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Abstract

The dynamics of closed scalar field FRW cosmological models is studied for
several types of exponentially and more than exponentially steep potentials. The
parameters of scalar field potentials which allow a chaotic behaviour are found from
numerical investigations. It is argued that analytical studies of equation of motion at
the Euclidean boundary can provide an important information about the properties
of chaotic dynamics. Several types of transition from chaotic to regular dynamics
are described.

1. Introduction

The studies of chaotical dynamics of closed isotropic cosmological model has a long story.
They were initiated in 70-s when the possibility to avoid a singularity at the contraction
stage in such a model with a minimally coupled massive scalar field was discovered [1].
Later it was found that this model allows the existence of periodical trajectories [2]
and aperiodical infinitely bouncing trajectories having a fractal nature [3]. This result
was reproduced in other terms in our papers [4, 5]. In paper [6] the set of periodical
trajectories was studied from the viewpoint of dynamical chaos theory. It was proved that
the dynamics of a closed universe with a massive scalar field is chaotic and an important
invariant of the chaos, the topological entropy, was calculated. On the other hand, we
found recently that introduction of the constant term into the scalar field potential (so
called cosmological constant) may change the dynamical regime from chaotic to regular
one [5]. This fact poses a question: is the chaotic behaviour closely connected with a
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concrete form of the potential (V (ϕ) = m2ϕ2

2 ) used in the previous papers or is it a more
general phenomenon?

A numerical analysis shows that the situation for another natural scalar field potential
V (ϕ) = λϕ4 is qualitatively the same. But most of modern scenarios based on ideas
of the string theory and compactification naturally lead to another forms of potential
which are exponential or behave as exponential for large ϕ (see, for example, the paper of
Gunter and Zhuk [7]). This steepness of the potential apparently changes the possibilities
of escaping the singularities and alters the structure of infinitely bouncing trajectories.
Under some conditions, which will be studied below in detail, the chaotic behaviour can
completely disappear. Another interesting problem concerning asymptotic regime near
the singularity for such potentials was recently studied by Foster [8].

The structure of the paper is the following: in Sec. 2 we recall the structure of chaos
in the case of a massive scalar field with a special attention paid to the statements which
are valid for an arbitrary scalar field potential. In Sec. 3 the conditions for the chaotic
behaviour in models with exponential potentials are investigated both analytically and
numerically. This analysis is extended to steeper potentials. Sec. 4 provides a brief
summary of the result obtained.

2. Chaotic properties of closed FRW model with a scalar field

We shall consider a cosmological model with an action

S =
∫
d4x
√
−g
{
m2
P

16π
R+

1
2
gµν∂µϕ∂νϕ − V (ϕ)

}
. (1)

For a closed Friedmann model with the metric

ds2 = N2(t)dt2 − a2(t)d2Ω(3), (2)

where a(t) is a cosmological radius, N – a lapse function and d2Ω(3) is the metric of a
unit 3-sphere and with homogeneous scalar field ϕ the action (1) takes the form

S = 2π2

∫
dtNa3

{
3m2

P

8π

[
−
(

ȧ

Na

)2

+
1
a2

]
+

ϕ̇2

2N2
− V (ϕ)

}
. (3)

Now choosing the gauge N = 1 we can get the following equations of motion

m2
P

16π

(
ä+

ȧ2

2a
+

1
2a

)
+
aϕ̇2

8
− aV (ϕ)

4
= 0, (4)

ϕ̈ +
3ϕ̇ȧ
a

+ V ′(ϕ) = 0. (5)

In addition, we can write down the first integral of motion of our system

− 3
8π
m2
P (ȧ2 + 1) +

a2

2
(
ϕ̇2 + 2V (ϕ)

)
= 0. (6)
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It is easy to see from Eq. (6) that the points of maximal expansion and those of
minimal contraction, i.e. the points, where ȧ = 0 can exist only in the region where

a2 ≤ 3
8π

m2
P

V (ϕ)
, (7)

Sometimes, the region defined by inequalities (7) is called Euclidean , and the opposite
region is called Lorentzian. This definition is not good enough, because for this dynamical
system there are no classically forbidden regions at all [11], but we shall use it for brevity.
Now we would like to distinguish between the points of minimal contraction where ȧ =
0, ä > 0 and those of maximal expansion where ȧ = 0, ä < 0. Assuming ȧ = 0, one can
express ϕ̇2 from Eq.(6) as

ϕ̇2 =
3

4π
m2
P

a2
− 2V (ϕ). (8)

Substituting (8) and ȧ = 0 into (4) we have

ä =
8πV (ϕ)a
m2
P

− 2
a
. (9)

From Eq. (9) one can easily see that the possible points of maximal expansion are
localized inside the region

a2 ≤ 1
4π

m2
P

V (ϕ)
(10)

while the possible points of minimal contraction lie outside this region (10) being at the
same time inside the Euclidean region (7).

