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1 Introduction

Quantum information is processed in quantum circuits, or more generally, quantum chan-

nels. A useful way to characterize fault-tolerance and computational power of such channels

is by whether input information remains localized or is spread over many degrees of free-

dom. This delocalization of quantum information by a quantum channel over the entire

system is known as scrambling [1–3]. Scrambling implies that information about the input

cannot be deduced by any local measurement of the output [4].
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The information-theoretic phenomenon of scrambling is closely related to the notion

of chaos in thermal systems. A vivid feature of quantum chaos is the butterfly effect:

simple localized operators grow under time evolution to have large commutators with

almost all other operators in the system. Consider a pair of local Hermitian operators

W and V supported on non-overlapping subsystems such that [W,V ] = 0. Under a chaotic

time evolution with Hamiltonian H, a local operator W (0) will evolve into a complicated

operator W (t) = eiHtWe−iHt which has an expansion as a sum of products of many local

operators

W (t) =W + it [H,W ]− t2

2!
[H, [H,W ]]− it3

3!
[H, [H, [H,W ]]] + . . . . (1.1)

For a generic H with local interactions, the kth-order nested commutator of H withW can

lead to a product of as many as k local operators that acts non-trivially on a large volume

of the system [5]. This implies that [W (t), V ] 6= 0 and will generically be a large operator

of high weight.

The degree of non-commutativity between W (t) and V can be measured by their

group commutator: W (t)V W (t)V . In fact, the generic decay of out-of-time-order (OTO)

correlators of the form

〈W (t)V W (t)V 〉β ≡ Z−1 tr {e−βH W (t)V W (t)V }, (1.2)

is a distinguishing feature of quantum chaos [5–10], where β is the inverse temperature, and

Z = tr e−βH . While this definition of chaos is very direct in terms of operators and observ-

ables, it should be possible to understand chaos solely as a property of the system itself.

In this paper, we will consider unitary quantum channels as states in order to charac-

terize their ability to process quantum information in terms of entanglement. A unitary

quantum channel is simply a unitary circuit where we allow the inputs to be mixed states.

To use standard quantum-information measures, we introduce a mapping from a unitary

quantum channel to a quantum pure state in a doubled Hilbert space. Using this map, we

propose that the tripartite information of a subsystem of the input A and a division of the

output CD into two subsystems C and D

I3(A : C : D) = I(A : C) + I(A : D)− I(A : CD), (1.3)

provides a basic measure of scrambling in such channels. The negativity of the tripartite

information is a natural measure of multipartite entanglement, and in particular, channels

that scramble will have near maximally negative tripartite information for all possible

input/output subsystem combinations.

Next, we will use this definition of scrambling to make a direct connection between the

OTO correlator diagnostic of chaos (1.2) and the information-theoretic definition of scram-

bling (1.3). It is intuitive that chaotic time evolution should correspond to scrambling:

the growth of the operator W (t) in time means that in order to recover or reconstruct the

simple operator W one will need to measure a growing fraction of the degrees of freedom

of the system. By averaging OTO correlators of the form (1.2) over a complete basis of
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operators on an input subsystem A and output subsystem D, we can directly relate these

correlators to the second Rényi entropy between subsystems of the input and output

|〈OD(t)OAOD(t)OA〉| ∼ 2−S
(2)
AC , (1.4)

where OA represents an operator in the input A, OD represents an operator in the output

D, and S
(2)
AC is the second Rényi entropy of the input/output system AC. With this result,

we can show that the butterfly effect implies scrambling

|〈OD(t)OAOD(t)OA〉β=0| = ǫ =⇒ I3(A : C : D) ≤ I3,min + 2 log2
ǫ

ǫmin
. (1.5)

Here, I3,min is the minimum of I3, and ǫmin is the minimum of averaged OTO correlations.

We will support all of these results with numerics in two non-integrable models, the one-

dimensional Ising spin chain with parallel and transverse field, and a four-Majorana-fermion

model introduced by Kitaev [11] known to be a fast scrambler. Our results show that for

chaotic systems, all of the information-theoretic quantities relevant to scrambling approach

their Haar-scrambled values.

Relatedly, we will comment on the relationship between the butterfly effect and the

ballistic spreading of information in a channel. For systems with a notion of spatial lo-

cality, we will show that the information contained in an input subsystem A will expand

ballistically in the output with a characteristic velocity vB (usually denoted the “butterfly

velocity” [5, 6]). This supports the idea that vB is the velocity of information in strongly-

chaotic systems. We will also comment on the conceptual differences between the butterfly

velocity and the entanglement or tsunami velocity vE of [12–14].

Finally, we will use our enhanced understanding of the relationship between scrambling,

chaos, and entanglement in time to propose a solvable model of a unitary quantum channel

that exhibits scrambling. Building on the work of [12] and [15], we discuss a perfect tensor

model of a chaotic Hamiltonian time evolution. This can be thought of as a toy model for

an Einstein-Rosen bridge that connects the two sides of the eternal black hole in AdS.

The plan of this paper is as follows. In section 2 we discuss unitary quantum channels

and elaborate on the notion of entanglement in time. There, we consider the entanglement

properties of such channels and introduce the tripartite information as a measure of scram-

bling. In section 3, we show that the decay of OTO correlation functions implies strong

bounds on information-theoretic quantities, directly connecting chaos to scrambling. We

provide evidence for our claims via numerical studies of qubit systems in section 4 and with

a perfect tensor model of chaotic time evolution in section 5. We conclude in section 6

with a discussion of the relationship between chaos and computation. Some extended

calculations, tangential discussions, and lengthy definitions are left to the appendices.

2 Unitary quantum channels

To study the scrambling properties of different unitary operators U by using information-

theoretic quantities, we will interpret them as states. To be concrete, let us assume that

the quantum system consists of n qubits with a time independent Hamiltonian H. We will

be interested in a particular unitary operator, the time evolution operator U(t) = e−iHt.

This will let us study a one parameter family of unitary operators indexed by t.

– 3 –
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A unitary operator U(t) that acts n qubits is described by a 2n×2n dimensional matrix

U(t) =
2n−1
∑

i,j=0

uij |i〉〈j|, (2.1)

which we usually choose to think of in terms of a tensor with n input and n output legs, as

shown in figure 1(a). However, it is also natural to map this to a 2n-qubit state by treating

the input and output legs on equal footing

|U(t)〉 = 1

2n/2

2n−1
∑

i,j=0

uji|i〉in ⊗ |j〉out. (2.2)

This is depicted graphically in figure 1(b). Clearly |U(t)〉 encodes all the coefficients (uij)

necessary to represent the unitary operator U(t).

When t = 0, the unitary operator is simply the identity operator, and (2.1) reduces to

a state consisting of n EPR pairs

|I〉 = 1

2n/2

2n−1
∑

i,j=0

|i〉in ⊗ |i〉out, (2.3)

where each input leg is maximally entangled with each output leg, and there is no entangle-

ment between different EPR pairs. For finite t, inserting a complete set of states into (2.2)

and using (2.1), we can rewrite it as

|U(t)〉 = 1

2n/2

2n−1
∑

i,j=0

|i〉in ⊗U(t)|i〉out = I⊗U(t)|I〉, (2.4)

with I the identity operator acting on the incoming states. This offers the following inter-

pretation to the state |U(t)〉: a maximally entangled state is created between a reference

system “in” and a system of interest “out.” Next, the operator U acts on “out,” giving

|U(t)〉. This perhaps offers a more physical interpretation of this operator-state mapping,

as shown in figure 1(c).

Note. In this paper we will adopt the perspective of the mapping shown in figure 1(b)

and use language that refers to the entanglement properties of channels (in time) between

subsystems of inputs and outputs. Additionally, we will always draw our channels from

the operator perspective as in figure 1(a).

It is natural to ask whether the choice of maximally entangled state |I〉 is artificial.

Although different choices of initial state |I〉 can be made which define different mappings

from U to |U(t)〉, all our discussions remain insensitive to the choice as long as |I〉 is a

direct product of EPR pairs. The two qubits in each pair are required to be the qubits at a

given real-space position in the input and output systems, which are maximally entangled

with each other. This choice guarantees that all quantum entanglement between different

real-space locations in |U(t)〉 are created by the unitary evolution U(t).

– 4 –
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(a)

U

time

input

output

U

(b)

U

(c)
EPR pairs

Figure 1. Interpretations of a unitary channel: (a) a unitary operator U with input and output

legs. (b) state interpretation |U〉 of the unitary operator U . By bending the input legs down, we

treat input/output equally. (c) the state interpretation is equivalent to the creation of a maximally

entangled state followed by acting with U on half the EPR pairs, which gives |U〉.

The operator-state mapping can be further generalized by considering a more generic

statistical ensemble as the input state. Let {|ψj〉} be a set of orthonormal states, and

imagine that we input an initial state |ψj〉 with probability pj to a unitary quantum channel

U . This means that the initial statistical ensemble is ρin =
∑

j pj |ψj〉〈ψj |. After time

evolution, each input state evolves to |φj〉 = U |ψj〉, and the output statistical ensemble is

given by ρout =
∑

j pj |φj〉〈φj |. The time evolution of a given input ensemble ρin can be

mapped to the following pure state

|Ψ〉 =
∑

j

√
pj |ψj〉in ⊗ |φj〉out = I⊗U(t)

∑

j

√
pj |ψj〉in ⊗ |ψj〉out . (2.5)

The isomorphic state |Ψ〉 contains all the information required to characterize the properties

of the channel. Namely, if one traces out the output system, then the reduced density

matrix is the input state (ρin = trout |Ψ〉〈Ψ|) while if one traces out the input system, then

the reduced density matrix is the output state (ρout = trin |Ψ〉〈Ψ|). The state interpretation
in (2.4) corresponds to the special case of a uniform input ensemble (i.e. ρin = 2−n

I). In

general, we will simply refer to the state given in (2.5) as a unitary quantum channel. In

quantum information theory, such correspondence between quantum channels and quantum

states is named as the channel-state duality.1

A familiar example of a unitary channel is the thermofield double state

|TFD〉 = 1√
Z

∑

i

e−βEi/2|i〉 ⊗ |i〉, (2.6)

where Ei are eigenvalues of the Hamiltonian H and Z = tr e−βH . Applying evolution for

time t to the right output system, one obtains the following time evolved state

|TFD(t)〉 = 1√
Z

∑

i

e−βEi/2e−iEit|i〉 ⊗ |i〉. (2.7)

1In fact, the channel-state duality in quantum information theory extends to any quantum channels with

decoherence as well as those with different sizes of the input and output Hilbert spaces [16].
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A B

C D

U

time

input

output

Figure 2. Setup to study scrambling in a unitary quantum channel U . Even though we draw our

channels with input and output legs, when we discuss entanglement we always mean of the state

|U〉 given by the mapping to the doubled Hilbert space as in (2.2).

One can interpret this state as a quantum channel U = e−iHt whose input is given by the

thermal ensemble. Note this expression reduces to (2.4) for β = 0.

2.1 Entanglement in time

Since the state as defined in (2.5) contains all the information concerning the inputs and

dynamics of the channel, we would like to use it to establish a general measure for scram-

bling. We will do this by studying the entanglement properties of a unitary U via the state

|Ψ〉. Our setup is as follows. The input system is divided into two subsystems A and B,

and the output system is divided into two subsystems C and D, as shown in figure 2. The

subsystems do not necessarily have to be of the same size (i.e. it is possible that |A| 6= |B|
or |A| 6= |C|), and at t = 0 the input and output partitions do not necessarily need to

overlap (i.e. it could be that A∩C = ∅). Additionally, despite how it is drawn, there does

not need to be any spatial organization to the partitions. For example, the subsystem A

could be an arbitrary subset of the input qubits.

