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Chaos in Discrete Structured Population Models∗
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Abstract. We prove analytically the existence of chaotic dynamics in some classical discrete-time age-structured
population models. Our approach allows us to estimate the sensitive dependence on the initial
conditions, regions of initial data with chaotic behavior, and explicit ranges of parameters for which
the considered models display chaos. These properties have important implications for evaluating
the influence of a chaotic regime on the predictions based on mathematical models. We illustrate
through particular examples how to apply our results.
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1. Introduction. Understanding chaos is an important aim in many disciplines. May
[24, 25] has already pointed out the possibility that simple deterministic models will display
complex behavior, and the importance of chaos in ecology. The main implication of erratic
fluctuations typical of a chaotic system is that long-time predictions are not possible; as
emphasized by Hastings et al. [15], the characteristic of chaos that better represents this
difficulty is a sensitive dependence on initial conditions. Besides this property, there are other
important features in a chaotic system. Intuitively, and according to Smale’s expository article
[28], a chaotic phenomenon occurs if it is possible to reproduce, within the system and varying
the initial conditions, all the possible outcomes of a coin-tossing experiment (see Definition
3.1). This notion has strong implications such as sensitive dependence on the initial conditions
and the existence of aperiodic orbits and infinitely many periodic points.

Although analytic proofs of chaos are now available for some one-dimensional maps usually
employed in population dynamics (see, e.g., Thunberg’s survey [30] and references therein), it
is hard to find evidence of chaos in ecology. The main reason is the difficulty in manipulating
and experimenting with ecological systems. A remarkable exception is the work of Cushing
and coworkers [7, 8, 10, 11]. They derived a structured population model, known as the LPA
(larvae, pupae, and adults) model, to study the growth of laboratory populations of flour
beetles of the genus Tribolium, and their experiments confirmed chaotic behavior predicted by
the model. Other age-structured population models in which chaos has been recently explored
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are Clark’s equation [3, 16] and a class of density-dependent Leslie models [14, 19, 32, 33, 35].
The aim of this paper is twofold. On the one hand, we provide analytic proofs of exis-

tence of chaotic dynamics in some systems of difference equations, and we apply our results
to the aforementioned structured population models. From a biological point of view, our
strategy consists of introducing chaos in a specific age group and then studying its influence
in the full system; from a mathematical perspective, we derive criteria of chaotic dynamics in
higher-dimensional systems using a generalization of some elementary notions of chaos in one
dimension. On the other hand, an important purpose of this work is to interpret some natural
properties of complex dynamics in ecological models. Specifically, we stress the estimation of
the sensitive dependence on the initial conditions and the location of regions of both the phase
space and the set of parameters where the system displays chaos. These two properties have
important practical implications for evaluating the influence of a chaotic regime on predictions
based on mathematical models.

The organization of the paper is as follows. In section 2, we review the specific population
models in which we focus our study; in section 3, we introduce the notion of chaotic dynamics
that we use and derive some results about chaos for continuous higher-dimensional maps.
Sections 4 and 5 contain our main applications for proving chaos in the structured models
introduced in section 2; some computations are included in two appendices. Finally, in section
6, we discuss the main conclusions of this paper.

2. Structured population models. Mathematical formulation of discrete models leads us
to consider difference equations or matrix models, which are nonlinear if changes in response
to population density are taken into account. We focus our study on discrete-time age-
structured models for a single population; that is to say, the model describes the distribution
of individuals among the possible categories of important age differences. The monographs
[4, 9, 31] are good sources both for theory and applications of structured population models.

Perhaps the simplest formulation that combines age structure and density-dependent re-
cruitment has the form

(2.1) xn = αxn−1 + (1− α)f(xn−k),

which is commonly known as the Clark model [3, 5] and has been employed in fishery models
(see [26] and its references). For k = 1, (2.1) is a first-order difference equation that provides
a simple way to allow for certain survivorship of adults from one reproduction period to the
next. This one-dimensional model was formulated by Clark [6]; see also [29, section 9.2].
For recent work involving this equation, including chaotic dynamics, we refer the reader to
[21, 23, 36].

