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ABSTRACT

This paper aims to verify the influence of the bar, its pattern speed (Ωb)
and its rate of growth on the stability of the orbits in gravitational potentials. We
studied the nature of the orbits in potentials representing galaxies with growing
bars, where a linear growth was assumed. In order to study the stability of the
orbits we applied SALI. We studied six models in which the bar dimensions were
fixed, but we varied their pattern speed and time of bar growth. We found that
when the bar growth is faster, more chaos is generated and we also noted that
the higher the Ωb, the greater its influence on the system dynamics. The initial
positions of the orbits that became chaotic were located in a well-defined ring-like
region, confined between the ILR and CR resonances. There was also an indication
that the retrograde orbits, although much scarcer, are more conductive to chaos
when they do exist.

RESUMEN

Este trabajo verifica la influencia de la barra, de su velocidad angular (Ωb)
y de su tasa de crecimiento en la estabilidad de las órbitas en potenciales gravita-
cionales. Estudiamos órbitas en potenciales representando galaxias con barras en
crecimiento, asumiendo un crecimiento lineal. Para estudiar la estabilidad de las
órbitas aplicamos SALI. Estudiamos seis modelos con dimensiones fijas de la barra,
pero variamos la velocidad y el tiempo de crecimiento de la misma. Evidenciamos
que cuando el crecimiento de la barra es más rápido, se genera más caos y también
observamos que cuanto mayor es Ωb, mayor será su influencia en la dinámica del
sistema. Las posiciones iniciales de las órbitas que se han vuelto caóticas quedan
ubicadas en una región anular bien definida, confinada entre ILR y CR. Las órbitas
retrógradas, aunque mucho más escasas, parecen ser más propicias al el caos.

Key Words: chaos — galaxies: general — galaxies: kinematics and dynamics —
galaxies: spiral

1. INTRODUCTION

Approximately 65% of disk galaxies show bar-like
structures (Eskridge et al. 2000; Sheth et al. 2003).
The characteristic of their bars varies considerably,
from faint weak bars to prominent, strong and mas-
sive bars. By computational integration of stellar or-
bits in gravitational potential models, it is possible
to study the dynamics and stability of this type of
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galaxy. Indeed, stellar orbits supported by a galac-
tic potential are the basic constituents of any galactic
structure. Understanding the behavior of stellar or-
bits is essential for understanding the formation and
evolution of these structures.

In recent works, integrations of orbits in fixed-
parameter bar potentials have been performed; it
was concluded that for sufficiently large bar axial
ratios, stable orbits having propeller shapes have a
great influence on bar structure (Kaufmann & Pat-
sis 2005). Several types of resonant orbits can shape
the bar structure, besides the x1 orbital family. Al-
though the x1 family is considered to be the back-
bone of 2D bars, in the case of 3D this family is
aided by a tree of its 3D bifurcating families (Skokos
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322 CARITÁ ET AL

et al. 2002b). All other bar-supporting orbits are
candidates for supporting the inner parts of the bar
(Gajda et al. 2016; Patsis & Katsanikas 2014). In
recent studies it was verified that more massive bars
have a greater tendency for chaotic orbits to oc-
cur, whereas weaker bars are less affected by chaos
(Manos & Athanassoula 2011; Caritá et al. 2017).

However, it is agreed that the formation of a bar
is a long and complex secular process, which may
have several histories. It is also agreed that no galaxy
is born barred: the bar can form, change (increase,
decrease, rotate etc.) and extinguish itself with time,
in processes that depend on the parameters of the
galaxies that host them (Bournaud & Combes 2002).
Regarding this trend, Manos & Machado (2014),
Machado & Manos (2016) and Chaves-Velasquez
et al. (2017) presented studies on the regular or
chaotic character of orbits in time-dependent barred
galaxy potentials based on an N-body simulation.
They extracted parameters of bar evolution from the
simulation for certain times, treating each snapshot
as a time-independent model.

In Caritá et al. (2017), the SALI (Smaller Align-
ment Index) method was applied (Skokos 2001), to
study the stability of stellar orbits in the gravita-
tional potential of barred galaxies with fixed parame-
ters, in which the theoretical models based on Manos
& Athanassoula (2011) were used. In that work, we
were exclusively interested in evaluating the influ-
ence of the bar parameters on the occurrence of chaos
in the stellar orbits.

In the present paper we propose a new approach
by adding some new ingredients. First of all, we
study six models based on observational properties of
the grand design barred galaxy NGC 936, from which
we borrow the main parameters, as presented in de-
tail in Appendix A. We also introduce analytically
the growth of the bar, i.e., we set time-dependent
evolving bar potentials. Moreover, we verify the in-
fluence of the pattern speed and the rate of growth
of the bar on the stability of the orbits.

