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1 Introduction and summary of results

This paper is devoted to a study of classical chaos in the classical limit of the matrix

quantum mechanical system describing D0-brane dynamics. In particular we compute

Lyapunov exponents in this system.

The motivation for this work flows from recent progress on the overlap between quan-

tum chaos and quantum gravity. These developments have their origin in Quantum In-

formation theory, and specifically in work done making good approximations to random

unitary operators [1–6]. Such approximations can be implemented very quickly, in a time

proportional to log n, where n is the number of qubits (the analog of the entropy S in this

system).
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Hayden and Preskill [7] connected this timescale to one characteristic of black hole

horizons [8, 9] t∗ ∼ R log(M/mp) ∼ R logS, where R is the Schwarzschild radius, M is the

black hole mass, mp is the Planck mass and S is the Bekenstein-Hawking entropy of the

black hole. This logarithm is a consequence of the exponential blueshift of modes at late

Schwarzschild time near the horizon, following from its Rindler structure. They presented

an example of a model typical of those discussed in Quantum Information: a Hamiltonian

coupling pairs of qubits nonlocally with a random pattern, with the 2-qubit gates being

chosen at random. It is easy to see that such a Hamiltonian will cause all qubits to become

entangled with each other in a time of order log n, and reasonable to conjecture that chaos

has set in by this time [1–7]. This conjecture is supported by analysis of quantum circuits

and a Lieb-Robinson bound [10]. A crucial aspect of such Hamiltonians is “k-locality,”

where interactions can be nonlocal but only a finite number k of qubits are coupled together

in each term of the Hamiltonian, independent of the total number of qubits in the system.

Sekino and Susskind made the connection between these ideas and gauge/gravity du-

ality [11]. They argued that matrix quantum systems behave similarly to k-local qubit

systems: the matrix indices function like the qubit label, and the sum over indices in the

matrix interactions couples a finite number of index pairs together nonlocally, but satisfying

the k-local property. In some ways the simplest such system is maximally supersymmetric

matrix quantum mechanics [12], which has M-theory as its infrared gravity dual in Matrix

Theory [13] and type IIA string theory at somewhat higher energies [14]. The horizons of

the black hole duals in such systems are Rindler in nature, and so matrix quantum systems

have the characteristic logarithmic time which they interpreted as a “scrambling time”

t∗ ∼ β logS (here β ∼ R is the inverse Hawking temperature of the black hole). Sekino

and Susskind went on to make the “fast scrambling conjecture,” that in all reasonable

physical systems chaos cannot set in faster than the logarithmic rate it does in black holes,

in a time t∗ ∼ β logS.

The next stage in the analysis of this kind of quantum chaos was undertaken in [15–

20, 24] using holographic (and other) techniques. A sharp diagnostic of chaos is the growth

of a commutator [21, 22] of simple operators with time, C(t) = −〈[V,W (t)]2〉, where the

brackets denote thermal expectation value. In a chaotic quantum system W (t) (in these

contexts sometimes referred to as a “precursor” [23]) becomes more complicated with time

due to the lack of cancellation between the first and last factors in W (t) = eiHtWe−iHt

induced by the small perturbationW . On expanding out the commutator one finds that the

quantity most sensitive to chaos is an out-of-time-order correlator, D(t) = 〈VW (t)VW (t)〉.
As Larkin and Ovchinnikov [21] pointed out long ago, in few body quantum sys-

tems described schematically by a coordinate q and momentum p the commutator C(t) =

〈−[p, q(t)]2〉 goes over in the semiclassical limit to C(t) → ~
2〈{p, q(t)}2〉 where {·, ·} is the

Poisson bracket. This can be expressed as ~
2
〈(

∂q(t)
∂q(0)

)2 〉

= ~
2〈e2λLt〉, where λL is the

Lyapunov exponent. This motivates using the commutator as a diagnostic of chaos.

The quantities C(t), D(t) (and closely related thermofield double two-sided correla-

tors) have been computed holographically in [15–19]. The essential bulk phenomenon is a

high energy collision between the quanta created by V and W (t) near the horizon. The
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perturbative strength of gravitational scattering in such a collision is of order GN s (in AdS

units) where GN is Newton’s constant and s is the center of mass energy squared. The

center of mass energy is (up to order one constants) s = 1
β2 exp

2πt
β because of the Rindler

nature of the horizon and the role of boundary time as Schwarzschild time. In the Einstein

gravity limit the first term surviving in the commutator is second order in GN ∼ 1/N2,

C(t) ∼
(

1

N2
exp

2πt

β

)2

. (1.1)

This becomes of order one at

t∗ =
β

2π
logN2 =

β

2π
logS. (1.2)

This is the precise large N holographic scrambling time for systems with a bulk Einstein

gravity dual. Kitaev [19], building on [21], connected the exponential time behavior in (1.1)

to Lyapunov behavior in chaotic systems. Here the Lyapunov exponent is given by λL =
2π
β = 2πT .1 This exponential behavior and the small 1

N2 prefactor are the ingredients

determining the fast scrambling conjecture timescale.

The authors of [20] were able to establish the Einstein gravity value λL = 2π
β = 2πT

as a sharp upper bound on thermal quantum systems with a large number of degrees of

freedom and a large hierarchy between scrambling and dissipation times. The argument

uses only general principles of quantum mechanics and plausible physical assumptions

about the decay of time-ordered correlators.

This bound does not enable one to compute the value of Lyapunov exponents in a given

quantum system. A suggestion was made in [17] about how to compute λL at weak coupling,

motivated by the BFKL ladder summation for high energy scattering. Stanford [25] has

recently succeeded in implementing this calculation in matrix φ4 quantum field theory.

Kitaev [24] has shown how to compute λL in a strongly coupled large N fermionic

quantum mechanics system related to the Sachdev-Ye model [26, 27]. He proceeds by

summing ladder diagrams that in this case give the exact large N solution to the model.

In the limit of strong coupling the exponent saturates the bound — a remarkable result.

Direct numerical work on this aspect of quantum gauge systems seems challenging.

Here we follow a different approach, exploring the classical dynamics of such a system.

In particular we explore the classical dynamics of the maximally supersymmetric matrix

quantum mechanics in 0+1 dimensions, in the large N limit. The Lagrangian is

L =
1

2g2
Tr





∑

i

(DtX
i)2 +

1

2

∑

i 6=j

[Xi, Xj ]2



+ · · · . (1.3)

Here Xi (i = 1, . . . , 9) are N ×N traceless Hermitian matrices and DtX
i = ∂tX

i− [At, X
i]

is the covariant derivative, where At is the SU(N) gauge field. We take the large N limit

with the ‘t Hooft coupling λ = g2N . The remaining terms in (1.3) involve fermions, which

do not contribute in the classical limit.
1Notice that the exponential growth in (1.1) gives twice the Lyapunov exponent, because the commutator

is squared.
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There have been a number of previous studies of the classical dynamics of this system,

including [28–30, 33–36]. Chaos was explored in [29–36]. In particular, [33, 34, 36] studied

the decay in time of two-point functions, and [31] studied the Lyapunov behavior.

At large N and low temperature, the theory under discussion is holographically dual

to a black hole in classical gravity. We will focus on the large N , high temperature classical

limit, where the dual black hole description is no longer valid. The dimensionless parameter

λeff = λ/T 3 characterizing the large N dynamics goes to zero in this limit. (Previous

numerical studies confirmed that there is no phase transition which separates the low and

high temperature regions in this theory [37–41]. We therefore expect some qualitative

features of the black hole, such as fast scrambling, to survive at high temperature.)

