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The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between

oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very

simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a

variational structure that means the only attractors are full synchrony (in-phase) or splay phase

(rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly

degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of

the oscillator phases—that appears generically at the next order in normal-form based calculations

can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular,

we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators

for a range of parameter values. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4958928]

In this paper, we show that symmetrically coupled phase
oscillators with generic (but nonpairwise) interactions
yield rich dynamics even for as few as N¼ 4 oscillators.
Although the lowest order approximation of a phase re-
duction of symmetrically coupled oscillators close to a
Hopf bifurcation has only the Kuramoto–Sakaguchi first
harmonic interaction terms, the next order includes ge-
neric terms with both second harmonic pairwise interac-
tions and interactions of up to four phases.9 The
symmetries we consider imply the existence of invariant
subspaces such that the ordering of phases is preserved.10

In contrast to the Kuramoto–Sakaguchi equations, the
additional nonpairwise interaction terms mean we can
find attracting chaos for a range of normal form parame-
ter values. As a consequence, the phase dynamics of ge-
neric weakly coupled oscillators will be quite rich and
chaos can occur even for the phase dynamics in the weak
coupling limit without amplitude degrees of freedom.30

I. INTRODUCTION

Recent advances in the understanding of the dynamics of

coupled oscillators have shed light on the dynamical mecha-

nisms involved in the emergence of collective behavior of os-

cillatory systems in nature and technology, including biology,29

neuroscience,6,15,18,23,41 chemistry,39,40 and physics.2,38,43 Even

the dynamics of all-to-all coupled networks of identical oscilla-

tors can be extremely rich, including synchronization,31,38 clus-

tering and slow switching,25 and chaotic dynamics.24,30 A

general approach to understand clustering is to look at invariant

synchrony subspaces4 in coupled cell networks19–21 and how

these change as the network topology is varied.3 Complicated

dynamics arise already in very small networks8,22 where bifur-

cations have been studied explicitly.28

If the coupling between N limit cycle oscillators is suffi-

ciently weak, then the dynamics can be approximated by a

phase reduction. Based on the seminal work of Kuramoto27

to study the onset of synchronization in coupled oscillators,38

phase oscillators whose phases hj 2 T ¼ R=2pZ j¼ 1,…, N,

evolve according to

_hj :¼
d

dt
hj ¼ xþ 1

N

X

N

k¼1

g hk � hj
� �

¼: Fj hð Þ; (1)

where x is the natural frequency of the oscillators and the in-

teraction is determined by the 2p-periodic coupling (or phase

interaction) function

gð/Þ ¼ sinð/þ aÞ

have been studied extensively.2 The dynamics given by (1),

the Kuramoto–Sakaguchi equations,34 are degenerate: the

dynamics are effectively two-dimensional and the only

attractors are full synchrony or the splay phase oscillation

depending on the value of a.38,42 Thus, more complicated

dynamics in (1) such as chaos is only possible for more

general forms of coupling, for example, by considering

coupling functions g with higher harmonics. For N¼ 4

phase oscillators—the smallest number where chaos can oc-

cur—no sign of chaos was found for coupling functions

with two harmonics5 and the only known example of a cou-

pling function giving rise to chaotic attractors has four non-

trivial harmonics.13 By contrast, two harmonics are

sufficient to find chaos in networks (1) of N¼ 5 phase

oscillators.7

Recently, Ashwin and Rodrigues9 showed that while a

phase reduction of a generic fully symmetric system of oscil-

lators close to a Hopf bifurcation to the lowest order has the

form (1), the phase dynamics to the next order also contain

higher order interaction terms that depend on three and four

phases. More precisely, up to next order we have for cou-

pling 0< e � 1 an invariant torus with phase dynamics giv-

en by
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_hj ¼ ~X h; �ð Þ þ e

N

X

N

k¼1

g2 hk � hj
� �

þ e

N2

X

N

k;‘¼1

g3 hk þ h‘ � 2hj
� �

þ e

N2

X

N

k;‘¼1

g4 2hk � h‘ � hj
� �

þ e

N3

X

N

k;‘;m¼1

g5 hk þ h‘ � hm � hj
� �

; (2)

where ~Xðh; �Þ is a symmetric function in the phases, the cou-

pling function g2 has nontrivial first and second harmonics

and the coupling functions g3, g4, g5 that determine the non-

pairwise interaction have a nontrivial first harmonic.

