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Abstract

Low-dimensional yet rich dynamics often emerge in the brain. Examples include oscillations and 

chaotic dynamics during sleep, epilepsy, and voluntary movement. However, a general mechanism 

for the emergence of low dimensional dynamics remains elusive. Here, we consider Wilson-

Cowan networks and demonstrate through numerical and analytical work that a type of 

homeostatic regulation of the network firing rates can paradoxically lead to a rich dynamical 

repertoire. The dynamics include mixed-mode oscillations, mixed-mode chaos, and chaotic 

synchronization. This is true for a single recurrently coupled node, pairs of reciprocally coupled 

nodes without self-coupling, and networks coupled through experimentally determined weights 

derived from functional magnetic resonance imaging data. In all cases, the stability of the 

homeostatic set point is analytically determined or approximated. The dynamics at the network 

level are directly determined by the behavior of a single node system through synchronization in 

both oscillatory and non-oscillatory states. Our results demonstrate that rich dynamics can be 

preserved under homeostatic regulation or even be caused by homeostatic regulation.

1 Introduction

The human brain contains billions of neurons each receiving potentially thousands of 

connections from their neighbours. Despite this complexity, low-dimensional dynamics 

often appear in the brain in different regions and contexts. Examples include oscillations 

such as the theta and gamma oscillations in the hippocampus [Buzsáki, 2002, Buzsáki and 

Wang, 2012, Buzsáki et al., 2012], low dimensional oscillatory dynamics during grasping 

and other motions [Churchland et al., 2012], or even low dimensional chaotic dynamics 

during epileptic seizures and different sleep phases [Babloyantz and Destexhe, 1986]. These 

dynamics are sometimes pathological, such as during epileptic seizures while other times 

they are functional, such as during sleep states. Despite the low-dimensionality, the 

dynamics these systems display are often complex [Babloyantz and Destexhe, 1986]. 

However, a general mechanism as to how these dynamical regimes might emerge remains 

elusive.

If these dynamical regimes are indeed learned and not inherited, plasticity in the synaptic 

weights that couple neurons together is necessary. For many neural circuits, strong evidence 

exists for a form of homeostatic plasticity [Froemke et al., 2007, Frank et al., 2006, Bacci et 
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al., 2001, Turrigiano and Nelson, 2004]. The function of homeostatic plasticity is to prevent 

run-away excitation in the circuit and thus pathological states such as epileptic seizures. 

Additionally, homeostatic plasticity prevents a catastrophic loss of neuronal activity which 

results in network quiescence. In other words, homeostatic plasticity serves to maintain a 

stable background firing rate.

Recent modeling work has demonstrated a novel inhibitory homeostatic plasticity 

mechanism designed to regulate activity [Vogels et al., 2011]. This mechanism works by 

applying slow variations in the synaptic weights from the inhibitory neurons to the 

excitatory neurons [Vogels et al., 2011]. As the excitatory neurons start firing in excess of 

their homeostatic set points, the synaptic weights from the inhibitory neurons increase in 

strength to prevent run-away excitation. If the excitation in the network is too low, the 

inhibitory weights decrease in strength to disinhibit the excitatory neurons. The homeostatic 

mechanism can drive initially synchronized activity into the asynchronous irregular regime 

defined by variable spiking but with a constant time averaged firing rate [Vogels et al., 2011, 

Brunel, 2000].

These homeostatic mechanisms fundamentally exist to stabilize network dynamics to an 

equilibrium point [Turrigiano and Nelson, 2004]. Indeed, they exist as a counter mechanism 

to offset the often destabilizing effects of Hebbian plasticity [Turrigiano and Nelson, 2004]. 

Thus, it is surprising to consider homeostasis to be the potential source of complex 

dynamical systems. However, recent work on different forms of homeostatic plasticity 

demonstrate the rich dynamical repertoire that networks regulated by homeostatic plasticity 

can display [Udeigwe et al., 2017, Zenke et al., 2013, Harnack et al., 2015, Hellyer et al., 

2016]. For example a, coupled Wilson-Cowan system with inhibitory homeostatic synaptic 

plasticity and excitatory weights estimated from diffusion spectrum imaging data showed 

rich spontaneous dynamics such as neural avalanches [Hellyer et al., 2016]. However, it is 

difficult to determine what the source of the rich dynamical repertoire in the system 

considered in [Hellyer et al., 2016] is as the underlying networks contain neuronal noise, 

synaptic transmission delays, non-smooth dynamics, and complex coupling. All four 

components may be the source of complex dynamics.

In this work, we attempt to disentangle what effect the homeostatic dynamics have by 

analyzing a smooth Wilson-Cowan ([Wilson and Cowan, 1972]) system similar to the 

system numerically analyzed in [Hellyer et al., 2016]. Here, we consider the system without 

delays or noise as both conditions can increase the complexity of otherwise simple network 

dynamics. We show that the rich dynamics can arise from inhibitory synaptic homeostasis 

alone. Indeed, complex dynamics arise in a single node with recurrent excitation and 

homeostatically regulated inhibition. For example, the single node system displays a period 

doubling cascade to chaos, mixed-mode oscillations, and mixed-mode chaos. Furthermore, 

we demonstrate that these results also occur in coupled dual node systems, and in large 

coupled node systems. The coupling in the large network is identical to the connectivity 

considered in [Hellyer et al., 2016] and derived from functional magnetic resonance imaging 

data from [Hagmann et al., 2008, Honey et al., 2009]. For both cases, we find that the 

complex dynamics of the single node carry over to higher dimensions. Finally, we consider 

node and connection deletion in simulations using the data derived coupling matrices. We 
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find that the homeostatic effect on firing rate stability is substantially boosted by the deletion 

of very specific nodes or connections in the network.

2 The Wilson-Cowan System With Homeostatic Regulation

The system of equations we consider phenomenologically model the average activity of a 

population of neurons [Wilson and Cowan, 1972]. The population consists of a 

subpopulations of excitatory neurons, E, and inhibitory neurons, I. Each population 

corresponds to a single equation governed by the following dynamical system:

τEE′ = − E + ϕ W
EE

E − W
EI

I (1)

τII′ = − I + ϕ W
IE

E (2)

The coupling terms WEE, WEI, WIE are all assumed to be positive scalars while the self-

inhibition term is assumed to be zero, for simplicity. The function ϕ(x) is a sigmoidal 

transfer function that transforms the net current arriving at a population into the population 

activity. The time constants τE and τI denote time scales of the excitatory and inhibitory 

populations, respectively. The equations (1)-(2) are more commonly referred to as the 

Wilson-Cowan system [Wilson and Cowan, 1972]. Here, we also consider the homeostatic 

modification from [Vogels et al., 2011, Hellyer et al., 2016]:

τWW
EI′ = I E − p (3)

where p is the homeostatic set point for the networks excitatory activity. Equation (3) alters 

the dynamics of the EI inhibitory synaptic weight in order to drive the excitatory population 

toward p, the homeostatic set point of the network. Equations (1)-(3) together define the 

dynamics of a single, recurrently coupled node. As we will see in Section 3, analyzing the 

single node system is vital towards understanding the dynamics of the large network.