With this state interpretation of the channel (2.5), we can form a density matrix

ρ = |Ψ〉〈Ψ| to compute joint entropies of subsystems that include both input and output

degrees of freedom. For example, the entanglement entropy SAC is given by

SAC = −tr {ρAC log2 ρAC}, (2.8)

where the notation ρAC means the usual partial trace

ρAC = trBD {ρ}. (2.9)

Additionally, the mutual information between A and C is given by

I(A : C) = SA + SC − SAC , (2.10)

– 6 –
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and we will sometimes compute Rényi entropies

S
(N)
AC =

1

1−N
log tr {ρNAC}. (2.11)

Finally, let us note that, for a uniform input ensemble (or β = 0),

SA = a, SB = b, SC = c, SD = d, (2.12)

SAB = SCD = n (2.13)

where a, b, c, d are the numbers of qubits on A,B,C,D respectively. These relations are

true because the inputs are always maximally entangled with the outputs. Therefore, any

subsystem that is only a partition of the inputs or only a partition of the outputs (including

non-partitions such as AB and CD) is maximally mixed. Even if we consider the more

general channel (2.5), any subsystem that does not involve both input and output systems

still has an entropy that is time-independent. Therefore the scrambling effect only appears

in the entropy of regions on both sides, and (thus) the mutual information terms such as

I(A : C) and I(A : D). For this reason, we will primarily be interested in the mutual

information between region A and different partitions of the outputs. When region A is

taken to be small, such as a single lattice site, the mutual information of A with part of

the output system tracks how the information about local operators in A spreads under

time evolution.

2.2 Scrambling

Scrambling is usually considered as a property of a state. In [2], a reference state evolved

with a random unitary sampled from the Haar ensemble is called “Haar-scrambled.” A

much weaker notion of scrambling of a state (which [2] calls “Page scrambling,” or usually

just “scrambling”) is given by a state that has the property that any arbitrary subsystem

of up to half the state’s degrees of freedom are nearly maximally mixed. Said another way,

a state is scrambled if information about the state cannot be learned from reasonably local

measurements. Naturally (and proven in [4]), Haar scrambling implies Page scrambling.

We are interested in extending the notion of scrambling to unitary quantum channels

of the form (2.5). Let us try to understand the properties of scrambling channels by con-

sidering entanglement across the channel. The identity channel is just a collection of EPR

pairs connecting the input to the output. An example of a channel that does not scram-

ble is the “swap” channel, where the arrangement of the EPR pairs are simply swapped

amongst the degrees of freedom in the output system. In that case, localized quantum

information in the input system remains localized in the output system, though residing

in a different particular location. Instead, for a channel to scramble it necessarily must

convert the EPR pairs into a more complicated arrangement of multipartite entanglement

between the input and output systems. Such local indistinguishability of output quantum

states corresponding to simple orthogonal input states in quantum channels enables secure

storage of quantum information: a realization of quantum error-correcting codes.

Let us try to formalize this idea using our setup in figure 2. If our channel is a

strong scrambler, then local disturbances to initial states cannot be detected by local

– 7 –
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measurements on output states. This implies that measurements on a local region C

cannot reveal much information on local disturbances applied to A. Therefore the mutual

information I(A : C) must be small. From a similar reasoning, one also expects I(A : D)

to be small when the channel is a good scrambler since D is a local region too. On the

other hand, the mutual information I(A : CD) quantifies the total amount of information

one can learn about A by measuring the output CD jointly. Since we are interested in the

amount of information concerning A which is hidden non-locally over C and D, a natural

measure of scrambling would be

I(A : CD)− I(A : C)− I(A : D). (2.14)

This quantity accounts the amount of information about A that are non-locally hidden

over C and D such that any local measurements, exclusively performed on C or D, cannot

know. If the channel scrambles, we expect that this quantity is large. It is well known that

the above quantity is equal to minus the tripartite information2

I3(A : C : D) = SA + SC + SD − SAC − SAD − SCD + SACD

≡ I(A : C) + I(A : D)− I(A : CD) . (2.15)

The tripartite information I3(A : C : D) must be negative and have a large magnitude

for systems that scramble. We propose that this is a simple diagnostic of scrambling for

unitary channels.

Scrambling in unitary channels is closely related to other notions of scrambling of

states. For example, if the input to the channel is fixed to be a direct product state, then

tripartite scrambling implies that subsystems of the output state will be near maximally

mixed. Thus, scrambling in terms of the tripartite information implies “Page scrambling”

of the output state.3 In appendix A, we analyze Haar-random channels and show that Haar

scrambling also implies that the tripartite information of the channel is very negative.

Importantly, it should be noted that the tripartite information is a measure of four-

party entanglement, not three-party entanglement. Namely, consider a state with three-

party entanglement only, |Ψ〉 = |ψA〉 ⊗ |ψBCD〉 where A and BCD are not entangled.

Then one always has I3(A : B : C) = 0. I3 for other choices of regions also vanish, because

for pure states the tripartite information is symmetric in any partitions into four regions

A,B,C,D

I3(A : B : C) = I3(A : B : D) = I3(A : C : D) = I3(B : C : D). (2.16)

Thus, in channels I3 is really a measure of four-party entanglement between the input

system and the output system. In this paper, we will often choose to write the tripartite

information as I3(A : C : D) in order to emphasize a particular decomposition. However,

for unitary channels the arguments are unnecessary due to the symmetry (2.16).

2In the condensed matter community, the tripartite information is referred to as the topological entan-

glement entropy, which measures the total quantum dimension in a (2 + 1)-dimensional TQFT [17, 18].
3In fact, this operator notion of scrambling is stronger than “Page scrambling” since the latter only

refers to a single state. The operator scrambling implies that the information about a local operator in the

input system cannot be recovered from a subsystem C of the output system (as long as it is not very close

to the entire output system) even if C is bigger than half of the system.

– 8 –
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(a)

EPR pair

time

(b)

|ii |ji |ii |ji

|ii|ji | − i− ji |j − ii

swap perfect tensor

Figure 3. (a) Permutations of qubits. The isometric pure state |Ψ〉 consists of EPR pairs between

input and output qubits. (b) A swap gate and a unitary corresponding to a perfect tensor. Note the

similarity to the Feynman diagrams of a 2 → 2 scattering process for a free theory and interacting

theory, respectively.

Finally, note that the condition I3(A : C : D) ≤ I(A : D) is known as strong subad-

ditivity and must always holds among entropies. On the other hand, I3(A : C : D) ≤ 0

is often referred to as monogamy of mutual information and doesn’t necessarily hold for

arbitrary states.4 However, for holographic systems the tripartite information must always

be negative [19]. This result is usually only discussed for holographic states but it also

applies to holographic channels (such the eternal black hole in AdS) [20]. It is natural

to suggest that the negative I3 is related to the fact that such holographic systems are

strongly-chaotic and fast-scramblers [6]. (See also [21] for a study of monogamy and other

properties of entanglement in qubit systems.)

2.3 Examples

Here, we present a few examples of using the tripartite information of a channel to measure

scrambling.

Swap channel. Let us revisit the example discussed at the beginning of this section.

Consider a system of n qubits and assume that the unitary operator is the identity operator:

U = I. The channel description is given by (2.3). This is a collection of EPR pairs

connecting input qubits and output qubits. Since the state consists only of two-party

entanglement, the tripartite information is zero. Similarly, consider a time-evolution that

consists only of permutations of qubits, a “swap” channel. Namely, let us assume that jth

qubit goes to ajth qubit where 1 ≤ j, aj ≤ n. Then, the isomorphic state consists of EPR

pairs between jth input qubit and ajth output qubit, and the tripartite information is zero

(figure 3(a)). Permutations of qubits can be thought of as a classical scrambling. Two initial

nearby classical states may become far apart after permutations of qubits, yet it is still

possible to distinguish two initial states by some local measurement on the output states.

4E.g. I3(A : C : D) = 1 for the four-qubit GHZ state 1√
2
(|0000〉+ |1111〉).
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Perfect tensor. Next, let us look at an example where the tripartite information is

maximally negative. Consider a system of two qutrits (spins with three internal states

|0〉, |1〉, |2〉). We consider the following unitary evolution

|i〉 ⊗ |j〉 → | − i− j〉 ⊗ |j − i〉 (2.17)

where addition is defined modulo 3. It can be directly verified that single qutrit Pauli

operators transform in the following way5

Z ⊗ I → Z ⊗ Z X ⊗ I → X† ⊗X† I ⊗ Z → Z ⊗ Z† I ⊗X → X† ⊗X. (2.18)

In this unitary evolution, all local operators evolve to two-body operators. As such, in-

formation concerning local disturbances to initial states cannot be detected by any single

qutrit measurements on output states. We can represent this unitary evolution as the

following pure state

|Ψ〉 = 1

3

2
∑

i,j=0

(|i〉 ⊗ |j〉)AB ⊗ (| − i− j〉 ⊗ |j − i〉)CD (2.19)

where addition is modulo 3. It is known that this pure state is maximally entangled

in any bipartition. Namely, one has SA = SB = SC = 1, SAB = SBC = SCA = 2,

SABC = 1, and I3 = −2, where entropy for qutrits is measured in units of log 3. This

is a so-called perfect state. In general, for any pure state ABCD one can show that

I3 ≥ −2min(SA, SB, SC , SD). Therefore, this qutrit state has minimal value of I3.

Here, we note that the difference in the depiction of this qutrit perfect tensor and the

swap gate (|i〉 ⊗ |j〉 → |j〉 ⊗ |i〉) resembles the difference in the Feynman diagrams of a

2 → 2 scattering process between a free theory and an interacting theory (see figure 3(b)-

(c)). We will comment on this in much greater detail in the context of conformal field

theory in appendix B.

Black hole evaporation. Another interesting example is the thought experiment by

Hayden and Preskill [1] as shown in figure 4. They considered the following scenario. Alice

throws her secret (A), given in the form of some quantum state of a = |A| qubits, into a

black hole (B) with the hope that the black hole will scramble her secret so that no one

can retrieve it without collecting all the Hawking radiations and decoding them. Bob tries

to reconstruct a quantum state of Alice by collecting some portion of Hawking radiation

(D) after a scrambling unitary evolution U applied to the black hole, consisting both of

Alice’s secret A and the original content of the black hole B. The remaining portion of the

black hole after the Hawking radiation is denoted by C. So, as usual, this channel is split

into four segments A,B,C,D as shown in figure 4.

First, assume that Bob only knows the dynamics of the black hole (i.e. the operator

U). In order for Bob to successfully reconstruct Alice’s system A, the mutual information

between Alice’s secret and the Hawking radiation must be I(A : D) ≈ 2a. (Recall that

5Pauli operators for p-dimensional qudits are defined by X|j〉 = |j + 1〉 and Z|j〉 = ωj |j〉 with ω = e
i 2π

p

for all j where addition is modulo p.
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A B

C D

Alice’s secret Black hole

Hawking radiationBlack hole

U

time

Figure 4. The Hayden-Preskill thought experiment.

I(A : D)/2 is roughly the number of EPR pairs shared by A and D.) However this is

possible only when c ≈ 0 since the channel is maximally entangled along any bipartition

due to the assumption of U being a scrambling unitary. Namely, I(A : D) ≈ 0 as long as

D is smaller than B. Next, let us assume that Bob not only knows the dynamics U , but

also knows the initial state of the black hole B. This is possible in principle if Bob has

been observing the black hole since its formation. In this case, Bob has an access to both

B and D. Then for d > a, the mutual information between A and BD becomes nearly

maximal; I(A : BD) ≈ 2a because BD contains more than half of the entire qubits in

channel ABCD. In this case, the tripartite information is given by

I3(A : B : D) = I(A : D) + I(A : B)− I(A : BD). (2.20)

Since I(A : D), I(A : B) ≈ 0, we find I3 ≈ −I(A : BD) ≈ −2a which implies that Bob can

indeed learn about Alice’s secret.6

Holographic channels. In the final example, we will consider thermal systems with

Einstein gravity bulk duals. Under the holographic duality, the unitary quantum channel

representing the CFT time evolution operator is geometrized as the black hole interior

or Einstein-Rosen bridge [5, 12]. Such holographic states are already known to be fast

scramblers [6], so here we will simply confirm that holographic channels scramble in the

sense of I3.

It’s a trivial extension of the ideas in [12] and [6] to calculate the tripartite information

across the eternal AdS black hole (the holographic state dual to thermofield double state [25]

of two entangled CFTs) so we will be brief. For simplicity, we will take A to be aligned

6The firewall paradox of [22–24] is related to the fact the scrambled channel with near maximally

negative I3 cannot allow bipartite entanglement I(C : D) between the evaporating black hole C and the

recently evaporated Hawking radiation D. This is a consequence of the monogamy of entanglement, which

is captured by the negativity of the tripartite information.