For k ≥ 2, we do not know any analytic proof of chaos in (2.1). Botsford [3] has already
reported some numerical results suggesting chaotic behavior in (2.1) with the Ricker map
f(x) = xer(1−x), r > 0. For a more detailed study, including numerical computations of
Lyapunov exponents for k = 3, we refer to [16].

Another simple structured model for which existence of chaos has been explored is a
density-dependent Leslie population model with two age classes,

(2.2)

{
xn+1 = (a1xn + a2yn) exp(−λ1xn − λ2yn),

yn+1 = bxn,
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where a1, a2, λ1, λ2 are positive parameters and b ∈ ]0, 1].
Guckenheimer, Oster, and Ipaktchi [14] considered the case a1 = a2 = a, λ1 = λ2 = 0.1,

b = 1 to show numerically a route to chaos as a is increased. See also [32, 35] for a detailed
study of stability and bifurcations. Recently, Ugarcovici and Weiss [33] proved the existence
of a set of parameters for which system (2.2) admits a chaotic attractor.

As mentioned before, a study to predict the population dynamics of the flour beetle
Tribolium published by Cushing et al. in a series of papers (see [11] and references therein)
provides a structured population model that became a paradigm for chaos in ecology. The
model distinguishes three stages (larvae, pupae, and adults) and is referred to as the LPA
model:

(2.3)

⎧⎪⎪⎨
⎪⎪⎩

Ln+1 = bAn exp(−celLn − ceaAn),

Pn+1 = (1− μl)Ln,

An+1 = Pn exp(−cpaAn) + (1− μa)An.

All coefficients are nonnegative, and μl < 1, μa ≤ 1. See, e.g., [12] for a biological inter-
pretation of the involved parameters and many properties of this system. A route to chaos
numerically predicted by the LPA model (2.3) was confirmed by some laboratory experiments.
However, as stated in [11], no proof of chaotic dynamics is available.

3. Background on chaotic dynamics. In this section we give the main tools and defini-
tions that we use in this paper. We understand chaos in the sense of the following definition.

Definition 3.1. Consider (X, d) a metric space. We say that a continuous map ψ : X → X
induces chaotic dynamics on two symbols if there exist two disjoint compact sets K0,K1 ⊂ X
such that, for each two-sided sequence (si)i∈Z ∈ {0, 1}Z, there exists a corresponding sequence
(ωi)i∈Z ∈ (K0 ∪ K1)

Z such that

(3.1) ωi ∈ Ksi and ωi+1 = ψ(ωi) for all i ∈ Z,

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si for all i ∈ Z) for some
k ≥ 1, there exists a k-periodic sequence (ωi)i∈Z ∈ (K0 ∪ K1)

Z satisfying (3.1).
Definition 3.1 guarantees natural properties of complex dynamics such as sensitive de-

pendence on the initial conditions or the presence of an invariant set Λ being transitive and
semiconjugate with the Bernoulli shift. See Theorem 2.2 in [27] for a list of properties of the
map ψ that hold if the conditions of Definition 3.1 are satisfied. We note that a map that is
chaotic according to Definition 3.1 is also chaotic in the sense of Block and Coppel and in the
sense of coin-tossing ; we refer the reader to [18] and [1, Remarks 3.2] for precise definitions
and further comments. Moreover, our definition of chaos ensures the existence of periodic
points of any period n ∈ N, in contrast with other definitions (see, e.g., [1, 2, 18]).

Our primary purpose is to obtain some criteria for detecting chaos analytically. To this
end, we use the method developed by Zgliczyński and Gidea in [37] (see also [38]). Definitions
3.2 and 3.3 below correspond to Definitions 2 and 3 in [37]. We employ the usual maximum
norm in R

n,
‖(x1, x2, . . . , xn)‖ = max{|xi| : i = 1, 2, . . . , n},

and use the notation Jn = [−1, 1]n for the closed ball of radius 1 centered at 0 ∈ R
n.

Definition 3.2. An h-set is a quadruple consisting of
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• a compact subset N of R
n,

• a pair of numbers u = u(N), s = s(N) ∈ {0, 1, 2, . . . }, with u+ s = n,
• a homeomorphism cN : Rn −→ R

n such that cN (N) = Jn.
In this setting, we employ the notation

N−
c = ∂Ju × Js,

N+
c = Ju × ∂Js.