The high temperature limit of a quantummechanical system is well approximated by its

classical dynamics. This statement is only true for quantum mechanics, not quantum field

theory — high-temperature field theory does not have a good classical limit because of the

UV catastrophe. Indeed, in high-temperature quantum field theory the occupation numbers

of typical field modes are of order one, while classical equations of motion approximate

quantum fields with large occupation numbers.2

Previous numerical studies [33, 34, 36] showed that for generic initial conditions the

classical system thermalizes into what can be thought of as a bound thermal state of N

D0-branes. In this work we compute the Lyapunov exponents of this system by solving the

equations of motion numerically. For the leading exponent we give a precise result, while

for the spectrum of subleading exponents we get a semi-quantitative estimate. The classical

system has a phase space with dimension that is of order N2 and has the same number of

Lyapunov exponents. At large N we find that they converge to a continuous spectrum with

a finite maximum value. That the chaotic dynamics has a smooth large N limit provides

support for the k-locality of matrix interactions, as discussed by Sekino and Susskind [11].

In particular we find that that the largest Lyapunov exponent λL approaches a finite value

in the large N limit, λL → 0.292λ
1/4
eff T . Note that this is parametrically smaller than the

bound λL ≤ 2πT established in [20] in the classical limit λeff → 0. This determines the

fast scrambling time, t∗ ∼ 1
λL

logN2, confirming that this model is a fast scrambler.

In classical systems the Lyapunov exponents are related to the Kolmogorov-Sinai (KS)

entropy, which measures the rate of growth of coarse-grained entropy when the system is

far away from equilibrium. Pesin proved that the KS entropy is equal to the sum of positive

Lyapunov exponents, and this result allows us to compute the KS entropy in the matrix

theory. Our result that the Lyapunov spectrum converges to a smooth density at large N

implies that the KS entropy is proportional to N2.

The paper is organized as follows. In section 2 we present the matrix model and de-

scribe its classical limit. In section 3 we review the classical theory of Lyapunov exponents,

and explain how it applies to the classical matrix model. The main difficulty here is in

dealing with the gauge symmetry of the model. In section 4 we present numerical results

for the Lyapunov exponent in the large N limit, using various methods to compute the

exponent. Then, in section 5 we present the computation of the Lyapunov spectrum in

2We thank Douglas Stanford for emphasizing this to us.
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this system. Section 6 includes a discussion of the results, and several appendices present

some technical details of the computation.

2 D0-branes at high temperature

The model we consider is the low-energy effective theory that lives on a stack of N D0-

branes [42]. It can be obtained by dimensionally reducing super Yang-Mills in 9+1 dimen-

sions to zero space dimensions. This is a supersymmetric quantum mechanics with a U(N)

gauge symmetry and an SO(9) global R-symmetry. Its degrees of freedom include nine

N ×N Hermitian matrices Xi
ab, i = 1, . . . , 9, a, b = 1, . . . , N , as well as 16 fermions ψab in

the spinor representation of SO(9), and a gauge field Aab. The action is

S =
1

2g2

∫

dt Tr

{

(DtX
i)2 +

1

2
[Xi, Xj ]2 + ψ̄Dtψ + ψ̄γi[Xi, ψ]

}

. (2.1)

The covariant derivative is Dt = ∂t − [At, · ], and summation over repeated SO(9) indices

is implied. In this work we take the matrices Xi to be traceless because the trace mode

is decoupled. When the matrices Xi are diagonal, their N eigenvalues correspond to the

positions of the D0-branes in 9-dimensional flat space. Off-diagonal elements correspond

to open string degrees of freedom that are stretched between different branes.

Let us take the large N limit, keeping the ’t Hooft coupling λ = g2N fixed. The

coupling λ is dimensionful, and at finite temperature T we can define the dimensionless

coupling λeff = λ/T 3 which controls the size of loop corrections. We will take the limit of

small λeff , which is the weak coupling / high-temperature limit where classical dynamics

provides a good approximation. There, the fermions do not contribute to the dynamics of

Xi, so we can discard them [43]. We choose the gauge to be At = 0. Integrating out the

gauge field leads to the Gauss law constraint,

∑

i

[Xi, V i] = 0 , V i ≡ Ẋi , (2.2)

which should be preserved due to gauge invariance. Fixing At = 0 does not completely fix

the gauge; the residual gauge freedom corresponds to global (i.e. time-independent) SU(N)

transformations.

We will work in an ensemble with fixed energy E, and where the conserved angular

momentum is set to zero.3 Averages in this ensemble will agree with thermal averages in the

thermodynamic limit N → ∞; the corresponding temperature T is given as follows. The

equipartition theorem for this system relates temperature, energy and number of degrees

of freedom as

〈K〉 = 2〈U〉 = ndof
2
T . (2.3)

The total energy is E = K+U where K is the kinetic energy and U is the potential energy.

ndof is the number of physical degrees of freedom. Naively the total number of degrees of

freedom is d(N2 − 1), where d = 9 is the number of matrices, but in accounting for the

3The linear momentum Tr(Ẋi) vanishes trivially due to the traceless condition.
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Gauss law constraint (2.2) and the residual gauge symmetry we have to subtract (N2− 1).

Furthermore, the conservation of the angular momentum Tr(XiẊj−XjẊi) should be taken

into account, reducing the number of degrees of freedom by d(d− 1)/2. Therefore,

E =
3

4
ndofT , ndof = (d− 1)(N2 − 1)− d(d− 1)

2
= 8(N2 − 1)− 36 . (2.4)

In the weak coupling limit we can use the classical approximation to describe the real-

time evolution of the system, at least for typical states at a given temperature.4 Thermo-

dynamic properties can then be computed using ergodicity, which we assume. (Numerical

results are consistent with this assumption.) The scalar equation of motion in our gauge is

Ẍi =
∑

j

[Xj , [Xi, Xj ]] . (2.5)

Equations (2.2) and (2.5) fully describe the system in the classical approximation. Notice

that the equations do not depend on the coupling. Therefore, due to the form of the

action (2.1), classical observables may depend on the temperature and the coupling only

through the combination λT = λeffT
4; the power of this combination is then determined

by dimensional analysis. From now on we set T = 1 without loss of generality.

2.1 Discretization

In order to study the time evolution numerically we discretize the equation of motion (2.5)

while preserving the constraint (2.2) exactly. For this purpose we write the equations of

motion as

Ẋi(t) = V i(t) , (2.6)

V̇ i(t) = F i(t) ≡
∑

j

[Xj(t), [Xi(t), Xj(t)]] . (2.7)

The discretized evolution with time step δt is taken to be of order δt2 [36]. It is given by

Xi(t+ δt) = Xi(t) + V i(t) · δt+ F i(t) · δt
2

2
,

V i(t+ δt) = V i(t) +
(

F i(t) + F i(t+ δt)
)

· δt
2
. (2.8)

It is easy to check that this prescription preserves the Gauss law constraint, namely that if

the constraint
∑

i[X
i, V i] = 0 holds at time t, then under the evolution (2.8) it also holds

at t + δt.5 All that is left is to ensure that the initial conditions obey the constraint and

have zero angular momentum. We do this by initially setting V i = 0 while taking Xi to

have random (Gaussian) matrix elements.

4The classical approximation is valid when the energy quanta, which correspond to the open string masses

in this case, are much smaller than the temperature. When branes and open strings form a typical thermal

state, the typical open string mass (or equivalently the distance between branes) scales as (λT )1/4 [43], and

therefore the classical approximation is valid at weak coupling. When one considers special configurations

like a sparse gas of D0-branes, the classical approximation is not valid.
5This can be seen by using the relation

∑

i[X
i(t), F i(t)] = 0, which follows from the Jacobi identity.

