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Abstract – Controlling nonlinear systems with linear feedback control methods can lead to chaotic 
behaviors. Order increase in system dynamics due to integral control and control parameter variations 
in PID controlled nonlinear systems are studied for possible chaos regions in the closed-loop system 
dynamics. The Lur’e form of the feedback systems are analyzed with Routh’s stability criterion and 
describing function analysis for chaos prediction. Several novel chaotic systems are generated from 
second-order nonlinear systems including the simplest continuous-time chaotic system. Analytical and 
numerical results are provided to verify the existence of the chaotic dynamics. 
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1. Introduction 
 
Chaos control and chaotification (anti-control of chaos) 

studies are providing significant effect on many novel 
applications, including high-performance circuits and 
devices, chemical reactions, biological systems, liquid 
mixing, secure communications, and critical decision-
making in political, economic and military events [1]. 
Today, it seems that there are three ways to find three-
dimensional autonomous chaotic systems: chaotification, 
searching via computer programming and encountering chaos 
in simulations-experiments by chance [2]. Chaotification 
is a process that creates chaos from a non-chaotic system, 
or improves a chaotic system to present a different type of 
chaos for various potential applications in biological, 
medical, electronic, mechanical, optical, and chemical 
systems. The chaotification process usually involves 
designing a control mechanism. Various chaos control 
methods, e.g. OGY method [3], delayed feedback control 
[4, 5], washout filter [6, 7], periodic perturbations [8-10], 
stochastic perturbations [11], and nonlinear control 
methods [12] can be used to alter dynamics of chaotic 
systems, but in this study chaotification means generating a 
chaotic structure from a non-chaotic system. 

In recent years, some studies have been devoted to 
chaotification in discrete-time and continuous-time 
dynamical systems. Most of these studies have been done 
in the endeavor of achieving chaotification in discrete maps, 
and have showed that chaotification in discrete-time 
systems is very promising [13-19]. On the other hand, 
for continuous-time dynamical systems, some feedback 
control based studies recently have been available in the 
literature with some successful works, including time-
delayed feedback and impulsive control approaches [20-
35]. The chaotification process is different in discrete-time 
and continuous-time systems since their dynamic properties 

are completely different, e.g. a discrete chaotic system can 
have all positive Lyapunov exponents but a continuous 
chaotic system needs only a positive Lyapunov exponent to 
achieve stretch and fold mechanism. It is a common way 
to use trial-error approach through parameter tuning and 
numerical simulation in order to get chaotic systems [17, 
25, 36]. In this work, the common classical control tools, 
i.e. PID control, Routh’s stability criterion and describing 
function analysis, will be used for chaotification in a 
systematic way. 

The main goal of the study is to investigate and show 
that chaotic dynamics can occur in PID controlled 
continuous-time nonlinear systems. PID controller is the 
most common control approach used in industry [37]. It 
is also an effective method for controlling chaos [38-40] 
and chaos synchronization [41, 42]. On the other hand, 
variations in the PID control parameters can result in 
generation of chaos from a non-chaotic nonlinear system. 
Since the integral term of the PID controller increases 
order of a system, it is possible to produce chaotic systems 
from second-order autonomous nonlinear systems. In this 
way, some new chaotic systems, including the simplest 
continuous-time chaotic system, are presented in this paper. 
These new chaotic systems pose high potentials for various 
applications in certain scientific, engineering and industrial 
fields, e.g. secure communications and circuit designs. 

The paper is organized as follows. Section 2 presents 
novel chaotic dynamics under PID controlled nonlinear 
systems, and conclusion of the work is given in Section 3. 

 
 

2. Chaos in Feedback Systems 
 
Feedback control systems are the most common and 

successful approaches for solving practical control problems. 
On the other hand, controller parameters can be adjusted 
in such a way that unexpected behaviors including 
bifurcations and chaos can occur. Consider a second-order 
nonlinear system described by 
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 ( , , )y ay by f y y u u+ + + =   (1) 
 

where a and b are the system parameters, the function 
( , , )f y y u  represents the nonlinear part of the system and 

u is a feedback controller. Let the feedback controller be 
[37] 

 
 1 2 3 ,u k y k y k yσ σ= − − − =   (2) 

 
where 1k , 2k  and 3k  are the controller gains. By 
substituting the controller (2) into the system (1) and 
introducing new state variables as x σ= , x y=  and 
x y= , we get  