As mentioned in [37], the numbers u(N) and s(N) stand for the dimensions of nominally
unstable and stable directions, respectively. Notice that if u(N) = 0, then N−

c = ∅, and if
s(N) = 0, then N+

c = ∅.
Definition 3.3. Assume that N and M are h-sets such that u(N) = u(M) = u and s(N) =

s(M) = s. Let f : N −→ R
n be a continuous map, and define fc = cM ◦ f ◦ c−1

N : Jn −→ R
n.

We say that N f -covers M , and write it as

N
f

=⇒M,

if the following conditions are satisfied:
1. There exists a continuous homotopy H : [0, 1] × Jn −→ R

n such that the following
conditions hold true:

H0 = fc,

H([0, 1], N−
c ) ∩ Jn = ∅,

H([0, 1], Jn) ∩M+
c = ∅.

2. There exists a linear map A : Ru −→ R
u such that H1(p, q) = (Ap, 0) for p ∈ Ju and

q ∈ Js, and A(∂Ju) ⊂ R
u\Ju.

Next we link these concepts with existence of chaotic dynamics.
Theorem 3.4. Let F : D ⊂ R

n −→ R
n be a continuous map, and assume that there exist

two disjoint h-sets N0 and N1 such that

Ni
F

=⇒ Nj

for all i, j = 0, 1. Then F induces chaotic dynamics on two symbols (with compact sets
K0 = N0 and K1 = N1).

Proof. Let us first take a sequence s = (si) ∈ {0, 1}Z so that si+k = si for all i ∈ Z. In
this case, it follows from Theorem 4 in [37] that there exists x ∈ N0 ∪N1 so that

F k(x) = x and F i(x) ∈ Nsi for all i ∈ Z.

Now we prove the assertion of the theorem. Fix an arbitrary sequence s = (sj)j∈Z, and, for
each i ∈ N, define the compact set

Γi = {ω ∈ Ns0 : F j(ω) ∈ Nsj for all 1 ≤ j ≤ i}.
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Clearly Γi+1 ⊂ Γi and, by the previous step, Γi = ∅ for all i ∈ N. Indeed, it is sufficient to
consider the (i+ 1)-periodic sequence that matches s for j = 0, 1, . . . , i. Hence,

∞⋂
i=1

Γi = ∅.

To conclude the proof of the theorem, we notice that a standard diagonal argument enables
us to extend the result to bi-infinite sequences; see [17, Theorem 2.2].

The following result provides us with an elementary and effective method for estimating
the sensitive dependence in a chaotic regime when the conditions of Theorem 3.4 hold.

Proposition 3.5. Take N0, N1, and F : D ⊂ R
n −→ R

n as in the statement of Theorem
3.4, and denote d = dist(N0, N1) > 0. For ε > 0, we define

Sε = max{n ∈ N : N0 contains n disjoint balls of diameter ε}

and

N∗ = 1 +

⌈
lnSε
ln 2

⌉
,

where, for x ∈ R, �x� denotes the ceiling of x, that is, the smallest integer not less than x.
Then, there are two points x0, y0 satisfying that
• x0, y0 ∈ N0,
• ‖x0 − y0‖ < ε,
• max0≤j≤N∗

{‖F j(x0)− F j(y0)‖
}
> d.

Proof. Fix ε > 0. Given τ = (τ1, . . . , τN∗) with τi ∈ {0, 1}, we define

Γτ =
{
x ∈ N0 : F

j(x) ∈ Nτj for all 1 ≤ j ≤ N∗} .
In this way, we can construct 2N

∗
disjoint nonempty compact sets contained in N0. Since, by

definition, Sε < 2N
∗
, there are two different N∗-tuples, τ ′, τ ′′ so that

dist(Γτ ′ ,Γτ ′′) < ε.

Hence, we can choose two points x0 ∈ Γτ ′ and y0 ∈ Γτ ′′ so that ‖x0 − y0‖ < ε.
Since τ ′ = τ ′′, there exists at least one index j0 ≤ N∗ such that τ ′j0 = τ ′′j0 . By the definition

of Γτ ′ and Γτ ′′ , it follows that

F j0(x0) ∈ Nτ ′j0
, F j0(y0) ∈ Nτ ′′j0

,

and therefore ‖F j0(x0)− F j0(y0)‖ ≥ dist(N0, N1) = d, as we wanted to prove.