To perform the orbital integrations and SALI
calculation, we used a slight adaptation of the LP-
VIcode program (Carpintero et al. 2014), which is a
fully operational code, implemented in Fortran 77,
that efficiently calculates 10 different chaos indica-
tors for dynamic systems, regardless of the number
of dimensions, SALI being one of them.

2. METHODOLOGY

2.1. The Smaller Alignment Index (SALI)

In order to define SALI, let us consider a Hamil-
tonian flow of N degrees of freedom, an orbit in

the 2Ndimensional phase space with initial condi-
tion x(0) = (x1(0), · · · , x2N (0)) and two normalized
deviation vectors ŵ1(0), ŵ2(0) from the initial con-
dition x(0).

We define

SALI(t) :=min{||ŵ1(t)− ŵ2(t)||, ||ŵ1(t)+ ŵ2(t)||},
(1)

where the quantities ||ŵ1(t)− ŵ2(t)|| and ||ŵ1(t) +
ŵ2(t)|| are called Parallel Alignment Index and An-
tiparallel Alignment Index, respectively.

It is evident that SALI(t) ∈ [0,
√
2] and when

SALI = 0 the two normalized vectors have the same
direction, being equal or opposite.

The SALI value is a very useful tool for detecting
chaos in Hamiltonian systems. Chaotic or regular
motions are easily distinguishable applying the SALI
method. In the case of chaotic orbits, the deviation
vectors ŵ1(t) and ŵ2(t) align in the direction defined
by the Maximum Lyapunov Exponent (MLE) and
SALI(t) falls exponentially to zero:

SALI(t) ∝ e−(L1−L2)t, (2)

with L1 and L2 the two largest Lyapunov exponents.
Furthermore, for regular motions the orbits de-

velop on a phase space torus and eventually the vec-
tors ŵ1(t) and ŵ2(t) fall in the torus tangent space,
following a t−1 time dependence. In this case, SALI
oscillates at nonzero values:

SALI(t) ≈ constant > 0. (3)

We have a clear distinction between ordered and
chaotic behaviors using the SALI method in Hamil-
tonian systems. For mathematical SALI details,
we recommend reading the papers Skokos (2001);
Skokos et al. (2002a, 2003, 2004).

2.2. Mathematical Modeling of the Gravitational
Potential

In this investigation, we used the gravita-
tional potential divided into three basic components:
bulge, disk and bar, according to the following equa-
tion:

ΦTotal = ΦBulge +ΦDisk +ΦBar. (4)

Each component of equation (4) was mathemati-
cally modeled according to a classical potential: the
Plummer potential was used for the bulge (Plummer
1911), Miyamoto-Nagai’s for the disk (Miyamoto &
Nagai 1975) and Ferrers’ for the bar (Ferrers 1877).
This way of representing the total gravitational po-
tential has been extensively used in many articles,
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such as Patsis (2002); Manos & Athanassoula (2011);
Skokos et al. (2002c,d); Patsis et al. (2002, 2003) and
Caritá et al. (2017).

The Plummer potential is written as:

ΦBulge = − GMS√
x2 + y2 + z2 + ǫ2

, (5)

where ǫ is the scale-length of the bulge, MS is its
total mass, and G is the gravitational constant.

The Miyamoto-Nagai’s potential is written as:

ΦDisk = − GMD√
x2 + y2 + (A+

√
z2 +B2)2

, (6)

where MD is the total disk mass, A and B are its
horizontal and vertical scale-lengths, and G is the
gravitational constant.

The Ferrers’ potential is written as:

ΦBar = −πGabc
ρc
3

∫ ∞

λ

du

∆(u)
(1−m2(u))3, (7)

where m2(u) = x2

a2+u + y2

b2+u + z2

c2+u , ∆2(u) =

(a2 + u)(b2 + u)(c2 + u), λ is the positive solution of
m2(λ) = 1 for the region outside the bar (m ≥ 1)
and λ = 0 for the region inside the bar (m < 1).

In this last potential, the density is given by

ρB(x, y, z) =





ρc(1−m2)2 , m < 1,

0 , m ≥ 1,

(8)

where the central density is ρc =
105
32π

GMB

abc , MB is the

bar mass andm2 = x2

a2 +
y2

b2 +
z2

c2 , where a > b > c > 0
are the semi-axes of the ellipsoid which represents
the bar.

In order to implement this bar model compu-
tationally, we used the analytical version given by
Dr. Pfenniger, who kindly provided us with his For-
tran 77 routine of the Ferrers potential. In this rou-
tine, the polynomial form of the Ferrers potential
(Pfenniger 1984; Caritá et al. 2017) was used.