– 11 –



J
H
E
P
0
2
(
2
0
1
6
)
0
0
4

Figure 5. The eternal AdS black hole interior is a geometric representation of the unitary quantum

channel given by the time evolution operator of the dual CFT. Left: Penrose diagram for the eternal

AdS black hole geometry with a spacelike slice (blue) anchored on the left boundary at the middle of

the diagram anchored at time t on the right boundary. Right: geometric depiction of the spacelike

slice through the Einstein-Rosen bride (ERB). The spatial coordinates on the boundary CFT are

represented by ϕ. The renormalized length of the ERB is proportional to t. For small t, the

RT surface used to compute the entanglement entropy SAC goes across the ERB (red). After a

time proportional to the size of A or C, the disconnected RT surface (blue) is preferred and the

entanglement entropy is a sum of disjoint contributions (SAC = SA + SC).

with C across the Einstein-Rosen bridge, and A,B,C,D to have the same size, as shown

in figure 5. For simplicity, we will consider time evolution only on the right boundary

U(t) = e−iHt. For any finite time, the mutual information I(A : D) is always zero for any

finite regions A,D. The Ryu-Takayanagi (RT) surfaces used to compute the entanglement

entropy are always disconnected. The only interesting behavior is from I(A : C), which was

computed in this setup in [12]. The initial RT surface extends across the Einstein-Rosen

bridge, and I(A : C) begins equal to the finite part of SA + SC , since the finite part of

SAC is vanishing. Under time evolution, the finite part of SAC will increase linearly in time

with a characteristic entanglement velocity vE [12], and I(A : C) will decrease linearly to

zero. Since I(A : CD) = SBH the Bekenstein-Hawking entropy of the black hole, after a

time of at most O(SBH/2), we find

I3(A : C : D) = −SBH, (2.21)

which is its minimal possible value.

Haar-random channels. In appendix A, we analyze Haar-random unitaries. Using

those results, we can bound the tripartite information in a Haar random channel

I3,Haar ≤ −2min(SA, SB, SC , SD) + 1 + . . . . (2.22)
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The tripartite information of a random channel is near maximally negative plus one “resid-

ual” bit of information (independent of the overall system size). As we mentioned before,

Haar scrambling implies tripartite scrambling.

2.4 Chaotic channels vs. integrable channels

In this section, we will focus on the aspects of unitary quantum channels built from time-

evolution operators that can be used to differentiate chaotic systems from integrable sys-

tems. A system, defined by a time independent Hamiltonian H, can be chaotic or inte-

grable. A unitary operator U(t) = e−iHt can scramble. In section 3, we will learn that

channels U(t) that scramble for most values of t must be built from chaotic systems. To be

concrete, we will take integrable systems to be those that have a quantum recurrence time

that is polynomial in their number of degrees of freedom n. On the other hand, chaotic

systems will generally have recurrence times that are doubly exponential in n, O(ee
n
).

The important point about scrambling in channels is that all bipartite mutual informa-

tions between the input subsystems and output subsystems become small. As an extreme

example of an integrable system, let’s return to the swap channel (figure 3(b)). As a re-

minder, for all t this channel has I(A : C) + I(A : D) = I(A : CD) or I3(A : C : D) = 0.

Swap gates preserve bipartite entanglement and cannot create multipartite entangled out-

put states. As such, an input localized at one lattice site can only be moved around to n

possible locations. The recurrence time must scale like O(n).

In order for the tripartite information of the channel to vanish for all times, the decrease

of I(A : C) must be exactly compensated by the increase of I(A : D). If we take C to

contain A at t = 0, the initial values of mutual information are I(A : C) = 2a and

I(A : D) = 0. If I3 vanishes for t > 0, I(A : C) must decrease in order for I(A : D) > 0.

If I(A : C) returns to the initial value 2a at a later time (i.e. there is a recurrence), in the

meantime we must have I(A : D) = 0. Therefore the signature of an integrable system is a

sharp peak in I(A : D) = 0 (or equivalently, a dip in I(A : C)). The sharpness of the peak

is determined by the relative sizes of the systems A and C. In chaotic systems for times

shorter than the Poincare recurrence time O(ee
n
), I(A : D) and I(A : C) will asymptote

to the channel’s Haar-random value (see appendix A).

As we will see numerically in section 4, for unequal divisions of the input (a≪ b) and

output (c ≪ d) the signature of an integrable system is a spike in I(A : D) which occurs

at the time signals from A arrives at D. In such systems the tripartite information might

become negative, but it will never become close to the Haar-scrambled value, and it will

quickly return near zero. However, for equal divisions of input and output, the tripartite

information of an integrable channel will tend to a constant much greater (i.e. less negative)

than the Haar-scrambled value. This equal-sized subsystem configuration appears to be

the most robust measure of scrambling.

This discussion of the spike in I(A : D) highlights an important point: in integrable

systems, such as the transverse Ising model, it is still possible to have early time exponential

decay and ballistic growth of operators [5] (see the top-middle panel of figure 7), and in

integrable CFTs some (but not all!) OTO correlators can decay at late times [8]. However,

for these systems the growth of operators (or the decay of I(A : C)) must always be followed

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
0
0
4

by a later decrease in size (or a recorrelation in the OTO correlator) as the system exhibits

a recurrence.7 We will see this behavior explicitly in our numerics in section 4.

3 Butterfly effect implies scrambling

Now, we will show that the generic decay of OTO correlators of the form 〈W (t)V W (t)V 〉
implies that the mutual information between any small subsystem in the inputs and any

partition of the output should be small. We will provide an exact formula relating the op-

erator average of OTO correlators in different size subsystems to the second Rényi entropy

for a subsystem consisting of both inputs and outputs. Using tripartite information as

our diagnostic of scrambling in a unitary channel, we will show the butterfly effect implies

scrambling.

3.1 Average over OTO correlators

For simplicity of discussion, we consider a system consisting of qubits. We consider a

complete basis of Hermitian operators Di in subsystem D, which satisfies the orthonormal

condition

tr {DiDj} = 2dδij . (3.1)

Similarly, we define an orthonormal basis Ai in subsystem A. As a reminder, our state

lives in a 2n-dimensional Hilbert space, and AB and CD are two different decompositions

of that Hilbert space. Hilbert space A is 2a-dimensional, and the operators Ai act on A.

A similar statement holds for D. Both D and A are setup as in figure 2, and SD = d,

SA = a. If a = 1, then one possible basis choice for Ai the three Pauli operators X,Y, Z,

and the identity I. In general, there are 4a independent operators in A. We can think

of this as choosing one of the four operators I,X, Y, Z at each site. If the Hilber space

decompositions A and D do not overlap, then [Ai, Dj ] = 0 for all i, j. However,

As a measure of OTO correlation functions for generic operator choices, we consider

the following quantity

|〈OD(t)OAOD(t)OA〉β | : =
1

4a+d

∑

ij

〈Di(t)Aj Di(t)Aj〉β

=
1

4a+d
· 1
Z

∑

ij

tr {e−βHDi(t)Aj Di(t)Aj},
(3.2)

where the sums i, j run from 1 to 4d, 4a, respectively. Here, 〈·〉β represents a thermal

average, and |·| represents an operator average over the complete basesDi, Aj . Additionally,

we will take the infinite temperature limit β = 0 so we don’t have to worry about the

Euclidean evolution. For t = 0, every correlator is unity 〈Di(0)Aj Di(0)Aj〉β=0 = 1 due

to the orthonormal condition and the fact that Aj and Di(0) commute.

7Another relevant difference between chaotic and integrable systems is in terms of the expansion (1.1)

for the time evolution of a simple operator. Due to ergodicity, such an expansion will have a number of

terms exponential in the size of the system for chaotic dynamics. Integrable systems are not ergodic, so the

expansion will only have a linear number of terms.
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Under chaotic time evolution, Di(t) = eiHtDie
−iHt will evolve into a high weight

operator and cease to commute with Aj . (To see this, consider the BCH expansion for

Di(t) as in (1.1). As t increases, the later terms with high weight will become important.

These terms will no longer be confined to subspace D. Under chaotic evolution the Di(t)

will grow to reach A.) This will lead to the decay of the OTO correlation functions

〈Di(t)Aj Di(t)Aj〉β=0 for generic i, j (as long as the Di or the Aj are not the identity in

which case 〈Di(t)Aj Di(t)Aj〉β=0 = 1 for all t) and all such partitions A,D.

At early times, the average will be very close to unity. With chaotic time evolution,

the butterfly effect will cause most of the correlation functions in the average to decay

exponentially. Using standard techniques, one can relate (3.2) to the second Rényi entropies

of the time evolution operator considered as a state

|〈OD(t)OAOD(t)OA〉β=0| = 2n−a−d−S
(2)
AC , (3.3)

where S
(2)
AC is the second Rényi entropy of AC defined in (2.11), 2n is the dimension of the

input or output Hilbert space, and the subsystems A and D have dimension 2a and 2d,

respectively. A proof of this result and its generalization to finite temperature is given in

appendix C.

At first glance, it is a little surprising that a Rényi entropy appears here: the entropy

determines mutual information, which bound two-point functions, and chaos is distinctly

measured by OTO four-point functions. However, the key point is that when A and D are

small (so that they only contain approximately local operators), B and C contain highly

nonlocal operators covering almost the entire input and output systems, respectively. As

a result, S
(2)
AC is sensitive to correlations between the few operators in A and the complete

(and nonlocal and high weight) set of operators in C.

The OTO average (3.3) is an operator-independent information-theoretic quantity that

is constrained by chaotic time evolution. To understand its behavior, let’s consider its

maximum and minimum values. The average will be the largest at t = 0, when all the

correlators are unity. On the other hand, the average will be minimized when the Rényi

is maximal: maxS
(2)
AC = min(a + c, d + b). Let us assume for the rest of this section that

a ≤ d, so maxS
(2)
AC = a+ c. This means the OTO average is bounded from below by 4−a.

(It’s worth mentioning that the Haar-scrambled value of the average is generally larger

than this lower bound.)8 Therefore, we see the OTO average is bounded by

4−a ≤ |〈OD(t)OAOD(t)OA〉β=0| ≤ 1. (3.4)

Now, we will recast this result in terms of mutual information in order to make a

connection to our scrambling diagnostic. Let’s assume that after a long time of chaotic

time evolution the OTO average asymptote to a small positive constant ǫ. This means

8Since (3.2) includes 4d + 4a − 1 terms where Aj = I or Di = I (one for each term where Aj = I or

Di = I, and minus one to prevent overcounting when they both are), if all the non-identity correlation

functions decay the OTO average will be 4−a +4−d − 4−a−d > 4−a. Using the results from appendix A, we

can show that this is larger value is exactly the Haar-scrambled value of the OTO average. To get lower

value, some of the correlation functions need to cross zero so that the operators are negatively correlated.
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that the entropy SAC is bounded:

SAC ≥ S
(2)
AC = n− a− d− log2 ǫ, (3.5)

where in the first part we used the fact that S
(i)
R > S

(i+1)
R for Rényi entropies, and in the

second part we used (3.3). In terms of mutual information, we have

I(A : C) ≤ 2a+ log2 ǫ, (3.6)

where here we have used the fact that SA and SC are always maximally mixed.

Eq. (3.6) is one of our main results. At t = 0, I(A : C) = 2a. The information about

the input to the channel in A is 2a bits and that information is entirely contained in the

output subsystem C. Since there are 4a linearly independent basis operators in A’s Hilbert

space, we can interpret these 2a bits as the information about which of the 4a operators

was input into the channel. (For instance, if a = 1, it takes two bits to index the operators

I,X, Y, Z.) Under chaotic time evolution, ǫ ≪ 1, and the mutual information between

A and C becomes small. The smallest possible value for ǫ is 2−2a, which occurs when

I(A : C) = 0. In practice, there is always residual information between AC. Using the

results from appendix A, we see that for Haar scrambling the mutual information can be

bounded as

I(A : C)Haar ≤ 1 + log(1− 2−a−d−1), (3.7)

which corresponds to all the non-identity terms in the OTO average decaying to zero.

If the information-theoretic quantities constructed from the second Rényi approach their

Haar-scrambled value, then all the nontrivial OTO correlators 〈Di(t)Aj Di(t)Aj〉β=0 must

approach zero.

