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graphic conformal field theories (CFTs) with different left- and right-moving temperatures.

Depending on whether the CFT lives on a spatial line or circle, the dual bulk geometry

is a boosted BTZ black brane or a rotating BTZ black hole. In the case when the spatial

direction is non-compact, we generalise a computation of Roberts and Stanford and show

that to reproduce the correct bulk answer a maximal channel contribution needs to be

selected when using the identity block approximation. We use the correspondence between

global conformal blocks and geodesic Witten diagrams to extend our results to CFTs on a

spatial circle.

In [1] it was shown that the OTOC for a rotating BTZ black hole exhibits a periodic

modulation about an average exponential decay with Lyapunov exponent 2π/β. In the

extremal limit where the black hole is maximally rotating, it was shown in [2] that the

OTOC exhibits an average cubic growth, on which is superposed a sawtooth pattern which

has small periods of Lyapunov growth due to the non-zero temperature of left-movers in

the dual CFT. Our computations explain these results from a dual CFT perspective.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory, Conformal Field

Theory

ArXiv ePrint: 2107.13874

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2021)105

mailto:ben.craps@vub.be
mailto:surbhi.khetrapal@vub.be
mailto:charles.rabideau@gmail.com
https://arxiv.org/abs/2107.13874
https://doi.org/10.1007/JHEP11(2021)105


J
H
E
P
1
1
(
2
0
2
1
)
1
0
5

Contents

1 Introduction 1

2 Rotating BTZ black hole 2

2.1 CFT dual to rotating BTZ 3

3 OTOC for 2d CFT on a line 3

4 OTOC for 2d CFT on a spatial circle 10

4.1 Conformal block as geodesic Witten diagram 10

4.2 OTOC for 2d CFT on a spatial circle 13

4.3 Comment on ensembles 16

5 Extremal limits 17

5.1 CFT on the line 17

5.2 CFT on the circle 18

A OTOC in vacuum of 2d CFT on spatial circle 19

1 Introduction

Quantum chaos has emerged as an essential tool to study real time dynamics of quantum

many body systems. In recent years, out-of-time-order correlators (OTOCs) have been used

to probe the dynamical chaotic behaviour in quantum field theories and the gravitational

systems which are holographically dual to them [3–9]. The OTOC was shown to exhibit a

phase of exponential decay for theories which admit a holographic bulk dual.

In [1], it was shown that the OTOC in a rotating BTZ black hole exhibits an aver-

age exponential decay on which is superposed a sawtooth pattern describing alternating

exponential behaviours determined by the left and right moving temperatures of the dual

CFT. A sawtooth pattern was also observed in the extremal limit of the rotating BTZ black

hole [2]. Thus it is natural to wonder how this behaviour emerges in the CFT holographically

dual to rotating BTZ.

In this work we will therefore study the OTOC in rotating and boosted ensembles in

2d CFT. We start with putting the CFT on a line, where a boosted ensemble is dual to a

black brane background. Much of the computation of the OTOC in a boosted ensemble

appeared previously in [10], except for an important subtlety that affects the final result.

The computation in the dual black brane geometry was performed in [1, 11, 12]. In [1], it

was found that at late times the smaller of the left and right moving temperatures controlled

the Lyapunov exponent. It was also remarked that a prescription of maximisation over the
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different channels in which the conformal block decomposition can be performed is required

and might provide a mechanism in the CFT for this behaviour. We study these channels

in detail, perform the required maximisation and find that this indeed reproduces the

computation in the black brane. Since the Lyapunov exponent is associated with the decay

of the OTOC, within the Lyapunov regime the prescription of maximising over channels

ensures that the lower of the two temperatures sets the Lyapunov exponent at late times.

This is discussed in detail in section 3.

With this result for boosted ensembles on the line in hand, we next analyse the case of

rotating ensembles on the circle. Gravitational computations of the OTOC have found that

in the Lyapunov regime the instantaneous Lyapunov exponent exhibits a sawtooth pattern

which when averaged over a full period gives an averaged Lyapunov exponent controlled by

the temperature [1, 2]. We show that in the Lyapunov regime, where the global conformal

block of the stress tensor dominates, the OTOC on the circle can be obtained by that on

the line from a reasoning that involves the relation between global conformal blocks and

geodesic Witten diagrams. In this way we reproduce the gravitational results found in [1].

We also study the extremal and zero-temperature limits, which require backing off from

some of the approximations used in the previous result, and reproduce the gravitational

results found in [2].

The paper is organised as follows: in section 2, we briefly review the rotating BTZ

black hole and its dual CFT. In section 3, we compute the OTOC in the thermal CFT with

non-compact spatial direction dual to a boosted black-brane in the bulk. In section 4, we

use geodesic Witten diagrams to develop a method of images to approximate the 4-point

function on the torus, which we then use to compute the OTOC in a thermal CFT with

compact spatial direction dual to rotating BTZ black hole in the bulk. In section 5, we

compute the OTOC in the extremal limit. Appendix A contains a computation of the

OTOC in the vacuum of a 2d CFT on a spatial circle.

2 Rotating BTZ black hole

In this section, we briefly review the rotating BTZ black hole [13, 14], whose metric in

Schwarzschild co-ordinates is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(

dϕ − r+r−

r2
dt

)2

f(r) =
(r2 − r2

+)(r2 − r2
−)

r2
, (2.1)

where the AdS radius has been set to 1 and ϕ is the angular co-ordinate. When the angular

co-ordinate is periodic, ϕ ∼ ϕ + 2π, the above metric describes a black hole and when ϕ is

non-periodic, it describes a black brane geometry. The horizon radii r± are related to the

mass M , angular momentum J , Hawking temperature T and angular potential Ω of the

black hole,

M = r2
+ + r2

−, J = 2r+r−, T =
r2

+ − r2
−

2πr+
, Ω =

r−

r+
, (2.2)
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and the angular potential takes values 0 ≤ Ω ≤ 1. In the maximally rotating limit, r+ = r−

and Ω = 1. Continuing to a Euclidean black hole would involve taking t, r−, J and Ω to be

purely imaginary.

Let us also introduce co-moving co-ordinates (t, r, φ), where

φ = ϕ − Ω t, (2.3)

in terms of which the metric takes the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(

r−

r+

r2 − r2
+

r2
dt + dφ

)2

. (2.4)

In these co-ordinates, the angular velocity at the horizon vanishes, ΩH = 0.