It is easy to see that the value of a on this separating curve is
√

2/3 times smaller
than the corresponding a on the Euclidean boundary for a given value of the scalar field
independently on the concrete form of V (ϕ). Moreover, we have shown that this fact
remains unchanged in an even more general case of a non-minimal coupled scalar field
[11].

Here we would like to describe briefly the approach presented in our previouse paper
[4]. The main idea consists in the fact that in the closed isotropical model with a minimally
coupled scalar field satisfying the energodominance condition all the trajectories have
the point of maximal expansion. Then the trajectories can be classified according to
localization of their points of maximal expansion. The points of maximal expansion
are all located inside the Euclidean region. A numerical investigation shows that this
area has a quasi- periodical structure. Narrow zones starting from which the trajectory
has the point of bounce are separated by wide zones containing the initial conditions of
trajectories falling into a singularity. Each zone of bounces contains a periodical trajectory
with the point of full stop (ȧ = 0; ϕ̇ = 0) on the Euclidean boundary. Then studying
the substructure of these zones from the point of view of possibility to have two bounces
one can see that this substructure reproduce on the qualitative level the structure of
the whole region of possible points of maximal expansion. Continuing this procedure ad
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infinitum yields the fractal set of infinitely bouncing trajectories. This kind of fractal,
nonattracting invariant set is typical for chaotic systems without dissipation [9, 10]. In
the theory of dynamical chaos it is called strange repellor.

Numerical investigations show also that the structure of periodical trajectories for the
system Eqs.(4)– (6) have two important properties:

1. All the simple periodical trajectories (i.e. having only one bounce per period) have
a full stop point on the Euclidean boundary.

This property allows us to use the points of the Euclidean boundary and zero velocities
as an initial conditions for searching a possible strange repellors.

2. Trajectories, going from the boundary into the euclidean region has a point of
maximal expansion almost immediately, and then go towards a singularity. So, periodical
trajectory approaches their bounce point on the boundary from the Lorentzian side.

The only exception is a single peculiar periodical trajectory existing in the case of
nonzero cosmological constant term [5].

This two properties were found in numerical analysis and the question whether or not
they are satisfied for an arbitrary scalar field potential requires more investigation. Our
researches show that it is true at least for potentials steep as power-law and steeper.

If the aforesaid is satisfied, some analytical approach is possible. Indeed, periodical
trajectories with a full stop point on the Euclidean boundary penetrate into the Lorentzian
region. That is why all such full stop points lie to the left from a critical point introduced
by Page [3] in the configuration space (a, ϕ) . It is a point on the Euclidean boundary
separating trajectories going into Lorentzian and Euclidean regions. By definition, the
Page’s point is the point where the direction of motion at the initial moment coincides
with the direction of the tangent to the curve given by equality in (7) , i.e. the point
where

ϕ̈

ä
=
dϕ

da
. (11)

Using Eqs. (4), (5), and (7) one can find for the case V (ϕ) = m2ϕ2

2

ϕpage =

√
3

4π
mP ;

apage = 1/m, (12)

except for the trivial solution ϕ = 0, a =∞.
Trajectories starting from ϕ < ϕpage and going into the Euclidean region reach the

point of maximal expansion almost immediately after crossing the separating curve [4].
After that point the trajectory goes towards singularity. So it looks like a small zigzag
but not a ”true” bounce. To define a really significant bounce, Cornish and Shellard [6]
used a condition that in the point of bounce a < 1/m in addition to ä > 0; ȧ = 0. This is
just the condition that bounces lie to the left from the Page point in configuration space
(a, ϕ).