The network equations are given by the following:

τEEk′ = − Ek + ϕ ∑
i = 1

N

W ik
EE

Ei − Wk
EI

Ik (4)

τIIk′ = − Ik + ϕ Wk
IE

Ek (5)
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τWWk
EI′ = Ik Ek − p (6)

The excitatory activity of population k is given by Ek while the inhibitory activity is given by 

Ik for k = 1, 2, … N. These nodes are coupled by the potentially long range weight 

projection matrix WEE while a node inhibits itself through the diagonal weight matrix WEI. 

We assume that no long-range inhibition is possible, hence the diagonal nature of WEI. 

Furthermore, we will assume that a node can only excite its own inhibitory population. and 

thus WIE is also diagonal.

The time constants for the excitatory, inhibitory, and inhibitory homeostatic synaptic weight 

are given by τE, τI, and τW, respectively. In this work, we will primarily consider the case 

where τW ≫ τE, τW ≫ τI with τW = 5τE, τE = τI = 1 for the majority of numerical 

simulations. The excitation and inhibition operate on the same time scale, while the 

homeostasis operates on a slower time scale. Here, we consider the case where the plasticity 

operates on a slower time scale, however the separation of time scales is moderate. This 

smaller separation is due to the Wilson-Cowan system phenomenologically representing the 

activity or average firing of a population of neurons, and firing rates can have significantly 

slower dynamics than the neuronal dynamics that constitute a network. This can be caused 

for example by short-term plasticity ([Markram and Tsodyks, 1996, Stevens and Wang, 

1995]), spike-frequency adaptation ([Benda and Herz, 2003]), or clustered coupling between 

the individual neurons that constitute a node ([Litwin-Kumar and Doiron, 2012]). However, 

we analyze the system more generally when we consider the origin of Canards and mixed-

mode oscillations in Section 3 consider stronger separations of the time scales numerically 

to determine if the resulting network dynamics are robust.

The transfer function ϕ(x) is a smooth sigmoid function which we will constrain to satisfy 

the following properties:

ϕ′ x > 0, ∀x (7)

lim
x ∞

ϕ x = 1 (8)

lim
x − ∞

ϕ x = 0 (9)

While our derivations and analysis are general for sigmoid functions that satisfy (7)-(9), we 

consider the logistic function:
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ϕ x =
1

1 + exp −ax
, ϕ′ x = aϕ x 1 − ϕ x (10)

for numerical applications. The parameter a determines the steepness of the sigmoid. While 

ϕ(x) is a smooth sigmoid function, other transfer functions are also possible. In particular, 

various non-smooth variants of ϕ(x) can also be considered with differing effects on the final 

dynamics of the network [Harris and Ermentrout, 2015, Nicola and Campbell, 2016]. We 

leave this for future work.

To simplify the notation further, we will rescale time with t = τ
I
t . For the single node, this 

yields the following system:

τ1E′ = − E + ϕ W
E

E − W
I
I (11)

I′ = − I + ϕ θE (12)

τ2W
I′ = I E − p . (13)

with τ1 = τE/τI, τ2 = τW/τI. For simplicity, we will relabel the scalar parameters in the single 

and dual node cases with WE and WI for EE and EI synaptic weights and θ for the IE 

synaptic weight. Finally, the coupling matrix for the large network, WEE, is derived from 

functional neural imaging data (see [Hellyer et al., 2016, Hagmann et al., 2008, Honey et al., 

2009] for further details). These data-derived coupling matrices have no self-coupling 

between nodes W
ii
EE = 0 . This would seem to imply that analysis of the single system 

driven by self coupling given by equations (1)-(3) does not help in understanding the 

dynamics of the full network where W
ii
EE = 0, ∀i . However, as we will see the symmetric 

double-node system without self-coupling has largely identical dynamics to the single-node 

system:

τ1E1′ = − E1 + ϕ W
E

E2 − W1
I
I1 (14)

I1′ = − I1 + ϕ θE1 (15)
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τ2W1
I′ = I1 E1 − p (16)

τ1E2′ = − E2 + ϕ W
E

E1 − W2
I
I2 (17)

I2′ = − I2 + ϕ θE2 (18)

τ2W2
I′ = I2 E2 − p (19)

and in fact synchronizes to solutions of the single-node system.

The parameter values we consider for all systems are shown in Table 1, unless otherwise 

specified as a bifurcation parameter (see figure captions).

We structure the paper as follows: In Section 3 we analyze the single-node system and 

demonstrate that the majority of the rich dynamics we see for both the dual node and the full 

network are present for the single node. In Section 4 we numerically demonstrate that the 

dual node system without self-coupling synchronizes to the single node system analyzed in 

Section 4. Finally, in Section 5, we simulate and analyze the full network equations 

demonstrating a direct inheritance of their dynamics from the single node system.

3 Single Node Analysis

3.1 Local Analysis

Due to the homeostatic mechanism in equation (3), only one equilibrium exists and is 

determined by the following equations:

E = p, I = ϕ θp , W
I =

W
E

p − ϕ
−1

p

ϕ θp
(20)

which is valid for p ∈ (0, 1). We will subsequently refer to this equilibrium as x = E, I , W
I .

As WI > 0 we require:

W
E

p > ϕ
−1

p .
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This sets a range on the admissable values of WE allowed as a function of p, in addition to 

the constraint that WE > 0. Note that these two inequalities coincide when ϕ−1(p) = 0. For 

our sigmoid, this implies that we can consider p < 0.5 and thus all WE > 0.

After some simplification, the Jacobian of this system is given by

J =

−
1
τ1

+
ϕ′ ϕ

−1
p W

E

τ1
−

W
I
ϕ′ ϕ

−1
p

τ1
−

Iϕ′ ϕ
−1

p

τ1

ϕ′ θp θ −1 0

I

τ2
0 0

. (21)

Which yields the following characteristic polynomial for the single node system:

CSN λ = λ3 + λ2 1 − W
E

ϕ′ ϕ
−1

p

τ1
+ 1 + λ

1−WE
ϕ′ ϕ

−1
p

τ1
+

W
I
ϕ′(ϕ−1(p))ϕ′(θp)θ

τ1
+

I
2
ϕ′(ϕ−1(p))

τ1τ2

+
I

2
ϕ′(ϕ−1(p))

τ1τ2
.