In the course of this work, the SALI method was
applied to study stellar orbits in a gravitational po-
tential of barred galaxies, since the motion of a test
particle in a rotating 3-dimensional model of a barred
galaxy is given by the Hamiltonian:

H(x, y, z, px, py, pz) =
1

2
(p2x + p2y + p2z)+

ΦTotal(x, y, z)− Ωb(xpy − ypx),
(9)

where the bar rotates around the z-axis; x and y
respectively are the major and minor galactic bar

axes, ΦTotal is the total gravitational potential given
by equation (4) and Ωb is the bar pattern speed.

We emphasize that in order to follow the evolu-
tion of the orbits and that of their deviation vectors
(for SALI computation), it is necessary to know the
equations of motion and the variational equations
linked to the Hamiltonian (9). The corresponding
motion and variational equations can be checked in
Manos & Machado (2014).

To study orbit stability in models with 2 degrees
of freedom, in our calculations, z = 0 and pz = 0
were adopted in the Hamiltonian shown in equation
(9).

2.3. Implementation and Computation Using the
LP-VIcode

To perform the orbital integrations and SALI
calculation, the LP-VIcode (Carpintero et al. 2014)
was employed, which is freely available at http:

//lp-vicode.fcaglp.unlp.edu.ar/.
LP-VIcode is an operational code in Fortran 77

that efficiently calculates 10 chaos indicators for dy-
namic systems, including SALI. The program reads
the initial conditions for one or more orbits, inte-
grates them (using a Bulirsch-Stoer integrator), and
calculates the equations of the chosen chaos indica-
tors. More details about the structure and operation
of the LP-VIcode can be found in Carpintero et al.
(2013) and Carpintero et al. (2014).

In order to integrate orbits using the program
and to study their stability, the user must provide
the potential expressions and the motion and varia-
tional equations. That is, there is an external routine
where these equations must be written in Fortran 77
by the user.

Two actions performed in the LP-VIcode im-
plementation and adaptation stage should be high-
lighted in this section: the first is the adjustments
that were made in order to implement a rotating co-
ordinate system in the code (since the general equa-
tions (of motion and variational) present in the orig-
inal main program consider only a static reference
frame; it is known that in order to model a rotating
galactic bar it is necessary to consider a coordinate
system that rotates along with the bar. To do this
we inserted the pattern speed Ωb in the motion and
variational equations in the LP-VIcode main pro-
gram transforming the original equations into the
form which Manos & Athanassoula (2011) displayed
in their text. The second important action was bar
growth. As previously explained, in this work we
modeled the emergence of a galactic bar. The idea
was to create a system that started as a barless
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324 CARITÁ ET AL

galaxy and that would become a barred galaxy later
on, where the bar grew over time. In order to model
this evolution of the bar potential, a linear function
of time was assumed for the mass of the bar in the
Ferrers potential (this was done in an external rou-
tine of the LP-VIcode, the same routine where the
user provides the potential and the motion and vari-
ational equations).

With these two actions we were able to use the
LP- VIcode to study the dynamics of a barred galaxy,
with the mass of the bar growing over time, and
remaining constantly rotating around the z-axis.

3. DEVELOPMENT AND DISCUSSION

3.1. Models and Parameters

We studied three models X, Y and Z whose pa-
rameters are shown in Table 1. Although it is not
necessary to understand the origin of these param-
eters for our study, the reader can find a brief de-
scription of the procedures adopted in Appendix A,
where we explain that the inspiration for these pa-
rameters came from the galaxy NGC 936, and where
we describe how we computed the parameters based
on the works of Kent & Glaudell (1989) and Merri-
field & Kuijken (1995). Each of the models was di-
vided into two more specific models, where the rate
of bar growth was varied (in one of them, the bar
totally evolves with 5 turns around itself and in the
other with 10 turns) generating in total six models:
X5, X10, Y5, Y10, Z5 and Z10.

In Table 1, and all along this paper, the model
system of units was defined considering the gravita-
tional constant G = 1. We adopted 1 kpc for length,
103 km s−1 for velocity, 103 km s−1 kpc−1 for pattern
speed, 1 Myr for time, and 2 × 1011 M⊙ for mass.
The total mass G(MS+MD+MB) was always equal
to 1. For the energy, the unit is 106 km2s−2. The in-
tegration time was 10 000 Myr.

For all models (X, Y and Z) the masses of the
bulge, disk and bar components, as well as their
other parameters do not change. Therefore, the dif-
ference between these three models is basically the
galactic bar pattern speed; Model X has a slower Ωb,
model Y is intermediate and model Z has a faster Ωb.