– 6 –



J
H
E
P
0
2
(
2
0
1
6
)
0
9
1

In order to control the discretization error after evolving for time t, we use two different

time steps: δt = 10−4 and δt = 5 · 10−4, and compare the results. We compared several

quantities such as the norm of the perturbation |δX|, whose definition will be given later in

this paper, as well as Tr(X2
i ) and Tr([Xi, Xj ]

2). We found agreement for t . 60. A similar

comparison with the same discretization has been performed previously; see figure 2 of [36].

3 Lyapunov exponents

In this section we briefly review the theory of Lyapunov exponents in classical systems,

and its application to the matrix model. We stress the complexities that arise due to the

gauge symmetry of our model.

Consider a Hamiltonian system with a phase space M of dimension n. Hamilton’s

equations define the mapping of a point x0 in phase space to a point x(t) after time t.

By linearizing Hamilton’s equations we can define a linear operator U(t;x0) (the transfer

matrix), that maps a tangent vector δx0 (i.e. an infinitesimal perturbation) at x0 to a final

vector δx(t) at x(t).

The signature of a chaotic system is the exponential growth of perturbations. In order

to discuss this growth we introduce a Riemannian metric g on phase space. In a chaotic

system, a typical perturbation grows as |δx(t)| ∼ |δx0|eλLt, where |δx| =
√

g(δx, δx). We

define the Lyapunov exponent that is associated with the initial perturbation by

λL = lim
t→∞

1

t
log

( |δx(t)|
|δx0|

)

. (3.1)

Note that there is no natural choice for g on phase space, but if phase space is compact

then the Lyapunov exponents are independent of g; see appendix A. If phase space is

noncompact then the exponents will not be well-defined in general.

In an ergodic system, the Lyapunov exponents λL can take up to dim(M) = n dis-

tinct values [44]. The largest exponent is the one that is referred to as ‘the’ Lyapunov

exponent, because it dominates the growth of typical (non-fine-tuned) perturbations. The

spectrum of Lyapunov exponents is determined by the size of g (U(t;x0)δx, U(t;x0)δx) =

g
(

δx, U †(t;x0)U(t;x0)δx
)

, namely by the eigenvalues of U †(t;x0)U(t;x0). Equivalently,

the spectrum can be determined by performing a singular-value decomposition (SVD) on

the transfer matrix; here we choose an orthonormal basis for the tangent space (with respect

to g), and write the transfer matrix in this basis as

U(t;x0) =W (t;x0)Σ(t;x0)V (t;x0)
† , (3.2)

where W,V are unitary and Σ = diag(σ1, . . . , σn) is positive-definite, with σ1 ≥ · · · ≥ σn ≥
0. The Lyapunov exponents λ1, . . . , λn are then given in terms of the decomposition by

λi(x0) = lim
t→∞

1

t
log σi(t;x0) . (3.3)

For ergodic systems, λi = λi(x0) is independent of the starting point x0. Phase space carries

with it a symplectic structure (a closed, non-degenerate 2-form ω), and the transfer matrix

– 7 –
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is a symplectic transformation. Therefore, the Lyapunov exponents are paired: for every

exponent λi there is a corresponding exponent −λi [45]. We will be interested in taking

the limit in which the dimension of phase space n goes to infinity (this will correspond to a

‘t Hooft limit of our matrix model). As we will see, in the matrix model the set of discrete

exponents λi approach a distribution ρ(λ) in this limit. The distribution is supported on

[−λL, λL] where λL is finite.

3.1 Finite time approximation

In a numerical calculation of the exponent based on (3.1), time must be kept finite. We

define the time-dependent exponents λi(t;x0) by

λi(t;x0) ≡
1

t
log σi(t;x0) , i = 1, . . . , n . (3.4)

They converge to the Lyapunov exponents λi as t→ ∞. Due to the symplectic structure,

the exponents are paired: λi(t;x0) and −λi(t;x0) appear together.
Let δx0 be a generic perturbation of unit norm. Given the decomposition (3.2), let

{vi(t)} be the column vectors of V (t) such that

U(t)vi(t) = σi(t)wi(t) , (3.5)

where wi(t) are the columns of W (t) (from now on the dependence on x0 will be implicit).

Expand the initial perturbation as δx0 =
∑

i ci(t)vi(t). The evolved perturbation then has

squared norm

|δx(t)|2 = |U(t)δx0|2 =
n
∑

i=1

|ci(t)|2σ2i (t) ≃
1

n

n
∑

i=1

e2λi(t)t . (3.6)

In the last step we used the fact that for a typical vector δx0 we expect that |ci(t)|2 ≈ 1/n.

The Lyapunov exponent (defined in (3.1)) is then approximated at finite times by

λL(t) ≡
1

2t
log

(

1

n

∑

i

e2λi(t)t

)

. (3.7)

In Hamiltonian systems, it was argued that individual exponents typically approach their

asymptotic values as λi(t) ∼ λi +
ai
t after averaging over initial conditions [46].6 In the

matrix model, it will turn out that the individual exponent evolution is well-approximated

by λi(t) ∼ λi +
ai
t + bi log t

t . We will also find that the effective exponent λL(t) approaches

its asymptotic value λL much faster than do the individual exponents.

3.2 Matrix model application

Let us now consider the Lyapunov exponents in the context of the D0-brane system. The

phase space M of this system (after gauge fixing to At = 0) is a vector space with co-

ordinates (Xi, V i) and a symplectic structure that is given by ω =
∑

dX i
ab ∧ dV i

ba. As

6A heuristic way to understand the 1/t term is to assume that exponential behavior does not set in

immediately at t = 0, but only after a short transient.
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explained above, in order to have well-defined Lyapunov exponents the space should be

compact. Let us restrict ourselves to a subspace with fixed energy. This subspace is still

noncompact due to the existence of flat directions: a configuration of the form

Xi =







yi 0 0

0 · ·
0 · ·






(3.8)

has energy that is independent of the brane position yi. However, as we show in appendix E,

simple estimates suggest that even for finite N the fixed-energy phase space has finite

volume, and this is confirmed by the equilibration of the system even for N = 2.7 Therefore,

the Lyapunov exponents are effectively well-defined for this classical system.

The next problem we face is that of gauge redundancy. Having fixed the gauge to

At = 0, all physical configurations must satisfy the Gauss law constraint (2.2). Let us

restrict our space to the constraint surface8

M0 ≡
{

(X,V )
∣

∣

∣

∑

i

[Xi, V i] = 0

}

. (3.9)

Restricting to M0 is not sufficient because M0 is not a phase space (in general it does not

admit a symplectic structure), and also because of residual gauge symmetries. To see this,

let us define a Riemannian metric g on the phase space M by

g(δx, δx′) = g(δX, δV ; δX ′, δV ′) ≡ Tr(δXδX ′) + Tr(δV δV ′) . (3.10)

Here, δx = (δX, δV ) denotes a vector in phase space. This metric is invariant under the

residual gauge transformations (with respect to the gauge At = 0)

Xi → ŨX iŨ † , V i → ŨV iŨ † , Ũ ∈ SU(N) . (3.11)

However, the metric (3.10) leads to a non-zero geodesic distance between gauge-equivalent

configurations, namely between two configurations that are related by the transforma-

tion (3.11). Therefore, using the phase space M (or the constrained space M0) with

the metric (3.10) to define the Lyapunov exponents will lead to ‘spurious’ exponents that

correspond to pure gauge modes rather than to physical perturbations.

The solution to this problem is to define a physical phase space from which the pure

gauge modes have been modded out. This procedure is known as the symplectic reduction

of M, and it is explained in detail in appendix B. The upshot it that the physical Lyapunov

exponents are obtained from a modified transfer matrix given by

Uphys(t;x0) ≡ P (x(t)) · U(t;x0) · P (x0) , (3.12)

7This is in contrast to the supersymmetric quantum system, where supersymmetric cancellation leads to

actual flat directions. In that system, entropic arguments at finite temperature show that the flat directions

are exponentially suppressed at large N .
8In a slight abuse of notation, in what follows we will use the velocity V as momentum coordinates on

phase space.
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where P (x) is a projector that projects out vectors that do not obey the Gauss law con-

straint, as well as vectors that correspond to pure gauge transformations. The gauge-

invariant exponents are obtained as before by a singular value decomposition of Uphys.