(22)

The determinant of the Jacobian is given by

det J = λ1λ2λ3 = −
I

2
ϕ′(ϕ−1(p))

τ1τ2
= −

ϕ(θp)2
ϕ′(ϕ−1(p))
τ1τ2

< 0. (23)

As the determinant is always negative, this limits the dynamical repertoire of this system due 

to the homeostatic variable. Indeed, due to the dynamics of WI′, aside from E, I , W
I , no 

other equilibria exist and thus local bifurcations that create or destroy equilibria via λ = 0 

crossings are not possible. This implies that no bistability in equilibria is possible, as in other 

classical Wilson-Cowan systems. Thus, we can attempt to look for Hopf bifurcations. 

Furthermore, as the system is cubic and the determinant is negative, one of the eigenvalues is 

always negative. This corresponds to the existence of a stable manifold for the equilibrium 

globally in the parameter space. The other eigenvalues must both be real and of the same 

sign, or complex.

To determine the potential loss of stability due to Hopf-bifurcations, substitution of λ = iω 
into the characteristic polynomial yields the following:
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0 = − iω
3 − ω

2
1 − W

E
ϕ′ ϕ

−1
p

τ1
+ 1 + iω

1 − W
E

ϕ′ ϕ
−1

p

τ1
+

W
I
ϕ′ ϕ

−1
p ϕ′ θp θ

τ1
+

I
2
ϕ′ ϕ

−1
p

τ1τ2

+
I
2
ϕ′ ϕ

−1
p

τ1τ2
,

which after equating real and imaginary parts yields

0 = ω
3 − ω

1 − W
E

ϕ′ ϕ
−1

p

τ1
+

W
I
ϕ′ ϕ

−1
p ϕ′ θp θ

τ1
+

I
2
ϕ′ ϕ

−1
p

τ1τ2
(24)

0 = ω
2 1 − W

E
ϕ′ ϕ

−1
p

τ1
+ 1 −

I
2
ϕ′ ϕ

−1
p

τ1τ2
. (25)

Solving for ω as a function of the network parameters yields:

ω =
1 − W

E
ϕ′ ϕ

−1
p

τ1
+

W
I
ϕ′ ϕ

−1
p ϕ′ θp θ

τ1
+

I
2
ϕ′ ϕ

−1
p

τ1τ2
. (26)

The Hopf bifurcation curve is implicitly defined by

0 =
1 − W

E
ϕ′ ϕ

−1
p

τ1
+

W
I
ϕ′ ϕ

−1
p ϕ′ θp θ

τ1
+

I
2
ϕ′ ϕ

−1
p

τ1τ2

1 − W
E

ϕ′ ϕ
−1

p

τ1
+ 1 −

I
2
ϕ′ ϕ

−1
p

τ1τ2

Defining the following quantities

μ =
1 − W

E
ϕ′ ϕ

−1
p

τ1
(27)

F θ =
1 − p

−1
ϕ

−1
p ϕ′ ϕ

−1
p

τ1
(28)
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κ θ =
pϕ′ θp θ

ϕ θp
(29)

D θ =
I

2
ϕ′ ϕ

−1
p

τ1τ2
, (30)

then the Hopf bifurcation condition can be written as a quadratic equation in μ. Solving for μ 

yields

μ±

=
− D θ + F θ κ θ + 1 − κ θ ± F θ κ θ + D θ + 1 − κ θ

2 − 4κ θ F θ 1 − κ θ

2 1 − κ θ
.

(31)

Only the positive branch of μ yields a definite Hopf-bifurcation as we require ω2 = μ±(1 – 

κ(θ)) + F(θ)κ(θ) + D(θ) > 0

ω±
2 =

− 1 − κ θ − κ θ F θ − D θ
2 ± 1 − κ θ − κ θ F θ − D θ

2 + 4 1 − κ θ D θ

2

> 0

(32)

which implies that μ− < 0 is thus an inadmissable solution for a Hopf-bifurcation while μ+ is 

an admissable under the sufficient condition

κ θ =
pϕ′ θp θ

ϕ θp
< 1 (33)

By considering the properties of the sigmoid function ϕ(x), a routine derivation shows that 

the inequality (33) holds when a < (p2(1 – ϕ(θp))−1 or more colloquially, when the sigmoid 

is not too sharp. The final Hopf bifurcation curve is given by:
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WHop f
E

θ =
1

ϕ′ ϕ
−1

p
1 − τ1μ + θ . (34)

in the (θ, WE) parameter space.

Given the fact that we can explicitly solve for the Hopf-bifurcation curve, we can simulate in 

its vicinity to determine the resulting behavior of the single-node system. Direct numerical 

simulation in addition to numerical continuation using XPPAUT (not shown) indicate that 

the Hopf bifurcation is likely supercritical, as stable limit cycles emerge for WE > W
Hop f
E

θ

(Figure 1, 1A). Computing the first Lyapunov coefficient is cumbersome for the full-3D 

system as it requires a center manifold reduction. However, for θ = 0 case, one can prove 

that the Lyapunov coefficient is strictly negative (see Appendix A). Thus, we should expect 

that the first Lyapunov exponent is negative for small θ which suggests a supercritical Hopf 

bifurcation.

Finally, taking the limits θ → 0 or θ → ∞ yields

WHop f
E 0 = WHop f

E ∞ =
1

ϕ′ ϕ
−1

p
(35)

with W
Hop f
E

θ ≥ W
Hop f
E 0 . The inequality can be proven by considering that F(θ) ≥ 0, μ+

(θ) ≤ 0 where equality only occurs in the asymptotic limits considered in (35). The value 

W
Hop f
E 0  is the critical value after which synaptic homeostasis can no longer guarantee 

stability of the equilibrium x . After this value, depending on the strength of the excitatory to 

inhibitory coupling θ, stability is lost through a supercritical Hopf bifurcation. This is 

however not a catastrophic bifurcation, and thus near the onset of the Hopf bifurcation we 

are still confined to a neighbourhood around x . Note that for the sigmoid we consider, 

W
Hop f
E =

1
ap 1 − p

, which implies that smoother sigmoids (small a) yield a larger parameter 

region of homeostatic control.

3.2 Period Doubling Cascade to Chaos Followed by a Pinching of the Tent Map

For larger values of WE, the system displays chaotic activity which was verified by 

computing the maximum Lyapunov exponent numerically (Figure 1B). This chaotic attractor 

contains small excursions from x . Again, in this region the homeostatic mechanism is still 

operating within some degree of tolerance as the chaotic attractor is contained within small 

neighbourhood of the equilibrium. Mixed mode oscillations are also present past the Hopf-

bifurcation (Figure 1C). Surprisingly, for large enough values of WE, the chaotic attractor 

can also contains components that operate on two separate time scales (Figure 1D). This is 

referred to as “mixed mode chaos” [Desroches et al., 2012, Koper, 1995]
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Given the exotic nature of the mixed mode-chaos in this system, we investigated how chaos 

emerges in this system. First, we fixed θ and steadily increased WE and observed a classical 

period doubling cascade (Figure 2A,2B) to chaos. Numerically computing the maximal 

Lyapunov exponent ([Sprott and Sprott, 2003]) over the two parameter (θ, WE) region 

reveals a contiguous region of chaotic solutions above the Hopf bifurcation curve (Figure 

2C).

