) cos(0(O) and S(t) = r(t) sin(0(?)). Using the equation of motion

rr = , (6.3)
dt2 dz

we can derive that

^ dS

dt2

d2S /
— = -2OJ0 I

2 dC\H , 2 dC\
+ —z—S(C2 + SZ) — ) . (6.4)

4 ~ ' g - v - - - ' d t J
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We assume that C{t) and 5(0 are slowly varying in the sense that ^y and ^f can be
neglected in the system (6.4). With this approximation, (6.4) becomes

(6.5)

If we assume that €i > 0 and a < 0, the system (6.5) is identical to (2.1) with
a2 = ei&>o/4 and [i = —3awo/8. As in Section 2, we choose fi = 2 for convenience.

Suppose that we apply to the system described by (6.1) an external potential of the
form €2z sin(a>oO sin(&>r), where 0 < e2 <K 1 is a perturbation parameter and u> > 0
is the frequency of the perturbation. The perturbed potential is now

(l + €i sm(2coot) +-az2jU(z, 0 = -mco0
2z2 I1 + €i sin(2o^0 + -otz2 J + e2z sin(cyo?) sin(a>f). (6.6)

and with our approximation the perturbed system is governed by the equations

^ C ±S{C2 S2) ?^ C + S{C + S) +
dt 4 8 2mcoo

2+5). (6.7)
dS €l(o0 3aco0 2 25 C ( C + 5
dt 4 8

The perturbed system (6.7) is identical to (4.1) - (4.2) with a2 = €ia>0/4,a =
— 16/(3a>0)> b = 1, c = 0 and e = e2/(2mtt>o). From (4.16), the Melnikov function
for the system has simple zeros, so horseshoe chaos exists for sufficiently small e.

Appendix

00 e3

-co 1 + e*°2* 2V2a2[exp(^) + 1]

— i—ds = ,
(1 + e^)2 4a2

'-co(l + ^ 2 j ) 4 ^ = T 2 ^ 'oo
oo n%a1s |

JXlds=
-00 0 + e4"2')4 24a2 '
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