4. Chaotic dynamics in models (2.1) and (2.3). In this section we illustrate how to
apply the previous results to systems (2.1) and (2.3). For these models, we obtain analytically
chaotic regimes where the map of the system has only unstable directions in the sense of
Definition 3.2. To this aim, we need to introduce the following notion of turbulence, which is
more restrictive than the usual one [2, Chapter II].
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Definition 4.1. Let I be a real interval, and g : I −→ I a continuous map. We say that g
is δ-strictly turbulent if there exist four constants β0 < β1 < γ0 < γ1 and δ > 0 so that

g(β0) < β0 − δ < γ1 + δ < g(β1),

g(γ1) < β0 − δ < γ1 + δ < g(γ0).

We first consider the Clark model (2.1). There is a one-to-one correspondence between
the solutions of (2.1) and the orbits of the map Fα : Rk → R

k defined by

Fα(x1, . . . , xk) = (x2, . . . , xk, αxk + (1− α)f(x1)).

For this map we get the following result.
Theorem 4.2. Assume that f is δ-strictly turbulent with parameters β0 < β1 < γ0 < γ1.

Then there exists α0 > 0 so that, for all 0 ≤ α ≤ α0, F
k
α induces chaotic dynamics on two

symbols relative to N0 = [β0, β1]
k and N1 = [γ0, γ1]

k.
Proof. It follows from the expression of Fα that, for α = 0,

F k
0 (x1, . . . , xk) = (f(x1), . . . , f(xk)).

Using the continuity of Fα with respect to α, we obtain that there is a constant α0 > 0 so
that for all i = 1, . . . , k, (x1, . . . , xi−1, xi+1, . . . , xk) ∈ [β0, β1]

k−1, and α ≤ α0,∣∣∣(F k
α )i(x1, . . . , xi−1, β0, x1+i, . . . , xk)− f(β0)

∣∣∣ < δ,(4.1)

∣∣∣(F k
α )i(x1, . . . , xi−1, β1, x1+i, . . . , xk)− f(β1)

∣∣∣ < δ.(4.2)

Analogously, for all i = 1, . . . , k and (x1, . . . , xi−1, xi+1, . . . , xk) ∈ [γ0, γ1]
k−1,∣∣∣(F k

α )i(x1, . . . , xi−1, γ0, x1+i, . . . , xk)− f(γ0)
∣∣∣ < δ,(4.3)

∣∣∣(F k
α )i(x1, . . . , xi−1, γ1, x1+i, . . . , xk)− f(γ1)

∣∣∣ < δ.(4.4)

Next, let us consider the translations tv, tw according to the vectors v, w given by

v =

(
−β0 + β1

2
, . . . ,−β0 + β1

2

)
, w =

(
−γ0 + γ1

2
, . . . ,−γ0 + γ1

2

)
,

respectively, and the maps h0, h1 defined by

h0(x1, . . . , xk) =
2

β1 − β0
(x1, . . . , xk), h1(x1, . . . , xk) =

2

γ1 − γ0
(x1, . . . , xk).

We claim that the h-cubes N0, N1 with
• u(N0) = u(N1) = k and s(N0) = s(N1) = 0,
• cN0 = h0 ◦ tv, cN1 = h1 ◦ tw,
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satisfy the covering relations

Ni
F k
α

=⇒ Nj

for all i, j = 0, 1. Note that N+
c = ∅ and N−

c = ∂Jk for N = Ni, i = 0, 1.
We first prove the relation

(4.5) N0
F k
α

=⇒ N0.

To this end, we take the linear map A(x) = 2x and define the homotopy H : [0, 1]×Jk −→ R
k

by

H(t, x) = tA(x) + (1− t)
(
cN0 ◦ F k

α ◦ c−1
N0

)
(x).

Clearly, H(0, ·) = cN0 ◦ F k
α ◦ c−1

N0
and H(1, ·) = A. Next we prove that

H(t, ∂Jk) ∩ Jk = ∅.