Next, we note that (3.6) implies

I(A : Cα) ≤ 2a+ log2 ǫ, (3.8)

for any partitioning of C = Cα ∪ Cᾱ. This can be seen from subadditivity

SACα + SACᾱ ≥ SAC , (3.9)

and the definition of mutual information. (This is also intuitive: any information contained

about region A in region C must necessarily be more than or equal the information in a

partition of C.) Therefore, we learn that in chaotic channels, local information in the

input must get delocalized in the output (i.e. cannot be recovered in an output subsystem

smaller in size than the total system n). Since the partitions A and C were completely

arbitrary, we conclude that the decay of OTO correlators implies that all bipartite mutual

informations are small. If the OTO correlator average is given by ǫ after a long time, then

we have

I(A : C), I(A : D) ≤ 2a+ log2 ǫ

I3(A : C : D) ≤ 2a+ 2 log2 ǫ = −2a+ 2 log2
ǫ

ǫmin
. (3.10)

When ǫ approaches the minimum value ǫmin = 2−2a, I3 approaches the most negative

value I3,min = −2a. From this discussion, we conclude that the butterfly effect implies

scrambling.
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3.2 Early-time behavior

In this section, we will attempt to connect the universal early-time behavior of OTO

correlators in strongly chaotic systems with the information-theoretic quantities we use to

diagnose scrambling.

In strongly chaotic systems, all OTO correlation functions of operators with nontrivial

time evolution will decay to zero. However, the behavior of the OTO correlation function

〈W (t)V W (t)V 〉β as it asymptotes to zero is not universal. The approach will depend on

the specific choices of operators W,V . For instance, in two-dimensional CFTs with large

central charge and a sparse low-lying spectrum at late times the OTO correlator decays as

〈W (t)V W (t)V 〉β
〈WW 〉β 〈V V 〉β

∼ e−4πhvt/β , (3.11)

where hv is the conformal weight of the V operator, and it is assumed 1 ≪ hv ≪ hw [8].

On the other hand, at early times the behavior of 〈W (t)V W (t)V 〉β usually takes a

certain form. The initial decay is known to fit the form

〈W (t)V W (t)V 〉β
〈WW 〉β 〈V V 〉β

≈ 1 − #eλLt + . . . , (3.12)

where in analogy to classically chaotic systems λL has the interpretation of a Lyapunov

exponent [26].9 In [10], it was shown that quantum mechanics puts a bound on λL

λL ≤ 2π

β
, (3.13)

with saturation for strongly-interacting conformal field theories that have holographic de-

scriptions in terms of Einstein gravity. This Lyapunov exponent is expected to be universal

— independent of the choice of operators W,V —and as such any model that saturates the

bound (3.13) is expected to be a toy model of holography [11, 26]. (In section 4, we will

use numerics to explore the Majorana fermion model proposed in ref. [11] that in a certain

limit is expected to have this property.)

Since the partitioning of the inputs into A,B and outputs into C,D was entirely arbi-

trary, let’s first consider channels that operate on 0-dimensional systems, e.g. fast scram-

blers in the sense of [2], such as the Majorana fermion model of Kitaev [11] (a simplification

of the Sachdev-Ye model of N SU(M) spins [27], see also [28]) or a large N strongly inter-

acting CFT holographically dual to Einstein gravity near its Hawking-Page point.10 These

systems still have low-weight k-local Hamiltonians wth k ≪ N , but each degree of free-

dom interacts with every other degree of freedom. For these systems, the OTO correlation

functions decay as

〈W (t)V W (t)V 〉β = f0 −
f1
N2

eλLt +O(N−4), (3.14)

9However, the analogy is imprecise. In weakly coupled systems, λL has a semiclassical analog that does

not map onto the classical Lyapunov exponent. Despite this, we will follow convention and refer to λL as

a Lyapunov exponent. We are grateful to Douglas Stanford for emphasizing this point.
10We require this limit so we can think of the black hole as unit sized and not yet worry about the

operator growth in spatial directions.
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where N2 = n is the total number degrees of freedom, and the constants f0 and f1 depend

on properties of the W,V operators (e.g. their CFT scaling dimensions) [10]. The decay of

the correlator is delayed by the large number of degrees of freedom at time t∗ = λ−1
L logN2.

This is usually referred to as the scrambling time [2]. Plugging (3.14) into (3.6), we find

that at early times the mutual information between A and C is bounded as

I(A : C) ≤ 2a−#eλL(t−t∗) + . . . . (3.15)

Thus, the information between A and C must begin to decay by the scrambling time

t∗ = λ−1
L logN2. This inequality would be an equality if we instead considered the mutual

information constructed from the second Rényi S
(2)
AC .

Now, let’s consider systems arranged on a spatial lattice but do not have a large

number of degrees of freedom per site, e.g. spin chains. For these systems, the butterfly

effect implies ballistic growth of operators in spatial directions [5]. For local operators W

and V separated by large distance |x| ≫ β, in many known examples (such as holography

and numerical investigations of one-dimensional spin chains) strong chaos implies that

OTO correlation functions decay as

〈W (t)VW (t)V 〉β = f ′1 − f ′2 e
λL(t−|x|/vB) +O(e−2|x|λL/vB ), (3.16)

with additional constants f ′1, f
′
2 that depend on the details of the operators.11 In this case,

the early-time decay of the correlator is suppressed by the large spatial separation between

the operators. Under chaotic time evolution, the operator W (t) will grow ballistically with

some characteristic “butterfly” velocity we denote vB.
12 Thus, W (t) and V will commute

until a time t > |x|/vB when V enters the “butterfly” light cone of W . Let’s focus on a

lattice of spins in d-spatial dimensions. We will pick our subsystem A to be a ball of a sites

surrounding the origin with a radius ra. We will pick C to also be a ball surrounding the

origin with a radius rc such that rc − ra = |x|. Then, after a scrambling time of t∗ = vBt,

the mutual information between A and C must begin to decay

I(A : C) ≤ 2a−#eλL(t−|x|/vB) + . . . . (3.17)

Since we will study this quantity in section 4, we note that we can directly equate

(rather than bound) the behavior of the second Rényi entropy to the Lyapunov behavior of

the OTO correlators. Let’s restrict to a one-dimensional spin chain, and take A to be the

first spin of the input and D to be the last spin of the output. In that case, if we assume

a form of the correlator (3.16), plug into (3.2) and compute the average, then we find

S
(2)
AC(t) = S

(2)
AC(0) + #eλLt + . . . , (3.18)

11As emphasized in [10], the butterfly effect is relevant for systems with a large hierarchy of scales. For the

0-dimensional systems we just considered, the hierarchy is provided by the parametric difference between

the thermal time β and the fast scrambling time β logN2. In the present case, the role of the large scale is

instead being played by the large spatial separation |x| between the operators.
12The velocity vB can depend details of the theory that do not affect λL. For instance, it is modi-

fied in Gauss-Bonnet gravity [5] and for certain Einstein gravity theories can even acquire a temperature

dependence [29].
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showing that at early times the Rényi entropy can grow exponentially with characteristic

Lyapunov exponent λL.
13 We will roughly see this behavior in figure 7.

3.3 Butterfly velocity vs. entanglement velocity

There are two nontrivial velocities relevant to the growth of information-theoretic quantities

in unitary quantum channels arranged on a lattice.

The butterfly velocity vB [5, 6] is the speed at which the butterfly effect propagates. It

is the speed at which operators grow under chaotic-dynamics. Such behavior is reminiscent

of the Lieb-Robinson bound on the commutator of local operators separated in time for

systems with local interactions [30–32] and suggests identifying vB with the Lieb-Robinson

velocity. The butterfly velocity is often difficult to compute directly, but in holographic

theories with Einstein gravity duals it is known to be [6]

vB =

√

d

2(d− 1)
, (Einstein gravity), (3.19)

where d is the spacetime dimension of the boundary CFT. This value is modified in Gauss-

Bonnet gravity [5] and for certain theories can even acquire a temperature dependence [29].

The entanglement velocity (sometimes called the tsunami velocity) studied in [12–

14, 33, 34] is often described as the rate at which entanglement spreads. It is rate of growth

of entanglement entropy after a quench, and in holographic systems dual to Einstein gravity

it can be computed directly [12–14]

vE =

√
d(d− 2)

1
2
− 1

d

[2(d− 1)]1−
1
d

, (Einstein gravity), (3.20)

a different nontrivial function of the CFT spacetime dimension d. In these theories, vE ≤
vB, and vB = vE = 1 for d = 1 + 1.

In the context of unitary quantum channels, these velocities have a very specific in-

terpretation in terms of different mutual informations, see figure 6. Consider a lattice of

n degrees of freedom and divide the input up such that a = b = n/2, the output such

that c = d = n/2, and such that all subsystems are contiguous. If A and C are aligned

such that at t = 0, I(A : C) = n, then under time evolution (for chaotic and integrable

systems!) it is expected that for a long stretch of time that the mutual information will

decrease linearly as

I(A : C) = n− vEst, (3.21)

until near when it saturates at I(A : C) = 0. This is often referred to as a quench,

which we discuss in depth in appendix B in the context of CFT. Here, s is the “entropy

density,” which converts vE from a spatial velocity (with units lattice-sites/time) to an

13This assumes that λL is independent of the choice of operators W and V and that the ansatz (3.16) is

the correct form for the initial decay of the correlator. Both of these assumptions are not necessarily true

for some spin systems. Additionally, if the constant in front of the exponential is not small (for example,

in holographic systems), then the expansion will not be valid and one cannot see the exponential growth

behavior. We thank Tarun Grover and Douglas Stanford for emphasizing these points.
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information rate (bits/time). For spin systems, the state representation of the channel

requires two qubits per addition to the spatial lattice (one to represent the input leg and

one to represent the output leg), so s = 2.

While this tells us about the accumulation of entanglement between AC and BD, it

tells us nothing about how information propagates in the spatial directions through the

channel. To study the latter, we need a different configuration of subsystems. First, let’s

pick A to be a small region a = O(1) center at the origin. Then, instead of considering

a fixed radius C, let us let pick subsystem C to be a growing ball of radius rc = vBt

surrounding the origin in the output system. Then, the information between the input A

and output C(t) will be constant

I(A : C(t)) = 2a, (3.22)

but the output is growing ballistically as a ball of radius vBt. Thus, vB is the rate that

information propagates spatially in unitary quantum channels.14 For finite systems, even-

tually C(t) will grow to encompass the entire output of the channel, and the information

will stay delocalized until the recurrence time. Before then, any local measurement of

any subsystem of the output will be insufficient to recover the information in A. The

information is scrambled.

In figure 6, a tensor network model of a channel exhibits both of these velocities. The

left side shows the linear decrease of I(A : C) with increasing circuit depth in the vertical

direction. Every increase in depth is accompanied by a decrease in I(A : C) of vEs∆t

bits, with ∆t the time interval corresponding to each step of the circuit. The bold tensors

make it clear that this decrease is a simple consequence of the increase of circuit depth.

In a gate or tensor model of a channel, vE is simply a conversion in units between the

network’s depth and conventional time. More generally, it is the velocity associated with

the “vertical” direction of the channel.

The right side of figure 6 shows the growth of the region C(t) required to capture all

of the information from the input A. This has a natural interpretation of a light cone

for information propagation and can be very different depending on the properties of the

channel. This velocity is associated with the “horizontal” direction of the channel. In the

simple tensor network picture and 1+1-dimensional CFT, vE = vB = 1, but more generally

vE ≤ vB as in holographic Einstein gravity (3.19)–(3.20).

4 Numerics in qubit channels

In this section, we will study chaos and scrambling in qubit channels. We will show

explicitly that the tripartite information is a simple diagnostic of scrambling, and we will

verify our main result (3.3) by directly showing that the butterfly effect implies scrambling.

Finally, we will also comment on the relationship between the size of the subsystems and

the expected behavior of the entropies in the channels.

14A similar interpretation of the butterfly velocity was recently made by Stanford the context of hologra-

phy. It was shown that the reconstruction of a particle falling into a black hole can occur for a region that

grows ballistically with velocity vB [35].
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t=0

t=1

t=2

a=1 b=n-1

c=1 d=n-1

a=1 b=n-1

c=2 d=n-2

a=1 b=n-1

c=3 d=n-3c=n/2 d=n/2

c=n/2 d=n/2

c=n/2 d=n/2

a=n/2 b=n/2

a=n/2 b=n/2

a=n/2 b=n/2

Figure 6. A one-dimensional tensor network model of a channel with increasing vertical network

depth t. This makes it clear that vE is related to vertical propagation and vB is related to horizontal

propagation. Left: I(A : C) decreases by 2 with every increase in circuit depth. By measuring

time in terms of the network depth, the entanglement velocity is trivial (vE = 1). Right: the

“information” or “butterfly” light cone of the input is controlled by the butterfly velocity (vB = 1).