The formation of a bar is a secular process that
can have several histories. Bars can form, change
(increase, decrease, rotate etc.) and extinguish
themselves with time, in processes that depend on
the parameters of the galaxies that host such bars
Bournaud & Combes (2002). No analytical stud-
ies on gravitational bar potentials that evolve over

time are known. In some recent works, such as
like Manos & Machado (2014), Machado & Manos
(2016) and Chaves-Velasquez et al. (2017), the au-
thors wrote about the barred galaxy stability using
time-dependent potentials. However, these studies
were based on N-body simulations of barred galax-
ies by extracting parameters of the simulation for
certain times in the system evolution, and treating
each snapshot as a time-independent model.

Therefore, our intention is to carry out a study
where the gravitational potential that represents the
bar evolves over time in an analytical way. The idea
is that our system starts as a barless galaxy and
becomes a barred galaxy, whose bar grows over time.

We began the integrations with totally axisym-
metric potentials, without bar, and over time we
transformed these potentials into non-axisymmetric
ones, with a bar.

Let us recall that the effective potential is given

by Φeff (x) = Φ(x) − 1

2
|Ω × x|2 and the Lagrange

points are five points where ▽Φeff = 0. Writing the
potential like this, we have a rotating system repre-
sentation. The quantity EJ = 1

2 |v|2 +Φeff is called
the Jacobi energy and is conserved in the rotating
system (for more details see Binney & Tremaine
2008). Figure 1 shows the initial effective potentials
and the final effective potentials for Models X, Y,
and Z, where the emergence of the bar can be clearly
seen.

In order to perform this bar evolution (shown in
Figure 1), it was decided to implement a linear time-
dependent function of the mass of the bar in the Fer-
rers potential. In this process, two specific cases were
created for each model: the evolution is completed
in a time corresponding to 5 or 10 complete turns of
the bar around itself. With this approach, we cre-
ated the X5, X10, Y5, Y10, Z5 and Z10 notations. The
bar evolution time for each model obviously depends
on the pattern speed of the bar Ωb and on the length
of the bar. These times were calculated to serve as
parameters of the growth function of the bar and are
displayed in Table 2.

The Jacobi energy EJ =
1

2
|v|2 +Φeff (x) is con-

served in a rotating potential system representative
of a fixed bar. However, this energy is not conserved
during the evolution. While the mass of the bar is
growing linearly, the EJ value of any particle also de-
creases linearly, and it is conserved again as soon as
the bar growth finishes and the system bears a fixed
bar (after evolution). To exemplify this statement,
a random orbit was used, with an initially circular
motion, integrated in Model X5. The integration
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CHAOS IN GROWING BAR MODELS 325

TABLE 1

PARAMETER SETS

MS ǫS MD A B MB a b c Ωb

Model X 0.1273 0.45 0.7406 4.7 0.4 0.1321 4.0 1.1 0.4 0.05

Model Y 0.1273 0.45 0.7406 4.7 0.4 0.1321 4.0 1.1 0.4 0.06

Model Z 0.1273 0.45 0.7406 4.7 0.4 0.1321 4.0 1.1 0.4 0.07

(a) Initial Model X (b) Initial Model Y (c) Initial Model Z

(d) Final Model X (e) Final Model Y (f) Final Model Z

Fig. 1. Effective potential contours of Models X, Y and Z. The top three images illustrate the initial effective potential
contours, when the models did not yet have a bar, so the potential is axisymmetric. The three bottom images illustrate
the final effective potential, when the bar is fully grown. Although there is no bar formed yet in the models of the first
row, the effective potential, in a coordinate system that rotates with the pattern speed of the forthcoming bar, defines
a radius of corrotation which is displayed in red. All images in the bottom row display the L1 − L5 Lagrange points.
Twenty contours between energies −0.25 and −0.18 are displayed for each model. The color figure can be viewed online.

TABLE 2

TIME FOR BAR EVOLUTION IN EACH
MODEL

Model Time (Myr)

X5 614.35

X10 1228.70

Y5 511.96

Y10 1023.92

Z5 438.82

Z10 877.65

begins without the bar, the bar structure starts to
emerge and its mass increases linearly until the time
614.35 Myr (as shown in Table 2). After this evo-

lution, the system has a fixed bar until the end of
the integration at 10, 000 Myr. This whole process
is displayed in Figure 2.

3.2. Initial Conditions

Galactic bars behave like rigid bodies, that is, Ωb

is always constant. However, galactic disks do not
behave this way, their pattern speed Ω is a function
of the radial coordinate. Thus, it is natural to imag-
ine that resonances will appear between the bar and
disk. An example is the corrotation resonance (CR),
which occurs where Ω = Ωb.
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326 CARITÁ ET AL

Fig. 2. This image displays the EJ behavior for a random
orbit as the bar grows in Model X5. It can be observed
that EJ is not conserved during bar growth, but it is
conserved after the bar has evolved. Notice that the evo-
lution time is completely in agreement with that shown
in Table 2 for Model X5 (614.35 Myr). The integrations
were made up to 10,000 Myr, and for this illustration we
plot the time until 3,000 Myr. The EJ behavior for this
orbit is not unique: for all integrated orbits this energy
decrease occurs during the time of bar evolution.