 
 ( , , )d p ix k x k x k x g x x x+ + + =   (3) 

 
where the new system parameters are 1dk k a= + , 

2pk k b= +  and 3ik k= , and the function ( )g ⋅  is the 
nonlinear term of the feedback system. The system (3) 
can be represented by the combination of the linear term 
G(·) and the nonlinear term ( )g ⋅ , known as Lur’e form 
depicted in Fig. 1. Note that the nonlinear parts of the 
chaotic systems to be generated in this work will depend 
on the system output ( x y= ), while many other nonlinear 
terms can also be considered (e.g., system (10)). 

The system (3) can exhibit chaotic behaviors depending 
on its parameters and initial conditions. Chaotic systems 
include an infinite number of unstable periodic orbits 
embedded in an ergodic chaotic attractor [3]. This means 
that a chaotic motion is a type of limit cycle which is 
perturbed by the stretching and folding mechanism. By 
considering the process of periodic-doubling route to 
chaos, occurrence of a stable limit cycle is an important 
sign to chaotic behavior. Existence of such a limit cycle in 
nonlinear systems can be predicted with the describing 
function analysis that is a powerful tool for analyzing 
nonlinear systems [43]. The condition for the existence of a 
limit cycle is given by 

 ( ) 1/ ( )G j N Aω = −  (4) 
 

where ( )N ⋅  is the describing function of the nonlinear 
term. Eq. (4) states that each intersection point of the curve 

( )G jω  and the trajectory of 1/ ( )N A−  corresponds to a 
limit cycle, which is illustrated in Fig. 2. A specific method 
for analyzing chaotic systems in Lur’e form is based on 
describing function analysis proposed by Genesio and Tesi 
[44]. Genesio-Tesi procedure [45] for determining chaotic 
behavior of a system in Lur’e form necessitates: (a) 
Existence of an interacting stable limit cycle and unstable 
fixed point, and (b) suitable filtering effect along the 
system. This procedure gives approximate necessary 
conditions for the existence of a homoclinic orbit, whose 
perturbation can result in chaos [45, 46].  

A fast and effective way for finding existence of an 
interacting stable limit cycle and unstable fixed point can 
be obtained by using Routh’s stability condition and 
Nyquist plot of the linear subsystem G(·). In the presence 
of the nonlinear term ( )g ⋅ , if a stable limit cycle or chaotic 
behavior exists for the system (3), then 

 
(i) , 0 and d i i d pk k k k k> >  , (5) 
(ii) describing function ( )N ⋅  of the nonlinear term ( )g ⋅  

must intersect with the Nyquist plot of linear term 
G(·) as depicted in Fig. 2. 

 
Besides, periodic solutions exist if i d pk k k= . The 

suitable filtering effect along the system has a qualitative 
and heuristic nature, but this can easily be solved with 
numerical simulations. That is to say, after achieving 
conditions (i) and (ii), a rough bifurcation diagram of the 
system (3) can be obtained for a selected range of 
parameters in order to search for the existence of chaos. In 
the following subsections, system (3) will be evaluated for 
various nonlinearities for the existence of chaos with the 
approach outlined above. 

 
2.1 Quadratic nonlinearities 

 
For a quadratic nonlinearity, 2g x= ± , the system (3) 

can be rewritten as 
 

 2
d p ix k x k x k x x+ + + = ±  (6) 

 
The system (6) has a fixed point at xe = (0, 0, 0), and 

linearization at the fixed point results in the characteristic 
equation 3 2 0d p is k s k s k+ + + = . When the system 
parameters are selected as 2.6dk = , 0.1pk =  and 

1.81ik = , it can easily be shown that unstable fixed point 
(condition (i)) and stable limit cycle (condition (ii)) 
conditions are satisfied for the possibility of chaos. A 
bifurcation diagram exhibiting a period-doubling route 
to chaos for the system (6) is shown in Fig. 3 for the 
parameter ki versus maximum value of x. The numerical 
simulations are done using MATLAB programs. It is clear 

x y=

−
0

 
Fig. 1. A feedback system in the Lur’e form. 
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Fig. 2. Nyquist plot for stable limit cycle prediction. 
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that there is an interleaving of chaos and order for 
1.8 2.1ik≤ ≤ . Fig. 4(a) shows the attractor of this new 
chaotic system. 