The information contained in this light cone is constant: I(A : C(t)) = 2a.

We will study four different channels. First, we will directly compare two 1-dimensional

Ising spin chains, one integrable and one strongly chaotic, both of which can be expressed

with the Hamiltonian

Hsc = −
∑

i

ZiZi+1 + gXi + hZi. (4.1)

Here, i = 1, . . . n, and Xi, Yi, Zi are the Pauli operators on the ith site. The integrable

system we study is the transverse field Ising model with g = 1, h = 0, and the chaotic

system has g = −1.05, h = 0.5 [36]. In our numerics, we will take n = 7 when studying

subsystems of unequal sizes and n = 6 when studying subsystems of equal sizes. For these

systems, we will also compute the velocities vE and vB.

The second model we will study is a 0-dimensional fast scrambler, the Majorana

fermionic system of Kitaev [11] (see also [27, 28]) with Hamiltonian

HK =
∑

j<k<ℓ<m

Jjkℓm χjχkχℓχm, J2
jkℓm =

3!

(N − 3)(N − 2)(N − 1)
J2, (4.2)
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where the χj are spinless Majorana fermions, and j, k, ℓ,m = 1, . . . N , Jjkℓm are random

couplings with mean zero and variance J2
jkℓm.15 We can study Majorana fermions using spin

chain variables by a nonlocal change of basis known as the Jordan-Wigner transformation

χ2i−1 =
1√
2
X1X2 . . . Xi−1Zi, χ2i =

1√
2
X1X2 . . . Xi−1Yi, (4.3)

such that {χj , χk} = δjk. With this representation, N Majorana fermions require N/2

qubits. In our numerics, we will take N = 14 and J = 1.

Finally, we will consider scrambling with a Haar-random unitary as a baseline for a

scrambled system. For scrambling channels, at late times the quantities we use to diagnose

scrambling often don’t reach their extremal values, but rather asymptote to Haar-random

values. In appendix A, we analytically compute the second Rényi entropies of the Haar-

random unitary channel considered as a state. To study the mutual informations, we will

numerically sample from the Haar ensemble. For the size of the channels we will study

(dimU = 26 × 26 or dimU = 27 × 27), these properties are self-averaging and only require

one sample.

4.1 Spin chains

Unequal sized subsystems. Our first setup for the spin chains is shown in the top-left

corner of figure 7, which contains 7 spins with open boundary condition. We study the

27 × 27-dimensional unitary operators as states

|U〉 = 1

27

27
∑

i=1

|i〉AB ⊗ U |i〉CD, (4.4)

where AB is the input to the channel and CD is the output. In the input, we take A to be

the first spin, and B to be the final six spins. Similarly, we take C to be the first six spins,

and D to be the last spin. This puts A and D at maximal spatial separation. For the spin

chains, we take U = e−iHsct, with Hsc given by (4.1). As a comparison, we consider a Haar

channel with U a Haar random unitary operator. Since we are considering uniform input,

the inverse temperature is always taken to be vanishing (β = 0).

Our spin chain numerics for this unequal subsystem setup are shown in the rest of

figure 7. In the top-middle panel, we show the average over OTO correlation functions

|〈OD(t)OAOD(t)OA〉β=0|. Of course, from (3.3) we know this is also equal to 2n−a−d−S
(2)
AC ,

which in this case can be verified explicitly. The chaotic spin chain asymptotes to just

above the Haar-scrambled value, which can be computed from appendix A and is equal to

4−a + 4−d − 4−a−d = 7/16. This is also the value given by assuming all the correlation

functions in the average where neither an operator in A nor an operator in D are the

identity decay to zero. (There are 9 such terms, with 16 total correlation functions in the

sum.) The Haar-scrambled value is far above the absolute minimum 4−a = 1/4 of OTO

15This is slightly different than in [11], because we are studying the system in the limit βJ = 0, while

the system in [11] is considered in the limit βJ = ∞. Thus, we don’t expect the Lyapunov exponent to

saturate the chaos bound (3.13), and instead we expect it to be proportional to the coupling J .
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Figure 7. Chaos and scrambling in the integrable (blue; g = 1, h = 0 Hamiltonian) and chaotic

(orange; g = −1.05, h = 0.5 Hamiltonian) spin chain unitary channels and the Haar-random channel

(black). Top left: configuration of channel (n = 7 spins; input subsystems of a = 1, b = 6 spins;

output subsystems of c = 6, d = 1 spins). For the spin chains, the channel is the time evolution

operator (U = e−iHt). For the Haar-channel, U is sampled from the Haar ensemble. Top Middle:

the average of OTO correlators shows the butterfly effect. At later times, the chaotic system

asymptotes to the Haar-scrambled value, but the integrable system doesn’t remain decorrelated.

Top right: SAC (solid) and S
(2)
AC (dotted) shows roughly the same behavior as the OTO average.

Bottom left: I(A : C), a trivial function of SAC , shows that for the chaotic channel an initial 2 bits

of information between the subsystems gets delocalized so that at late times only a small amount

(0.59 bits) remains. We can also read off the butterfly velocity, vB = 2.5. Bottom Middle: the

spike in I(A : D) for the integrable channel shows that information is not delocalized by integrable

time evolution. For the chaotic and Haar channels information is delocalized, and I(A : D) is

always near vanishing. Bottom right: the negative of the tripartite information normalized by its

maximum value (2 bits) is a simple diagnostic of scrambling.

correlator average, given by plugging the maximum possible value for the second Rényi

(maxS
(2)
AC = 7) into (3.3). (To reach this value, some of the correlators would have to

become negative.) Additionally, we see Lyapunov behavior of the OTO correlator decay

beginning around t = 2. At later times (around t = 4), the integrable system does not

asymptote to the Haar-scrambled value but instead has a recurrence and recorrelates.

We see the similar behavior in the other related quantities computed on subsystem

AC. In the top-right panel of figure 7, we plot the entropies SAC and S
(2)
AC , and in the

bottom-left panel we plot I(A : C). The entropies S
(2)
AC are directly related to the OTO

average by (3.3), and I(A : C) = a + c − SAC . (As a reminder a = 1 and c = 6 are
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constant.) At early times we see roughly Lyapunov behavior of the second Rényi entropy

as suggested from (3.18). In all of these curves, the quantity is roughly unchanged until

a time of order c and then begins to decay exponentially. As expected, S
(2)
AC < SAC , and

these entropy curves have roughly the same shape. Also as expected, localized information

between A and C gets delocalized by chaos. For the chaotic channel, I(A : C) begins at

2 bits (representing the four different choices of input operators) and then decays to just

above the Haar-scrambled value of roughly 0.6 bits. Using the results from appendix A

and (A.6), we can bound this late-time residual information to be less than 0.8 bits

I(A : C)Haar ≤ 1 + log2(7/8) ≈ 0.8 bits. (4.5)

For the integrable channel, the information doesn’t get delocalized and I(A : C) returns

close to its initial value of 2 bits. The decay in both cases is delayed until roughly t = 2.

The ratio of this delay to the distance between A and D lets us extract the butterfly

velocity for these chains (vB = 2.5).

In the bottom-middle panel of figure 7, we plot I(A : D). For the chaotic channel,

this quantity can never become very large: under time evolution the information in A

gets spread across all the degrees of freedom, so there can never be significant localized

information about the input A in the output subsystem D. From appendix A, we also

note that the Haar-scrambled I(A : D) is exponentially small in the overall system size

(eq. (A.9)). However, the integrable channel has a very sharp peak after a time of order

c. In appendix B, we explain in the context of CFT that this memory effect is the failure

of integrable systems to efficiently delocalize information — i.e. scramble — due to entan-

glement propagation by noninteracting quasi-particles. This peak (0.28 bits) is far from

the maximum (2 bits), but corresponds precisely to the point in the bottom-left panel plot

of I(A : C) where the integrable channel is loosing information between A and C. This

supports our hypothesis of integrable channels moving around localized information rather

than actually scrambling.

Finally, we plot the negative of the tripartite information in the bottom-right panel

of figure 7, normalized by its maximal value (−I3(A : C : D)/2a = −I3(A : C : D)/2).

As explained in section 2.2, as a measure of multipartite entanglement this quantity is

a simple diagnostic of scrambling; the chaotic channel asymptotes to the Haar-scrambled

value of I3 after a time O(n). The integrable channel initially has an increase in I3, but

never reaches the Haar-scrambled value (due to the memory spike in I(A : D)) and instead

has a recurrence beginning after a time of order O(n). A long time average of this quantity

would make it clear that the integrable channel doesn’t scramble.

As a final point, the fact that the Haar-scrambled value of the normalized negative I3
is less than unity (−I3/2 ≈ 0.7) is not a relic of small n. This “residual” information can

be bounded using the results from appendix A and depends only on the subsystem sizes

−I3(A : C : D)Haar

2a
≥ 1− 1 + log2(1− 2−a−d−1)

2a
. (4.6)

Even for large systems, the residual information vanishes like 1/2a. The point is that for

1 ≪ a, d < b, c, there’s still always roughly one bit of information between A and C that

doesn’t delocalize across the entire output.
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Figure 8. Chaos and scrambling in the integrable (blue; g = 1, h = 0 Hamiltonian) and chaotic

(orange; g = −1.05, h = 0.5 Hamiltonian) spin chain channels and the Haar-random channel (black).

Top left: configuration of channel (n = 6 spins; input subsystems of a = 3, b = 3 spins; output

subsystems of c = 3, d = 3 spins). For the spin chains, the channel is the time evolution operator

(U = e−iHt). For the Haar-channel, U is sampled from the Haar ensemble. Top right: the negative

of the tripartite information normalized by its maximum value (6 bits) is a simple diagnostic of

scrambling. Bottom left: shows the linear decrease of I(A : C) in time with characteristic speed vE
known as the entanglement or tsunami velocity. Bottom right: the spike of the unequal subsystem

configuration (figure 7) is broadened to linear increase followed by decrease in I(A : D) for the

integrable channel.

Equal sized subsystems. For comparison, we also consider the same spin chains, but

with n = 6 and equal sized subsystems of a = b = c = d = 3 spins. A and D are still taken

to be opposite ends of the chain, but their boundaries are no longer separated spatially.

This setup is shown in the top-left panel of figure 8. As noted before, this is the setup often

used when quenches are discussed. Here, we only plot the quantities that have interesting

differences from the previous configuration.

In the top-right panel, we plot the normalized negative tripartite information −I3/6.
Interestingly, for the integrable channel the tripartite information does not exhibit a re-

currence, but rather saturates at a very low value (roughly at 0.24, compared to 0.7 for

the chaotic channel and 0.77 for the Haar-random channel). Thus, in this configuration of

subsystems it appears to be a robust measure of scrambling that doesn’t require any long

time average.
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In the lower-left panel, we see that I(A : C) for the integrable and chaotic channels

have near identical behavior until just before t = 4. This is the expected linear growth

decrease in mutual information with velocity vE

I(A : C) = 6− vEst, (4.7)

where we have s = 2 for our spin chain channels, and we can read off vE = 0.625. The

relationship between vE and vB for these spin chains is consistent with results in holographic

systems in the sense that vE ≤ vB, but it curious that these 1 + 1-dimensional channels

have vE 6= vB. Finally, unlike the previous subsystem configuration, the linear decrease of

I(A : C) begins immediately since the distance between subsystems A and D is 0 spins.

In the lower-right panel, we see that I(A : D) for both spin chains also lay on top of

each other, but only until just before t = 2. At this time, the chaotic channel saturates

just above the Haar-scrambled value, while the integrable channel begins a rough pattern

of linear growth to 3 bits followed by return to the Haar-scrambled value. This growth and

collapse is the analog of the memory spike we discuss in appendix B, broadened by the fact

that the spatial separation between A and D (0 spins) is no longer larger than the size of

the regions (3 spins) as required to see the spike.