2.1 CFT dual to rotating BTZ

The CFT dual to rotating BTZ has unequal left- and right-moving temperatures and its

partition function is given by [15]

Z(βL, βR) = Tr e−βLEL−βRER . (2.5)

Here, the inverse temperatures of left- and right-movers are given by

βL = β(1 − Ω), βR = β(1 + Ω) (2.6)

and are written in terms of inverse temperature β and the chemical potential for conserved

angular momentum, Ω. In Lorentzian signature, the space-time co-ordinates on the 2d CFT

are (σ, t), where σ = ℓϕ, and we redefine tnew = ℓ told. In Euclidean signature, we introduce

complex co-ordinates x = σ + iτ, x̄ = σ − iτ , where the Euclidean time τ is related to the

Lorentzian time t by τ = it. If ϕ is periodic, i.e. dual to a black hole in the bulk, the 2d

thermal CFT has compact spatial direction and hence is on a torus. If ϕ is non-periodic,

i.e. dual to black brane geometry in the bulk, the 2d CFT is on a thermal cylinder. The

thermal cylinder can be mapped to a complex plane (z, z̄) by

z = e
2π
βL

x
, z̄ = e

2π
βR

x̄
. (2.7)

Note that, since in Euclidean co-ordinates the chemical potential for conserved angular

momentum is imaginary,

Ω = i ΩE , (2.8)

the co-ordinates z and z̄ in (2.7) are complex conjugate in Euclidean signature.

3 OTOC for 2d CFT on a line

In this section, we compute the OTOC in a two-dimensional thermal CFT with a non-zero

angular potential of rotation, where the spatial direction is non-compact. When viewed as

a limit of a CFT on a spatial circle with periodic ϕ, it could be obtained by introducing
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σ = ℓϕ and working in the regime where ℓ → ∞ while keeping σ finite. Our starting

point is the following 4-point function on the Euclidean thermal cylinder with different

temperatures for left- and right-movers:

〈W (x1, x̄1)W (x2, x̄2)V (x3, x̄3)V (x4, x̄4)〉βL,βR
, (3.1)

where

xi = σi + iτi, x̄i = σi − iτi (3.2)

are the holomorphic and anti-holomorphic co-ordinates on the cylinder. As before, the

Euclidean time is related to Lorentzian time by τi = i ti. The Euclidean correlator is

single-valued. Continuing to Lorentzian signature introduces multivaluedness, which reflects

a dependence on operator ordering. The prescription used in [7] to obtain a specific operator

ordering from the Euclidean correlator is to assign small imaginary time to each operator:

τj = ǫj (ti → ti − iǫi); then, with imaginary times held fixed, the real times are increased

to their required Lorentzian value. Lastly, the operators are smeared in real time and the

imaginary times are taken to be zero. (As in [7], we will leave this last step implicit.)

When the small parameters satisfy the relation ǫ1 < ǫ3 < ǫ2 < ǫ4, the correlator gives the

required OTOC.

The location of the operators in the (σ, t) plane corresponds to

C(σ, t) =
〈W (0, −iǫ1)V (σ, t − iǫ3)W (0, −iǫ2)V (σ, t − iǫ4)〉

〈W (0, −iǫ1)W (0, −iǫ2)〉〈V (σ, t − iǫ3)V (σ, t − iǫ4)〉 , (3.3)

where we have normalized the OTOC by dividing by a product of 2-point functions. Using

the cylinder-to-plane map (2.7), the location of the operators in the (z, z̄) plane is

z1 = e
2π
βL

iǫ1 z̄1 = e
− 2π

βR
iǫ1

z2 = e
2π
βL

iǫ2 z̄2 = e
− 2π

βR
iǫ2

z3 = e
2π
βL

(σ−t+iǫ3)
z̄3 = e

2π
βR

(σ+t−iǫ3)

z4 = e
2π
βL

(σ−t+iǫ4)
z̄4 = e

2π
βR

(σ+t−iǫ4)
. (3.4)

Using the Virasoro block decomposition of 4-point correlation functions, the OTOC is

given by

C(σ, t) =
∑

h,h̄

Ph,h̄Vh,h̄(u, v). (3.5)

Here, Vh,h̄ are the Virasoro blocks, Ph,h̄ are the theory-dependent Virasoro block coefficients,

and u, v are functions of the conformal cross-ratios,

u = η η̄, v = (1 − η) (1 − η̄) . (3.6)

The conformal cross-ratios are

η =
z12z34

z13z24
, η̄ =

z̄12z̄34

z̄13z̄24
, (3.7)
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Re (η)

Im (η)

1

Figure 1. The blue curve denotes t < σ, at t = σ the holomorphic cross-ratio crosses branch cut

running from η = 1 to ∞ and enters the second sheet where the green curve denotes t > σ and η

becomes small as t ≫ σ.

where zij = zi − zj and z̄ij = z̄i − z̄j . Substituting the location of the operators from (3.4),

the cross-ratios become

η =
− sin

(

π
βL

ǫ12

)

sin
(

π
βL

ǫ34

)

sinh
(

π
βL

(t − σ + iǫ13)
)

sinh
(

π
βL

(t − σ + iǫ24)
) (3.8)

η̄ =
− sin

(

π
βR

ǫ12

)

sin
(

π
βR

ǫ34

)

sinh
(

π
βR

(t + σ + iǫ13)
)

sinh
(

π
βR

(t + σ + iǫ24)
) . (3.9)

Next, we use the Virasoro identity block approximation, which approximates the

correlator by the contribution of the Virasoro block of the identity operator, V0,0(u, v).

The Virasoro blocks factorise into functions of purely holomorphic and anti-holomorphic

components,

V0,0(u, v) = V0(η)V0(η̄). (3.10)

Even in Euclidean signature, the blocks, including V0(η), are multivalued due to a branch

cut in the complex η plane from 1 to ∞ (see figure 1). The specification of the OPE channel

used to derive the block expansion starts with specifying which pairs of operators are

contracted. The branch cut is a reflection of the fact that the block has a monodromy when

one of the operators from one pair is brought around one of the operators in the other pair.

This means that the specification of a channel requires, in addition to a choice of which

operators to contract, a choice of path along which to contract them,1 as depicted in figure 2.