For further assessment of this new chaotic system, 
eigenvalues of the system are calculated as 

 
 1 2,32.79, 0.098 0.79s s j iσ ω= − ≡ ± = ±  (7) 

 
Hence, the fixed point ex  is a saddle focus and satisfies 

the inequality 1 0s σ> > , which implies that there is a 
homoclinic chaos according to Shil’nikov theorem [47-49]. 
In addition, the chaotic attractor has a dissipative feature 
since the divergence of flows is described by  

  
 / 0dx x k∂ ∂ = − <  (8) 

 
Eq. (8) shows that all system orbits will be confined 

to a specific limit set of zero volume and asymptotic 
motion will converge to an attractor [50]. The dimension 
of the attractor can be estimated through Kaplan-Yorke 
dimension as 2.0076KYD =  (see Table 2).  

 
It is interesting to see that when 0pk =  in (6), a one of 

the simplest chaotic system (five-term) can be obtained. 
Namely, 

 
 2

d ix k x k x x+ + = −   (9) 
 

where 2.38dk =  and 1.6ik = . The system (9) has a fixed 
point (0, 0, 0)ex = , and linearization at the fixed point 
yields three eigenvalues, 1 2.61s = −  and 2,3s =  
0.11 0.77i± . Again, the fixed point ex  is a saddle focus 

and satisfies the inequality 1 0s σ> > . Consequently, the 
system produces a homoclinic chaos. The chaotic attractor 
has a dissipative feature because 0dx x k∂ ∂ = − < . System 
(9) is one of the simplest chaotic systems, since it has been 
proved that four-term autonomous systems cannot exhibit 
chaos [51]. While there are some other simple five-term 
chaotic systems (including one quadratic term [52] and two 
quadratic terms [53]), this new chaotic system has a much 
larger chaos region (i.e., the existence of chaos in certain 
ranges of parameter variations, e.g. 1.55 1.65ik≤ ≤ ) 
compared to the chaotic dynamic introduced in [52].  

Fig. 4(b) shows the attractor of the chaotic system (9). A 
bifurcation diagram of the system (9) for the parameter kp 
versus maximum value of x  exhibiting a period-doubling 
route to chaos is presented in Fig. 5. Complex solutions 
exist for 2.38dk =  and 1.1 1.65ik≤ ≤ . The dimension of 
the attractor is 2.0179KYD = , but the basin of attractor is 
small and initial conditions must be chosen carefully. 

The quadratic nonlinearity can also be considered as a 
product of two different state variables. When the 
nonlinearity is described by ( )g xx⋅ = ± , another simple 
dissipative chaotic system can be introduced by 

 
 d p ix k x k x k x xx+ + + = ±  (10) 

 
where the system parameters are 2.6dk = , 0.53pk =  and 

3.8ik = . The bifurcation diagram of the system (10) for 
ki versus maxx  is presented in Fig. 6. It is seen that chaotic 
solutions exist for 3.5 4.5ik< < . The fixed point of the 
system is at the origin and carries the features of the 

Fig. 3. A bifurcation diagram for the quadratic system (6) 
for the parameter ki versus maximum value of x. 

 

-4 -2 0 2

-6

-4

-2

0

2

4

x

dx
/d

t

0 2 4 6 8

-4

-2

0

2

x

dx
/d

t

-8 -6 -4 -2 0

-2

-1

0

1

2

3

x

dx
/d

t

Fig. 4. Chaotic attractors for quadratic nonlinearities: (a) 
system (6), (b) system (9) and (c) system (10). 

Fig. 5. Bifurcation diagram of the simplest chaotic system 
(9) for ki versus maximum value of the x. 

Fig. 6. Bifurcation diagram of the system (10) for ki versus 
maximum value of x. 
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saddle focus since the eigenvalues are 1 2.87s = −  and 
2,3 0.13 1.14s j iσ ω≡ ± = ± . A homoclinic chaos exists 

since 1 0s σ> > . Fig. 4(c) shows the attractor of this 
novel chaotic system. 