Indeed, take a point x ∈ ∂Jk. For this point, we can ensure that there is an index i ∈ {1, . . . , k}
so that xi is equal either to −1 or to 1. Assume that we are in the first case (the proof in the
other case is completely analogous). By the definition of cN0 , we deduce that

c−1
N0

(x) = (y1, . . . , yi−1, β0, yi+1, . . . , yk),

with (y1, . . . , yi−1, yi+1, . . . , yk) ∈ [β0, β1]
k−1. Now, using condition (4.1), it follows that∣∣∣(F k

α )i(y1, . . . , yi−1, β0, yi+1, . . . , yk)− f(β0)
∣∣∣ < δ.

Therefore, as f is δ-strictly turbulent, we obtain that

(F k
α )i(y1, . . . , yi−1, β0, yi+1, . . . , yk) < β0.

Finally, by the definition of cN0 , we arrive at(
cN0 ◦ F k

α

)
i
(y1, . . . , yi−1, β0, yi+1, . . . , yk) < −1.

Bringing all the information together, and using that (Ax)i = 2xi = −2, it is clear that

t(Ax)i + (1− t)
(
cN0 ◦ F k

α ◦ c−1
N0

(x)
)
i
< −1

for all t ∈ [0, 1], and therefore H(t, x) ∈ Jk. The proof of (4.5) is now complete. The same
reasoning applies to checking the remaining covering relations. We just note that for the
relations

N1
F k
α

=⇒ Ni

with i = 0, 1, the choice for the linear map is A(x) = −2x.
Remark 4.1. If some iteration fm is δ-strictly turbulent, then the conclusion of Theo-

rem 4.2 holds, replacing F k
α by F km

α .
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Remark 4.2. The requirement of an upper bound in the range of α imposed in Theorem 4.2
is necessary. For values of α close to 1, (2.1) has a globally stable positive equilibrium (see
[13, 20] and their references). Actually, for k = 1, α is sometimes used as a control parameter
so that increasing its value becomes an effective tool for chaos control [22].

To ensure the existence of chaotic dynamics in (2.1) for a particular choice of α when f is
δ-strictly turbulent, we have to verify conditions (4.1)–(4.4). We illustrate this fact with an
example.

Example 4.1. Consider the system

(4.6) xn = αxn−1 + (1− α)f(xn−2),

where f(x) = x exp(4 − x). A direct computation allows us to check that f2 is 2.4-strictly
turbulent with parameters 3 < 5.75 < 6.25 < 11. In Appendix A, we show that conditions
(4.1)–(4.4) hold for f2 with α0 = 0.001.

It is worth pointing out some biological implications of our results for (4.6). Specifically,
there are two disjoint regions, namely

N0 = [3, 5.75]2, N1 = [6.25, 11]2 ,

with the “coin-tossing” property for F 4
α. For instance, if we take the bi-infinite sequence

(. . . , 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . . )

(assume that the first 1 corresponds to the index 0 in the sequence), we can choose a point x
so that

x ∈ N1, F
4
α(x) ∈ N0, F

8
α(x) ∈ N1, F

12
α (x) ∈ N0, F

16
α (x) ∈ N0, F

20
α (x) ∈ N1, . . . .

Moreover, if the sequence is periodic, we can take a periodic point following the “itinerary” of
the sequence. As a direct consequence of Proposition 3.5, we can also estimate the sensitive
dependence. Indeed, for ε > 0, clearly

Sε ≤
⌈
(5.75 − 3)2

ε2

⌉
:= B.

Hence, there are two points x0, y0 ∈ [3, 5.75]2 such that ‖x0 − y0‖ < ε and, for some number
j ∈ {1, . . . , N∗}, we have that F 4j(x0) ∈ [3, 5.75]2 and F 4j(y0) ∈ [6.25, 11]2 . Therefore,

‖F 4j(x0)− F 4j(y0)‖ ≥ 0.5.

We emphasize that, for any given value of ε > 0, we can compute an explicit bound � lnB
ln 2 �+1

for N∗.
Next we study the LPA model (2.3), whose solutions are the orbits of the map G : R3 → R

3

defined by

(4.7) G(L,P,A) = (bA exp(−celL− ceaA), (1 − μl)L,P exp(−cpaA) + (1− μa)A) .
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Clearly, for cel = μl = cpa = 0 and μa = 1, system (2.3) becomes Clark’s model with α = 0,
k = 3, and f(x) = bxe−ceax. Thus, the proof of Theorem 4.2 can be easily adapted to deal
with (2.3). Since there are values of b and cea so that f2 is δ-strictly turbulent, the following
result establishes chaos for the LPA model.