4.2 Majorana fermion fast scrambler

Unequal sized subsystems. Finally, we consider the 0-dimensional Majorana fermion

fast scrambler (4.2) with N = 14 fermions represented with n = 7 spins. In figure 9, the

inputs and outputs are divided unequally, with inputs subsytems of a = 1, b = 6 spins

and outputs subsystems of c = 6, d = 1 spins. (There is no spatial arrangement for the

0-dimensional system.) We plot the OTO average in the top-left panel, the entropies S
(1,2)
AC

in the top-right panel, I(A : C) in the bottom-left panel, and the normalized tripartite

information in bottom-left panel. (We do not plot I(A : D) since for both the fermion

channel and the Haar-channel it never becomes greater than 6 × 10−4 bits.)

The main difference between the fermion channel and the spin chains in the unequal

configuration is the relevant time scale of the butterfly effect. In the spin chain channels,

the initially delay before the OTO correlator decay scales with c, the distance between A

and D. This is because operators in A have to grow to encompass the entire spin chain so

that the OTO correlators between operators in A and D can be affected. In the fermion

channel, there is no notion of spatial locality so the correlators begin to decay immediately.

We don’t plot the Majorana fermion channel for equal system sizes since it has essen-

tially the same behavior: all quantities quickly asymptote to Haar-scrambled values similar

to figure 9. This is in slight contrast to chaotic spin chain (plotted in figure 7), in which

the relevant quantities never quite reach the Haar-scrambled values. This suggests that

the Majorana fermion system has stronger scrambling power than the chaotic spin chain.

Nevertheless, since the late-time values of these quantities in both channels always asymp-

tote to very near the Haar-scrambled values, local measurements cannot differentiate the

time-evolved chaotic channels from the Haar-random channel. Thus, the butterfly effect

implies scrambling.
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Figure 9. Chaos and scrambling in the 0-dimensional Majorana fermion fast scrambler unitary

channel (blue) and Haar-channel (black) with n = 7 spins; input subsystems of a = 1, b = 6

spins; output subsystems of c = 6, d = 1 spins. Top left: the average of OTO correlators decays

immediately, showing the butterfly effect. Top right: SAC (solid) and S
(2)
AC (dotted) shows roughly

the same behavior as the OTO average. Bottom left: I(A : C), a trivial function of SAC , show that

for an initial 2 bits of information between the subsystems in the fermion channel gets delocalized

so that at late times only a small amount (0.59 bits) remains. Bottom right: the negative of the

tripartite information normalized by its maximum value (2 bits) is a simple diagnostic of scrambling.

5 Perfect tensor model

Now that we understand the relationship between strong chaos and the scrambling behavior

of quantum channels, we will present a tensor network model of a scrambling channel with

ballistic operator growth.16 This model serves two purposes.

First, it is useful as a tractable model of ballistic scrambling. The network implements

the expected entanglement structure of chaotic time evolution with a (discretized) time

independent Hamiltonian. It also serves as a concrete toy model to study the growth of

computational complexity in scrambling quantum channels consisting of local quantum

circuits.17

16See also [34] for a similar recent tensor network model of ballistic entanglement propagation.
17In fact, there is a well-defined notion of the complexity of randomness, called unitary t-designs, and

lower bounds on the complexity growth under random quantum circuits in this sense have been rigorously

established [37].
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Figure 10. Tensor network representation of the Einstein-Rosen bridge. A four-leg tensor lives at

each node. We will consider a network of perfect tensors.

Second, it provides a model for the interior of the eternal AdS black hole [25]. In [12],

it was proposed that the interior connecting the two asymptotic regions can be represented

by a flat tensor network whose length is proportional to the total time evolution on the

boundary. In [38] and [5], this proposal was explored in a larger variety of black hole states

that were perturbed by shock waves.

Here, we provide a concrete model of such a network (i.e. we specify the tensors).

This is in the spirit of previous work on the AdS ground state: in [39] it was suggested

that the ground state of AdS can be represented by a hyperbolic tensor network (such

as MERA [40]), and then an explicit tensor network model was proposed in [15] (see

also [41]).18

Before we begin, let us review the proposal of [12]. The tensor network representation

of the thermofield double state is shown in figure 10. At the left and right ends, we have

a hyperbolic network, representing the two asymptotically AdS boundaries. This network

extends infinitely from the UV into the IR thermal scale β at the black hole horizon. Then,

the middle is flat representing the black hole interior. The entire network grows as t grows

by adding more layers in the middle flat region.

We would like to further elaborate on this proposal of tensor network representation of

the black hole interior. We will study networks of perfect tensors and demonstrate chaotic

dynamics by finding ballistic growth of local unitary operators and the linear growth of

the tripartite information until the scrambling time. For the rest of discussion, we take the

infinite temperature β = 0 limit so we can ignore the hyperbolic part and focus in on the

planar tiling of tensor networks representing the interior.

18This model has the additional nice property of implementing the holographic quantum error correction

proposal of [42].
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5.1 Ballistic growth of operators and linear growth of I3

Let us review the definition of perfect tensors. Consider a tensor T with 2n legs and bond

dimension v. A tensor can be represented as a pure state

|Ψ〉 =
∑

i1,...,i2n

Ti1,...,i2n |i1, . . . , i2n〉, (5.1)

with a proper normalization. We call a tensor T perfect if it is associated with a pure state

|Ψ〉, called a perfect state, which is maximally entangled along any bipartition. Namely,

SA = n, ∀A s.t |A| = n, (5.2)

where for tensors of bond dimension v we measure entropy in units of log v. The qutrit ten-

sor eq. (2.19) is an example of a perfect tensor. There are known methods for constructing

perfect tensors via the framework of quantum coding theory. Also, a Haar random tensor

becomes a perfect tensor at the limit of v → ∞.

Growth of local operators. Imagine a flat planar tiling of 4-leg perfect tensors as

shown in figure 10 which may be thought of as a discretized time-evolution by a strongly-

interacting Hamiltonian. We can examine time evolution of a local unitary operator V

and observe linear growth of spatial profiles of operators V (t) by using a basic property of

perfect tensors. Let |Ψ〉 be a 4-spin perfect state and denote 4 legs by a, b, c, d. Consider a

single-body unitary operator Ua 6= I acting exclusively on a. Since ab and cd are maximally

entangled, there always exists a corresponding operator V Ucd 6= I acting exclusively on cd

such that

Ua|Ψ〉 = Ucd|Ψ〉, (5.3)

or in the tensor representation, we have

=

t) Ua

Ucd

, (5.4)

where a gray square represents a four-leg perfect tensor. One can prove that Ucd must act

non-trivially both on c and d. Namely, if Ucd were a single-body operator acting only on

c (i.e. Ucd = Uc), then one would have UaU
†
c |ψ〉 = |ψ〉. However this contradicts with the

fact that ac and bd are maximally entangled. To see the contradiction, one can simply use

UaU
†
c |ψ〉〈ψ| = |ψ〉〈ψ| and take a partial trace over b, d on both sides of the equation. If

a, c is maximally entangled with b, d we obtain UaU
†
c = I is the identity operator, which

is not possible. The conclusion is that, due to the perfectness of the tensors, each two-

qudit unitary associated with perfect tensors always expands a single-body operator to

a two-body operator. This observation is consistent with linear ballistic propagation of

entanglement for single connected regions predicted for chaotic systems [43].

The implication of this ballistic expansion of unitary operators under perfect tensors

is quite interesting. The size of the region of nontrivial support for V (t) increases linearly
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V (0)

(0) V (t)

time

Figure 11. Ballistic growth of local operators by perfect tensors. As a reminder, the horizontal

radius of the operator V grows with the butterfly velocity as vBt, and the vertical depth of the

circuit grows as vEt.

as shown in figure 11. At t = L/2, for a lattice of linear size L, a local operator will evolve

into a global operator supported over the entire lattice. The growth of OTO correlation

functions originates from this linear growth of spatial profiles of local operators. Namely,

for a local operatorW which is separated in space from V (t = 0), the commutator [V (t),W ]

becomes non-negligible after t = L/2 indicative of the butterfly effect.19

Growth of tripartite information in time. Let us then compute the tripartite in-

formation for a network of perfect tensors. The entire system is split into four regions

A,B,C,D of equal size as in figure 12(a). The growth of entanglement entropy can be

exactly calculated by using a method developed in [15]. Recall that, for a perfect state |Ψ〉
with four spins, there always exist a two-qubit unitary operator Dab such that

Dab|Ψ〉 = |EPR〉ac ⊗ |EPR〉bd. (5.5)

In other words, Dab disentangles a perfect state into two decoupled EPR pairs as graphically

shown below

=

Dab|
a b

c d

. (5.6)

A key observation is that the process of finding a minimal surface by local updates can be

viewed as entanglement distillation by applications of disentanglers. This led to the proof

of the Ryu-Takayanagi formula for single intervals in networks of perfect tensors [15].

In general, calculation of entanglement entropies for disjoint regions is challenging even

for networks of perfect tensors. Indeed, the verification of the Ryu-Takayanagi formula is

19A qualitatively similar behavior occurs when Haar-random unitary operators are used instead of perfect

tensors, which we checked numerically. For an analytical discussion a random tensor network in the context

of a holographic state rather than a channel, see [44]. (See also [45].)
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given only for single intervals for a network of perfect tensors in [15]. Here we assume that

the planar tensor network is translationally invariant in both time and spatial directions.

To be specific, we also assume that the network consists of the qutrit perfect tensor intro-

duced in (2.19). For such a perfect tensor tiling, an analytical calculation of the tripartite

information is possible for time t shorter than the scrambling time t∗ = L/2. Namely, one

can prove the following:

I3(A : B : C) = −2t, 0 ≤ t ≤ L/2, (5.7)

where L is the linear length of the system and as a reminder for qutrits we measure entropy

in units of log 3. Below, we sketch the derivation.

For a network of perfect tensors, entanglement properties can be studied by applying

local disentanglers which correspond to distillations of EPR pairs. The disentanglers map

each region unitarily to the minimal surface bounding it, as is shown in figure 12. For

time t ≤ L/2, one observes that minimal surfaces for A,C collide with each other, and

similarly for B,D. Let us distill entanglement as shown in figure 12(b) by applying some

appropriate local unitary transformations on each region and remove decoupled spins.

Regions AC and BD possess EPR-like entanglement along the collided surface of geodesic

lines. In the middle of the network, we find square regions which are responsible for four-

party entanglement among A,B,C,D. Such regions, which are not included inside causal

wedges of boundary regions, are referred to as residual regions [15]. These become essential

in understanding entanglement properties behind the horizons of the multi-boundary black

holes considered in [46]. At the time step t, there will be a pair of square residual regions

with linear length t/2 as shown in figure 12(b). In appendix D, we study multipartite

entanglement for rectangular residual regions. Namely, we show that each residual region

contributes to the tripartite information by −t. We thus obtain eq. (5.7).

5.2 Recurrence time

We have shown that the network of perfect tensors, as shown in figure 10 and figure 11,

serves as a toy model of scrambling dynamics. A naturally arising question is whether

such a system stays scrambled after the scrambling time t∗ = L/2. In this section, we

study the recurrence time of the planar network of perfect tensors. For concreteness, we

will restrict our considerations to those with qutrit perfect tensors. We assume periodic

boundary conditions in the spatial directions of the network.

Imagine that we inject some Pauli operators from the top of the tensor network and

obtain output Pauli operators on the bottom. We are interested in the minimal time step

necessary for a network to output the initial Pauli operators again. To find the recurrence

time, we inject two-body Pauli Z operators from the top left corner of the tensor network

and compute the output Pauli operator on the bottom. We define the recurrence time trec
to be the minimal time step trec necessary for the network to output the initial two-body

Pauli Z operators. Recall that the tensor network based on stabilizer tensors maps Pauli

operators to Pauli operators. Since Pauli operators can be treated as classical variables,

one can efficiently find the recurrence time via numerical methods.
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A B

C D

A B

C D

(a)

(b)

t

t/2t/2

residual region

Figure 12. (a) Computing I3 for A,B,C,D of equal size. Local moves are shown. (b) Residual

tensor networks. Square-like tensor networks are responsible for the tripartite information.

The recurrence time crucially depends on the system size L as shown in the plot in

figure 13. Note that the plot uses a logarithmic scale. When the system size is L = 3m,

the recurrence time grows only linearly: trec = 4L. This expression can be analytically

obtained. The linear growth is due to the fact that the qutrit tensor can be viewed as a

linear cellular automaton over F3 which has scale invariance under dilations by factor of

3. For such special system sizes, the trajectories of time-evolution of Pauli operators form

short periodic cycles. This is similar to the classical billiard problem where trajectories of

a billiard ball are not ergodic for fine-tuned system sizes and fine-tuned angles. Yet, the

billiard problem is ergodic for generic system sizes.