The choice of which sheet of the multivalued function V0(η) to use corresponds to this choice

of path along which the operators are contracted. Under the assumption that there is a

1This can also be thought of in terms of a choice of a region homotopic to a disk by slightly blowing up

this path. The validity of the OPE expansion is ensured by a conformal map of this region to the unit disk

followed by a contraction of the unit disk to bring the pairs of operators together.
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W

W

V

V

W

W

V

V

Figure 2. Different channels corresponding to paths along which the pair of W operators can be

contracted. The colours denote channels that should be identified across the two diagrams if the W

operators are moved horizontally to the right. However, if the W operators where moved below the

V operators the red path in the left diagram would be identified with the blue path in the right

diagram. This leads to the branch cut in the conformal block.

choice of channel where the vacuum block provides a good approximation to the correlator,

it must be the channel where the vacuum block provides the largest contribution [16]. Note

that fixing the path along which the operators are to be contracted fixes the channel for both

the holomorphic and anti-holomorphic blocks, so that there is not two independent choices

of channel. This means that along the Euclidean section, where η̄ = η∗, the two blocks are

on opposite sheets.2 This choice is labelled by a single integer, which we will denote k.

Once the block is continued to Lorentzian times, the cross-ratios can cross branch cuts

and the two blocks may end up on different sheets. As explained in [7], the cross-ratio crosses

the branch cut in the block along the light cone of the OTOC. Indeed, for |t − σ| ≫ ǫ, the

cross-ratio η sits just above or below for t−σ negative or positive, respectively. When t = σ,

η ∼ ǫ12ǫ34

ǫ13ǫ24
, (t = σ) . (3.11)

This is greater than 1 for the OTOC, ensuring that the branch cut in the holomorphic

block is crossed when the t = σ line is crossed. Similarly, the t = −σ line corresponds to

the branch cut in the anti-holomorphic block. For t = 0 we return to the Euclidean section

where the branch cut for both blocks occurs at the same location. The location of the

branch cuts in the σ-t plane is summarised in figure 3. For time-ordered correlators, the

cross-ratio at the lightcone, (3.11), is less than 1, so that it does not cross the branch cut.

In order to compute the OTOC, we will maximise over all possible channels, or in other

words over sheets of the multivalued block. We therefore turn to the explicit form of the

identity block in the semiclassical limit described in [7, 17],

V0(η) ≈
(

η

1 − (1 − η)1−12hw/c

)2hv

, (3.12)

valid for a CFT with large central charge c such that hw

c is held fixed and small and hv

satisfies, 1 ≪ hv ≪ c. In particular hv does not scale as c. This has the expected branch

cut along [1, ∞).

When t − σ ≫ βL and t + σ ≫ βR, the cross-ratios become

η ≈ −e
− 2π

βL
(t−σ)

ǫ̃L∗
12 ǫ̃L

34, η̄ ≈ −e
− 2π

βR
(t+σ)

ǫ̃R∗
12 ǫ̃R

34, (3.13)

2When η crosses the branch cut in one direction, η̄ crosses it in the other way so that the two functions

end up on opposite sheets. That is when 1 − η → e
−2πik(1 − η), then 1 − η

∗ → e
2πik(1 − η

∗).

– 6 –
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σ

t
t = σt = −σ

Figure 3. The location of the branch cuts (dashed lines) in the conformal block in the σ-t plane.

There is a branch cut in the holomorphic block at t = σ and in the anti-holomorphic block at t = −σ.

When continuing the correlator from the t = 0 Euclidean slice into the future timelike region, one or

the other of these branch cuts must be crossed leading to two candidate channels. These correspond

to the continuations along the red or blue arrows. Note that along the Euclidean section the two

branch cuts coincide, ensuring that in the spacelike region the holomorphic and anti-holomorphic

blocks are on opposite sheets.

where

ǫ̃X
ij = i

(

e
2π
βX

iǫi − e
2π
βX

iǫj

)

, X = L, R. (3.14)

Therefore, the behaviour of the conformal block near η ∼ 0 is relevant for understanding

the OTOC for large times. On the kth sheet, where we send

(1 − η) → (1 − η) e−2πik , (3.15)

near η ∼ 0 the approximation (3.12) behaves as

V0(η) ∼
(

−24πikhw

cη
+ 1 − 12hw(1 − 2πik)

c
+ O(η) + O

(

(hw/c)2
)

)−2hv

. (3.16)

At sufficiently small η, that is at late times, this correlator goes as η2hv , which are the

expected late-time Ruelle resonances dual to quasi-normal mode decay. We will instead be

interested in the intermediate regime where Lyapunov growth is known to occur, hvhw

cη ≪ 1,

V0(η) ≈
(

1 − 24πikhw

cη

)−2hv

≈ 1 +
48πikhvhw

cη
− 1

2

(

48πikhvhw

cη

)2

+ O

(

h−1
v ,

(

hvhw

cη

)3
)

. (3.17)

Recall that the OTOC is the product of the holomorphic and anti-holomorphic blocks,

C(σ, t) ≈
(

1 − 24πikhw

cη

)−2hv
(

1 − 24πik̄hw

cη̄

)−2hv

, (3.18)

where k denotes the sheet of V0(η) and k̄ the sheet of V0(η̄). On the Euclidean section these

are opposite, k̄ = −k. However, as described above, when we continue to Lorentzian time,

– 7 –
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crossing the t = ±σ lightcones in the direction of increasing time leads to k → k + 1 or

k̄ → k̄ + 1 respectively. In either case, for times in the future timelike region, k̄ = −k + 1.

Therefore, in the regions where the OTOC is spacelike and no lightcones have been

crossed, our prescription is that (3.18) must be maximised with k̄ = −k. This happens for

k = 0, where C ≈ 1. When we cross the lightcone into the future timelike region, we instead

have k̄ = −k + 1. Clearly increasing |k| or |k̄| causes (3.18) to decrease and so there are

only two candidates that need to be compared in detail: (k = 1, k̄ = 0) and (k = 0, k̄ = 1).

These correspond to

C(σ, t) ≈
(

1 − 24πihw

cη

)−2hv

or

(

1 − 24πihw

cη̄

)−2hv

, (3.19)

respectively. These two channels could have been obtained by thinking of continuing the

channel that is dominant for σ > 0 or σ < 0, respectively, along increasing times into the

future lightcone, but we emphasise that our prescription was to maximise over all channels

in the final result. These two channels compete in the future lightcone and whichever is

dominant at a particular value of σ and t must be chosen. This guarantees that the answer

is continuous, although it will not be smooth at the transition between the two channels.