For smaller values of WE > W
Hop f
E , the chaotic solutions are classical in nature (2D). For 

example, by plotting the kth maxima of the E variable, E
k
* as a function of E

k − 1* , we find a 

stereotypical unimodal peak-to-peak or tent map [Lorenz, 1963, Strogatz, 2014] (Figure 2E). 

However, as we increase WE further, a pseudo-singularity or “pinch” emerges in the tent 

map at the location of the former maximum. This is not a true singularity of this map as the 

set E ∈ (0, 1) is invariant. The emergence of this singularity in the tent map corresponds to 

the emergence of mixed-mode chaos. Mixed mode chaos however occurs over a narrower 

parameter regime for the single node. For larger values of WE ≫ W
Hop f
E

θ , the system only 

displays large relaxation limit cycle solutions.

Finally, we remark that period doubling cascades and mixed mode behaviors are preserved 

under larger separations of time in the homeostatic variable, up to approximately τW = 

200τE, τE = τI (Figure 2F). Thus, even for significantly larger separations of time scales, the 

Hopf bifurcation induced by the homeostatic coupling leads to the emergence of complex, 

yet low dimensional dynamics.

3.3 Canards and Mixed Mode Oscillations

Next, we investigated how mixed-mode oscillations emerge in the three-dimensional, single-

node case. In particular, recent analytical work has demonstrated several cases through 

which long and short time scale oscillations can emerge in a three-dimensional system 

exhibiting different separations of time scales. Examples include the existence folded-node 

case involving one fast variable and two slow variables, or the “tourbillon” case involving 

two fast variables and one slow dynamical variable, a singular-Hopf bifurcation similar to 

the folded-node case, and systems exhibiting three different time scales. [Wechselberger, 

2005, Desroches et al., 2012]. These systems can give rise to mixed-mode oscillations 

through different mechanisms.

As our system has two fast variables and one slow variable, we hypothesized that the most 

likely mechanism for the emergence of mixed-mode oscillations for our network equations 

was the so called tourbillon case [Desroches et al., 2012]. This is due to the presence of two 

fast variables (E, I) in addition to the slow weight WI. However, the mixed-mode oscillations 

cannot arise from the tourbillon case in our system. Indeed, this requires that the fast 

variables, given by:

τ1E′ = − E + ϕ(WE
E − W

I
I) (36)
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I′ = − I + ϕ(θE) (37)

undergo a Hopf bifurcation [Desroches et al., 2012]. However, numerical simulations of the 

2D system for the parameters we considered did not reveal any oscillatory solutions, 

although complex eigenvalues did emerge. We note however that the theory behind the 

tourbillon case is still nascent and unexplored and there may be alternate, as of yet 

unexplored cases in the literature.

With the tourbillon case likely removed as a possible cause of mixed-mode oscillations, we 

are left with several other possibilities explored the in the literature. These include the 

folded-node, three time-scale systems, singular-Hopf bifurcations ([Desroches et al., 2012]. 

The time scales in our network are given by τE/τI = 1, τW/τI = 5. Unfortunately, all other 

possibilities that are currently explored the literature require either two slow time scales, or 

three separate time scales [Desroches et al., 2012]. For the nominal parameter values we 

have considered, our system has one slow variable and two identically fast variables.

However, an alternate possibility is that the mixed-mode oscillations are born in alternate 

time scale limits, yet persist as the time-scale conditions are relaxed. For example, these 

mixed-mode oscillations may be due to folded-nodes for τW = τI ≫ τE or singular Hopf 

bifurcations in the same limit, or the three time-scale limit τW ≫ τIτE, all of which have 

been recently summarized in [Desroches et al., 2012].

First, we considered the folded-node case as it was the most promising. Mixed mode 

oscillations arising from a folded-node occur when the system has one fast variable and two 

slow variables. The folded-node case as analyzed in [Wechselberger, 2005] demonstrates 

canards for the subsystem consisting of one-fast and one-slow variable, and a folded null-

surface in the three-dimensions with two attracting branches and one repelling branch. 

Indeed, we find a similar result in our system (Figure 3A). Canards exist over a 

exponentially small parameter regime in the reduced E, WI system with I either set to ϕ(θE) 

(Figure 3A) or I =
1
2

, in the limit that θ = 0 (not shown). Further, we prove in Appendix B 

for the θ = 0 case that the two-dimensional system:

E′ = − E + ϕ(WE
E − W

I) (38)

W
I′ = ϵ (E − p) (39)

analytically has a Canard point. The system (38)-(39) is arrived by a suitable rescaling of 

time and space, after setting θ = 0 thereby uncoupling the inhibition from the other 

dynamics and rendering the dynamics of the inhibitory variable a stable manifold.
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Further, the null-surfaces for the excitatory “fast” variable are indeed folded and contain two 

attracting regions and a repelling region. The dynamics for large amplitude oscillations 

follow the attracting components of the null-surface. This numerical analysis suggest that 

the mixed-mode oscillations might arise from the folded-node mechanism in a relaxed 

parameter regime. Interestingly, the prototypical folded-node system also contains mixed-

mode chaos when higher order terms are included in the normal-form [Desroches et al., 

2012].

Thus, we conducted the folded singularity analysis in [Desroches et al., 2012] and 

determined where in the (θ, WE) parameter region we would except folded singulairites (see 

Appendix B) and their resulting nature. We have found two regions consisting of folded-foci 

and large, continuous region of folded nodes (Figure 3D). Furthermore, we ran numerical 

simulations for τW = τI = 100τE and automatically classified solutions as having mixed-

mode elements (Figure 3D). Here, we found that over a large region in the analytically 

predicted folded-node space, mixed mode oscillations existed (Figure 3D,E). However, the 

folded node conditions are necessary, and not sufficient to yield MMO’s. We also remark 

here that the critical manifold for the single node system has some pathological properties 

that might render local analysis less useful. In particular, the folded surface is parameterized 

by

S = (E, I, W
I): (E, I) ∈ (0, 1) × (0, 1), W

I =
W

E
E − ϕ

−1(E)
I

(40)

where ϕ−1(E) = −
1
a

log
1 − E

E
. Thus, the critical manifold diverges at E = ±1, or I = 0.

Thus, Canards analytically exist (through a Canard point) for the 2D reduced system under 

the limit that θ → 0, while the 3D system in the limit that τI = τW ≫ τE exhibits certain 

characteristics of a potential folded-singularity. However, due to some of the pathologies 

intrinsic to this system, the system requires a more in-depth analysis to resolve the origin of 

MMO’s than possible here.