Nonpairwise interaction in the phase model leads to novel

nontrivial dynamical phenomena;9 for example, emergent

quasiperiodicity of the mean field32,33 which has been inves-

tigated explicitly.16

In this paper, we study the dynamics of phase oscillator

systems (2) that arise through the phase reduction of fully sym-

metric oscillators close to a Hopf bifurcation. In particular, we

discuss the existence and the stability of the in-phase (fully

synchronous) and the splay phase (rotating waves) solutions

and calculate some bifurcations. The main result of this paper

is to show that there are parameter values for coupling func-

tions that give rise to positive maximal Lyapunov exponents

for the dynamics of the phase differences of N¼ 4 and N¼ 5

oscillators, the former being the smallest number of oscillators

for which chaotic dynamics in the truncated phase equations

(2) can occur. In particular, we show evidence that chaos arises

through period doubling and a Shilnikov scenario involving a

saddle focus. Finally, we discuss the relationship of the chaos

in the phase reduction and the dynamics of the full system of

fully symmetric oscillators close to a Hopf bifurcation which

can give rise to chaos even for three oscillators.8

This paper is organized as follows. In Section II, we re-

view the results about the phase reduction of generic systems

of oscillators with full symmetry close to a Hopf bifurca-

tion.9 In Section III, we study the basic properties of the

resulting phase equations which we subsequently apply to

small networks in Section IV. In Section V, we give concrete

examples of coupling functions that give rise to chaotic dy-

namics with positive maximal Lyapunov exponent before

giving some concluding remarks.

II. NONPAIRWISE INTERACTION IN PHASE
REDUCTION NEAR HOPF BIFURCATIONS

While the phase reduction of a system of weakly cou-

pled oscillators close to a Hopf bifurcation yields phase dy-

namics with pairwise interaction terms to the lowest order, it

was recently shown in Ref. 9 that interaction terms of up to

four phases can appear to next order if the coupling is very

small compared to the distance from Hopf bifurcation. In

this section, we summarize these results and fix the notation.

Suppose we have N identical, symmetrically coupled dy-

namical systems with state xk 2 R
d (d� 2) close to a Hopf

bifurcation, write i ¼
ffiffiffiffiffiffiffi

�1
p

. Using equivariant bifurcation

theory,17 it is possible to write the system on a center mani-

fold ðz1;…; zNÞ 2 C
N
, where in the case k¼ �¼ 0 the center

manifold in each coordinate xk is parametrized by zk. This

system on the center manifold is

_z1 ¼ fkðz1Þ þ �gkðz1; z2;…; zNÞ þ Oð�2Þ;
..
.

_zN ¼ fkðzNÞ þ �gkðzN; z1;…; zN�1Þ þ Oð�2Þ;

where z 2 C
N
and we note the right hand sides can be cho-

sen to be of smoothness Cr, with r arbitrarily large, in a

neighborhood of the bifurcation. The conditions for Hopf bi-

furcation mean that for (II) we have f0(0)¼ 0 and the deriva-

tive df0(0) has a pair of purely imaginary eigenvalues 6ix

that pass transversely through the imaginary axis with non-

zero speed on changing k. Let SN denote the group of permu-

tations of N symbols which acts on C
N
by permutation of

coordinates, that is, if r 2 SN , then

rðz1;…; zNÞ ¼ ðzr�1ð1Þ;…; zr�1ðNÞÞ; (3)

where ðz1;…; zNÞ 2 C
N
. So, gkðz1; z2;…; zNÞ is symmetric

under all permutations of the last N � 1 arguments that fix

the first.