This is a consequence of the large c limit. Since the commutator squared is 2(1 − Re C), the

maximisation over channels ensures that, for late enough times still within the range of

validity of the Lyapunov regime, the slower of the two potential Lyapunov exponents will

be realised.

The exchange of dominance between the two candidate channels occurs when η = η̄,

which happens when

σ = Ω t − β(1 − Ω2)

2π
log

(

1 + Ω

1 − Ω

)

. (3.20)

Substituting (3.13) in (3.19) and choosing the maximal channel, for t > |σ| we find the

OTOC to be

C(σ, t) ≈
(

1 +
24πihw

ǫ̃L∗
12 ǫ̃L

34c
exp

(

2π

βL
(t − σ)

)

)−2hv

, t <
σ∗

Ω
(3.21)

≈
(

1 +
24πihw

ǫ̃R∗
12 ǫ̃R

34c
exp

(

2π

βR
(t + σ)

)

)−2hv

, t ≥ σ∗

Ω
, (3.22)

where we have defined σ∗ as

σ∗ ≡ σ +
β(1 − Ω2)

2π
log

(

1 + Ω

1 − Ω

)

. (3.23)

Further, in the regime where hwhv

c ǫ̃L,R∗

12 ǫ̃L,R
34

e
2π

βL,R
(t∓σ) ≪ 1,

C(σ, t) ≈ 1 − 48πihwhv

c ǫ̃L∗
12 ǫ̃L

34

e
2π
βL

(t−σ)
, t <

σ∗

Ω
(3.24)

≈ 1 − 48πihwhv

c ǫ̃R∗
12 ǫ̃R

34

e
2π
βR

(t+σ)
, t ≥ σ∗

Ω
. (3.25)

– 8 –
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Figure 4. Regions with the two Lyapunov growths separated by the black dashed line, which for

early times intersects the origin and for late times asymptotes to t = σ
∗

Ω
. The plot was obtained

numerically for the following values of parameters: β = 2π, Ω = 1

3
, c = 10, hw = 5 and hv = 1.5.

For negative σ, in conventions where Ω > 0, the slower Lyapunov exponent determines the growth

with time in the future lightcone. For positive σ, one encounters first the faster and then the slower

Lyapunov exponent.

For small ǫi, we can re-write the above equation in the form

C(σ, t) ≈ 1 − 48ihwhvβ2

c π ǫ12ǫ34
(1 + Ω)1+Ω(1 − Ω)1−Ω







e
2π
βL

(t−σ∗)
, t < σ∗

Ω

e
2π
βR

(t+σ∗)
t ≥ σ∗

Ω .
(3.26)

For Ω > 0, at late times the decay of the OTOC is governed by the Lyapunov exponent

λR = 2π
βR

< 2π
β . This is in accordance with the result from bulk computations in [1] that

the smaller Lyapunov exponent governs the decay of the OTOC at late times and was

guaranteed by the maximisation over channels as explained above. Comparing to the OTOC

derived from bulk computations in a decompactification limit of the rotating BTZ black

hole in [1], our result contains cutoff- and Ω-dependent prefactors which [1] did not keep

track of. In addition, it has σ∗ appearing in place of σ, which corresponds to a shift in time.

However, the expression for this shift in (3.20) is only valid in the late-time regime

t ≫ βL,R, since equations (3.20) to (3.26) were obtained in this approximation, as can be

seen from (3.13) and (3.16). In figure 4, we determine the values of (t, σ) at which the

exchange of dominance between the two channels takes place, without using this late-time

approximation. We obtain the OTOC numerically by substituting equations (3.8), (3.12)

and (3.15) in (3.10) for the following values of the parameters: β = 2π, Ω = 1
3 , c = 10, hw = 5

and hv = 1.5 (with ǫ1 = 0.01, ǫ2 = 0.03, ǫ3 = 0.02, ǫ4 = 0.04). We find that at early

times the line separating the two channels passes through the origin and at late times it

asymptotes to (3.20).

Alternatively, one could regulate the OTOC with Lorentz scalars instead of vectors

by choosing ǫL,R = βL,R xi, where xi are Lorentz invariant regulators (corresponding to

– 9 –
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moving operator insertions a fraction xi of the thermal circle). Using these regulators, we

find that the exchange of dominance between the two channels happens at t = σ/Ω, thus

the line separating the slow and fast growth regions in figure 4 is a straight line passing

through the origin.3

We wish to contrast the prescription we have used with that appearing in previous

works on CFT computations of OTOCs. In particular, in the seminal work of [7], the

authors seem to have only considered the k = k̄ = 0 channel in the space-like region with

σ > 0, which they then continued to the time-like region by increasing t while keeping σ

fixed. This does indeed produce the correct result in the non-rotating case they considered.

Taking this prescription at face value led to some confusion in the rotating case [10], where

a result for the OTOC was found which was discontinuous at σ = 0 and did not agree with

the result obtained from boosting the result in the thermal ensemble [1]. These issues can

be remedied by maximising over channels, as was suggested in [1]. In this work, we have

demonstrated in detail that this is indeed the case.

We also would like to point out that only the slower of the two potential Lyapunov

exponents is realised in the OTOC at late time. This is in contrast with the naïve expectation,

based on intuition from classical mechanics, that the largest Lyapunov exponent always

dominates. Of course in a system with different modes growing exponentially the largest

growth will always eventually dominate. However, in this case the potential Lyapunov

exponents, which were also identified in [11], correspond to different channels of the block

expansion and only the slower one is realised in the physical growth of the commutator

squared. This matches the gravitational result found in [1].

4 OTOC for 2d CFT on a spatial circle

In this section we describe how to extend some of our results for a CFT on a line to a CFT

on a spatial circle. Specifically, we will make use of the relation between global conformal

blocks and geodesic Witten diagrams to extract a prescription for computing OTOCs for

CFTs on a line, which we then put to use. Finally, we comment on a subtlety related to

the fact that black holes do not dominate the canonical ensemble at low temperatures.