The presence of residual gauge transformations does not affect the leading exponent,

essentially because perturbations corresponding to gauge transformations do not grow with

time. In the following section we will compute the leading exponent, so we will be able to

ignore this issue. In section 5 we will compute the full spectrum of exponents, and there

the prescription (3.12) will be used.

4 Leading exponent computation

In this section we compute the leading Lyapunov exponent of the classical matrix model

by following diverging trajectories in phase space. Our main result is that the exponent

converges at large N . One important corollary is that the classical matrix model is a

fast scrambler, namely that the classical analog of scrambling time (defined below) scales

as logN2. Finally, we compute the exponent using an alternative method by considering

gauge-invariant correlation functions, and find good agreement.

The computation of the Lyapunov exponent consists of three steps.

1. ‘Thermalize’ the system by evolving it for a long enough time.

2. Perturb the system.

3. Evolve both the original and the perturbed configurations, measuring the exponential

rate at which they diverge.

Let us discuss each step in detail.

We begin by choosing an initial state where the X variables are random and traceless,

and where Ẋ = 0. This initial state satisfies the Gauss law constraint, and also has

vanishing momentum and angular momentum. We then evolve the system for a sufficiently

long time, so that it reaches a ‘typical state’ that is uncorrelated with the (atypical) initial

conditions. This is the ergodic equivalent of thermalization. How long do we need to evolve

for in order to thermalize the system? Figure 1 shows the resulting Lyapunov exponents

as a function of thermalization time t0. (We will explain how the exponents are evaluated

shortly.) We see convergence for t0 & 2000, and in what follows we set t0 = 4000. Note that

this is much longer than the thermalization time typically needed for other observables,

and for observables previously studied in the literature; see e.g. [33, 36]. The origin of this

slow relaxation phenomenon is mysterious and is an interesting topic for future research.

Given a thermalized configuration (X,V ), we perturb it slightly while preserving the

Gauss law constraint (2.2) by using the method described in appendix C. Having obtained

the reference configuration (X,V ) and the perturbed configuration (X ′, V ′), we evolve both

together and compute the distance between them. The distance function we use is

|δX(t)| =

√

√

√

√

9
∑

i=1

Tr(δX2
i (t)) , δX(t) ≡ X ′(t)−X(t) . (4.1)

– 10 –



J
H
E
P
0
2
(
2
0
1
6
)
0
9
1

0 500 1000 1500 2000 2500 3000 3500
0.283

0.284

0.285

0.286

0.287

t0

λ L

Figure 1. Lyapunov exponent as a function of thermalization time t0.
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Figure 2. Time evolution of |δX(t)| for N = 16. Here t = 0 is the time of the initial perturbation.

The distance grows exponentially,

|δX(t)| ∼ |δX(0)|eλLt , (4.2)

where λL is the Lyapunov exponent.9

The evolution of |δX(t)| is shown in figure 2. Exponential growth sets in quickly,

and continues until the size of the perturbation becomes of the order of the system size,

at around t ≃ 60. We shall call this the ‘scrambling time’ t∗ of the perturbation. In

principle, the Lyapunov exponent can be extracted directly from the exponential growth.

9Note that we are using a naive distance function (similar to the one given by the metric (3.10)) which

does not take into account gauge redundancy. As explained in section 3.2, this simplification does not affect

the leading exponent. The fact that we are considering only the distance only in X and not in V also does

not change the resulting exponent.
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Figure 3. The exponent estimated using the Sprott algorithm as a function of time, for N = 20

and at λ
1/4
eff

T = 1. The band represents the statistical fluctuations of different samples.

As discussed in section 3.1, the accuracy of this calculation is limited by the finite time of the

perturbation growth. For this reason we now consider Sprott’s algorithm [47], which is an

alternative method for computing the exponent. The algorithm is explained in appendix D.

It allows us to study the growth at arbitrarily long time scale (we used t = 104), and to

extract the largest Lyapunov exponent. Figure 3 shows the convergence of the exponent

computed using this algorithm. Notice that convergence to within one percent occurs at

t . 100. This suggests that the Sprott result should be close to the direct fit result, and

this is indeed what we find. In section 5 we determine the subleading exponents and give

more detail on how this agreement is achieved.

The measured Lyapunov exponent for various values of N is shown in figure 4. We

find that the large N behavior is given by10

λL =

[

0.29252(2)− 0.424(2)

N2

]

λ
1/4
eff T . (4.3)

The dependence on the temperature and the coupling follows from dimensional analysis,

as explained in section 2. The fact that the leading correction goes as N−2 is consistent

with the ’t Hooft counting.

4.1 Fast scrambling

Quantum systems have a natural notion of ‘scrambling time’ t∗, which is the time it takes

a local perturbation to completely de-localize, or become ‘scrambled’. In classical systems

we can only discuss the scrambling time of a given perturbation (rather than as a property

10Note that the uncertainties quoted here do not take into account the error bars, so they are an under-

estimate.
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Figure 4. Leading Lyapunov exponent for N = 6, 8, 12, 16, 20, 24 at λ
1/4
eff

T = 1. The error bars

are statistical.

of the system itself). This is because we can make the growth time of a perturbation

arbitrarily large by taking the initial perturbation to be small (in quantum systems we are

limited by uncertainty). Earlier we defined the scrambling time to be the time at which

|δX(t)| stops growing. We can then consider the N scaling of the scrambling time by

scaling N while keeping the size of the initial perturbation fixed (quantum mechanically,

the minimal size of a perturbation is O(N0)).

Let us now show that our classical system is a ‘fast scrambler’, namely one in which

the scrambling time t∗ scales as logN2. The typical value of |δX(t)| when it stops growing

can be estimated by picking two random configurations X and X ′ from the ensemble and

calculating the difference between them, |X−X ′| =
√

Tr((X −X ′)2) ∼
√
N . We therefore

expect the scrambling time t∗ to be given by

eλLt∗ ∼
√
N =⇒ t∗ ∼

1

4λL
logN2 . (4.4)

We have already seen that λL is independent of N to leading order. It is left to show that

the perturbation indeed grows to be of order
√
N . Figure 5 shows the late-time evolution

of |δX| for various N values. One can verify numerically that at late times |δX| ∼
√
N as

expected to within less than one percent. This establishes fast scrambling in the classical

matrix model.

4.2 Lyapunov exponent from Poisson brackets

The calculations described so far were classical in nature, relying on the time evolution of

nearby points in phase space. On the other hand, computations of the Lyapunov exponent

in quantum systems rely on commutators and out-of-time-order correlation functions [21,

22]. In this section we bridge this gap by extracting the exponent from the classical limit

of commutators — Poisson brackets. The results agree with the ones obtained using the

previous method.
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Figure 5. Last phase of the evolution of |δX(t)|/
√
N for N = 6 (black) through N = 16 (blue).

At long times, |δX(t)| converges to a value that scales as
√
N .

To motivate the method from a classical perspective, consider a particle in D-

dimensional space with spatial coordinates xI and momenta πI , where I = 1, . . . , D. One

can use the classical correlator11

〈

{xI(t), πJ(0)}2p.b.
〉

=

〈

(

∂xI(t)

∂xJ(0)

)2
〉

∼ e2λLt , I 6= J , (4.6)

to give an equivalent definition of the Lyapunov exponent λL [21]. Here we take I 6= J

to ensure that the 1-point function vanishes.12 We expect that correlators of the form
〈

{V (t),W (0)}2p.b.
〉

(where V,W are operators that are local in time) exhibit the same

exponential growth as (4.6).