As shown in Ref. 9, taking higher orders into account,

we obtain an invariant torus with phase dynamics (2). More

precisely, with

F 2ð Þ
j hð Þ ¼ 1

N

X

N

k¼1

g2 hk � hj
� �

; (4)

F 3ð Þ
j hð Þ¼ 1

N2

X

N

k;‘¼1

g3 hkþh‘�2hj
� �

þ 1

N2

X

N

k;‘¼1

g4 2hk�h‘�hj
� �

;

(5)

F 4ð Þ
j hð Þ ¼ 1

N3

X

N

k;‘;m¼1

g5 hk þ h‘ � hm � hj
� �

; (6)

the phase dynamics are

_hj ¼ ~Xðh; �Þ þ eðFð2Þ
j ðhÞ þ F

ð3Þ
j ðhÞ þ F

ð4Þ
j ðhÞÞ; (7)

where ~Xðh; �Þ is a symmetric function in the phases and the

interaction between the phases is given by

g2ð/Þ¼n01 cosð/þv01Þþkn11cosð/þv11Þ
þkn12cosð2/þv12Þ;

g3ð/Þ¼kn13cosð/þv13Þ;
g4ð/Þ¼kn14cosð/þv14Þ;
g5ð/Þ¼kn15cosð/þv15Þ

(8)

for some constant coefficients n
j
i and v

j
i. Note that (1) corre-

sponds to the special case of (7), where F
ðkÞ
j � 0 for k¼ 3

and k¼ 4. More precisely, (7) is the next approximate trun-

cation of the normal form after Kuramoto–Sakaguchi in the

following sense.

Theorem 1. [Reference 9, Theorem 3.2] Consider sys-

tem (II) with SN-symmetry (for fixed N) such that the N

uncoupled systems (�¼ 0) undergo a generic supercritical
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Hopf bifurcation on k passing through 0. There exists k0> 0

and �0 ¼ �0ðkÞ such that for any k 2 ð0; k0Þ and j�j < �0ðkÞ,
the system (II) has an attracting Cr-smooth invariant

N-dimensional torus for arbitrarily large r. Moreover, on

this invariant torus, the phases hj of the flow can be

expressed as (7) for fixed 0< k< k0 in the limit � ! 0, where
~Xð/; �Þ is independent of j and g2,…,5 are given by (8). The

constants n
j
i and v

j
i are generically non-zero. The error term

satisfies ~g ¼ Oðk2Þ uniformly in the phases /k. The trunca-

tion to (7) on removing the error terms ~g and O(�2) terms is
valid over time intervals 0 < t < ~t, where ~t ¼ Oð��1k�2Þ in
the limit 0<� � k� 1.

As noted in Ref. 9, the presence of nonpairwise coupling

can give rise to new phenomena in terms of bifurcation of

two-cluster states. In the following, we explore the effect of

nonpairwise coupling further, in particular, with respect to

small networks and show that chaotic attractors may appear

at this order of truncation.

III. DYNAMICS OF PHASE OSCILLATORS WITH
NONPAIRWISE COUPLING

We discuss in this section the behavior of the system of

phase oscillators (7); to some extent this is similar to the

case of pairwise coupling (1) in that there is a strong struc-

ture of invariant subspaces imposed by the permutation

symmetries.