 
2.2 Cubic/quintic nonlinearities 

 
The nonlinear function of the system (3) can be 

composed of a simple cubic nonlinearity, 
 

 3
d p ix k x k x k x x+ + + = −   (11) 

 
where the system parameters are 0.9dk = , 9pk = −  and 

5ik = . System (11) has a fixed point (0,0,0)ex = , which 
is a saddle point. The unstable fixed point and stable limit 
cycle conditions (conditions (i) and (ii)) are satisfied for 
the possibility of chaos. For 3.6 5.1ik≤ ≤ , a period-
doubling route to chaos scheme can be observed in the 
numerical simulations and the bifurcation diagram given in 
Fig. 8. The existence of the chaotic attractor (Fig. 7a) can 
be given by 0dx x k∂ ∂ = − <  and observed in numerical 
simulations. Since divergence of flows is negative, the 
system (11) is dissipative and the dimension of the 
attractor is calculated as 2.0526KYD = .  

A more complicated form of the cubic nonlinearity, 
known as odd quartic function, can also yield a chaotic 
behavior, 

 
 3

d p ix k x k x k x x x+ + + = −   (12) 
 

where the system parameters are 1dk = , 5pk = −  and 
4ik = . For the possibility of chaos, conditions (i) and (ii) 

are satisfied, and a bifurcation diagram of the system 

exhibiting a period-doubling route to chaos is displayed in 
Fig. 9. It is seen form the bifurcation diagram that there is 
a wide chaos region ( 2.5 5.1ik≤ ≤ ), but the continuity of 
this region is disrupted with periodic windows. Moreover, 
there is only a single fixed point (0,0,0)ex = , and it is a 
saddle focus since its eigenvalues are calculated as 

1 3.06s = −  and 2,3 1.03 0.49s j iσ ω≡ ± = ± . This system 
also produces a homoclinic chaos since 1 0s σ> > . The 
divergence of flows is 0dx x k∂ ∂ = − <  and thus, the 
system is dissipative. The dimension of the attractor is 

2.1228KYD = .  
Another dissipative chaotic system example can be 

obtained with a quintic nonlinearity,  
 

 5
d p ix k x k x k x x+ + + = −   (13) 

 
where the system parameters are 1dk = , 9pk = −  and 

10ik = . The bifurcation diagram of the system (13) is 
shown in Fig. 10. Similar to the other chaotic systems, this 
system also has a saddle fixed point (0,0,0)ex = , and 
exhibits a homoclinic chaos. The dimension of the attractor 
is calculated as 2.0754KYD =  and Lyapunov exponents of 
the system are given in Table 2. Compared to the other 
chaotic systems introduced in this section, the bifurcation 
diagram in Fig. 10 shows that the system (13) has the 
largest chaos region ( 5.5 16ik≤ ≤ ). 

 
2.3 Exponential and hyperbolic nonlinearities 

 
The physical systems can also have exponential, 

Fig. 7. Chaotic attractors for various nonlinearities, (a) 
cubic (11), (b) exponential (14), (c) hyperbolic (15).

 

Fig. 8. Bifurcation diagram of the cubic system (11) for ki
versus maximum value of x. 

Fig. 9. Bifurcation diagram of the system (12) for ki versus 
maximum value of x. 

 

Fig. 10. Bifurcation diagram of the quintic system (13) for 
ki versus maximum value of x. 
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hyperbolic and trigonometric nonlinearities. By considering 
a saturated exponential function, the reference system (3) 
becomes  

 
 1 exp( )d p ix k x k x k x x+ + + = −   (14) 

 
where the system parameters are 1dk = , 1pk = −  and 

7ik = . A bifurcation diagram of the system exhibiting a 
period-doubling route to chaos is depicted in Fig. 11. 
There is an interleaving chaos and order for 0 8.2ik≤ ≤ , 
interrupted with some periodic windows. The fixed point 
of the system (14) is at the origin and behaves as a 
saddle focus, and the system exhibits a homoclinic chaos. 
The system has a dissipative characteristics because 

0dx x k∂ ∂ = − < , and the dimension of the attractor is 
found as 2.1304KYD = . The attractor is shown in Fig.7b. 