4.1 Conformal block as geodesic Witten diagram

In a CFT, a 4-point function can be written as an expansion in global conformal blocks,

〈W (z1, z̄1)W (z2, z̄2)V (z3, z̄3)V (z4, z̄4)〉 =
1

|z12|4hw |z34|4hv

∑

O

λW W OλV V OGh,h̄(u,v), (4.1)

where the exchanged primary O is an operator of holomorphic and anti-holomorphic

dimensions (h, h̄). Here, (u, v) are functions of the cross-ratios (η, η̄),

u = η η̄, v = (1 − η)(1 − η̄). (4.2)

3We thank the anonymous referee for questions about the cutoff dependence, and in particular for

suggesting this alternative regulator.
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In the previous section, the computation of the OTOC used the identity block approxima-

tion, which focused on the contribution of the unit operator and its Virasoro descendants,

including the stress tensor. Further expanding in 1/c, the O(1) contributions in (3.24) was

due to the identity operator and the O(1/c) contribution arose from the stress tensor global

block. In order to compute related contributions to the OTOC for a CFT on a spatial

circle, it will be useful to draw intuition from a dual gravitational picture, in which global

conformal blocks correspond to geodesic Witten diagrams. We will therefore briefly review

the work of [18, 19], which relates the integral representation of conformal blocks in [20–22]

to geodesic Witten diagrams.

In a 2d CFT, for operators with zero spin, h = h̄, the global conformal block takes the

form [20–22]

Gh,h(u, v) =
1

2βh
uh
∫ 1

0
dσ (σ(1 − σ))h−1 (1 − (1 − v)σ)−h/2 (4.3)

× 2F1

(

h, h, 2h,
uσ(1 − σ)

1 − (1 − v)σ

)

.

Here the coefficient βh is the Euler beta function,

βh =
Γ(h)2

2Γ(2h)
. (4.4)

This form explicit in cross-ratios is useful for computing the boundary 4-point function.

We have checked that using this form of the global conformal block, considering contri-

butions from the identity and stress tensor global blocks and using the plane-to-cylinder

transformation, we recover the expression of the OTOC in equation (3.24).

The bulk dual of a conformal block is the geodesic Witten diagram [18], in which bulk

vertices are integrated not over the whole bulk (as in ordinary Witten diagrams), but over

geodesics connecting boundary points where CFT operators are located. In formulae, the

geodesic Witten diagram is given by

Wh,h(zi) ≡ (4.5)
∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′Gb∂(y(λ), z1)Gb∂(y(λ), z2)Gbb(y(λ), y(λ′))Gb∂(y(λ′), z3)Gb∂(y(λ′), z4),

and the integral is over the geodesic parameters λ, λ′ of the geodesics γW W , γV V , respectively.

Using the integral representation of the conformal block (4.3), [18] showed that the bulk

dual of a conformal block is the geodesic Witten diagram,

Wh,h(zi) = β2
hGh,h(u, v). (4.6)

Equation (4.5) can be further simplified by substituting the bulk-to-boundary propaga-

tors [19]

Gb∂(y(λ), z1) =
e−λ∆W

|z12|∆W
, Gb∂(y(λ), z2) =

eλ∆W

|z12|∆W
, (4.7)

– 11 –



J
H
E
P
1
1
(
2
0
2
1
)
1
0
5

and similarly for Gb∂(y(λ′), z3) and Gb∂(y(λ′), z4). Thus we obtain for the geodesic Witten

diagram

Wh,h(zi) =
1

|z12|2∆W |z34|2∆V

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′Gbb(y(λ), y(λ′)). (4.8)

In [19], the above form was used to interpret the geodesic Witten diagram, and thus the

conformal block, as an integral of the bulk 2-point function of the bulk field Φ(0) being

exchanged,

Gbb(y(λ), y(λ′)) = 〈Φ(0)(y(λ))Φ(0)(y(λ′))〉. (4.9)

Here, the bulk field operator Φ(0) is obtained from the boundary operator O (of confor-

mal dimensions h, h̄) by the HKLL prescription [23], and restricting to only the leading

contribution in 1/N (i.e. ignoring multi-trace contributions [24]). Thus the superscript (0)

indicates that it is a free bulk field. Substituting the above in (4.8) and (4.6), we obtain

the boundary conformal block as an integral of the 2-point function of the bulk field dual

to the corresponding boundary primary operator,

Gh,h(u, v) =
1

β2
h|z12|2∆W |z34|2∆V

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′〈Φ(0)(y(λ))Φ(0)(y(λ′))〉. (4.10)

An ingredient used implicitly in the above discussion is the operator product expansion

of the boundary operators in terms of the bulk field. In [19, 20] the contribution from

primary operators Oh,h̄ to the OPE of a pair of boundary operators was expressed in terms

of the bulk dual to O,

W (z)W (0) ∼ β−1
h

|x|4hw

∫ ∞

−∞
dλ Φ(0)(y(λ)). (4.11)

While the above discussion is presented for the 4-point function on a plane, obtaining the

4-point function on the cylinder is straightforward by using the cylinder-to-plane conformal

map (2.7),

〈W (x1, x̄1)W (x2, x̄2)V (x3, x̄3)V (x4, x̄4)〉β (4.12)

=

∣

∣

∣

∣

∂z1

∂x1

∂z2

∂x2

∣

∣

∣

∣

2hw
∣

∣

∣

∣

∂z3

∂x3

∂z4

∂x4

∣

∣

∣

∣

2hv 1

|z12|4hw |z34|4hv

∑

O

λW W OλV V OGβ

h,h̄
(u, v).

Here the superscript β means that the arguments (u, v) of the functions are written in

terms of cylinder co-ordinates using the transformation (2.7). The cylinder-to-plane map

can be extended to the bulk, relating Euclidean Poincaré AdS to Euclidean BTZ black

branes [19, 25]. This leads to a similar expression for Gβ

h,h̄
(u, v) as (4.10), where the bulk

field Φ(0) is a function of co-ordinates in a boosted BTZ geometry instead of in AdS as

was the case in (4.10). To be explicit about this difference we write the bulk field 2-point

function with a subscript β,

Gβ
h,h(u, v) ∝ 4

β2
h

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′ 〈Φ(0)(y(λ))Φ(0)(y(λ′))〉β. (4.13)
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= + +

〈W (z1)W (z2)V (z3)V (z4)〉

W

W

W

W

V

V

V

V

. . .
hµν

Figure 5. Disconnected and single-graviton-exchange geodesic Witten diagrams contributing to

the OTOC.