A. Symmetric phase oscillator dynamics

By considering a projection P : T
N ! T

N�1
that maps

the T-orbits onto points, the generalized system (7) (we as-

sume �¼ 1 from hereon) reduces to phase differences on

T
N�1

. The fixed point subspaces where two of the phases are

identical form a partition of T
N�1

into connected compo-

nents that are all symmetric images of the canonical invari-

ant region (or CIR)10 given by

C ¼ f h 2 T
N j 0 ¼ h1 < h2 < � � � < hN < 2pg: (9)

Note that this region is invariant for any phase oscillator sys-

tem with full permutation symmetry; moreover, the region

has symmetry ZN ¼ Z=NZ generated by

s : ð0; h2;…; hNÞ 7! ð0; h3 � h2;…; hN � h2; 2p� h2Þ: (10)

For N¼ 3 and N¼ 4, the CIR is illustrated in Figure 1—the

boundaries of C are invariant for dynamics.

For any partition of N ¼ m1 þ � � � þ m‘; ‘ � 2, there are

‘-cluster states with isotropy Sm1
� � � � � Sm‘

with ‘ clusters
of mk oscillators at the same phase. More generally, there are

invariant subspaces (rotating blocks) that have a phase shift

symmetry as well as clustering.10 Ref. 5 explores the dynam-

ics of pairwise coupling (1) for general second harmonic

coupling in the cases N¼ 3 and N¼ 4 and, in particular, no

evidence is found of chaotic attractors for either case.

This structure is instructive in that it places limits on where

any chaotic behavior can be found. As pointed out in Ref. 13,

the fact that N¼ 3 reduces to planar dynamics on C immediate-

ly implies there cannot be any chaotic behavior in this case,

while for N¼ 4, if there is any chaotic behavior, it must include

points that have trivial isotropy (i.e., that are not in any invari-

ant subspace, as these all have dimension two or less).

B. Fully synchronized and splay phase: Existence and
stability

We recall from Refs. 5 and 10 two important periodic sol-

utions that are guaranteed to exist for (7). The in-phase (fully

phase synchronized) oscillation corresponds to the solution

H
sync ¼ ðXsynct;…;XsynctÞ for some X

sync while the splay

phase (rotating wave, ZN symmetric solution) corresponds to

the solutionHsplay withH
splay
j ¼ X

splayt þ 2p
N

j� 1Þð .

The stability for in-phase oscillation can be computed

from the Jacobian of (7), namely,

Jjk hð Þ ¼ @

@hk
Fj hð Þ

¼ @

@hk
F 2ð Þ
j hð Þ þ F 3ð Þ

j hð Þ þ F 4ð Þ
j hð Þ

� �

: (11)

FIG. 1. Structure of the canonical invariant region C for N¼ 3 and N¼ 4

(see Ref. 10). Panels (a) and (b) show C as an orthogonal projection of into

R
2 and R

3, respectively. The edges of C for (a) and the faces of C for (b)

are points with S2 isotropy. The filled circles represent different points on

the lift that correspond to fully synchronous oscillation; the open circle rep-

resents the splay phase oscillation in C. In (a), the solid lines have isotropy

S3�S1 while the long dashes have isotropy S2�S2. The short dashed lines

have isotropy ðS1Þ2�SZ2—typical points being (a, b, aþp, bþp). In each

case, there is a residual ZN�1 symmetry indicated by the arrows in (b) and

(N � 1)! symmetric copies of C pack a generating region for the torus.

Adapted from Ref. 5.
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For k 6¼ j we have

@

@hk
F 2ð Þ
j ¼ 1

N
g02 hk � hj
� �

;

@

@hk
F 3ð Þ
j ¼ 1

N2

X

N

‘¼1

2g03 hk þ h‘ � 2hj
� �

� g04 2h‘ � hk � hj
� �

�

þ2g04 2hk � h‘ � hj
� �

�

;

@

@hk
F 4ð Þ
j ¼ 1

N3

X

N

‘;m¼1

2g05 hj þ hk � h‘ � hm
� �

�

�g05 hj þ h‘ � hk � hm
� �

�

;

where g0k denotes the derivative of gk : R ! R with respect

to its argument. Because of the phase shift symmetry, the

Jacobian of the vector field F has a zero eigenvalue with ei-

genvector ð1;…; 1Þ. This implies that

@

@hj
Fj hð Þ ¼ �

X

k 6¼j

@

@hk
Fj hð Þ:

In the case of in-phase oscillation for j 6¼ k, the coeffi-

cients of the Jacobian simplify to

Jjk ¼
1

N
g02 0ð Þ þ 2g03 0ð Þ þ g04 0ð Þ þ g05 0ð Þ
� �

(12)

and Jkk ¼ �P

q 6¼k Jkq. Hence for this case, there is a zero ei-

genvalue and N � 1 other eigenvalues that are given by

ksync ¼ �g02ð0Þ � 2g03ð0Þ � g04ð0Þ � g05ð0Þ: (13)

Hence, the in-phase oscillation will lose stability when ksync

passes from negative to positive in a highly degenerate sym-

metric bifurcation (see Ref. 10 for more discussion of some

of the branches and global attractors that may generically ap-

pear at such a bifurcation). This can be expressed as a

weighted sum of the derivatives of gk(0).

In the case of the splay phase oscillation, we can com-

pute, for j 6¼ k, that

Jjk ¼
1

N
g02 k � jð Þxð Þ þ 1

N2

X

N

‘¼1

�

2g03 k þ ‘� 2jð Þxð Þ

� g04 2‘� k � jð Þxð Þ þ 2g04 2k � ‘� jð Þxð Þ
�

þ 1

N3

X

N

‘;m¼1

�

2g05 jþ k � ‘� mð Þxð Þ

� g05 jþ ‘� k � mð Þxð Þ
�

:

Note that although this is not clear from this expression,

there should be circulant structure Jjþ‘ kþ‘ ¼ Jjk for this ma-

trix which implies that the non-zero eigenvalues will generi-

cally be complex except (in the case of N even) for a single

real eigenvalue. We do not compute these eigenvalues in

their full generality but give them for the special cases

N¼ 2, 3, 4 in Section IV.

IV. DYNAMICS OF SMALL NETWORKS WITH
NONPAIRWISE COUPLING

Since the nonpairwise coupling involves combinations of

three and four phases, the dynamics for N¼ 2 and N¼ 3 oscil-

lators reduce to the coupling of simpler form. In particular, for

N¼ 2 oscillators, (7) reduces to pairwise coupling (1) with

coupling function gðhÞ ¼ n1 cosðhþ v1Þ þ n2 cosð2hþ v2Þ.
Similarly, for N¼ 3, we can express the contributions of F

ð4Þ
j

to the dynamics in terms of just pairwise and three-phase in-

teractions. Consequently, N¼ 4 is the simplest case where all

higher order interaction terms in (7) are nontrivial.

In the following, we consider coupling functions of the

form of (8) where k is fixed, i.e.,

g2ð/Þ ¼ n1 cosð/þ v1Þ þ n2 cosð2/þ v2Þ;
g3ð/Þ ¼ n3 cosð/þ v3Þ;
g4ð/Þ ¼ n4 cosð/þ v4Þ;
g5ð/Þ ¼ n5 cosð/þ v5Þ;

(14)

where for general N the function g2 determines pairwise g3,

g4 triplet and g5 quadruplet interaction. The cases N¼ 2 and

3 are special case as we now discuss. We note that the eigen-

value (13) that determines the stability of the in-phase solu-

tion H
sync evaluates to

ksync ¼ n1 sinðv1Þ þ 2n2 sinðv2Þ
þ2n3 sinðv3Þ þ n4 sinðv4Þ þ n5 sinðv5Þ: (15)

A. Dynamics of N52 or 3 oscillators

For N¼ 2 note that (7) with coupling (14) can be written

as (1) where

g /ð Þ :¼ g2 /ð Þ þ g3 /ð Þ þ 1

2
g3 2/ð Þ

þ 1

2
g4 2/ð Þ þ 1

4
g4 /ð Þ þ g4 �/ð Þð Þ

þ 3

4
g5 /ð Þ þ 1

4
g5 2/ð Þ þ g5 �/ð Þð Þ:

Combining these terms means that gð/Þ is of the second har-

monic form as studied in Ref. 5. The bifurcation of in-phase

oscillations is where (15) gives zero eigenvalue, i.e., where

n1sinðv1Þþ2n2sinð2v2Þþ2n3sinðv3Þþn4sinðv4Þþn5sinðv5Þ¼0;

(16)

while the splay phase for N¼ 2 corresponds to the antiphase

state: this bifurcates where

�n1 sinðv1Þ þ 2n2 sinð2v2Þ þ n4 sinðv4Þ þ n5 sinðv5Þ ¼ 0:

(17)

In the case of N¼ 3, one can in principle subsume the

terms g5 into the terms g2,3,4. The bifurcation of in-phase

oscillations similarly occurs where (16) is satisfied. The

splay phase has eigenvalues that can be computed as

094814-4 Bick, Ashwin, and Rodrigues Chaos 26, 094814 (2016)



ksplay ¼ �n2 sin v2ð Þ �
1

2
n1 sin v1ð Þ

6
i

2
j2n2 cos v2ð Þ � n1 cos v1ð Þj;

which we note only depends on g2. Moreover, these eigen-

values are complex unless n1 cosðv1Þ ¼ 2n2 cosðv2Þ and

there is a Hopf bifurcation of the splay phase for N¼ 3 when

n2 sin v2ð Þ þ
1

2
n1 sin v1ð Þ ¼ 0: (18)

B. Dynamics of N5 4 oscillators

Turning to N¼ 4, there is similarly a bifurcation of in-

phase solutions where (16) is satisfied. The splay phase for

N¼ 4 has eigenvalues

ksplay 2 �2n2 sin v2ð Þ;
n1

2
�sin v1ð Þ þ ij cos v1ð Þj
� �

� �

meaning there is a steady bifurcation of splay phase when

n2 sinðv2Þ ¼ 0; (19)

while there is a Hopf bifurcation of splay phase (as long as

cosðv1Þ 6¼ 0) when

n1 sinðv1Þ ¼ 0: (20)

Moreover, for N¼ 4, the dynamics on the one-

dimensional invariant subspace with isotropy Z2—the points

ð0; h; p; hþ pÞ—is given by

_h ¼ n2 sinðv2Þ sinð2hÞ

with bifurcation of splay phase h ¼ p
2
at (19). For points (0,

0, h, h) with isotropy (S2)
2 we have

_h ¼ c1 sinðhÞ þ c2 sinð2hÞ

with

c1 ¼ n1 sin v1ð Þ þ n3 sin v3ð Þ þ
1

2
n5 sin v5ð Þ;

c2 ¼ n2 sin v2ð Þ þ
1

2
n3 sin v3ð Þ þ

1

2
n4 sin v4ð Þ þ

1

4
n5 sin v5ð Þ:

In this invariant subspace, there is a bifurcation of the

in-phase oscillation (h¼ 0), as expected, at (16) while there

is a bifurcation of the antiphase state (0, 0, p, p) at

n1 sinðv1Þ � 2n2 sinðv2Þ � n4 sinðv4Þ ¼ 0: (21)

V. CHAOS IN SMALL NETWORKS WITH NONPAIRWISE

COUPLING

Since the reduced system of N oscillators evolves on

T
N�1

, only networks of N� 4 oscillators can exhibit chaotic

dynamics. We calculate the expansion of a perturbation

along a trajectory by integrating the variational equations

_vj ¼
X

N

k¼1

JjkðhðtÞÞvk

numerically along a solution h(t) of (7) with Jacobian (11):

see for example11,13 for more details. For a generic choice of

vk(0), we expect vk(t) to grow exponentially fast at the rate of

the maximal Lyapunov exponent kmax, and for typical

choices of initial conditions in the basin of the attractor, this

growth rate will be independent of initial condition; by inte-

grating the variational equations for the phase difference

only we do not calculate the trivial zero Lyapunov exponent.