4 The Dual-Node Case: Synchronous Solutions to the Single Node

As the large network equations contain no self coupling in the WEE weight matrix 

(diag(WEE) = 0), the single-node analysis that we have conducted is not necessarily 

informative of the large network dynamics. Thus, analysis must be conducted on the 

simplest possible system without self-coupling, the dual-node reciprocally coupled system 

given by equations (14)-(19). In this system, the local homeostatic mechanism attempts to 

stabilize the excitatory activity while the opposing node functions to stimulate its neighbour.

First, we conducted numerical simulations of the dual-node system to determine what 

dynamical behaviors are possible. Surprisingly, we found that over all parameter regimes 

tested, the dual-node system without self-coupling synchronizes to solutions of the single-

node, recurrently coupled system (Figure 4A,B). For example, the dual-node system 

asymptotically tends towards the same chaotic attractors, limit cycles, and mixed mode 
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solutions as the single node system (Figure 4A). For oscillatory solutions, this is not 

surprising as a simple derivation shows that any stable solution of the single-node system 

potentially corresponds to a synchronous solution in the dual-node system. For chaotic 

attractors, the dual-node system exhibits a case of synchronized chaos when the parameters 

for both nodes are identical [Pecora and Carroll, 1990].

4.1 Local Stability Analysis of Equilibria

Again, due to the homeostatic nature of the dual-node system, the only equilibrium that 

exists is given by equation

E1 = E2 = p, I 1 = I 2 = ϕ(θp), W
I
1 = W

I
2 =

W
E

p − ϕ
−1(p)

ϕ(θp)
. (41)

Furthermore, using the Jacobian to solve for the characteristic polynomial yields the 

following:

CDN(λ) = CSN(λ)Q(λ) (42)

Q(λ) = λ3 + λ2 1 + W
E

ϕ′(ϕ−1(p))
τ1

+ 1 + λ
1 + W

E
ϕ′(ϕ−1(p))
τ1

+
W

I
ϕ′(ϕ−1(p))ϕ′(θp)θ

τ1
+

I
2
ϕ′(ϕ−1(p))

τ1τ2

+
I

2
ϕ′(ϕ−1(p))

τ1τ2
.

(43)

Thus, instability in CSN (λ) implies instability in the dual-node system for any equilibria. 

Furthermore, by the Routh-Hurwitz criterion [Wiggins, 2003], all roots of Q(λ) lie in the left 

complex plane if:

1 + W
E

ϕ′(ϕ−1(p))
τ1

+ 1
1 + W

E
ϕ′(ϕ−1(p))
τ1

+
W

I
ϕ′(ϕ−1(p))ϕ′(θp)θ

τ1
+

I
2
ϕ′(ϕ−1(p))

τ1τ2
>

I
2
ϕ′(ϕ−1(p))

τ1τ2
.

For all physical solutions, the inequality is satisfied as the term 
I
2
ϕ′(ϕ−1(p))

τ1τ2
 can be 

subtracted from both sides of (44) with all the remaining terms on the right hand side being 

strictly positive. However, roots on the right-complex plane may occur for non-physical 

values of these coefficients, for example when the weights are negative. This analysis 

implies that for all permissible (physical) equilibria, the stability of the dual node system is 

directly inherited from the stability of the single node. In other words, for symmetrically 

coupled systems, the local homeostasis rule loses no robustness in regulating network 
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dynamics up to the Hopf-bifurcation and the recurrent inhibition can counteract non-local 

excitation just as well as local excitation.

4.2 Stability Analysis of Limit Cycles

If we consider any limit cycle for the single node-system x(t) = (E(t), I(t), WI(t)) such that 

x(t) = x(t + T) for some T > 0, ∀t, then the following is an admissable limit cycle solution to 

the dual-node system:

z(t) =
x(t)

x(t)
(44)

with an identical period T, for all t > 0. Furthermore, if we consider the monodromy matrix 

system

ϵ̇ = A(x(t)) ϵ (45)

derived by linearizing equations (1)-(3) around x(t) then linearization for equations (14)-(19) 

can be written as

ϵ̇ = A(x(t)) ϵ + W
E

ϕ′(WE
E(t) − I(t)W I(t))(ν1(t) − ϵ1 (t)) (46)

ν̇ = A(x(t)) ν + W
E

ϕ′(WE
E(t) − I(t)W I(t))( ϵ1 (t) − ν1(t)) . (47)

In order to analyze the stability of limit cycles, we require a fundamental solution set to 

equations (46)-(47). First, if we consider ϒ(t) = [ϵ1(t), ϵ2(t)ϵ3(t)], then three fundamental 

solutions are immediately given by [ϵk (t), ϵk (t)] for k = 1, 2, 3. This implies that if the limit 

cycle is unstable in the single node system, (1)-(3), then it is unstable in the dual node 

system. We leave the stability analysis of these limit cycles and other trajectories for future 

work. We remark however that the recent work in [Coombes et al., 2018] analyzing the 

stability of limit cycles in piecewse neural mass models may be pertinent to resolving the 

stability of these limit cycles through Floquet analysis, and the assumption that the slope of 

the sigmoid is sharp (a → ∞).

5 The Fully Coupled N-Node System

As we have previously demonstrated, the dual-node system without self coupling has 

identical dynamics to the single-node, self coupled system and even exhibits chaotic 

synchronization to identical attractors as the single-node. Thus, the single node is largely 

predictive of the qualitative dynamics of the coupled system despite the removal of self-

coupling. Thus, we investigated if a similar result would apply to the large uncoupled system 

given by equations (4)-(6). First we analyzed a pair of analytically resolvable cases for 
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matrices that satisfied specific assumptions. Then, we numerically explored the system (4)-

(6) coupled by the weight matrix considered in [Hellyer et al., 2016].

5.1 Exactly Resolvable Cases

First, we considered a pair of analytically resolvable cases. If we consider the all-to-all 

coupled matrix:

Wi j
EE =

W
E

NE − 1
i ≠ j

0 i = j

(48)

then the characteristic polynomial reduces to:

CN
E

(λ) = Q(λ)
N

E
− 1

CSN(λ) (49)

where Q( λ ) and CSN (λ) are the polynomials resolved in the dual node (equation (43)) and 

single node case (See Appendix C). The polynomial Q( λ ) however has WE =
W

E

N − 1
 in place 

of WE. Our previous analysis immediately applies and shows that with the coupling matrix 

(48), the system (4)-(6) has identical local stability to the single node. We refer to equation 

(48) as the “mean-field” assumption. Self-coupling need not be removed in this case, 

however the results will differ slightly from the single node if self-coupling is considered.