In the matrix model we would like to focus on gauge-invariant correlators that have a

good large N limit. We will first consider the correlator
〈

Oij(t, 0)2
〉

(with no summation

over i, j), where

Oij(t, 0) =
1

2

{

Tr(Xi(t)Xj(t)),Tr(Πk(0)Πk(0))
}

p.b.

= Πk
ba(0)

[

∂X i
cd(t)

∂Xk
ab(0)

Xj
dc(t) +

∂Xj
cd(t)

∂Xk
ab(0)

Xi
dc(t)

]

. (4.7)

Here Πi is the conjugate momentum to Xi. We set i 6= j so that the one-point func-

tions 〈Oij(t, 0)〉 vanish by SO(9) symmetry. The growth of the correlator is driven by the

11Classical correlators are defined by time-averaging (assuming ergodicity):

〈O1(t1) · · ·On(tn)〉 = lim
τ→∞

1

τ

∫ τ

0

dt′ O1(t1 + t′) · · ·On(tn + t′) . (4.5)

12The averaging in the one-point function 〈{xI(t), πJ(0)}p.b.〉 may exhibit large fluctuations that would

spoil a clean exponential growth. We would therefore like to ensure that the ‘disconnected part’

〈{xI(t), πJ(0)}p.b.〉
2 of (4.6) vanishes.
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derivatives in (4.7), which are analogous to the derivative in (4.6). We therefore expect the

correlator to grow as

〈Oij(t, 0)2〉 ∼ e2λLt , (4.8)

where λL is the Lyapunov exponent of the matrix model.

Computing the correlator consists of the following steps. First, thermalize the system

as before by evolving a random initial configuration for time t0 = 4000 to obtain a reference

configuration (X,V ). Next, define the perturbed configuration (X ′, V ) = (X + δX, V )

where δX i is a polynomial in V i with small, random coefficients. Given the reference

configuration (X,V ) and the perturbed configuration (X + δX, V ), evolve both in time

and compute Oij(t)2 (the derivatives in (4.7) are approximated by replacing ∂X(t) →
X ′(t)−X(t)). Finally, average the results over different choices of i 6= j (which are related

by SO(9) symmetry), as well as over different initial values and choices of perturbation.

The resulting correlator (4.8) is shown in figure 6. An initial transient is followed by

exponential growth, which saturates when the distance between the reference and perturbed

configurations becomes of the same order as the system size. The fact that the growth stops

at t ≃ 60 is an artifact of our approximation of the derivative in (4.7) using finite distances;

the exact correlator keeps growing indefinitely. Figure 7 shows the Lyapunov exponents

we get by fitting the growing part of the curves.13 The large N behavior is given by14

λL =

[

0.2924(3)− 0.51(6)

N2

]

λ
1/4
eff T . (4.9)

This is consistent with the previous result (4.3) obtained using Sprott’s algorithm.

As mentioned above, we expect the Lyapunov exponent to not depend on the operators

we use in the Poisson brackets. To test this, consider the correlator
〈

Oijk(t, 0)2
〉

where

Oijk(t, 0) =
1

2

{

Tr(Xi(t)Xj(t)Xk(t)),Tr(Πl(0)Πl(0))
}

p.b.
. (4.10)

The 1-point function of Oijk vanishes for any choice of i, j, k. The result is shown in

figure 6, and the Lyapunov exponent we obtain from this correlator is consistent with the

previous results.

5 Lyapunov spectrum computation

In this section we go beyond the largest exponent and study the full spectrum of Lyapunov

exponents [44], as defined in section 3. The evolution of a perturbation δX i, δV i is given

by the linearization of the equations of motion (2.7). Explicitly,

δẊi = δV i , δV̇ i =M i
j(x)δX

j , (5.1)

13For each sample of
〈

Oij(t, 0)2
〉

, we average the values at each t over i 6= j and then fit an exponent.

The fitting window is between 10−3 and 10−11 times the saturation (late time) value of the correlator in the

averaged sample. We then average the exponents that are obtained in this way from a few tens of samples

with given N value. The error bars in figure 7 denote the statistical errors from this averaging of exponents.
14As in (4.3), the uncertainties quoted here do not take into account the error bars.

– 15 –



J
H
E
P
0
2
(
2
0
1
6
)
0
9
1

0 20 40 60 80 100

10
5

10
9

10
13

10
17

10
21

t

Figure 6. The correlators
〈

Oij(t, 0)2
〉

(blue) and
〈

Oijk(t, 0)2
〉

(red) as a function of time, with

N = 20. t = 0 is the time of the initial perturbation.
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Figure 7. Lyapunov exponents obtained by fitting the growing part of 〈Oij(t, 0)2〉, as a function

of 1/N2. The solid line corresponds to the fit (4.9).

where

(M(x) δX)i ≡ [δXj , [Xi, Xj ]] + [Xj , [δX i, Xj ]] + [Xj , [Xi, δXj ]] . (5.2)

After discretization, the perturbation evolves according to
(

δX(t+ δt)

δV (t+ δt)

)

= U(δt;x(t))

(

δX(t)

δV (t)

)

, (5.3)

where U(δt;x(t)) is the transfer matrix for a single time step. Our discretization (2.8)

preserves the Gauss law constraint, and therefore the discretized transfer matrix should

preserve the linearized constraint:

G(X,V )

(

δX

δV

)

≡
d
∑

i=1

(

[δX i, V i] + [Xi, δV i]
)

= 0 , (5.4)
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where d = 9 is the number of matrices. The transfer matrix that has this property is

U(δt;x(t)) =

(

1 + (δt)2

2 M(t) δt
δt
2 (M(t) +M(t+ δt)) + (δt)3

4 M(t+ δt)M(t) 1 + (δt)2

2 M(t+ δt)

)

. (5.5)

Here we use the notation M(t) ≡ M(x(t)). Composing the single-step transfer matrices

gives the finite time transfer matrix U(t;x0), which evolves a perturbation according to
(

δX(t)

δV (t)

)

= U(t;x0)

(

δX

δV

)

. (5.6)

The Lyapunov spectrum can be obtained from the singular values of the transfer

matrix, by properly removing unphysical modes. As explained in appendix B, to obtain

the physical exponents we must project out perturbations that do not obey the Gauss

law constraint, as well as perturbations that correspond to residual gauge transformations.

For the purpose of computing the spectrum, we find it convenient to work in the linear

space (X,V ) of 2d Hermitian N ×N matrices. Therefore, we will also include an explicit

orthogonal projector onto traceless Hermitian matrices. In the following, we construct

three orthogonal projectors with respect to the metric (3.10).

1. PU(1)(x) projects out the decoupled U(1) vectors.

2. PGauss(x) projects out vectors at x = (X,V ) that do not satisfy the Gauss law

condition (5.4). In particular, it projects onto ker(Gx). To do this, consider the

subspace at x = (X,V ) that is spanned by the vectors
(

[V i, T a]

−[Xi, T a]

)

, (5.7)

where T a are anti-Hermitian SU(N) generators. Notice that the condition (5.4) is

equivalent to saying that a given perturbation (δX, δV ) is orthogonal to this subspace.

To define the projector, we can therefore construct an orthonormal basis {~va} of the

subspace, and write PGauss(t) ≡ 1−∑a ~va · ~v
†
a.

3. Pgauge(x) project out pure gauge modes. The pure gauge modes at x = (X,V ) are

spanned by the vectors
(

[Xi, T a]

[V i, T a]

)

. (5.8)

By using an orthonormal basis of this space {~wa}, the projector can be defined as

Pgauge(t) ≡ 1−∑a ~wa · ~w†
a.