4.2 OTOC for 2d CFT on a spatial circle

Since we know that only the identity and stress tensor global blocks contribute to the OTOC

at the leading orders in the 1/c expansion, in terms of the geodesic Witten diagram, the

OTOC is a sum of a disconnected diagram and a graviton exchange diagram (see figure 5).

In the latter a propagator of the graviton hµν connects the geodesics γV V , γW W between

the V V and WW boundary operators, respectively. Thus, the normalised boundary 4-point

function in the large c limit can be written as the following function of the graviton 2-point

function in the bulk:

〈W (x1, x̄1)W (x2, x̄2)V (x3, x̄3)V (x4, x̄4)〉
〈W (x1, x̄1)W (x2, x̄2)〉〈V (x3, x̄3)V (x4, x̄4)〉

= 1 + λW W T λV V T

∫

γW W

∫

γV V

〈hµν(y(λ))hµν(y(λ′))〉. (4.14)

However, our goal is to obtain the 4-point function of boundary operators on the torus,

corresponding to a CFT at finite temperature on a spatial circle. At least for heavy operators

inserted close to each other, one expects that the OPE (4.11) of the boundary operators in

terms of the bulk field can be used when evaluating 4-point function on the torus. (Possible

contributions due to non-minimal geodesics connecting the two operators would then be

suppressed.) Consider the case where the spatial periodicity is large compared to the time

periodicity of the torus, and compared to the separation between the two W operators and

between the two V operators. Then using (4.11), we obtain for the torus 4-point function

〈W (x1, x̄1)W (x2, x̄2)V (x3, x̄3)V (x4, x̄4)〉β,ℓ

〈W (x1, x̄1)W (x2, x̄2)〉β,ℓ〈V (x3, x̄3)V (x4, x̄4)〉β,ℓ

= 1 + λW W T λV V T

∫

γW W

∫

γV V

〈hµν(y(λ))hµν(y(λ′))〉β,ℓ + . . . (4.15)

In [26], it was shown, using the method of images, that 2-point functions in a BTZ black

hole (i.e. with compact spatial direction ϕ ∼ ϕ + 2π) can be written as a sum of 2-point
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functions in a BTZ black-brane geometry (i.e. the spatial direction is an infinite line),

〈O(ϕ) O(0)〉β,ℓ =
∞
∑

n=−∞

〈O(ϕ + 2πn) O(0)〉β. (4.16)

Here, the argument ϕ on the l.h.s. of the above equation is periodic, while it is not periodic

in individual terms on the r.h.s. However the sum on the r.h.s. has the effect of capturing

the ϕ periodicity of the l.h.s. The subscript on the r.h.s. denotes that we are working with

correlators at finite temperature. Using this equation in (4.15), we can write the graviton

2-point function on the torus as

〈hµν(y(λ))hµν(y(λ′))〉β,ℓ =
∞
∑

n=−∞

〈hµν,n(y(λ))hµν(y(λ′))〉β, (4.17)

where hµν,n denotes that the ϕ argument is shifted by 2πn.

Substituting equations (4.17) and (4.13) in (4.15), we obtain the following expression

for the normalised torus 4-point function,

Cβ,ℓ(σ, t) ≡ 〈W (x1, x̄1)W (x2, x̄2)V (x3, x̄3)V (x4, x̄4)〉β,ℓ

〈W (x1, x̄1)W (x2, x̄2)〉β,ℓ〈V (x3, x̄3)V (x4, x̄4)〉β,ℓ

= 1 + λW W T λV V T

∞
∑

n=−∞

Gβ
2,2(un, vn) + . . . . (4.18)

The second term on the r.h.s. is a sum over stress tensor global blocks on the thermal

cylinder. The subscript n in the cross-ratios un, vn means that the spatial separation (in ϕ)

between W and V operators is shifted by 2πn.4

In order to compute the OTOC from this 4-point function, we use the locations of the

operators on the plane,

z1 = e
2π
βL

(iǫ1)
z̄1 = e

2π
βR

(−iǫ1)

z2 = e
2π
βL

(iǫ2)
z̄2 = e

2π
βR

(−iǫ2)

z3,n = e
2π
βL

(σ−2πnℓ−t+iǫ3)
z̄3,n = e

2π
βR

(σ−2πnℓ+t−iǫ3)

z4,n = e
2π
βL

(σ−2πnℓ−t+iǫ4)
z̄4,n = e

2π
βR

(σ−2πnℓ+t−iǫ4)
, (4.19)

where the thermal cylinder-to-plane map has been used. The cross-ratios are

un = ηn η̄n, vn = (1 − ηn) (1 − η̄n) , (4.20)

where

ηn =
− sin

(

π
βL

ǫ12

)

sin
(

π
βL

ǫ34

)

sinh
(

π
βL

(t − σ + 2πℓn + iǫ13)
)

sinh
(

π
βL

(t − σ + 2πℓn + iǫ24)
) (4.21)

η̄n =
− sin

(

π
βR

ǫ12

)

sin
(

π
βR

ǫ34

)

sinh
(

π
βR

(t + σ − 2πℓn + iǫ13)
)

sinh
(

π
βR

(t + σ − 2πℓn + iǫ24)
) . (4.22)

4On the torus, n labels the number of times the graviton winds the spatial circle. Torus conformal blocks

have definite winding numbers [27], so an infinite number of torus blocks contribute to the sum.
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The cross-ratios in the large time limit t ≫ |σ − 2πℓn|, βL/R are

ηn = −ǫ̃∗L
12 ǫ̃L

34e
− 2π

βL
(t−σ+2πℓn)

η̄n = −ǫ̃∗R
12 ǫ̃R

34e
− 2π

βR
(t+σ−2πℓn)

. (4.23)

The conformal blocks appearing in (4.1) are known in even dimensions in terms of

hypergeometric functions [28], and for d = 2 they take the form

Gh,h̄(u, v) = ηhη̄h̄
2F1(h, h, 2h, η) 2F1(h̄, h̄, 2h̄, η̄).

Since the hypergeometric function has known monodromies at η = 1, the stress tensor

global block Gβ
2,2(u, v) has a branch cut from η, η̄ = [1, ∞). As a consequence, the block can

get contributions from multiple channels, as discussed in section 3. To obtain the correct

correlator, we choose the channel which gives the dominant contribution to the OTOC.