Theorem 4.3. Assume that f2 is δ-strictly turbulent with parameters β0 < β1 < γ0 < γ1
and δ > 0. There exists σ > 0 so that if 0 ≤ cel, μl, cpa ≤ σ and 1 − σ ≤ μa ≤ 1, then G6

induces chaotic dynamics on two symbols relative to N0 = [β0, β1]
3 and N1 = [γ0, γ1]

3, where
G is the map defined in (4.7).

We observe that, reasoning in a similar way as in the previous example, it is possible to
estimate properties of sensitive dependence on the initial conditions for particular cases of
system (2.3).

To the best of the authors’ knowledge, Theorem 4.3 is the first analytic result of chaotic
dynamics for the LPA model in the interior of the nonnegative cone R3

+. It is worth mentioning
that in [10, Theorem 2], Cushing proves analytically the existence of fully synchronous orbits
with chaotic behavior when μa = 1.

5. Chaotic dynamics in system (2.2). In this section we apply the results of section 3
to the nonlinear Leslie population model (2.2). In contrast to the previous section, in this
case we find a chaotic regime where the map of the system has one stable direction and one
unstable (in the sense of Definition 3.2). Associated with (2.2), we define the map in R

2,

F (x, y) = ((a1x+ a2y) exp(−λ1x− λ2y), bx) ,

where all the parameters are strictly positive and b ∈ ]0, 1]. Our main result in this section is
the following.

Theorem 5.1. Assume that f(x) = a1x exp(−λ1x) satisfies that f2 is δ-strictly turbulent
with parameters α0 < α1 < β0 < β1 and δ > 0. Suppose that there is r > 0 so that the
following inequalities are fulfilled:

b

e

(
a1
λ1

+
a2
λ2

)
< r,(5.1)

−a1
e

(
e−λ2r − 1

)
< ln

(
α0 − a1a2r − a2bβ1

α0 − δ

)
,(5.2)

λ2r + λ2bβ1 + λ1a2r < ln

(
β1 + δ

β1

)
.(5.3)

Then F 2 induces chaotic dynamics on two symbols relative to N0 = [α0, α1] × [0, r] and
N1 = [β0, β1]× [0, r].

Proof. It is easy to check that N0 and N1 are h-sets, with
• u(N0) = u(N1) = 1 (x-direction) and s(N0) = s(N1) = 1 (y-direction),
• cN0 = h0 ◦ tv and cN1 = h1 ◦ tw,

where tv and tw are the translations according to the vectors

v =

(−(α0 + α1)

2
,
−r
2

)
, w =

(−(β0 + β1)

2
,
−r
2

)
,
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respectively, and

h0(x, y) =

(
2x

α1 − α0
,
2y

r

)
, h1(x, y) =

(
2x

β1 − β0
,
2y

r

)
.

We have to demonstrate that

Ni
F 2

=⇒ Nj

for i, j = 0, 1. We give the proof only for the case i = j = 0. Indeed, consider the homotopy

H(t, (x, y)) = t
(
cN0 ◦ F 2 ◦ c−1

N0

)
(x, y) + (1− t)A(x, y),

where A(x, y) = (2x, 0).
Define f(x) = a1xe

−λ1x. After some elementary computations (see Appendix B), we arrive
at the inequalities

F 2
1 (x, y) ≤ f2(x)(exp(−a1/e))exp(−λ2y)−1 + a1a2y + a2bx,

F 2
1 (x, y) ≥ f2(x) exp(−λ2bx) exp(−λ1a2y) exp(−λ2y),

F 2
2 (x, y) ≤ b

(
a1
λ1e

+
a2
λ2e

)
.

Now, since b > 0, we deduce from (5.1) that, for all (x, y) ∈ N0,

(5.4) 0 < F 2
2 (x, y) < r.