We now define P (x) ≡ Pgauge(x) · PGauss(x) · PU(1)(x). It is easy to verify that P (x) is an

orthogonal projector.15 The physical transfer matrix is then defined by (cf. (B.5))

Uphys(t;x0) ≡ P (x(t)) · U(t;x0) · P (x0) . (5.9)

15To see this, note that the subspaces spanned by (5.7) and (5.8) are orthogonal when x obeys the Gauss

law constraint. It then follows that PGauss(x) commutes with Pgauge(x).
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Figure 9. The Lyapunov spectrum for N = 6 at t = δt, averaged over 60 samples.

This physical transfer matrix has n = 2(d− 1)(N2 − 1) nonzero singular values, and the n

physical Lyapunov exponents can be computed from these by using (3.3). Figure 8 shows

the spectrum of the time-dependent exponents (3.4) for N = 6. Numerics16 limit us to this

modest value of N . But the rapid convergence to the infinite N limit displayed above indi-

cates that these results will be meaningful. Notice that the largest exponent is larger than

the Lyapunov exponent λ
(N=6)
L ≃ 0.28, and that it decreases with time. In figure 9, the

spectrum at a single time step t = δt is shown. The largest exponent is larger by an order

of magnitude compared to t → ∞. What causes this suppression? Consider the singular

vector v(t) of Uphys(t;x0) that corresponds to the maximal singular value. If v(t) stayed

16At longer times the pairing between positive and negative exponents breaks down, and we no longer

trust the numerical calculation. At larger N values the breakdown occurs before t = 20. One could improve

this by reducing the simulation time step δt, because the numerical violation of the symplectic nature of

the transfer matrix grows δt · t.
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roughly constant, then the perturbation δx would quickly align itself with v(t), and the

Lyapunov exponent would correspond to the maximal short-time exponent. Instead, our

numerical results suggest that v(t) evolves quickly in time, such that the perturbation can-

not become aligned with it. This suppresses the exponent over time, leading to a smaller λL.

At t & 10, the spectrum is well described by the ansatz

ρ(λ, t) =
(γ + 1)

2λ̃γ+1
max

(λ̃max − |λ|)γ , (5.10)

where λ̃max and γ both depend on time. Figure 10 shows the finite-time positive Lyapunov

spectrum for N = 6 and a fit to the ansatz (5.10). (Note that this λ̃max is a fitting

parameter and is not exactly the same value as the largest Lyapunov exponent measured

in the simulation.) We can see that λ̃max decreases with t (see also figure 8), while γ is

consistently close to 0.5. More generally, we found that γ = 0.5±0.1 in all checks we made.

There are two exponents at finite t which should both converge to the Lyapunov

exponent as t → ∞: the largest exponent determined from the transfer matrix, which we

call λmax(t), and the ‘effective’ exponent calculated in section 4, which is defined by

|δx(t)|2 = e2λL(t)t|δx(0)|2 . (5.11)

As shown in section 3.1, for generic perturbations we can approximate this exponent by

λL(t) ≃
1

2t
log

(

1

n

∑

i

e2λi(t)t

)

. (5.12)

Figure 11 compares these exponents. It is surprising that λL(t) quickly approaches

its asymptotic value and then remains essentially constant, while λmax(t) converges much

more slowly. We do not have an explanation for this behavior. It is consistent with the

clean exponential growth of perturbations that we observed in section 4. We tried several

fitting ansatz to match the evolution of λmax(t) such as a + b
t , a +

b
t +

c
t2
, and a + b

tc . It

turned out a + b
t +

c log t
t fits the data very well at a wide time window, and attains the

correct late-time value λmax(t = ∞) ≃ 0.28 determined in section 4.17 By recalling the

fact that γ stays close to 0.5, we can expect the late-time behavior to be

ρ(λ, t = ∞) =
(γ + 1)

2λγ+1
L

(λL − |λ|)γ , (5.13)

where λL ≃ 0.28 is the largest Lyapunov exponent determined in section 4 and γ ≃ 0.5.

The relation to random matrix theory has not escaped our attention, although we do not

see how to make it precise. It would be interesting to see whether it holds for larger values

of N as well.18

17In fact, we noticed numerically that all exponents, including the maximal one, are well-approximated

by the ansatz λi(t) = λi +
ai log(2πt)

t
.

18One way of studying the late-time Lyapunov spectrum is by a well-known generalization of the Sprott’s

algorithm. To compute the leading k exponents one chooses k initial orthonormal vectors, evolves each one

according to Sprott’s procedure, and also re-orthogonalizes the vectors after each time step.
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Figure 10. (a) Positive Lyapunov spectrum for N = 6 and a fit to the ansatz (5.10) at the largest

t we have studied, and (b) the fitting parameters γ versus t. Here we normalize the area of only the

positive part of the spectrum to unity, and multiply the right-hand side of (5.10) by 2 accordingly.

6 Discussion

The above results show that the Lyapunov spectrum approaches a smooth N -independent

limit as N → ∞ in this classical system. This is consistent with the observation of Sekino

and Susskind [11] about the k-locality of the matrix quantum mechanics Hamiltonian in

matrix index space.

In addition, these results bring into focus the existence of a whole spectrum of Lya-

punov exponents in these large N systems. This raises the question about the nature of

the corresponding spectrum in quantum large N systems and their meaning in the bulk

gravity dual. There is one indication of this in existing work: in [17] it was pointed out that

stringy corrections to Einstein gravity modify the rate of exponential growth of scrambling,
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Figure 11. The largest and average exponents as a function of time, with N = 6. Data is an

average over 80 samples.

tending to decrease it. In particular the result found there is

λL(kT ) =
2π

β

(

1− c1√
λ
− c2√

λ
k2T

)

(6.1)

Here kT is the transverse momentum of the perturbation in the field theory space and

c1 and c2 are known positive constants. This gives a spectrum of Lyapunov exponents

indexed by kT . That chaos develops at different rates for different modes gives a physical

interpretation of the diffusion of chaos from a localized perturbation found in [17]. The

analog of kT and its role in the spectrum in the setup described in this paper where there

is not a field theoretic transverse space are interesting questions for future work.

Another important question is the quantum field theory and holographic origin of the

order N2 different Lyapunov exponents found in the classical system. Weakly coupled field

theory analyses [17, 25] should shed some light on the QFT question. We hope to return

to this in subsequent work.

As discussed above, the existence of a spectrum of Lyapunov exponents immediately

brings to mind Pesin’s theorem and the Kolmogorov-Sinai entropy one gets by adding up

the positive ones. This raises the important question of the meaning of the KS entropy

in large N quantum systems and in their holographic duals. Suggestions for definitions of

quantum KS entropy have been made in the literature [48–53]. These should certainly be

explored further given recent developments. We would expect any entropy, including the

KS entropy, to be proportional to N2, sharpening the question mentioned above.

A simple model connecting KS entropy and entanglement entropy has been constructed

in [54], motivated by [55]. Building on these ideas the authors of [54] have recently con-

structed a toy field theory model relating entanglement entropy and KS entropy and con-

jectured a bound on the rate of growth of entanglement that follows from the bound on

Lyapunov exponents [20].