Finally, we remark that there is at least one other case where the stability of the system can 

be determined analytically, when the row sum of the coupling weight matrix is constant:

∑
j = 1

N
E

Wi j
EE = W

E, i = 1, 2, …NE (50)

We decompose the weight matrix WEE = WE · LEE where the row sum of LEE is equal to 

one. The scalar term WE scales the magnitude of the components of the weight matrix, 

similar to WE in the single and dual node cases. For this case, one can resolve the eigenvalue 

spectrum explicitly as the characteristic polynomial factors readily:

C(λ) = ∏
i = 1

N
E

Q(λ) − ri

λ(λ + 1)ϕ′(ϕ−1(p))
τ1

W
E (51)

where each ri is an eigenvalue of the weight matrix LEE. Each Q(λ) is a cubic polynomial 

given by:
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Q(λ) = λ3 + λ2 1
τ1

+ 1 + λ
1
τ1

+
W

I
ϕ′(ϕ−1(p))ϕ′(θp)θ

τ1
+

I
2
ϕ′(ϕ−1(p))

τ1τ2
+

I
2
ϕ′(ϕ−1(p))

τ1τ2
.

(52)

The steady states WI and I  are given by identical formulas as in the single and dual node 

cases. Given the structure of the polynomial Q(λ), this yields a Hopf-bifurcation 

immediately through an identical derivation in the single node case. The curve will be of the 

form:

WHop f , i
E (θ) =

1

riϕ′(ϕ−1(p))
(1 − τ1μ+(θ)) (53)

ri = max
i = 1…N

E

{ri} (54)

where μ+(θ) is redefined and ri is an eigenvalue of WEE (see Appendix B). As WE is 

increased, the first intersection of WE = W
Hop f , i
E  determines the Hopf bifurcation curve. For 

θ ≫ 1 and θ ≪ 1, this is readily seen to be the curve corresponding to the largest positive 

eigenvalue of LEE.

Additionally, if the row-sum of the matrix WEE is non-constant, but narrowly distributed, 

one can still approximate the Hopf-bifurcation curve by using the mean-row sum (see 

Appendix B). We validate this approximation in the subsequent section as applied to the 

weight matrix considered in [Hellyer et al., 2016].

5.2 Numerical Exploration of the Experimentally Coupled System

The connectivity matrix, WEE = WE · LEE, is derived from functional neuroimaging data and 

is described in greater detail in [Hellyer et al., 2016, Honey et al., 2009, Hagmann et al., 

2008]. The matrix LEE is shown in Figure 5A. The matrix couples 66 homesotatically 

regulated Wilson-Cowan nodes. Furthermore, L
ii
EE = 0 for all i and thus the nodes contain no 

self-coupling. As our single and dual node analyses indicate a branch of Hopf bifurcations, 

we numerically computed the eigenvalues over the two parameter (W, θ) space and searched 

for the first eigenvalue λi crossing Re(λi) = 0 as a function of θ for each value of W. This 

yielded a similar potential Hopf-bifurcation curve as the single and dual node cases. The 

curve was again unimodal with identical asymptotes as θ → 0 and θ → ∞. We conducted 

large scale numerical simulations to determine if the curve indeed indicated a transition from 

steady state dynamics to oscillations. For W < WHopf (θ), we observe decay to a steady state 

equilibrium and oscillations or chaos for W > WHopf (θ) (Figure 5B,5C). Finally, we applied 
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the analytical approximation derived in section 5.1 for comparison. The approximation has 

the greatest accuracy near the asymptotes θ → 0 and θ → ∞ and indicates that the 

common asymptotic behavior for WHopf is:

WHop f (θ) ∼
1

ϕ′(ϕ−1(p))ri
max

, θ ∞, θ 0 (55)

where r
i
max is the large positive eigenvalue of LEE. As in our analysis of the single node, this 

asymptotic behavior corresponds to the region of guaranteed stability of the steady state for 

W
E < W

Hop f
E (0)

As in the single and dual node cases, the large network also displays mixed mode 

oscillations and mixed mode chaos (Figure 5C,D). Interestingly, due to the heterogeneous 

coupling in the weight matrix, the nodes do not all transition to chaotic dynamics in an 

identical fashion (Figure 5E). This is despite the connectivity in the network only being 

moderately sparse (p = 0.2635). For example, some nodes can display a smaller attractor 

without mixed mode elements, other nodes contain larger amplitude components while 

others are essentially still stabilized around their equilibrium point with minimal interference 

from the rest of the network. Also note that the attractors in Figure 5F occupy a similar 

region of the reduced phase space (E, I, WI) as the single and dual node cases when we plot 

every node (Ek, Ik, W
k
I) in the same reduced phase space.

Given the heterogeneity in the chaotic dynamics of the individual nodes in the coupled 

networks, we investigated whether node deletion (Figure 5G) or connection deletion (Figure 

5H) might enhance the stability of the homeostatic mechanism. Indeed, the homeostatic 

mechanism is inherently local for a node and trying to stabilize the dynamics of that node 

despite receiving external, potentially destabilizing inputs. To that end, we deleted a node 

and recomputed our Hopf bifurcation curves for each node deletion yielding 66 different 

systems with 65 nodes. In every system, the deletion either had minimal effect on the Hopf-

bifurcation curve or it shifted the curve upward. Thus, deleting either connections or nodes 

can only increase the stability of the homeostatically induced equilibrium. The maximum 

change was a 14.69% shift upwards (as measured from the peak) given by deleting the 25th 

node. Deleting individuals connections in the weight matrix, WEE yielded at most a 4.01% 

shift upwards in the Hopf bifurcation curve. Interestingly, the largest shift in the Hopf-

bifurcation curve corresponds to W21, 4
EE  and not node 25. We computed a series of measures 

of centrality for the nodes that were deleted. These included the row and column sums, 

authority, hub score, in degree, out degree, page rank, out closeness, in closesness, and 

betweenesss and the reciprocal of the maximum eigenvalue. The reciprocal of the maximum 

eigenvalue had the largest correlation with the stability increase (0.999), as expected with 

our analysis, while all other computed metrics displayed weaker correlations over a range of 

r = 0.14 − 0.54.
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6 Discussion

Through a combination of numerical and analytical work, we studied a homeostatically 

regulated Wilson-Cowan system in three separate cases: isolated single-nodes, reciprocally 

coupled dual-nodes, and large coupled networks where the connection strength was derived 

from functional neuroimaging data [Hellyer et al., 2016, Honey et al., 2009, Hagmann et al., 

2008]. We found that the isolated single node displays a plethora of complex dynamics such 

as mixed mode oscillations, chaos via a period-doubling cascade, and mixed-mode chaos. 

The source of these rich dynamics is a combination of the Hopf-bifurcation induced by the 

homeostatic mechanism, and the cubic-like critical manifold of the excitatory dynamics. 