It is also possible to use the criterion that the trajectory must return to the Lorentzian
region after the bounce . Qualitatively the picture of regions containing bouncing trajec-
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tories under this criterion is the same as for the former one, with the only exception that
the width of the regions is somewhat smaller. This criterion can be treated as more direct
one, but it requires numerical integration while the study of Page’s points may be done
analytically. Indeed, it is easy to obtain an analog to Eq.(12) for an arbitrary potential
during the same procedures. The result is the following equation for the ϕ-coordinate:

V (ϕpage) =

√
3m2

P

16π
V ′(ϕpage) (13)

It can be easily derived from Eq.(13) that a qualitative picture of massive scalar field
case do not change for any power-law potential with the even index: there is one non-
trivial Page’s point with the full stop points of periodical trajectories lying to the left
from it on the euclidean boundary. In the next section we will see that the situation
changes significantly for the exponentially steep potentials.

3. Chaotic motion in exponential and more steep potentials

We start with one note about the pure exponential potential V (ϕ) = M4
0 exp(ϕ/ϕ0). It

is easy to see from Eq.(13) that there are no Page’s point in this case. The direction
of a trajectory starting with zero initial conditions from the Euclidean boundary is fully
determined by the value ϕ0. If ϕ0 >

√
3

4
√
π
mP all the trajectories from the Euclidean

boundary go into the Lorentzian region while if ϕ0 <
√

3
4
√
π
mP all of them go into the

Euclidean region.
Now we consider the potential V (ϕ) = M4

0 (cosh(ϕ/ϕ0) − 1). In the limit ϕ → 0 it

looks like
m2
effϕ

2

2 with meff = M2
0

ϕ0
, while for large ϕ it looks like the pure exponential

one. The equation for Page’s point is now

sinh
ϕ

ϕ0
=
ϕ0√

3
4
√
π

mP
(cosh

ϕ

ϕ0
− 1) (14)

We can see that Page’s point exists only if ϕ0 >
√

3
4
√
π
mP . In the opposite case, again all

the trajectories from the Euclidean boundary go into the Euclidean region. It means that
there are no periodical trajectories with the full stop points in this case. Remembering
the first property of our chaotic system listed in previous section, we may expect that
the strange repellor is absent at all when ϕ0 <

√
3

4
√
π
mP .

Results of the numerical integration confirms this analytical considerations. In Fig.1
several typical trajectories are plotted. Although points with ȧ = 0; ä > 0 are possible,
trajectories containing such points have a zigzag-like form and can not return to the
Lorentzian region. Periodical trajectories are absent and the dynamics, in contrast to
previously considered cases, is regular: it is impossible to avoid a singularity even on
zero-measure set of initial condition. All the trajectories fall into singularity.
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Figure 1. Example of trajectories with the initial conditions close to the boundary separating

trajectories falling into ϕ = +∞ (trajectory 1) and ϕ = −∞ (trajectories 2 − 5) singularities

for the case ϕ0 <
√

3
4
√
π
mP . This boundary is sharp, no fractal structure is present. Trajectories

2− 5 have a zigzag-like form, no periodical trajectories are present. The long-dashed line is the

Euclidean boundary, the short-dashed line is the separating curve.

For ϕ0 >
√

3
4
√
π
mP the structure of trajectories is similar to the massive scalar field case.

Again, if we consider points of maximal expansion, we can find regions corresponding
to the bouncing trajectories. To distinguish between bounces and zigzags, we use an
additional condition that the value of ϕ at the point of bounce is greater than ϕpage (or
we can use the condition that the trajectory after the bounce returns to the Lorentzian
region). Then in limit ϕ0 →

√
3

4
√
π
mP the width of bouncing regions tends to zero. It

should be noted that when ϕ0 crosses the critical value the entire structure of periodical
trajectories disappears in a jump-like manner.

For potentials more steep than exponential we face a situation which differs from the
massive scalar field case significantly. It can be shown from studying the analog of (11)
that trajectories from the Euclidean boundary for large values of ϕ go into Euclidean
region. So the area of possible periodical trajectories is limited from the side of large ϕ.
This leads to limiting the possible values of the scale factor on such trajectories. In Fig.2
we schematically show the number of oscillations of the field ϕ for periodical trajectories
depending on the location of their full stop points on the Euclidean boundary.In contrast
to the previous cases, this number is restricted from above by some number N . The
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numerical results show that the number of bounce intervals is also finite and restricted by
some number M > N . In addition, there exists a complicated system of rules determining
the substructure of intervals because the number of subintervals is now depends on the
ordinal number of the interval. In particular, for an interval with ordinal numberN1 > N ,
the number of subintervals is always less than N . It is interesting that this dynamical
picture looks very similar to the picture for the system with a massive scalar field with a
hydrodynamical matter [12].