There will also be resonances when the following
condition is satisfied:

Ω = Ωb ±
κ

m
, (10)

where m is an integer related to the symmetry of
the structure in which we are interested (m-armed

spiral structures, bars etc.), and κ2 = d2Φ
dR2 + 3

R
dΦ
dR

is the epicyclic frequency. In this case, there will be
two resonances, the Lindblad resonances. In Equa-
tion (10), for the negative sign, there is the Inner
Lindblad Resonance (ILR); for the positive sign, the
Outer Lindblad Resonance (OLR). For a galactic bar
potential we have m = 2 because of the bisymmetric
structure. Figure 3 displays the curves Ω, Ω + 1

2κ
and Ω− 1

2κ for Models X, Y and Z.
As the galactic bar is expected to always be con-

tained in the CR radius, its influence does not exceed
the OLR radius. Therefore, we only consider orbits
with initial positions inside the OLR radius. For
this study, we launched particles in initially circu-
lar orbits, distributed randomly from the center up
to the OLR resonance, with 10,000 prograde orbits
and 10,000 retrograde orbits for each model, start-
ing from the positions shown in Figure 4. By pro-
grade and retrograde orbits we mean orbits launched
in the direct and opposite directions, respectively, in
the bar corrotating non inertial reference frame. It is
important to stress that we are dealing with motions

Fig. 3. Ω, Ω + 1

2
κ and Ω − 1

2
κ curves for Models X, Y e

Z and the corresponding CR, ILR and OLR resonances.
The color figure can be viewed online.

of individual particles in a gravitational potential,
i.e., this is not a self-consistent N-body simulation.
The same number of prograde and retrograde orbits
does not mean that we are weighting them equally,
since it is known that prograde orbits play a much
more important role in a barred galaxy potential. It
just means we are exploring possible prograde and
retrograde orbits with different initial conditions.

Notice that the greater the bar pattern speed Ωb,
the smaller will be the OLR radius. According to our
criterion for the choice of initial conditions, Model X
has more scattered orbits than Model Y and, in turn,
Model Y has more scattered orbits than Model Z.
This phenomenon is clearly shown in Figure 4.

3.3. Results and Discussion

For efficiency, we inserted a condition in the
SALI calculation on the LP- VIcode program to
show us the moment when SALI < 10−8, which we
consider close enough to zero to classify the orbit as
chaotic. With this, we were able to create a classifi-
cation for the chaos level of an orbit. The categories
are as follows:

Level 1: SALI < 10−8 for t ∈ [0, 2500).

Level 2: SALI < 10−8 for t ∈ [2500, 5000).

Level 3: SALI < 10−8 for t ∈ [5000, 7500).

Level 4: SALI < 10−8 for t ∈ [7500, 10000],

where t is measured in Myr 5.

5All orbits were integrated to 10,000 Myr.
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(a) Initial positions - Model X

(b) Initial positions - Model Y

(c) Initial positions - Model Z

Fig. 4. Initial particle distributions for Models X, Y and
Z. All orbits were launched with initial circular velocity
and were distributed randomly inside the OLR resonance
for each model. It is clear in the images that Model X has
more scattered orbits than Model Y and, in turn, Model
Y has more scattered orbits than Model Z; this happens
because the greater the bar pattern speed Ωb, the smaller
becomes the OLR radius. This image shows dots repre-
senting 10,000 initial positions. Indeed, 10,000 prograde
orbits and 10,000 retrograde orbits were computed for
each model, starting from these same positions.

(a) Progrades - Model X5

(b) Retrogrades - Model X5

(c) Progrades - Model X10

(d) Retrogrades - Model X10

Fig. 5. Integration time × chaotic orbit number for Mod-
els X5 and X10. Model X5, in which the bar grows faster,
has slightly more chaos (mainly Level 1) than Model X10.
The colors of the line segments are defined in the legend
inside the upper plot. The color figure can be viewed
online.
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(a) Progrades - Model Y5

(b) Retrogrades - Model Y5

(c) Progrades - Model Y10

(d) Retrogrades - Model Y10

Fig. 6. Integration time × chaotic orbit number for Mod-
els Y5 and Y10. Model Y5, in which the bar grows faster,
has slightly more chaos (mainly Level 1) than Model Y10.
The colors of the line segments are defined as in Figure 5.
The color figure can be viewed online.