Two nodes with no self coupling and symmetric reciprocal excitatory coupling acted 

essentially as a single, self-coupled node and synchronized to the steady state attractors in 

the single node-case. We demonstrated analytically that the stability of steady states in the 

single node case is directly inherited in the dual node case. Furthermore, any unstable limit 

cycle in the single node is unstable in the dual node case. Finally, we numerically explored 

the large coupled network and showed a similar transition to oscillatory behavior for strong 

enough excitatory coupling. The individual nodes in the large network displayed similar 

dynamics to isolated recurrently coupled nodes in different parameter regimes. Interestingly, 

node deletion and connection deletion yielded non-trivial increases in the stability of the 

homeostatic set point for all values of excitatory to inhibitory coupling.

Past the Hopf-bifurcation, the network exhibits a rich dynamical repertoire consisting of 

oscillatory activity, chaos, and mixed-mode elements of both. Whether these dynamical 

states are potentially functional or pathological remains to be seen. Indeed, even for the 

experimentally determined chaotic attractors in [Babloyantz and Destexhe, 1986], some 

correspond to functional states such as stages of sleep while others correspond to 

pathological states such as epileptic seizures. In the former case, we have demonstrated that 

synaptic home-ostasis can support the emergence of complex dynamics. If however, these 

states are pathological, then they represent a failure of homeostasis in regulating network 

dynamics. Our node-deletion and connection deletion experiments demonstrate that the 

deletion of even single nodes or connections can increase the stability of the entire network 

through a shift in the Hopf-bifurcation curve upwards.

Homeostasis is widely regarded as a mechanism for the maintenance of network dynamics, 

and more specifically the maintenance of a steady-state average firing rate [Macleod and 

Zinsmaier, 2006, Frank et al., 2006, Bacci et al., 2001] and is regarded as a stabilizing force 

in network dynamics [Turrigiano and Nelson, 2004]. This steady-state is regulated at slow 

time scales on the order of minutes [Frank et al., 2006] or hours [Turrigiano et al., 1998]. 

For example, the homeostatic model in [Vogels et al., 2011] was shown to maintain the 

asynchronous irregular regime where neurons fire irregularly, but at a constant average rate. 

It is thus surprising that low dimensional yet rich structures such as mixed-mode chaotic 

attractors emerge under the presence of homeostasis.

Our results complement recent work on alternative forms of homeostatic regulation. For 

example, in [Udeigwe et al., 2017], the authors consider the Bienenstock-Cooper-Monroe 

(BCM,[Bienenstock et al., 1982]) Rule which also can act as a homeostatic regulator. Here, 

Nicola et al. Page 19

Chaos. Author manuscript; available in PMC 2019 August 06.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



the authors also find chaos and complex dynamics. In [Zenke et al., 2013], the authors 

consider a metaplastic tripled-based STDP rule (from [Pfister and Gerstner, 2006]) and 

derive a mean-field system demonstrating BCM like dynamics. The authors find a critical 

transition time constant for the stability of the BCM rule. The rule results in runaway 

potentiation if the time constant is too fast. However, In [Harnack et al., 2015], the authors 

consider a different homeostatic mechanism not based on the BCM rule but based on 

intrinsic homeostasis. There, they demonstrate that the time constants for homeostatic 

control should increase for increased network stability. In all cases, homeostasis can be the 

source of rich dynamical states and our results corroborate and extend this to inhibitory 

synaptic homeostasis.

While mixed-mode chaos is a relatively understudied phenomenon, it has been previously 

documented in the literature [Desroches et al., 2012, Koper, 1995, Krupa et al., 2008, Hauser 

and Olsen, 1996]. For example, the authors analyze an enzymatic reaction scheme in 

[Hauser and Olsen, 1996] and demonstrate similar pinched/singular tent-maps for the 

mixed-mode chaotic attractors they observe. Interestingly, the authors suggest a homoclinic 

limit cycle as their return mechanism through a version of the classical Shilnikov bifurcation 

resulting in homoclinic chaos [Kuznetsov, 2013]. Indeed, a Shilnikov bifurcation also 

appears in other Wilson-Cowan type models with more complicated dynamics in the 

individual nodes [Van Veen and Liley, 2006].

Our results demonstrate that the rich dynamical states are an intrinsic property of synaptic 

homeostasis, which is capable of more than stabilizing the average firing rates across a 

network. With inhibitory synaptic homeostasis, stability can only be guaranteed up to a point 

in the parameter space. This point is analytically determined and is related to the properties 

of the tuning curves, the homeostatic set point, and the connectivity between excitatory 

populations. The resulting dynamics past this point displaying a rich dynamical repertoire 

including oscillations and chaos, both of which can occur on two different time scales. This 

is an intrinsic consequence of the inhibitory synaptic homeostasis rule as the two-

dimensional Wilson-Cowan node that we consider is incapable of oscillating without 

inhibitory synaptic homeostasis. These dynamical repertoires might have functional or 

pathological consequences for populations of neurons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Lead Paragraph

When recordings from the brain are analyzed, rich dynamics such as oscillations or low-

dimensional chaos are often present. However, a general mechanism for how these 

dynamics emerge remains unresolved. Here, we explore the potential that these dynamics 

are caused by an interaction between synaptic homeostasis, and the connectivity between 

distinct populations of neurons. Using both analytical and numerical approaches, we 

analyze how data derived connection weights interact with inhibitory synaptic 

homeostasis to create rich dynamics such chaos and oscillations operating on multiple 

time scales. We demonstrate that these rich dynamical states are present in simple 

systems such as single population of neuron with recurrent coupling. The dynamics of 

these simple systems are directly inherited in large networks while properties of the 

coupling matrices determine when these rich dynamics emerge as a function of the 

parameters of the neuronal populations. Indeed, we find that the removal of single nodes 

or connections can substantially alter where these rich dynamics onset in the parameter 

space.
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Figure 1. 
(Top) The Hopf bifurcation curve for the single-node system can be derived explicitly. 