Likewise, the perfect tensor network has longer recurrence time for generic values of

system sizes. When L is a prime number, the growth is rather fast, and seems exponential

as shown in figure 13. (We do not have an analytic proof of this statement.) Assuming

the exponential growth of the recurrence time for prime L (trec ≈ ekL), let us find out the

growth for typical values of L. For typical values of L, we expect that trec grows faster

than any polynomial functions. This is because given a positive integer n, the probability

for its largest prime factor to be larger than, say
√
n, is finite.20 Assuming that L is not a

prime number, let us decompose it as L = L1L2. Then, due to the translation invariance,

one can show that trec(L) ≥ trec(L1), trec(L2). As such, the recurrence time trec(L) will be

lower bounded by trec(p) where p is the largest prime factor of L. This argument implies

an exponential growth of the recurrence time for typical values of L.

20In general, the probability for the largest prime factor to be larger than 1/nu is given by the Dickman

function [47].
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Figure 13. The exponential growth of recurrence time for perfect tensor networks of prime size

(blue) and non-prime size (black).

The recurrence time of the perfect tensor network is much longer than that of inte-

grable systems, but is much shorter than that of chaotic systems. By construction, perfect

state network based on the stabilizer formalism can have at most exponential recurrence

time. This is essentially because unitary circuits implemented by stabilizer-type tensors

belong to the so-called Clifford group which is a subgroup of unitary transformations that

map Pauli operators into Pauli operators.21 Quantum circuits solely consisting of Clif-

ford operators are classically simulable since transformations of Pauli operators can be

efficiently characterized by pairs of classical bits. In this sense, the stabilizer perfect tensor

network exhibits marginally chaotic behaviors. The classical simulability enables us to

study chaos and scrambling behaviors in quantum channels at relatively early times in a

computationally tractable manner.

This highlights an important point about perfect tensor networks as models of holog-

raphy. In many cases they can exhibit key features expected of holographic systems (such

as the error correcting and bulk reconstruction properties of the model presented in [15]).

However, since the recurrence time of the perfect tensor network is exponential in the sys-

tem size and not doubly exponential, it’s clear that it fails to capture a very important

feature: the possibility of exponential computational complexity. In particular, the (com-

paratively) quick recurrence means that the longest minimal perfect tensor networks are

far less complex than the degree of complexity that generic holographic states are expected

to reach.

21This means that under time evolution a simple Pauli operator X, Y , or Z can only grow into a product

of Pauli operators (rather than a sum of products of Pauli operators as would be generically expected

by (1.1)).
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One possible resolution is to modify the stabilizer perfect tensor by applying some

single qudit non-Clifford rotation, such as a rotation around the Z axis by some angle

θ. An inclusion of a single non-Clifford operator to the full Clifford group enables us

to efficiently approximate an arbitrary unitary operator, an important result known as

the Solovay-Kitaev theorem [16]. As such, we speculate that non-Clifford modification of

perfect tensors would create a tensor network with doubly exponential recurrence time.

This resolution is along the spirit of the billiard problem since the Clifford transformations

are fine-tuned operations.

Another possible resolution of this is that to reach the more complicated states (which

are not at all understood holographically, see e.g. [7, 22, 24, 48]), one needs to consider

superpositions of such tensor networks which do not have a geometric description and thus

would not be expected to have a semiclassical bulk interpretation.

Regardless, a network of perfect tensors is very capable of scrambling. This obser-

vation leads us to envision that a certain measure of complexity can be attached to each

tensor in the network, in particular, −I3 up to proper normalization. This would represent

the complexity of forming the four-leg perfect tensor from a product state. It would be

interesting to see if some kind of upper bound on the gate complexity can be imposed by

considering an integral of −I3 over all the tensors in the network.

6 Discussion

In this paper, we have shown that the butterfly effect — as expressed by the decay of

out-of-time-order (OTO) correlation functions — implies the information-theoretic notion

of scrambling. The butterfly effect is manifested by the growth of simple operators under

time evolution to complicated operators of high weight. These time-evolved operators will

then have large commutators will all other operators in the system. If we think of the

initial simple operator as an input to a unitary quantum time-evolution channel, then the

output will be an operator spread over the entire system. All information associated with

the input will be delocalized; the output system is scrambled.

The method of characterizing scrambling/chaos via the framework of quantum channels

may also find interesting applications in studying thermalization in many-body quantum

systems. We have already demonstrated the usefulness of our approach by studying the

tripartite information in several different examples: numerical results in integrable/non-

integrable spin chains and the nonlocal interacting Majorana fermion model of Kitaev,

and both analytical and numerical results in a perfect tensor network model of discretized

time evolution. It would be interesting to study many-body/single-body localization and

delocalization transitions in the setup of quantum channels. A closely related question may

concern the information-theoretic formulation of the Eigenstate Thermalization Hypothesis

(ETH). The state interpretation of the channel is able to consider a set of initial states as

well as to probe off-diagonal elements in the Hamiltonian.

In order for quantum information to really be processed, it has to interact with the

other information distributed across the system. Said another way, to process information

the channel has to be capable of scrambling. This suggests that there is a strong connection
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between quantum chaos and computation. As a surrogate for a definition of computation,

let’s consider the computational complexity of the quantum circuit or channel. For tensor

network models, this is simply the number of tensors in the minimal tensor network.

As a simple example, let’s consider the quantum channel that only contains swap gates.

The channel doesn’t scramble, and information can only be moved around. As discussed

multiple times, the swap channel has a quick recurrence and can never get very complex.

The only output states accessible are those related to permutations of the input, all the

multipartite states cannot be accessed. For a system of n qubits, the complexity can only

ever reach O(n) (the complexity of swapping localized information from one end of the

system to the other using local swap operations). The maximal complexity of a state of n

qubits is O(2n); thus, for the simple swap channel most of the possible output states are

entirely inaccessible. It is essentially only capable of classical computation.

Quantum computation requires interaction, and strong chaos is a signature of a

strongly interacting system. Thus, in some sense, we speculate chaos must be the ca-

pacity for a system to do computation. This suggests that strongly chaotic-systems must

be fast computers. In fact, in [49, 50] it was recently hypothesized that black holes are

the fastest computers in nature. Given that black holes are already known to be nature’s

densest hard drives [51, 52] and most chaotic systems [10], it seems reasonable to suspect

that a system’s computational power must be limited by its degree of chaos. It would be

interesting to try and make this dependence on chaos for computation more direct.
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A Haar scrambling

In this paper, we’ve generally considered scrambling by a one-parameter family of unitary

operators U(t) = e−iHt and found that for chaotic systems, increasing time t leads to more

efficient scrambling. Instead, we will now take U to be a Haar random unitary operator.

This is useful as a baseline for scrambling. We expect that the late-time values of entropies

and informations computed from scrambling operators U(t) will asymptote to Haar random

values. Additionally, we will see that Haar-random values of quantities such as I(A : C) and

I3(A : C : D) are not necessarily maximal, but exhibit “residual” information regardless of

system size.

At its fastest, Page scrambling has a complexity of n log n gates, while Haar scram-

bling is nearly maximally complex requiring ∼ en gates. In [4], it was proven that Haar

scrambling implies Page scrambling. As we will now show, Haar scrambling also implies the

tripartite scrambling. However, the implication does not work in the other direction: since

the late-time values of I(A : C), I(A : D), and I3(A : C : D) approach Haar-scrambled

values, entanglement is not enough [53] to diagnose typicality (in the Haar-random sense).

This possibly has a strong bearing on the paradoxes of [22, 24] as discussed in [48].

To proceed with this analysis, we will consider an expectation over density matrices

constructed from Haar-random states. These tools were used by Page to analyze the

entropy of subsystems for random states [4], and our approach will be similar to [1] and

appendix A of [6]. In fact, our calculation is very similar to that in [6]. However, beware

that the results do not simply carry over; since we are pairing together input and output

subsystems of possibly different size (in our notation, the fact that a 6= c), we will find a

very different result.

Our setup will be the usual division into subsystems ABCD, with the state given

by (2.4), and U a random 2n×2n unitary matrix taken from the Haar ensemble. The Haar

average lets us consider expectations over a number of unitary matrices and is non-zero

only when the number of Us equals the number of U †s. For instance, with two Us and two

U †s, the formula for the average is
∫

dU Ui1j1Ui2j2U
∗
i′1j

′
1
U∗
i′2j

′
2
=

1

22n − 1

(

δi1i′1δi2i′2δj1j′1δj2j′2 + δi1i′2δi2i′1δj1j′2δj2j′1

)

(A.1)

− 1

2n(22n − 1)

(

δi1i′1δi2i′2δj1j′2δj2j′1 + δi1i′2δi2i′1δj1j′1δj2j′2

)

.

This formula will let us compute the average over the trace of the square of the density

matrix ρAC
∫

dU tr {ρ2AC} =
1

22n

∫

dU Ukℓmo U
∗
k′ℓm′o Uk′ℓ′m′o′ U

∗
kℓ′mo′ , (A.2)

where as in appendix C, k = 1 . . . 2a are A indices, ℓ = 1 . . . 2b are B indices, m = 1 . . . 2c

are C indices, and o = 1 . . . 2d are D indices. In applying the average (A.1) to (A.2), note

that both k and ℓ in (A.2) are “i”-type indices in (A.1), and similarly m and o are “j”-type

indices. After a quick game of delta functions, we find
∫

dU tr {ρ2AC} = 2−a−c + 2−b−d − 2−a−d−n − 2−b−c−n. (A.3)
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As of now, we have been completely general about the size of the subsystems. However, in

this paper we’ve primarily considered the case where a+c = n and b+d = n. Without loss

of generality, let’s also take a ≤ b and d ≤ c.22 Simplifying and throwing away exponentially

subleading pieces, we get
∫

dU tr {ρ2AC} ≃ 21−n
(

1− 2−a−d−1
)

. (A.4)

Using this with an appropriate caveat,23 we can compute the Haar average of the Rényi

entropy
(

S
(2)
AC

)

Haar
= n− 1− log2(1− 2−a−d−1). (A.5)

This is rather interesting: the maximal value for S
(2)
AC is n. Therefore, the Haar-scrambled

state never reaches this maximal value. On the other hand, this is not unexpected. The

corrections to Page’s entropy of a subsystem formula for the divisions we are considering

are expected to be O(1) [4].

Next, let us use (A.5) to put a bound on the mutual information I(A : C). We can do

this using the fact that SAC > S
(2)
AC , and we find

I(A : C) ≤ 1 + log2(1− 2−a−d−1), (A.6)

indicating the possibility of residual information between A and C that is independent of

n, even in the Haar-scrambled limit.24 By considering more equal partitions of the input

(1 ≪ a ≤ b), there will be more residual information between A and C, though the fraction

of residual information I(A : C)/2a decreases.

Let’s complete our discussion by trying to bound I(A : D). Following the approach

outlined above, we find
∫

dU tr {ρ2AD} = 2−a−d + 2−b−c − 2−a−c−n − 2−b−d−n, (A.7)

which is the same as (A.3) with c ⇔ d. Taking as before a + c = n and b + d = n, with

a ≤ b and d ≤ c, we see that the three latter terms are exponentially smaller in n than the

first term. We find
(

S
(2)
AD

)

Haar
= a+ d+O(2−2n+a+d), (A.8)

and we can bound the mutual information as

I(A : D) ≤ 0 +O(2−2n+a+d). (A.9)
22Ref. [6] neglects the bottom line of (A.1) as subleading. For the subsystems we consider, the first term on

the second line of (A.1) is actually the same order (in n) as the terms in the first line and cannot be neglected.
23To use this result to compute the Haar average of the Rényi entropy∫

dU S
(2)
AC = −

∫
dU log2 tr {ρ

2
AC},

we need to commute the Haar average with the log. This can be checked numerically and holds as long as

n is sufficiently large (which in this case “large” means about n = 4). For large n, the system self-averages

so that any single sample is extremely likely to be at the mean value. This lets the average commute with

the log.
24One might have thought that it would be possible to make a better bound with the Fannes-Audenaert

inequality [54, 55] and using the 2-norm to bound the 1-normal as in [1] and [6]. However, such an approach

actually leads to a bound that’s actually much looser than the simple one given by (A.6).
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B Entanglement propagation in CFT

In figure 3(b), we pointed out a strong resemblance to Feynman diagrams of a 2 → 2

scattering process. The swap gate resembles a diagram that contribute to a noninteracting

theory: the only allowed operation is that the particles can swap locations between the

inputs and the outputs (or they can do nothing). On the other hand, the perfect tensor

resembles a Feynman diagram that contributes to a scattering process in an interacting

theory. This is not a coincidence; the strength of chaos should be related to the strength

of the coupling, see e.g. [10].