(a) Progrades - Model Z5

(b) Retrogrades - Model Z5

(c) Progrades - Model Z10

(d) Retrogrades - Model Z10

Fig. 7. Integration time × chaotic orbit number for Mod-
els Z5 and Z10. Model Z5, in which the bar grows faster,
has slightly more chaos (mainly Level 1) than Model Z10.
The colors of the line segments are defined as in Figure 5.
The color figure can be viewed online.
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(a) Model X5 (b) Model X10

(c) Model Y5 (d) Model Y10

(e) Model Z5 (f) Model Z10

Fig. 8. Time × cumulative number of chaotic orbits for Models X5, X10, Y5, Y10, Z5 and Z10. Looking at the sequence
of images, one realizes that the number of orbits that become chaotic at some point is closely related to the bar pattern
speed. Clearly in Model Z, in which the bar rotates faster, there is a greater amount of chaotic motions when compared
to Model X, in which the bar is slower. While Figures 5 to 7 show a slight difference indicating that models in which
the bar grows faster have slightly more Level 1 chaos, here by analyzing the general context, for the cumulative number
of chaotic orbits nothing can be said.

Figures 5 to 7 show the amount of chaos that
arose at each integration time for each model, for
both prograde and retrograde orbits. The levels of
chaoticity are represented by different colors. Appar-
ently, orbits launched as retrogrades are more con-
ducive to chaos. This observation is consistent with
Caritá et al. (2017); however it contradicts results
of some classic investigations, (Athanassoula et al.
1983; and Pfenniger 1984), where there is more or-
der in the retrograde parts of the surfaces of section
of these fixed potentials. Certainly, this will lead us
to further investigations in a future article.

All models studied presented strong dominant
Level 1 chaos for the retrograde orbits and an appar-

ent domain of Level 2 chaos for the prograde orbits.
Some Level 1 chaos is generated in the prograde or-
bits, and specifically in Models X10 and Z5 this type
of chaos is null or practically negligible.

Figure 8 shows the cumulative number of chaotic
orbits for prograde and retrograde orbits, and for
the total number of orbits of the two types in all
models. The distributions between order and chaos,
considering the initial positions for each model, are
shown in Figures 9 to 11.

In general, for the prograde orbits, the number
of chaotic orbits generated was quite low, ranging
from 5% to 10% of the total number of prograde or-
bits launched (depending on the model analyzed).
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(a) Model X5

(b) Model X10

Fig. 9. Each plot shows the initial positions of all Model X particles, color-coded according to their chaos level, as in
the legend above. This image again reinforces the result that orbits launched as retrogrades are more conductive to
chaos. The outer limit for the inicial positions is the OLR, as stated in § 3.2. The initial positions of the orbits that
have become chaotic are located in a well-defined ring-like region, confined between the ILR and CR resonances. ILR,
CR and OLR circles are shown in black, and identified in the upper left plot. Almost no orbit presents chaos with initial
conditions outside these regions. The color figure can be viewed online.

On the other hand, for the retrograde orbits, this
percentage increased considerably, to between 15%
and 25% of the total number of retrograde orbits
launched (depending on the model). In total num-
bers, considering the prograde and retrograde orbits,
the percentage of chaos in the integrated orbits was
always between 10% and 18% (depending on the
model).

Figure 8 does not show appreciable changes with
the rate of bar growth. However, in Figures 5 to 7
dissimilarities appear. The models where the bar
grows over 5 turns seem to provide slightly more
chaos than the models where the bar grows over 10
turns. This is an indication that an abrupt appear-
ance of the bar causes more disturbance in the sys-
tem.

Figures 9 through 11 show the stability of the
orbits according to the initial positions. They all
present a common feature: very well-defined ring-

like regions of chaos. For the prograde orbits, there
is only one ring of chaos for each model. For the
retrograde orbits, there are two rings of chaos, a
large and thick outer ring, surrounding a subtle in-
ner ring, with one exception for Model Z5. The CR
resonance limits these rings; in this context, interest-
ingly, the most prominent rings are confined between
the ILR and CR resonances, with a single exception
for Model Z5. Very few orbits presented chaos with
initial conditions outside these ring-like regions. In
Figures 9 through 11 the difference in the amount
of chaos for prograde and retrograde orbits is also
clearly shown.

The greater the bar pattern speed Ωb, the smaller
the OLR radius. Figures 5 to 11 also show that
the greater Ωb, the more chaos the orbits that are
within the OLR radius will present. In fact, Fig-
ures 5 through 7 make it clear that the main dif-
ference in this respect is especially in the retrograde
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(a) Model Y5

(b) Model Y10

Fig. 10. Each plot shows the initial positions of all Model Y particles. All plots are organized and color-coded as in
Figure 9. The color figure can be viewed online.