Analysis of the σ = 0 case coupled with numerics demonstrates that the bifurcation is a 

supercritical bifurcation. As we vary the (θ, WE) parameters, different behaviors emerge 

corresponding to (A) stability of the target activity, (B) chaotic loss of stability (C) mixed 

mode oscillations, and (D) mixed mode chaos. The parameters were p = 0.2, τ1 = 1, τ2 = 5 

with (θ, WE): (1,1.9), (1.6,2.1), (1.5,2.14), (1,2.115) for (A)-(D), respectively. All 
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simulations were conducted in MATLAB using the ode45 integration suite to implement a 

Runge-Kutta 4th order integration scheme.
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Figure 2. 
(A) The maxima of limit cycles, (E*) are plotted as a function of the recurrent self coupling, 

WE for the single node system. As WE increases past W
Hop f
E (θ), a period doubling cascade 

to chaos occurs. (B) The limit cycles and chaotic attractor plotted for increasing values of 

WE. (C) The maximum Lyapunov exponent is computed over the two parameter (θ, WE) 

region showing patches of chaos that onset after the Hopf bifurcation curve. (D) The chaotic 

attractor for sub-threshold and mixed mode chaotic solutions. (E) As WE is increased past 

W
Hop f
E

θ , the period doubling cascade produces a tent map similar to the classical Lorenz 

tent map. For larger values of WE the tent map develops a pseudo-singularity at the 

maximum value. Note that this is not strictly a singularity in the tent map as the dynamics of 
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the E are restricted to E ∈ (0, 1). For all simulations in (A),(B), and (E), θ = 1 was used. (F) 

The mixed-mode oscillations and mixed mode chaos persist for larger separations of relative 

time scales between the synaptic plasticity (WI) and the node activities (E, I). On the left, we 

recompute the limit cycle maxima for τW = 50τE, where τE = 1 while on the right, we 

consider τW = 200τE. However, mixed-mode solutions are no longer observed for 

sufficiently large τW (not shown). The parameter θ = 1.5 was used for (F).
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Figure 3. 
(A) Canard limit cycles for the dual node system given by equations (36)-(37). The seven 

limit cycles show a rapid increase in amplitude shortly after a supercritical Hopf bifurcation. 

The WE parameter for 6 limit cycles agrees to four decimal places (WE = 7.5959). The final 

limit cycle is a large relaxation limit cycle (WE = 7.6). The limit cycles were computed with 

direct simulation of the ordinary differential equations (36)-(37) using a (4,5) order Runge-

Kutta scheme. The θ parameter was fixed at θ = 1. (B) Shown above is the period doubled 

limit cycle (teal) for the system (1)-(3) in addition to the I-nullcline (blue). Under the 
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assumption that both the inhibition and the homeostatic mechanism are operating as slow 

variables, we can see the mixed-mode oscillations potentially from the underlying geometry 

of the folded-node case. The (θ, WE) parameters were (2, 2.02) (C) A relaxation cycle 

emerges with increasing values of WE. For all simulations, θ = 1 was fixed. The (θ, WE) 

parameters were (2.5, 2). (D) The folded-singularity conditions were analyzed in the limit 

that τI = τW ≫ τE yielding two regions of folded foci and a continuous folded-node region 

(See Appendix B for further details)). The mixed-mode oscillations were confined to within 

the folded-node region (red dots) as verified by direct numerical simulations. The 

simulations were automatically classified as mixed-mode oscillations by estimating the 

variance in their maximum return map of the E variable. Points with high variance 

correspond to multiple different peaks in the return map, and thus potential mixed-mode 

oscillations. (E) A simulation of one of the mixed-mode solutions is shown for 5000 time 

steps, fixed at the values θ = 1, WE = 1.5 for τE = 1, τW = τI = 200.
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Figure 4. 
(A) Shown above is the time series for the symmetrically coupled dual node system without 

self-coupling. The nodes synchronize with each other to a solution state for the single node 

system at steady-state, independent of where in the parameter region we are or the 

characteristics of the steady state. The first node is showed in sold lines with the excitation 

(black), inhibition (red), and homeostatic weight (magenta). The second node is plotted as a 

dashed line. The parameter set in the (W, θ) space are (1.6, 2.1). (B) The steady state 

attractors for the single node (left) and the dual node (right) are plotted in the (E, I) 

Nicola et al. Page 30

Chaos. Author manuscript; available in PMC 2019 August 06.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



projection space. The parameters in the (W, θ) space (1.6,2.1) (top) which corresponds to a 

chaotic attractor, (1.5, 2.14) (middle) which corresponds to a mixed-mode oscillation, and 

(1, 2.115) (bottom) which corresponds to mixed-mode chaos. Note that in all cases, the 

steady state attractors are identical for either the single recurrently coupled node or the dual-

node symmetrically coupled nodes. Only one node is plotted in the dual-node case, however 

due to synchrony, the trajectory for the second node is identical.
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Figure 5. 
(A) The coupling matrix used to connect the excitatory components of the nodes. Note that 

the matrix is highly structured, and contains no elements on its diagonal (no self-coupling). 

The system consists of 66 nodes. (B) The Hopf bifurcation (blue) curve is determined 

manually by evaluating the eigenvalues over the two parameter (θ, W) space numerically 

and plotting the level set for the first eigenvalue crossing Re(λi) = 0. This curve was verified 

by running a mesh of simulations over the (θ, W) parameter space that consisted of 2 × 104 

time units each. The final half of the simulation was used to compute the log of the variance 
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of E1(t) to determine if the equilibrium was stable. Blacker values correspond to either limit 

cycles or chaos and a loss of stability as the dynamics no longer settle onto a steady state 

E1(t) = p. Additionally, the analytical approximation (in orange) which assumes that the 

row-sum of the matrix WEE is approximately constant is also plotted. The accuracy is 

highest at the asymptotes (θ ≫ 1, θ ≪ 1). The four parameter points (i)-(iv) are shown in (C) 

in addition to their relationship with the Hopf-Bifurcation curve. The parameter values in the 

(W, θ) plane are (5,3),(5.5,3),(7.1,1.2), and (7.05,1.2) for (i)-(iv), respectively. Note that the 

Hopf-bifurcation curve has a similar shape and qualitative behavior to the curve in the 

single-node/dual-node case. (C) For the parameter values shown, the large network also 

displays a decay to a static equilibrium for W < WHopf (θ), stable oscillations for W > WHopf 

(θ), mixed mode oscillations, and mixed-mode chaos. (D) All nodes are plotted in a 3D 

phase portrait for the parameter region (iv) demonstrating the chaotic attractor. (E) Three 

nodes are plotted from the full 66-dimensional system in the same phase space. Some nodes 

in the full system display mixed-mode chaos simultaneously to other nodes that display 

generic chaos or very small chaotic deviations from the steady state equilibrium. (F) The 

same figure (E) only projected down to the (E, I) phase space for comparison purposes with 

Figure 2D. (G) Node deletion (red) and the resulting changes to the numerically Hopf 

bifurcation curve. The 66 red lines denote deletion of a node, resulting in 66 separate 

networks containing 65 nodes. (H) As in (G), only single connections are deleted rather than 

nodes. In total, 1148 connections non-zero connections exist in the matrix coupling matrix 

(A) for potential deletion.
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Table 1

The parameter values for the system of equations (1)-(3) (single node), (14)-(19) (dual node), and (4)-(6) (full 

network). Note that for the full network equations, WIE = θIN, where IN is the N dimensional identity matrix, 

and N consists of the number of nodes.

Parameter Numerical Value

a 5

p 0.2

τE 1

τI 1

τW 5

WE (see Figure Captions, typically [0,3]

θ (see Figure Captions, typically [0,10]
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