The question about the holographic role of KS entropy and its relation to rates of in-

crease of various entropies has been raised by a number of authors [56–58]. Entanglement
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entropy growth is a natural candidate that has been discussed in detail [57]. One hint

of such a connection is an observation of Stanford [59]. In Einstein gravity the butterfly

velocity vB describing the transverse spread of chaos [15, 18] is the same as the saturation

velocity19 in the entanglement tsunami picture of [60] that describes the rate of growth

of the spatial region where entanglement entropy reaches its saturated value. This con-

nection occurs because the Ryu-Takayanagi surface computing the entanglement entropy

in this regime dips very close to the horizon, the region where the exponential blueshifts

responsible for holographic chaos occur.
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A Metric independence of Lyapunov exponents

In this section we prove that the Lyapunov exponents on a compact Riemannian manifold

(M, g) are independent of the choice of metric. A similar argument for the invariance of

Lyapunov exponents under coordinate transformations was introduced in [61]. Let x(t),

t ≥ 0, be a reference trajectory, and let δx(t) be a tangent vector at x(t) that represents

an evolving infinitesimal perturbation. The Lyapunov exponent for the initial conditions

x0 = x(0), δx0 = δx(0) is defined by

λx0(δx0) = lim
t→∞

1

t
log |δx(t)|g , (A.1)

where |δx|g =
√

g(δx, δx). Now, consider another Riemannian metric g̃ on M. The

corresponding Lyapunov exponent with respect to this metric is

λ̃x0(δx0) = lim
t→∞

1

t
log |δx(t)|g̃ . (A.2)

Let us show that λx0(δx0) = λ̃x0(δx0). Define r+ > 0 by

r+ = max
x∈M

r+(x) ,

r+(x) = max
v∈Tx

|v|g̃
|v|g

= max
v∈Tx,
|v|g=1

|v|g̃ . (A.3)

19See equation (11) in [60].
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Here, Tx is the tangent space at x. The maxima are well-defined because the norm is

continuous, and both M and the unit ball at each point are compact. For any x ∈ M and

any v ∈ Tx, we then have |v|g̃ ≤ r+|v|g. Now,

λ̃x0(δx0) = lim
t→∞

1

t
log |δx(t)|g̃ ≤ lim

t→∞

1

t
log(r+|δx(t)|g) = λx0(δx0) . (A.4)

The other inequality can be obtained using the definition

r− = min
x∈M

min
v∈Tx

|v|g̃
|v|g

. (A.5)

This completes the proof.

B Lyapunov exponents and gauge symmetry

In this section we construct a ‘physical’ phase space Mphys for the matrix model by follow-

ing the procedure of symplectic reduction (or Marsden-Weinstein reduction). The physical

phase space is free of gauge redundancy. We then equip the space with a Riemannian

metric, which allows us to define gauge-invariant Lyapunov exponents.

To construct the physical phase space we begin with the total space M, parameterized

by (X,V ) and equipped with the symplectic form ω =
∑

dX i
ab ∧ dV i

ba. The dimension

of M is 2d(N2 − 1), where d = 9. As explained in section 3.2, gauge redundancy affects

this space in two ways. First, Gauss’s law restricts physical configurations to lie on the

constrained surface

M0 ≡
{

(X,V )
∣

∣

∣

∑

i

[Xi, V i] = 0

}

. (B.1)

Second, points on M0 that are related by a residual gauge transformation (3.11) are phys-

ically identical.

We define the space Mphys by identifying points on M0 that are related by a gauge

transformation. The physical phase space is the coset space Mphys ≡ M0/∼, where for any

x, x′ ∈ M0 we say that x ∼ x′ if these points are related by a gauge transformation of the

form (3.11). Points on Mphys will be denoted by [x] where x ∈ M0. Mphys will generally

have a complicated global structure that includes singularities. However, a typical point on

a given fixed-energy subspace has a smooth neighborhood, and we will only be interested in

the local structure at such points. The dimension of Mphys at such points is 2(d−1)(N2−1).

The tangent space at a point [x] ∈ Mphys is obtained from the tangent space at

x = (X,V ) ∈ M0 by modding out infinitesimal gauge transformations. The subspace of

gauge transformations at (X,V ) is spanned by the vectors (δXH , δVH) where

δX i
H = i[Xi, H] , δV i

H = i[V i, H] , (B.2)

and H is any traceless, Hermitian N ×N matrix. Vectors on the physical tangent space,

which we denote by [δx], obey [δx] = [δx+ (δXH , δVH)] for any Hermitian H.
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In order to regardMphys as a phase space, we must equip it with a symplectic structure.

Wherever Mphys is smooth, we define the natural symplectic form

ωphys([δx], [δx
′]) = ω(δx, δx′) . (B.3)

Here [δx], [δx′] are vectors at [x] ∈ Mphys, and δx, δx
′ are chosen representative vectors at

x. It is easy to verify that this definition is independent of the choice of representatives

because of the Gauss law constraint.

To define Lyapunov exponents we must also equip Mphys with a Riemannian metric.

Let us use the metric g on M (cf. (3.10)) to define a metric gphys on the physical phase

space. First, restrict g to M0 and consider the tangent space at a point x = (X,V ) ∈ M0.

Let Pgauge denote the orthogonal projection operator (with respect to g) that projects out

the pure gauge vectors. We now define the inner product of two vectors [δx] = [(δX, δV )],

[δx′] = [(δX ′, δV ′)] on Mphys by

gphys([δx], [δx
′]) ≡ g(Pgauge(δX, δV );Pgauge(δX

′, δV ′)) . (B.4)

On the right-hand side we have chosen representative vectors (δX, δV ), (δX ′, δV ′) at x. The

metric is well-defined, in that it is independent of the choice of vector representatives and

of x. In particular, notice that the problem that prompted the introduction of the physical

metric is now solved: two points on M0 that are related by a gauge transformation are

equivalent on the reduced Mphys, and have vanishing distance under the physical metric.

B.1 Gauge-invariant exponents

Lyapunov exponents can now be defined for fixed energy subspaces of Mphys using the

physical metric, and they will be independent of our choice of metric as shown in ap-

pendix A. The first step is to define a transfer matrix Uphys that only propagates physical

modes. It can be done by a projection

Uphys(t;x0) ≡ P (x(t)) · U(t;x0) · P (x0) , (B.5)

where P (x) ≡ Pgauge(x)PGauss(x)PU(1)(x) is an orthogonal projector defined in section 5.

Given a generic initial vector on M, PGauss(x0) restricts the perturbation to lie on M0, and

Pgauge(x0) removes the pure gauge modes. This chooses a representative vector on Mphys.

The vector then propagates with the usual transfer matrix U(t;x0). After propagation we

project again.

To compute the Lyapunov exponents, perform the singular value decomposition of

Uphys. There are 2d(N2 − 1) singular values, of which 2(N2 − 1) vanish due to the projec-

tions. The gauge-invariant Lyapunov exponents are computed from the remaining (posi-

tive) singular values by using (3.3).

As we now show, the physical transfer matrix Uphys is symplectic with respect to ωphys.

As a result, the physical Lyapunov exponents are paired. To show that Uphys is symplectic,

we need to show it obeys the equation

U †
phys(x→ x′) · ωphys(x

′) · Uphys(x→ x′) = ωphys(x) . (B.6)
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Here we introduced the notation Uphys(t;x) ≡ Uphys(x → x(t)) for clarity. ωphys(x) and

ωphys(x
′) are matrix representations of ωphys using the same bases we use to represent Uphys.

They are given by ωphys(x) = P (x) ·ω(x) ·P (x), where ω(x) represents the symplectic form

on the total phase space (we may choose ω(x) to be constant, but this is not necessary).

Notice that the matrix ωphys(x) generally depends on x. Equation (B.6) can be written as

P (x) · U †(x→ x′) · P (x′) · ω(x′) · P (x′) · U(x→ x′) · P (x) = P (x) · ω(x) · P (x) . (B.7)

Now we claim that the P (x′) factors on the left-hand side re redundant. To see this, first

note that P (x′)U(x→ x′)P (x) = Pgauge(x
′)U(x→ x′)P (x), due to the fact that time evo-

lution preserves the Gauss law constraint. Further, the remaining factor of Pgauge can be

dropped because, after reducing to the Gauss-constrained subspace, pure gauge perturba-

tions vanish automatically in the symplectic form. We therefore are left with the equation

P (x) · U †(x→ x′) · ω(x′) · U(x→ x′) · P (x) = P (x) · ω(x) · P (x) , (B.8)

which follows immediately from the fact that U is symplectic with respect to ω. This

concludes the proof that Uphys is symplectic on the physical space, and therefore the

physical Lyapunov exponents are paired.