(a) Model Z5

(b) Model Z10

Fig. 11. Each plot shows the initial positions of all Model Z particles. All plots are organized and color-coded as in
Figure 9. The color figure can be viewed online.
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orbits in the Level 1 of chaos. This indicates that
the bar pattern speed also influences the system sen-
sitivity to the bar appearance, since the orbits with
Level 1 of chaos presented chaos in a time close to
the appearance of the bar. On the other hand, for
the prograde orbits, no significant differences are dis-
played at this point.

As expected, the EJ of all particles is not con-
served during bar evolution. As already mentioned,
while the mass of the bar is growing linearly, the
value EJ also decreases linearly, and it is conserved
again from the moment the bar growth finishes and
the system becomes fixed (after evolution). To vi-
sualize this phenomenon, Appendix B presents some
images where the number of orbits for certain times
during and after the growth of the bar for each model
is arranged by EJ . In these images, changes in the
EJ values can be seen until the times listed in Table 2
are reached. Afterwards, EJ is conserved.

4. CONCLUSIONS

The main purpose of this work was to verify the
influence of the bar on the stability of orbits in the
analytical gravitational potential of barred galaxies
where the bar grows over time. Six models with
parameters based on observational properties of the
galaxy NGC 936 were studied, and their influences
on the stability of the orbits were compared. The
bar dimensions were maintained in all six models
and the difference between these six models was the
bar pattern speed and the time of growth.

We find evidence that when the bar grows faster,
more chaos is generated. For the prograde orbits, the
number of chaotic orbits generated was quite low,
ranging from 5% to 10% of the total number of pro-
grade orbits launched (depending on the model). For
the retrograde orbits, this percentage increased con-
siderably, to between 15% and 25% of the total num-
ber of retrograde orbits launched (depending on the
model). In this context, retrograde orbits were more
conducive to chaos. This last statement provides an
opportunity for further investigation, which we will
conduct in the future, as it apparently contradicts
some classic results (Athanassoula et al. 1983; Pfen-
niger 1984). We found, as expected, that EJ was not
conserved while the bar was evolving but it started
to be conserved when the system stabilized. We also
noted that the higher Ωb, the greater its influence on
the orbital dynamics.

Well-defined ring-like regions of chaos were found
corresponding to different initial positions, with few
orbits presenting chaos outside these regions. For
the prograde orbits, there was an unique ring for

each model. For the retrograde orbits, two rings of
chaos appeared, almost always a large, thick outer
ring, surrounding a subtle inner ring. The CR radius
was the outer limit for these chaos rings, and the
most prominent rings were predominantly confined
between the ILR and CR resonances.

We analyzed consistent barred galaxy models for
systems in rotation and studied the orbit stability
using the SALI Method. The LP-VIcode program
met all of our needs and only small adjustments were
needed.

We acknowledge the Brazilian agencies CNPq
(200906-2015-1), CAPES and FAPESP, as well as
the Mexican agency CONACyT (CB-2014-240426)
for supporting this work. Our sincere thanks to Dr.
Pfenniger, who kindly provided us with his Fortran
77 implementation of the Ferrers bar potential. All
numerical work was developed using the Hipercubo
Cluster resources (FINEP 01.10.0661-00, FAPESP
2011/13250-0 and FAPESP 2013/17247-9) at IP&D–
UNIVAP.

APPENDIX

A. CHOICE OF PARAMETERS - NGC 936

NGC 936 is a barred spiral galaxy, type SB0 in
the Hubble scheme (Hubble 1926), which is about
19.6 Mpc away in the direction of Cetus. This galaxy
has a very prominent bar and bulge, and a ring struc-
ture that surrounds the bar. It was discovered on
January 6, 1785 by William Herschel and was clas-
sified at the time as a planetary nebula, because of
its round shape (Herschel 1785a,b).

As the models described in the paper (Plum-
mer, Miyamoto-Nagai and Ferrers) had already been
implemented and were working well in LP-VIcode
(Caritá et al. 2017), we decided to maintain the same
modeling for this research with bars that grow over
time. In order to adjust the necessary parameters for
NGC 936, the works of Kent & Glaudell (1989) and
Merrifield & Kuijken (1995) were used. We note that
the Plummer, Miyamoto-Nagai and Ferrers models
may not be the best for modeling galaxy NGC 936;
but we emphasize that this galaxy was used only as
an inspiration for our parameters. The procedures
for finding the parameters are described below.

Kent & Glaudell (1989) proposed an analytical
model of the NGC 936 bulge given by a truncated
King model (King 1962). The model density is:

ρ(s) = ρc

(
1

[1 + ( sa )
2]

3

2

− 1

[1 + ( sca )2]
3

2

)
, (A11)
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where ρc = 22L⊙ pc−3, a = 265 pc, sc =
2.7 kpc and the radial coordinate s is given by
s2 = x2 + y2 + (z/0, 63)2.