Now, let the system (3) contain a hyperbolic function,  
 

 sinh( )d p ix k x k x k x x+ + + = −   (15) 
 

where the system parameters are 1dk = , 5pk = −  and 
5ik = . The bifurcation diagram of the system is illustrated 

in Fig. 12. Similar to the other chaotic systems, the system 
(15) has a saddle fixed point (0,0,0)ex =  and exhibits a 
homoclinic chaos. The dimension of the attractor of this 
dissipative chaotic system is calculated as 2.1667KYD = . 
The attractor is displayed in Fig. 7c. 

 

 
Fig. 11. Bifurcation diagram of the exponential system (14) 

for ki versus maximum value of x. 
 

 
Fig. 12. Bifurcation diagram of the hyperbolic system (15) 

for ki versus maximum value of x. 

2.4 Characterization of the novel chaotic systems 
 
The describing function and stable limit cycle prediction 

of some common nonlinear functions are provided in Table 
1. It is seen from Table 1 that it is not always possible to 
get stable limit cycle prediction for all nonlinearities. In 
addition, while some nonlinearities can yield a stable limit 
cycle, they may not produce a chaotic behavior under 
system (3). It is also interesting to see that the common 
hard nonlinearities, e.g. sign(·) function, cannot yield a 
stable limit cycle and chaotic behavior by considering the 
system (3). 

The characterization of the attractors of chaotic systems 
is an important aspect. The geometry of chaotic attractors 
can be characterized with the dimension of an attractor. 
One significant quantitative characterization method is the 
Kaplan-Yorke dimension (KYD) [54]. It represents an 
upper bound for the information dimension of the system. 
The KYD is calculated by 1 1( ... ) /KY d dD d λ λ λ += + + +  
where 1 dλ λ≤  are the Lyapunov exponents (LEs) and d is 

Table 1. Analysis of common nonlinearities and chaos 
prediction for the system (3). 

Nonlinear 
function

Describing 
function 

Graphical analysis Comments 

y y− 8 / 3A π−  

 

Stable limit cycle, 
apparently no 

chaos 

2y−
 

2A−  

 

Stable limit cycle 
and chaos 

3y−
 

23 / 4A−  

 

Stable limit cycle 
and chaos 

3y y− 332 / 15A π−

 

Stable limit cycle 
and chaos 

y−
 1.11 / A−

 

Unstable limit 
cycle, no chaos

sign( )y− 4 / Aπ−  

 

Unstable limit 
cycle, no chaos

sinh( )y− 12I ( ) /A A−

 

Stable limit cycle 
and chaos 

1 ye−  
[ ]2

1 1I ( ) S ( )A A A+

 

Stable limit cycle 
and chaos 

2y y−
 

2 / 4A jω−  
 

Stable limit cycle, 
apparently no 

chaos 

I1(A) and S1(A) are the modified Bessel and Struve functions of order 1, 
respectively. 
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the largest integer for which 1 ... 0dλ λ+ + ≥ . For the 
calculation of LEs, the Wolf algorithm [55] is used. It is 
seen from Table 2 that LEs of the introduced chaotic 
systems consist of positive, zero and negative exponents. 
Since the chaotic systems are dissipative, the sum of the 
LEs is negative. LEs can also be used for unpredictability 
measure of the chaotic dynamics, i.e. Kolmogolov-Sinai 
entropy (KSE) [56] calculations. KSE is defined by the 
sum of the positive LEs, and gives information about the 
level of the randomness of a chaotic system. The greater 
KSE means the higher randomness. Table 2 summarizes 
the LEs, KSE and KYD of the novel continuous-time 
chaotic systems introduced in this work.  

 
 

3. Conclusion 
 
This paper presented novel chaotic systems generated 

from PID controlled second-order nonlinear systems. The 
study set out to determine the possibility of chaotic 
behaviors in simple nonlinear systems controlled with PID 
systems. This research has shown that the integral control 
term of the PID controller increases system order and 
makes chaotification possible in second-order systems with 
simple nonlinearities. The chaos prediction approach is 
based on the Routh’s stability criterion and describing 
function analysis. Several new chaotic systems, including 
the simplest chaotic dynamic, are introduced, and their 
existences are shown with bifurcation diagrams and 
Lyapunov exponents. These novel chaotic systems have 
high potentials in many applications including secure 
communications, circuit designs and random number 
generations. This research also shows that bifurcations and 
chaos can occur in industrial systems regulated by the PID 
controllers. 
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