Numerical investigations also show the transitions to regular dynamics which can be
understood by studying the Page points configuration. Let us illustrate this picture using
some concrete one-parameter family of potentials

V (ϕ) = M4
0 (exp(ϕ2/ϕ2

0) + exp(−ϕ2/ϕ2
0) − 2).

Depending on the parameter ϕ0, two or zero nontrivial Page,s points can appear. The
critical value of ϕ0 obtained numerically is ϕ0 ∼ 0.905mP . For ϕ larger than this value
we have two Page’s points. The area of initial points for trajectories penetrating into the
Lorentzian region (i.e. possible full stop points of periodical trajectories) lies between
them. So the properties of the Page’s points are inverse with respect to those for the case
of a massive scalar field with a cosmological constant.

In reality, the chaotic behaviour disappears for a somewhat larger value ϕ ∼ 0.96mP .
It is however remarkable that this quite simple analytical expressions (with computer used
only to solve corresponding transcendent equation) gives us a rather good estimation of
values of ϕ0 which allows a chaotic regime.

The concrete form of potential for large ϕ does not affect the properties of chaos and
therefore the steepness of the potential can be arbitrary high. The picture described
above is valid even for cases with infinitely high potential walls. We have investigated a
simple case

V = A/(ϕ2
0 − ϕ2) −A/ϕ2

0.

In this case the condition of the existence of Page’s points has the exact solution ϕ0 >
9

4
√
π
mP , while the numerical result for the existence of chaotic dynamics is ϕ0 >

9.6
4
√
π
mP .

4. Conclusions

We have studied the dynamics of closed Friedmann-Robertson-Walker universes with a
scalar field. It was found that there exists a rather wide class of scalar field potentials,
more steep than power-law, for which the dynamics of a scale factor is regular and there
is no possibility to escape a singularity at a contraction stage.

This is the second known class of potentials with a regular dynamics in the positive
scalar curvature case. The first on, studed earlier, consist on potentials with a suffitiently
large absolut value of the cosmological constant, either positive [5], or negative [12].

On the other side, the class of potentials which allow the chaos, associated with chaotic
oscillations of the scale factor, is also sufficiently wide. This chaos manifests itself in the
presence of a strange repellor - a fractal set of unstable periodical orbits. Their existence
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is connected with a possibility for this system to have a bounce. Taking the point of
maximal expansion as the initial one, the regions of the initial conditions in configuration
space that lead to bouncing trajectories have a rather regular and obvious structure: the
N-th region contains trajectories which have a bounce after N oscillations of field ϕ. More
investigations is still required to study the possibility of existence of more complicated
chaos for some another class of scalar field potentials.

Figure 2. The relation between the number of the scalar field oscillations for trajectories

starting from the Euclidean boundary and the position of their initial point in the case of very

steep scalar field potentials.

Combining our results on potentials with the cosmological constant with the present
results, several types of transitions from chaotic to regular behaviour can be distinguished
when we vary Λ or ϕ0: (1) The number of bounce regions in the initial condition space
can remains infinite, but the area of the strange repellor in the configuration space tends
to zero (for the potential like V (ϕ) = m2ϕ2

2 + Λ;Λ > 0). (2) The number of the bounce
regions becomes finite and tends to zero while the area of the strange repellor remains
unbounded (the same potential but for Λ < 0). (3) The number of the bounce regions
diminishes and the strange repellor shrinks (for very steep potentials or for a mass-like
potential in a more general case of a scalar field with a hydrodynamical matter [12]) (4)
The width of the bounce regions tends to zero while their number and the area of the
strange repellor remain unchanged (for V (ϕ) = M4

0 (cosh(ϕ/ϕ0)− 1)). The study of the
transition from chaos to order for such dynamical systems may be interesting from the
mathematical point of view.

Using the fact that the region in the configuration space where bounces are possible
represents a sufficiently narrow area near the Euclidean boundary, we have proposed that
studying trajectories having full stop points at this curve can provide us with an important
information about the strange repellor as a whole. This suggestion realizes at least for
the type of chaos which satisfies two properties, established by numerical investigations
for steep potentials and described in Sec.2. Their validity for less steep potentials will
be the goal of our future work. In addition, the transition from chaos to order appear
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to be closely connected with the change of structure of Page’s point configuration at the
Euclidean boundary at least for positive scalar field potentials.
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