A. Chaos in networks of N5 4 oscillators

For appropriately chosen parameters, networks of gener-

ically coupled phase oscillators (7) with coupling functions

(14) give rise to positive maximal Lyapunov exponents.

With fixed Fourier coefficients

n ¼ ð�0:3; 0:3; 0:02; 0:8; 0:02Þ; (22)

we explore the dynamics depending on the phase shifts v.

The absolute value of the order parameter

R hð Þ ¼ 1

N

X

N

k¼1

exp ihkð Þ
	

	

	

	

	

	

	

	

	

	

; (23)

gives information about the synchronization of the oscillators,

that is, RðHsyncðtÞÞ ¼ 1 and RðHsplayðtÞÞ ¼ 0. Figure 2(a)

shows chaotic dynamics for phase shifts v¼ (0.108, 0.27, 0,

1.5, 0) within C that give rise to positive maximal Lyapunov

exponents. Integrating the system (7)1 for varying parame-

ters v1, v2 and random initial condition reveals a region in

parameter space where trajectories give positive maximal

Lyapunov exponents, see Figure 2(b). This region relates to

the bifurcation lines v1¼ 0, given by (19), and v2¼ 0, given

by (20), of the splay phase. More specifically, numerical con-

tinuation of the branch of periodic solutions which arises in

the Hopf bifurcation of Hsplay in AUTO for fixed v1¼ 0.1

and decreasing v2 from 0.3 towards the parameter values of

Figure 2 shows subsequent period doubling bifurcations (not

shown). The bifurcation of a (relative) equilibrium on the

boundary of C induces bistability with the attractors in the in-

terior of C.
Trajectories with positive maximal Lyapunov exponents

kmax also appear close to the boundary of C. Figure 3(a)

shows a solution h in C for v¼ (0.154, 0.318, 0, 1.74, 0).

These solutions appear to be organized by heteroclinic net-

works that involve saddle-focus equilibria on the boundary

of C. Figure 3(b) shows a stable periodic orbit close to such a

heteroclinic network for parameters v¼ (0.2, 0.316, 0, 1.73,

0). This suggests that chaos can also arise through a

Shilnikov saddle-focus scenario35 on the boundary of C.

B. Chaos in networks of N5 5 oscillators

Positive maximal Lyapunov exponents also for networks

of N¼ 5 oscillators. Figure 4 shows positive maximal

Lyapunov exponents and chaotic order parameter fluctua-

tions for the dynamics of (7) for varying phase shift
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parameters v and fixed initial condition h(0)¼ (0.646, 1.726,

3.269, 5.295, 2p). Note that for the same parameter range as

in Figure 4, positive maximal Lyapunov exponents also arise

for the dynamics of N¼ 4 oscillators (not shown).

VI. DISCUSSION

We show that symmetrical phase oscillator networks

with coupling that involves nonpairwise interaction can ex-

hibit chaotic dynamics with coupling functions that only

contain two nontrivial harmonics. As demonstrated in

Section V, this is also the case for a network of N¼ 4 oscilla-

tors, the smallest networks that can support chaotic dynam-

ics. By contrast, for networks of four oscillators with

pairwise interaction, the only known example of a coupling

function that gives rise to chaotic dynamics has four nontriv-

ial harmonics.13 Coupling functions with two harmonics are

sufficient for larger networks.7 The emergence of positive

Lyapunov exponents for nonpairwise coupling begs to be ex-

plored further. Our results suggest that chaos can arise

through period doubling and—modulo the symmetry on the

invariant region—in a Shilnikov scenario involving a saddle

focus on the boundary of the canonical invariant region.

However, the boundaries of parameter values giving rise to

positive kmax apparent in Figures 2(b) and 4(b) remain to be

traced out. Moreover, positive Lyapunov exponents arise in

the same region of parameter space. Is it possible to find a

(set of) coupling functions that give chaotic dynamics for

any N� 4?