Thus for each term in the sum appearing in (4.18),

G̃β
2,2(un, vn) ≡ λW W T λV V T Gβ

2,2(un, vn) ≈ −48πihwhv

cηn
or − 48πihwhv

cη̄n
. (4.24)

Using the late time limit of the cross-ratios in equation (4.23), and comparing G̃β
2,2(un, vn)

in the two channels, the channel in which this quantity is smaller contributes to the OTOC:5

G̃β
2,2(un, vn) ≈











−48πihwhv

c ǫ̃∗L
12 ǫ̃L

34
e

2π
βL

(t−σ+2πℓn)
, n < n∗

−48πihwhv

c ǫ̃∗R
12 ǫ̃R

34
e

2π
βR

(t+σ−2πℓn)
, n ≥ n∗,

(4.25)

where

n∗ ≡ σ∗ − Ω t

2πℓ
, (4.26)

and σ∗ is defined in equation (3.23). Substituting the above equation in (4.18) we find for

the OTOC on the torus

Cβ,ℓ(σ, t) = 1 − 48πihwhv

c
e

2π t
β






sin−1

(

πǫ12

βL

)

sin−1
(

πǫ34

βL

)

e
− 2π

β

ℓφ

(1−Ω)

⌊n∗⌋
∑

n=−⌊ t−σ
2πℓ

⌋

e
4π2ℓn

β(1−Ω)

+ sin−1
(

πǫ12

βR

)

sin−1
(

πǫ34

βR

)

e
2π
β

ℓφ

(1+Ω)

⌊ t+σ
2πℓ

⌋
∑

n=⌈n∗⌉

e
− 4π2ℓn

β(1+Ω)






.

(4.27)

5This might appear at odds with our prescription in section 3, where we maximised over channels.

Note, however, that we were maximising Virasoro blocks like (3.21), which corresponds to minimising the

exponential terms in (3.24). For CFT on a spatial circle we do not have expressions for Virasoro blocks, and

we assume that we should still minimise the stress tensor global blocks.
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The lower limit in the first sum and the upper limit in the second sum are imposed because

the continuation across the branch cut in Lorentzian time only occurs when t > |σ − 2πℓn|.
After performing the sums, we get

Cβ,ℓ(σ, t) = (4.28)

1 − 48πihwhv

c
e

2π t
β



sin−1
(

πǫ12

βL

)

sin−1
(

πǫ34

βL

)(

1 + Ω

1 − Ω

)1+Ω exp
(

−4π2

β
ℓ(n∗ mod 1)

(1−Ω)

)

1 − exp
(

− 4π2ℓ
β(1−Ω)

)

+ sin−1
(

πǫ12

βR

)

sin−1
(

πǫ34

βR

)(

1 − Ω

1 + Ω

)1−Ω exp
(

4π2

β
ℓ(n∗ mod 1)

(1+Ω)

)

exp
(

4π2ℓ
β(1+Ω)

)

− 1



 .

For small ǫi, the OTOC becomes

Cβ,ℓ(σ, t) = (4.29)

1− 48ihwhvβ2(1+Ω)1+Ω(1−Ω)1−Ω

π cǫ12ǫ34
e

2π t
β





exp
(

−4π2

β
ℓ(n∗ mod1)

(1−Ω)

)

1−exp
(

− 4π2ℓ
β(1−Ω)

) +
exp

(

4π2

β
ℓ(n∗ mod1)

(1+Ω)

)

exp
(

4π2ℓ
β(1+Ω)

)

−1



 .

Comparing this to the result obtained in [1], we find, as in section 3, a shift in time as well

as the prefactors which were not determined in [1]. As was pointed out in [1], the OTOC

decays in time as an exponential with average Lyapunov exponent λ̄L = 2π
β . However, it

has periodic modulations about this average behaviour captured by (n∗ mod 1). Also note

that in the decompactification limit, ℓ → ∞ keeping σ = ℓϕ constant, using φ = σ−Ωt
ℓ → 0,

we recover the OTOC as obtained in equation (3.24).

4.3 Comment on ensembles

As mentioned, for instance, in [1], where the OTOC of interest was computed from a bulk

point of view, the BTZ black hole only dominates the canonical ensemble for sufficiently

high temperature,

β

ℓ
<

2π√
1 − Ω

. (4.30)

For lower temperatures, the thermal gas in AdS dominates [29, 30]. This raises a few

questions:

1. For lower temperatures, do the computations of OTOCs in BTZ performed in [1]

have a CFT counterpart? This question applies even more strongly to the bulk

computations of [2], which focused on extremal BTZ.

2. Our CFT computation of the OTOC would seem to agree with the BTZ result of [1]

even at low temperatures — how can this be the case if the BTZ black hole does not

dominate the ensemble?

Let us consider these questions in the context of the D1-D5 CFT, which is often used for

holographic studies of black holes in string theory [31]. If one really takes a thermal average
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over all states in the theory, then it is indeed true that black hole states play no significant

role at low temperatures. For instance, at zero temperature the free energy coincides with

the energy, and is therefore minimized by the ground state of the theory, which is the NS

vacuum, whereas the R ground states (which include the lightest black hole states) have

higher energy. But this suggests a modification of the CFT computation that does capture

black hole physics, namely one can restrict the thermal average to R sector states. For low

temperatures that violate (4.30), this is what we will implicitly assume.6

But what if we did not assume a restriction to R sector states? Don’t our CFT

computations generally reproduce BTZ results? The resolution is that for CFT on a torus

there are different channels in which one can perform an OPE expansion, and for most

channels a truncation of a correlation function to the lowest few terms will not provide a

good approximation to the exact result. By starting from geodesic Witten diagrams for

a BTZ black brane and using the method of images for the bulk-to-bulk propagator, we

implicitly chose the channel whose truncation works well in the high-temperature phase. If

one considered low temperatures and included the NS sector states, the “good” channel

would correspond to summing over states propagating along the other cycle of the torus,

which is a computation we did not perform.

In the next section, we consider zero-temperature limits of our results. We will work in

the “black hole channel” and implicitly assume that we are restricting the thermal trace to

R sector states.