By varying the parameters ǫS and MS in the
Plummer Model, calculating the cumulative mass
curve for this model and comparing it with the King
model cumulative mass curve, using the smallest
variance between the corresponding points in the
graphs, we could estimate parameters ǫS and MS

for a better fit. The fit of these curves was done up
to the radius 2.7 kpc and, thus, we were able to es-
timate the values ǫS = 0.45 and MS = 5.4× 109M⊙.

The work of Kent & Glaudell (1989) also allowed
us to extract an approximation for the brightness
profile for the disk together with the bar, as follows:

Σ = Σ0e
−r/h (A12)

where Σ0 = 355 L⊙ pc−2 and h = 3.5 kpc.
By adjusting the mass growth curves and using

the smallest variance (as we did with the bulge),
we were able to estimate the Miyamoto-Nagai pa-
rameters A and B, as well as the mass of the disk
plus the mass of the bar. The fit of the curves was
done up to a radius of 10 kpc and, thus, we were
able to estimate the values A = 4.7, B = 0.4 and
Mdisc+bar = 3.7× 1010M⊙.

For the bar, parameters a = 4 kpc and b =
1.1 kpc of the Ferrers potential were extracted
from Kent & Glaudell (1989), with dimensions
8.0× 2.2 kpc. From this same work, the mass of
the bar was extracted, using the luminosity infor-
mation as 5.6× 109 L⊙. From this fact, using the

relation
M

L
= 1 we extracted that the mass of the

bar MB = 5.6×109 M⊙. The parameter c = 0.4 kpc
was taken for convenience only.

According to Merrifield & Kuijken (1995), the
bar pattern speed of the galaxy NGC 936 is es-
timated to be Ωb = 60 ± 14 km s−1 kpc−1. With
this, we decided to establish three models by vary-
ing the bar pattern speed. The values Ω considered
by us and their respective models were chosen once
the NGC 936 bar pattern speed was estimated as
Ωb = 60 ± 14 km s−1 kpc−1 (Merrifield & Kuijken
1995); these values are shown in Table 3.

TABLE 3

MODELS X, Y AND Z VARYING THE BAR
PATTERN SPEED OF NGC 936

Model X Model Y Model Z

Ωb = 50 km
s kpc Ωb = 60 km

s kpc Ωb = 70 km
s kpc

Recall that the model units adopted were: 1 kpc
for length, 103 km s−1 for velocity, 103 km s−1 kpc−1

for pattern speed, 1 Myr for time, and 2 × 1011M⊙

for mass. The universal gravitational constant
G was always equal to 1 and the total mass
G(MS +MD +MB) was always equal to 1. The
integration time was 10 000 Myr. The follow-

ing ratios were calculated:
MS

MT
=

0.4× 109

42.4× 109
≈

0.1273,
MD

MT
=

31.4× 109

42.4× 109
≈ 0.7406 and

MB

MT
=

5.6× 109

42.4× 109
≈ 0.1321. To avoid confusion in the no-

tations, we chose to use MS , MD and MB for the
ratios. In this way the models presented in Table 1
were constructed.

B. EJ BEHAVIOR

The Jacobi Energy is not conserved during bar
evolution. While the bar mass is growing linearly,
the value EJ per particle decreases linearly, and it
is conserved again from the moment the bar growth
finishes and the system becomes fixed (after evolu-
tion).

The behavior of the Jacobi energy is shown in
Figure 2. In order to better visualize this phe-
nomenon, the number of orbits per EJ for certain
times during and after the growth of the bar is ar-
ranged in Figure 12 for each model. In these images
it is possible to observe that the value of EJ de-
creases until the times shown in Table 2, after which
time EJ remains constant.
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Caritá, L. A., Rodrigues, I., Puerari, I., & Schiavo, L. E.
C. A. 2018, NewA, 60, 48

Carpintero, D. D., Maffione, N., & Darriba, L. 2013, La
Plata Variational Indicators code: a program to com-
pute a suite of variational chaos indicators (User’s
Guide for Version 102[Kaos])

. 2014, A&C, 5, 19

Chaves-Velasquez, L., Patsis, P. A., Puerari, I., Skokos,
C., & Manos, T. 2017, ApJ, 850, 145

Eskridge, P. B., Frogel, J. A., Pogge, R. W., et al. 2000,
AJ, 119, 536

Ferrers, N. M. 1877, QJPAM, 14, 1

Gajda, G.,  Lokas, E. L., & Athanassoula, E. 2016, ApJ,
830, 108

Herschel, W. 1785a, RSPT, 75, 40

. 1785b, RSPT, 75, 213

Hubble, E. P. 1926, ApJ, 64

Kaufmann, D. E. & Patsis, P. A. 2005, ApJ, 624, 693
Kent, S. M. & Glaudell, G. 1989, AJ, 98, 1588
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