Our results clarify the role of amplitude dynamics play

in the emergence of chaos for oscillators beyond the weak

coupling limit. While it has been argued that amplitude

degrees of freedom are crucial for the emergence of chaotic

dynamics in fully symmetric coupled oscillators,24,30 our

results suggest that these additional degrees of freedom are

not necessary for four or more oscillators: chaos can arise in

the phase reduction of symmetrically coupled oscillators

close to a Hopf bifurcation in the weak coupling limit

FIG. 3. Heteroclinic networks organize chaotic behavior in C for networks

of N¼ 4 oscillators; line styles on the boundary of C are as in Figure 1. The

right panel shows a trajectory with positive maximal Lyapunov exponents

for phase shift parameters v¼ (0.154, 0.318, 0, 1.74, 0) that comes close to

the boundary of C. For nearby parameter values v¼ (0.2, 0.316, 0, 1.73, 0),

there is an attracting periodic orbit close to a heteroclinic network involving

two saddle equilibria, one a saddle-focus, on the boundary of C.

FIG. 2. Chaotic attractors exist in C for networks of N¼ 4 oscillators (7) with coupling function (14). Panel (a) shows the dynamics for v¼ (0.1, 0.267, 0, 1.5,

0) with the chaotic fluctuations of the absolute value of the order parameter (23) and the convergence of kmax on the left and the attractor in terms of phase dif-

ferences wk¼ hk� h1 in C on the right. The line styles for the cluster states on the boundary of C are as in Figure 1. Panel (b) shows a region in parameter space

where trajectories give rise to positive maximal Lyapunov exponents as parameters v¼ (v1, v2, 0, 1.5, 0) are varied. The coloring indicates the maximal

Lyapunov exponent which is negative if the trajectory converges to a stable equilibrium (onT
N�1

), zero if it converges to a limit cycle, and positive if trajecto-

ries separate exponentially. As initial conditions are chosen randomly, speckled regions indicate bistability. Black lines indicate bifurcation of equilibria: the

splay phase (dashed) and an equilibrium on the boundary of C (solid). A black dot indicates the choice of parameters in panel (a).
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through nonpairwise coupling. Note that higher order expan-

sions of the phase dynamics for symmetric oscillators close

to a Hopf bifurcation may induce interaction terms involving

five or more phases. These may affect the qualitative dynam-

ics of the phase reduction for N� 5 oscillators but reduce to

interactions of four phases in networks of N¼ 4 oscillators;

cf. Section IV. By contrast, the invariant torus in the weak

coupling limit for three oscillators does not support any cha-

otic dynamics due to the continuous phase shift symmetry.

Thus, chaotic dynamics for three symmetrically coupled

oscillators8 can only occur in the full system for time scales

where the weak coupling approximation breaks down.

Nonpairwise interaction between phase oscillators also

facilitates the emergence of chaotic weak chimeras, i.e., dy-

namically invariant sets on which oscillators are locally fre-

quency synchronized. While recent results on the existence

of chaotic weak chimeras relied on pairwise interactions and

coupling functions with four nontrivial harmonics,14 non-

pairwise interaction yields another mechanism to construct

such solutions. Moreover, as nonpairwise coupling arises in

a phase reduction of more general oscillators, our results pro-

vide a link between chaotic weak chimeras and chimera

states found for more general oscillators beyond the weak

coupling limit36—see also Ref. 12.

Higher order interactions that involve nonpairwise terms

also arise in oscillators with mean field coupling44 and are of

interest for applications. In fact, methods for the analysis of

time series of oscillatory data explicitly address the problem

of reconstructing higher order terms.26,37 Thus, we anticipate

that a detailed understanding of the dynamical effects in-

duced by general nonpairwise coupling will give additional

insights into the analysis of real-world networks of oscillato-

ry units with generic coupling.
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