C Perturbation compatible with the Gauss law constraint

Given a thermalized configuration X(t), V (t), we would like to perturb it slightly while

preserving the Gauss law constraint (2.2). We will do this by deforming the potential

energy with additional interaction terms that preserve the constraint, evolving the system

for a short time to obtain a perturbed configuration X ′(t), V ′(t), and then restoring the

original Lagrangian. We add the following term to the potential,

k0
∑

k=1

ckTr

[

(

∑

i

X2
i

)k
]

. (C.1)

The force is modified from F i(t) to

F̃ i(t) =
∑

j

[Xj(t), [Xi(t), Xj(t)]] +

k0
∑

k=1

kck







Xi(t) ,
(

∑

j

X2
j (t)

)k−1







, (C.2)

where {· , ·} is the anti-commutator. The Gauss law constraint is still preserved, because

the modified force still satisfies the relation
∑

i[X
i(t), F̃ i(t)] = 0. In practice we choose

k0 = 2, the coefficients ck are chosen randomly fromN (0, 10−8), and we evolve the deformed

system for time t1 = 1 before turning off the deformation.20

20Another simple way of a deformation keeping the Gauss’s law constraint is an addition of a polynomial

of VM to XM . We confirmed that the detail of perturbation does not affect the results.

– 25 –



J
H
E
P
0
2
(
2
0
1
6
)
0
9
1

D Sprott’s algorithm

In this section we describe Sprott’s algorithm [47], which we use in section 4 to compute

the leading Lyapunov exponent of the classical matrix model. The basic idea behind the

algorithm is to rescale the perturbation at each time step such that it stays small, the

linear approximation continues to hold, and the growth never saturates. The evolution can

then continue until the measured exponent converges with some chosen precision.

1. Choose an initial (thermalized) reference point x0 = (X,V ) and a perturbed point

x′0 = (X ′, V ′). Let d0 denote the distance between them, computed using our chosen

distance function.

2. At the nth iteration, evolve xn−1 and x′n−1 by one time step δt, obtaining xn and x̃n
respectively.

3. Compute the distance dn between xn and x̃n.

4. Define the new configuration x′n by

x′n = xn +
d0
dn

(x̃n − xn) . (D.1)

The difference has been rescaled such that xn and x′n are again at distance d0.

5. Repeat steps 2–4. The leading Lyapunov exponent is given by

lim
n→∞

1

nδt

n
∑

i=1

log

(

di
d0

)

. (D.2)

Note that the rescaling in step 4 implies that the new configuration x′n does not satisfy

the Gauss law constraint. However, the violation is subleading in the size of the perturba-

tion, and we verified numerically that the violation remains negligible over the entire time

evolution.

E Finite volume of classical flat directions

Consider the U(N) theory with d matrices (d = 9 in the case considered in this paper).

First let us consider the simplest situation, where one of the D0-branes is separated by

a distance L from the other (N − 1) branes that are close to each other. By using the

residual gauge symmetry and SO(d) symmetry, we can take Xd
NN ≃ L and have all other

matrix components be much smaller than L. Then the potential energy coming from

N -th row and column is approximately 1
g2
∑d−1

i=1

∑N−1
a=1 L

2|Xi
aN |2 (here we are neglecting

contributions from elements that do not scale with L). This contribution must be smaller

than the total energy E (which is kept fixed), and therefore possible values of Xi
aN are

suppressed as L becomes large, as
∑d−1

i=1

∑N−1
a=1 |Xi

aN |2 . g2E/L2. Hence the phase space

volume for L > L0 is suppressed by at least
∫ ∞

L0

Ld−1dL

L2(d−1)(N−1)
∼
∫ ∞

L0

dL

L(d−1)(2N−3)
. (E.1)
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The factor L−2(d−1)(N−1) comes from the integral with respect to (d− 1)(N − 1) complex

variables Xi
aN (a = 1, . . . , N − 1) and Ld−1 comes from SO(d) rotational symmetry. As L0

goes to infinity, the volume vanishes except for when d = 2, N = 2. In other words, this

flat direction occupies a finite volume in phase space unless d = 2, N = 2.

When more eigenvalues are separated from the rest, more off-diagonal elements have

to become small and hence such configurations have even smaller measures.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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in the little and big bang, Prog. Theor. Phys. 121 (2009) 555 [arXiv:0809.4831] [INSPIRE].

[54] C.T. Asplund and D. Berenstein, Entanglement entropy converges to classical entropy around

periodic orbits, arXiv:1503.04857 [INSPIRE].

[55] W.H. Zurek and J.P. Paz, Decoherence, chaos and the second law, Phys. Rev. Lett. 72 (1994)

2508 [gr-qc/9402006] [INSPIRE].

[56] K. Ropotenko, Kolmogorov-Sinai entropy and black holes, Class. Quant. Grav. 25 (2008)

195005 [arXiv:0808.2131] [INSPIRE].

[57] V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010

[arXiv:1103.2683] [INSPIRE].

[58] Y.-Z. Li, S.-F. Wu, Y.-Q. Wang and G.-H. Yang, Linear growth of entanglement entropy in

holographic thermalization captured by horizon interiors and mutual information, JHEP 09

(2013) 057 [arXiv:1306.0210] [INSPIRE].

[59] D. Stanford, unpublished.

[60] H. Liu and S.J. Suh, Entanglement Tsunami: universal scaling in holographic thermalization,

Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].

[61] R. Eichhorn, S.J. Linz and P. Hänggi, Transformation invariance of Lyapunov exponents,

Chaos Solitons Fractals 12 (2001) 1377.

– 30 –

http://dx.doi.org/10.1143/PTP.121.555
http://arxiv.org/abs/0809.4831
http://inspirehep.net/search?p=find+J+"Progr.Theor.Phys.,121,555"
http://arxiv.org/abs/1503.04857
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04857
http://dx.doi.org/10.1103/PhysRevLett.72.2508
http://dx.doi.org/10.1103/PhysRevLett.72.2508
http://arxiv.org/abs/gr-qc/9402006
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9402006
http://dx.doi.org/10.1088/0264-9381/25/19/195005
http://dx.doi.org/10.1088/0264-9381/25/19/195005
http://arxiv.org/abs/0808.2131
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,25,195005"
http://dx.doi.org/10.1103/PhysRevD.84.026010
http://arxiv.org/abs/1103.2683
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2683
http://dx.doi.org/10.1007/JHEP09(2013)057
http://dx.doi.org/10.1007/JHEP09(2013)057
http://arxiv.org/abs/1306.0210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0210
http://dx.doi.org/10.1103/PhysRevLett.112.011601
http://arxiv.org/abs/1305.7244
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7244
http://dx.doi.org/10.1016/S0960-0779(00)00120-X

	Introduction and summary of results
	D0-branes at high temperature
	Discretization

	Lyapunov exponents
	Finite time approximation
	Matrix model application

	Leading exponent computation
	Fast scrambling
	Lyapunov exponent from Poisson brackets

	Lyapunov spectrum computation
	Discussion
	Metric independence of Lyapunov exponents
	Lyapunov exponents and gauge symmetry
	Gauge-invariant exponents

	Perturbation compatible with the Gauss law constraint
	Sprott's algorithm
	Finite volume of classical flat directions