Analogously, as f2(α0) < α0 − δ, we obtain that

(5.5) F 2
1 (α0, y) ≤ (α0 − δ)(exp(−a1/e))exp(−λ2r)−1 + a1a2r + a2bα0

for all y ∈ [0, r]. By using (5.2) together with the inequality α0 < β1, we get from expression
(5.5) that, for all y ∈ [0, r],

(5.6) F 2
1 (α0, y) < α0.

Reasoning in the same way with condition (5.3), it may be concluded that

(5.7) F 2
1 (α1, y) > α1

for all y ∈ [0, r].
From inequalities (5.4), (5.6), and (5.7), it follows that

cN0 ◦ F 2 ◦ c−1
N0

({−1} × [−1, 1]) ⊂ {(x, y) : x < −1},

cN0 ◦ F 2 ◦ c−1
N0

({1} × [−1, 1]) ⊂ {(x, y) : x > 1},

cN0 ◦ F 2 ◦ c−1
N0

([−1, 1]2) ⊂ {(x, y) : −1 < y < 1}.
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These properties, together with the expression of A, lead to the desired conclusion,

H([0, 1], {−1, 1} × [−1, 1]) ∩ [−1, 1]2 = ∅,

H([0, 1], [−1, 1]2) ∩ ([−1, 1] × {−1, 1}) = ∅.

The same steps lead to the covering relation

N0
F 2

=⇒ N1.

For the relations

N1
F 2

=⇒ Ni,

with i = 0, 1, the most significant change consists of taking the linear map A(x, y) =
(−2x, 0).

Now we apply Theorem 5.1 in a particular example. Take f(x) = xe4−x (a1 = e4, λ1 = 1).
As claimed in section 4, f2 is 2.4-strictly turbulent with parameters 3 < 5.75 < 6.25 < 11.
Straightforward computations show that conditions (5.1)–(5.3) hold for r = 0.065, b = 0.003,
a2 = 0.1, and λ2 = 1.

In general, to use Theorem 5.1, the parameters b and r must be close to zero. Nevertheless,
for values of b near 1, system (2.2) also displays chaotic dynamics; indeed, for a1 = λ1 = 0
and b = 1, we again recover Clark’s model (2.1) with α = 0. Consequently, arguing as in the
proof of Theorem 4.2, we are able to guarantee the existence of chaos for (2.2) when (a1, λ1, b)
belongs to a neighborhood of (0, 0, 1). It is important to observe that, from a mathematical
point of view, the chaotic regimes are different because in Theorem 5.1 we have one stable
direction and one unstable direction, while in Theorem 4.2 both directions are unstable.

6. Discussion. We have proved analytic criteria for chaotic dynamics for some well-known
structured population models, and we have given further insight into such relevant features
of chaos as the sensitive dependence on initial conditions. We list the main advantages of our
results:

• Explicit ranges of parameters where models (2.1), (2.2), and (2.3) exhibit
chaotic behavior: A key property from a biological point of view is the robustness of
our results under small continuous perturbations. This aspect is especially important
in modeling, because the coefficients involved are usually approximations derived from
experimental data, so small errors should be taken into account.

• Regions of initial data with chaotic behavior: We identify explicit regions of the
phase space, namely N0 and N1, where chaotic behavior occurs. Determining these
regions is useful for analyzing the influence of the chaotic regime on the system since,
in some situations, a chaotic attractor may coexist with other dynamics, such as a
locally stable periodic point.

• Estimates of the sensitive dependence: The strategy followed in our proofs allows
us to get quantitative results about sensitive dependence on initial conditions in an
easy way; see Proposition 3.5 and Example 4.1.
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In the literature there are several papers dealing with the existence of chaotic dynamics
for structured population models. However, most of them generally rely on numerical evi-
dence obtained from computer simulations, particularly on the computation of the dominant
Lyapunov exponent (see, for instance, [16] for Clark’s equation, and [11] for the LPA model).

For the nonlinear Leslie model (2.2), our results complement Theorem 1.2 in [33], which,
based on the results of [34], ensures the existence of a chaotic attractor for a set of parameters
with positive Lebesgue measure; however, compared with our approach, determining such a
set can be much more involved. We note that our results provide criteria only for the existence
of invariant sets with chaotic dynamics, not attractors. In particular, this complex behavior
might not be observed in numerical simulations of the models. We point out that Theorem
1.2 in [33] establishes stronger attraction and stochastic properties.