5 Extremal limits

In recent work [2], the bulk computations of [1] have been extended to extremal, maximally

rotating BTZ black holes, motivated in part by the question to what extent the OTOC can

distinguish between those black holes and their horizonless microstate geometries. In order

to compare the results of [2] with CFT computations, in this section we extend the OTOC

computations of sections 3 and 4.2 to the extremal, maximally rotating limit, Ω → 1, β → ∞,

βL = finite, βR → ∞. (5.1)

5.1 CFT on the line

To obtain the OTOC in the extremal limit for the computation in section 3 we cannot

simply take βR → ∞ in (3.24). This is because this limit competes with the t ≫ |σ|, β

limit which was used to arrive at the OTOC at finite temperature. In order to obtain the

OTOC in the extremal limit, we consider βR → ∞ in the cross-ratio before substituting

the cross-ratio in (3.19). Following the reasoning of section 3, we find that for t > |σ|,

C(σ, t) ≈ 1 − 48πihwhv

c

sinh2
(

π
βL

(t − σ)
)

sin
(

πǫ12
βL

)

sin
(

πǫ34
βL

) ,
βL

π
sinh

(

π

βL
(t − σ)

)

< t + σ

≈ 1 − 48πihwhv

c ǫ12ǫ34
(t + σ)2 ,

βL

π
sinh

(

π

βL
(t − σ)

)

≥ t + σ. (5.2)

6We thank I. Bena, M. De Clerck, F. Denef, K. Nguyen, R. Russo and N. Warner for discussions related

to this point.
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5.2 CFT on the circle

In the maximally rotating limit, for a given n, the two channels described in equations (4.24)

give the following contributions,

G̃β
2,2(un, vn) ≈ −48πihwhv

c
min





sinh2
(

π
βL

(t − σ − 2πℓñ)
)

sin
(

πǫ12
βL

)

sin
(

πǫ34
βL

) ,
(t + σ + 2πℓñ)2

ǫ12ǫ34



 , (5.3)

where in the above equation we have defined ñ ≡ −n. The cross-over takes place at

β2
L

π2
sinh2

(

π

βL
(t − σ − 2πℓñ∗)

)

= (t + σ + 2πℓñ∗)2 , (5.4)

and the value of ñ at the cross-over point is denoted as ñ∗. Solving the above equation

for ñ∗,

ñ∗ ≈ 1

2πℓ

(

t − σ − βL

π
log

(

4πt

βL

))

. (5.5)

Substituting this in (4.18), we obtain for the OTOC on a spatial circle in the extremal limit

Cβ,ℓ(σ, t) = 1 − 48πihwhv

c ǫ12ǫ34





β2
L

π2

⌊(t−σ)/(2πℓ)⌋
∑

ñ=⌈ñ∗⌉

sinh2
(

π

βL
(t − σ − 2πℓñ)

)

+

⌊ñ∗⌋
∑

ñ=−⌊(t+σ)/(2πℓ)⌋

(t + σ + 2πℓñ)2



 . (5.6)

Here the upper and lower bounds on the first and second sum, respectively, take into account

that these contributions are only present for t > |σ + 2πℓñ|. The sums appearing in the

above equations are like those encountered in equation (3.23) of [2] with their ‘n’ the same

as our ñ and their ‘r+’ replaced by our π
βL

. Evaluating the sums, we obtain the OTOC

Cβ,ℓ(σ, t) ≈ 1 − 24πihwhv

c ǫ12ǫ34

















2t3

3πℓ
−

t2βL log
(

4πt
βL

)

π2ℓ
+

















1 −





π(t−σ)−βL log

(

4πt
βL

)

ℓπ mod 2π





π

+

2 exp





2πℓ
βL





π(t−σ)−βL log

(

4πt
βL

)

ℓπ mod 2π









e
4π2ℓ
βL − 1

















t2 + O

(

t

ℓ

)

















.

(5.7)

Thus the OTOC grows as t3 on an average with a saw-tooth pattern superimposed where

there are brief periods of t2 growth and brief periods of exponential growth dictated by the

non-zero left temperature 1/βL. This behaviour of the OTOC in the extremal limit agrees

with that obtained from the bulk in [2].
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A OTOC in vacuum of 2d CFT on spatial circle

In [7], the OTOC was computed in the vacuum of a 2d CFT on a line. In section 5 of the

present paper, we computed the OTOC in an ensemble with zero right-moving and nonzero

left-moving temperature, both on a line and on a circle. For completeness, in this appendix

we compute the OTOC in the vacuum of a 2d CFT on a spatial circle.

In the case when the spatial direction of the CFT is non-compact, the cross-ratios at

zero temperature are

η ≈ − ǫ12ǫ34

(t − σ)2
, η̄ ≈ − ǫ12ǫ34

(t + σ)2
. (A.1)

Substituting the cross-ratios in equations (3.19), the following OTOC is obtained [7]:

C(σ, t) ≈ 1 − 48πihwhv

c ǫ12ǫ34







(t − σ)2, σ > 0,

(t + σ)2, σ ≤ 0.
(A.2)

In the CFT on a spatial circle discussed in section 4.2, in the zero temperature limit,

β → ∞, the cross-ratios are

ηn ≈ −(ǫ1 − ǫ2)(ǫ3 − ǫ4)

(t − σ + 2πnℓ)2 , η̄n ≈ −(ǫ1 − ǫ2)(ǫ3 − ǫ4)

(t + σ − 2πnℓ)2 . (A.3)

To obtain the OTOC, we substitute the above cross-ratios in the equivalent of equation (4.18)

for vacuum and impose the constraint t > |σ − 2πnℓ| on the summations:

Ccircle
vac (σ, t) = 1 +

48πihwhv

c







⌊ σ
2πℓ

⌋
∑

n=−⌊ t−σ
2πℓ

⌋

η−1
n +

⌊ t+σ
2πℓ

⌋
∑

n=⌈ σ
2πℓ

⌉

η̄−1
n






. (A.4)

Thus, the OTOC on the torus at zero temperature becomes

Ccircle
vac (σ, t) ≈ (A.5)

1 − 16πihwhvℓ2

c ǫ12ǫ34

[

t3

ℓ3
+

2π2t

ℓ

(

1 + 6

(

−1 +

(

σ

2πℓ
mod 1

))(

σ

2πℓ
mod 1

))

+ O

(

(

t

ℓ

)0
)]

.
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