Appendix A. Computations for Example 4.1. This appendix contains some auxiliary
calculations for Example 4.1.

For Fα(x1, x2) = (x2, αx2 + (1 − α)f(x1)), the expression of F 4
α = ((F 4

α)1, (F
4
α)2) is given

by

(F 4
α)1(x1, x2) = α3x2 + α2(1− α)f(x1) + α(1− α)f(x2)

+ (1− α)f(αx2 + (1− α)f(x1)),

(F 4
α)2(x1, x2) = α4x2 + α3(1− α)f(x1) + α2(1− α)f(x2)

+ α(1 − α)f(αx2 + (1− α)f(x1))

+ (1− α)f(α2x2 + α(1− α)f(x1) + (1− α)f(x2)).

Next we notice that, in [0,+∞[, function f(x) = x exp(4−x) is bounded by exp(3) and is
Lipschitz-continuous with Lipschitz-constant exp(4). Using these properties in a direct way,
we obtain that, for all x2 ∈ [3, 5.75] ∪ [6.25, 11],∣∣(F 4

α)(x1, x2)1 − f2(x1)
∣∣ ≤ 11α3 + exp(3)α2(1− α) + exp(3)α(1 − α)

+ exp(4)(11α + exp(3)α) + α exp(3) := ϕ(α),

and, for all x1 ∈ [3, 5.75] ∪ [6.25, 11],∣∣(F 4
α)(x1, x2)2 − f2(x2)

∣∣ ≤ 11α4 + α3(1− α) exp(3) + α2(1− α) exp(3) + α(1 − α) exp(3)

+ 11 exp(4)α2 + exp(7)α(1 − α) + exp(7)α + exp(3)α := ψ(α).

Now, since ϕ and ψ are polynomials, it is elementary to check that ϕ(α) < 2.4 and
ψ(α) < 2.4 for all α < α0 = 0.001 (see Figure 1).

Appendix B. Auxiliary calculations for the proof of Theorem 5.1. In this appendix, we
provide some expressions and preliminary calculations for the proof of Theorem 5.1.

Consider the map

F (x, y) = ((a1x+ a2y) exp(−λ1x− λ2y), bx).
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0 0.001 0.002
0

1

2

3

4

α

ψ ϕ
2.4

Figure 1. Representation of functions ϕ(α) and ψ(α) for 0 ≤ α ≤ 0.002.

The first component of F 2 has the following expression:

F 2
1 (x, y) = e−λ1a1x exp(−λ1x−λ2y)e−λ2bxe−λ1a2y exp(−λ1x−λ2y)

[
a21xe

−λ1x−λ2y

+ a1a2ye
−λ1x−λ2y + a2bx

]
.

We easily deduce that, for x ≥ 0 and y ≥ 0,

F 2
1 (x, y) ≤ a21xe

−λ1xe−λ1a1x exp(−λ1x)(e−λ1a1x exp(−λ1x))e
−λ2y−1 + a1a2y + a2bx.

Now, using that f(x) = a1xe
−λ1x ≤ a1

λ1e
, we arrive at

F 2
1 (x, y) ≤ a21xe

−λ1xe−λ1a1x exp(−λ1x)(e
−a1
e )e

−λ2y−1 + a1a2y + a2bx

= f2(x)(e
−a1
e )e

−λ2y−1 + a1a2y + a2bx.

On the other hand,

F 2
1 (x, y) ≥ e−λ1a1x exp(−λ1x−λ2y)e−λ2bxe−λ1a2y exp(−λ1x−λ2y)a21xe

−λ1x−λ2y

≥ a21xe
−λ1xe−λ1a1x exp(−λ1x)e−λ2bxe−λ1a2ye−λ2y

= f2(x)e−λ2bxe−λ1a2ye−λ2y.

For the second component, using that f(x) = a1xe
−λ1x ≤ a1

λ1e
, we get

F 2
2 (x, y) = b(a1x+ a2y)e

−λ1x−λ2y ≤ b

(
a1
λ1e

+
a2
λ2e

)
.
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