With this point of view, let us consider entanglement propagation in CFT. The general

setup considered in CFT is a global quench; the system is preprepared in a groundstate

of a Hamiltonian H0 and then the Hamiltonian is suddenly changed to a different Hamil-

tonian H such that the system is now in a finite energy configuration. The system is

then evolved with the new Hamiltonian and certain entanglement entropies saturate at

their thermal values. This often referred to as thermalization. For two-dimensional CFT,

the entanglement entropy of a single connected region after a global quench was shown to

grow linearly in time, saturating at its thermal value at a time of order half the length

of the region [56–58]. To explain this, [56] proposed that entanglement is carried by pairs

of entangled noninteracting quasi-particles that travel ballistically in opposite directions.25

The quasi-particles would travel at the entanglement velocity vE , which is equal to unity

in two-dimensional CFT. Entanglement entropy increases as the entangle pairs are split

between the region and its complement.

This model of entanglement propagation is sufficient to explain the pattern of entan-

glement growth after a quench of a single interval (in fact, the result is universal [56–58]),

but gives puzzling results for the entanglement entropy of two separated disjoint intervals

in interacting (e.g. holographic) systems [33, 59–62].26 Let us label the two intervals as

F and G, both of size L, and the rest of the system as H. We will take F and G to be

separated by a distance D, and all the scales are taken to be much greater than the thermal

correlation length L,D,≫ β. Additionally, we require D > L. This setup is depicted in

the left-hand side of figure 14.

In the quasi-particle model, after a quench SFG will grow linearly for a time D and

then saturate at its thermal value. However, at time of order (D + L)/2 it will exhibit a

dip. In the quasi-particle picture, entangled pairs created in the region between F and G

are beginning to enter F and G, respectively, causing the entanglement entropy of FG with

the rest of the system H to dip. For holographic systems, this is known not to happen:

after SFG saturates, it remains saturated [33, 59–62].

This puzzle was explored in depth in the context of two-dimensional CFT in [62].

There, it is shown that the quasi-particle picture cannot be universal and must depend on

the spectrum. Indeed, [62] concludes that for interacting CFTs “entanglement scrambles”

— meaning there’s no memory effect or dip in SFG. Here, we would like to put these results

in the context of unitary quantum channels. We will show that “entanglement scrambling”

25See also [34] for a generalization of the non-interacting quasi-particle model to interacting systems and

a discussion of the entanglement velocity.
26See also [12–14] for holographic investigations of entanglement growth after a global quench.
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Figure 14. Quench in CFT showing path of a quasi-particle EPR pair and two intervals of length

L separated by distance D > L. Left: for two intervals in the noninteracting quasi-particle model

SFG has a dip at time t ∼ (D + L)/2. Right: a simplified description in terms of two entangled

CFT involves one partner of the EPR pair traveling in the left CFT and one partner traveling in the

right CFT. This can be reinterpreted as a quantum channel. To make contact with the notation

in the paper, we relabel as F ′ → A, G′ → D, and H ′ → BC.

is precisely scrambling as diagnosed by the tripartite information. Furthermore, we will

argue that the cause of such entanglement scrambling is chaotic dynamics. Strong chaos

implies a picture of strongly interacting quasi-particles.

To make the connection, one simply has to realize that a global quench can be simply

understood as the time evolution of the thermofield double state [12]. That is, a global

quench is the channel |TFD(t)〉 given by (2.7). This was also pointed out in [62], where the

thermofield double state was used to simplify the setup of the two-interval calculation while

retaining the basic puzzle.27 In this new setup, the puzzle is a memory effect between an

interval on the left CFT F ′ and interval on the right CFT G′, where the spatial separation

D and interval sizes L are large. After a time of order (D+L)/2, the quasi-particle model

predicts a dip in the entanglement between F ′G′ and the rest of the system H ′. This new

setup is shown in the right-hand side of figure 14.

Now, let us relabel the subsystems: F ′ → A, G′ → D, and H ′ → BC. With the

perspective of the unitary channel setup (figure 2), the memory effect is simply a question

of whether I(A : D) has a spike. Integrable systems will have a spike and can be modeled

by entanglement carrying quasi-particles (the swap gate in figure 3(b) provides an explicit

cartoon of such noninteracting quasi-particles). Chaotic systems are strongly interacting,

and the quasi-particle picture breaks down (the perfect tensor in figure 3(b) provides the

cartoon for the interacting system). This memory effect was shown explicitly in the bottom-

middle panel of figure 7 for the integrable spin chains we studied in section section 4.

This connection to the work of [62] allows us to probe scrambling and chaos in par-

ticular CFTs. For instance, the results of section 4.4 in [62] suggest that the D1-D5 CFT

at the “orbifold point” does not scramble (in the sense of tripartite information) as ex-

pected for a free theory. It would be interesting to make additional connections between

scrambling/chaos and CFT results.

27In fact, in [62] the memory effect was diagnosed by considering properties of the second Rényi entropy

for the intervals in question.
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C Proof of eq. (3.3)

The proof of the relation

|〈OD(t)OAOD(t)OA〉β=0| = 2n−a−d−S
(2)
AC , (C.1)

is probably most easily understood diagrammatically as shown in figure 15. For simplicity

of discussion, we assume a system consisting of qubits while our discussion straightfor-

wardly generalizes to a system consisting of qudits by considering generalized Pauli opera-

tors. Thus, this proof applies to lattice systems with a finite-dimensional Hilbert space at

each site.28

To proceed with the proof, we need to make use of an operator identity. Consider

a partition of a system AB with Aj a complete basis of operators in A. Then, for any

operator O on the entire system AB, we have

∑

j

Aj OAj = |A| IA ⊗ trA {O}, (C.2)

where the sum i runs over the entire basis, and |A| is the size of the Hilbert space of A. The
set of all qubit Pauli operators supported in A forms a complete basis of orthonormal oper-

ators, and (C.2) can be easily verified by decomposing O into that basis. A diagrammatic

depiction of this identity is shown in figure 15(a).

We would like to use this to evaluate the averaged correlator

2−2a−2d−n
∑

ij

tr {Di(t)AjDi(t)Aj} = 2−2a−2d−n
∑

ij

tr {U †DiUAjU
†DiUAj}. (C.3)

Here the prefactor 2−2a−2d is the inverse of number of operators in A and D, and 2−n is

the normalization factor such that the quantity equals to 1 if all operators are identity

operators. Let’s apply (C.2) to DiUAjU
†Di to do the sum over i. This gives

2−2a−d−n
∑

j

tr {UAjU
† trD {UAjU

†} ⊗ ID}, (C.4)

where note that we have made use of the cyclicity of the trace. At this point, it’s useful to

adopt indices. We will use k = 1 . . . 2a for A indices, ℓ = 1 . . . 2b for B indices, m = 1 . . . 2c

for C indices, and o = 1 . . . 2d for D indices. This lets us rewrite (C.4) as

2−2a−d−n
∑

j

Uk1ℓmo(Aj)k1k′1U
∗
k′1ℓm

′oUk2ℓ′m′o′(Aj)k2k′2U
∗
k′2ℓ

′mo′ , (C.5)

28In a continuum limit, we would need some notion of the operator identity (C.2), which is the com-

pleteness condition for a basis of operators. Naively, due to the infinite Hilbert space dimension, (3.3) is

trivially true; the Rényi entropy is UV-divergent and the correlation function average is vanishing due to

normalizing by the total number of operators. However, the connection between our results and entangle-

ment propagation in CFT (see appendix B) suggests that perhaps a recasting of the relation (3.3) in terms

of mutual information might lead to a sensible continuum limit.
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Figure 15. Diagrammatic proof of the OTO average |〈OD(t)OA OD(t)OA〉β=0|. Dotted lines

indicate summation over operators (gray rectangles), and in all diagrams the normalization is

suppressed. (a) The operator identity eq. (C.2). (b) ρAC for the unitary channel. (c) Calculation

of the average. In the final panel, the lines at the top and the bottom are appropriately connected.

where repeated indices imply summation. Now, we apply (C.2) again, specifically to

(Aj)k1k′1U
∗
k′1ℓm

′oUk2ℓ′m′o′(Aj)k2k′2 . This sets k′1 = k2 and k′2 = k1 (and multiplies by 2a)

to give

2−a−d−nUk1ℓmoU
∗
k2ℓm′oUk2ℓ′m′o′U

∗
k1ℓ′mo′ . (C.6)

Now, we remember how to express the density matrix ρ of our channel (see figure 15(b))

ρ = 2−n Ukℓmo U
∗
k′ℓ′m′o′ . (C.7)

Applying this to (C.6) and then using the definition of the second Rényi entropy (2.11)

gives our desired result (3.3). This whole proof, up to factors of normalization, is shown

in figure 15(c).

Finite temperature. It is easy to generalize this formula for finite temperature β > 0.

Define

Z(β) := tr(e−βH), |Ψ(β)〉 := |TFD(β, t)〉. (C.8)
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To get an expression in terms of an entropy, we need to distribute the operators around

the thermal circle

|〈OD(t)OAOD(t)OA〉β | ≈ Z(β)−1|tr {OD(t− iβ/4)OAOD(t− iβ/4)OA}|. (C.9)

Here, rather taking a thermal expectation value we are evolving the operators in D in

Euclidean time (and then renormalizing by Z(β)). The trace of these Euclidean-evolved

correlators is expected to be related to the thermal expectation of the original OTO cor-

relators as long as the temperature is high enough. Following our proof figure 15 but with

the time argument for the unitary operators as U(t− iβ/4), we find

=
Z(β/2)2

Z(β)
2−a−d−S

(2)
AC

(β/2), (C.10)

where S
(2)
AC(β/2) is evaluated for the state |Ψ(β/2)〉 defined in (C.8).

Higher order OTO correlators. Finally, we will briefly comment on another possible

generalization. The OTO correlation functions we studied here are observables for the

chaotic dynamics of a thermal system perturbed by a single operator. In [7], chaos is

studied in holographic thermal systems that are perturbed by multiple operators. For two

perturbations, the relevant observable is a six-point OTO correlation function of the form

〈W (t1)V (t2)QV (t2)W (t1)Q〉β , (C.11)

where W,V,Q are all simple Hermitian operators. (For simplicity, we will consider the

case where β = 0.) This observable is related to the effect of simple perturbations W,V

made at times t1, t2 on measurements of Q at t = 0. This correlation can be simplified by

summing over a basis of operators in three regions associated with the W,V,Q as we did

for four-point functions earlier in this appendix.

However, it’s easy to see that one cannot get something as simple as a Rényi en-

tropy: since there’s two explicit times t1, t2, we can form density matrices ρ(t1), ρ(t2), and

ρ(t1 − t2), where ρ(t) = |U(t)〉〈U(t)| is the density matrix associated with the quantum

channel of time evolution by U(t) = e−iHt. The averaged six-point function will be related

to contraction of these density matrices with a complicated permutation. This may be con-

sidered as a more generic entanglement property of the system, which is beyond Rényi en-

tropies. In the case of finite temperature, for the four-point functions we were able to evolve

the operators in Euclidean time in order to symmetrize the time arguments of the unitary

operators, as is discussed around (C.9). However, cannot do that for the six-point functions

since we need all three operators to be separated from each other in Lorentzian time.

D Tensor calculus

In this appendix, we provide more details about the perfect tensor calculation sketched in

figure 12. We have seen that the two rectangular residual regions, which are not contained

in any of causal wedges, are responsible for multipartite entanglement arising in a network
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Figure 16. A residual region in a planar tensor network.

of perfect tensors. To calculate I3, we typically need to consider rectangular residual

regions. In this appendix, we study multipartite entanglement in a rectangular network of

perfect tensors as shown in figure 16 where tensor legs are split into four subsets P,Q,R, S.

We assume that P,R contain r legs and Q,S contain t legs.

In [15], it was shown that, for any planar network of perfect tensors with non-positive

curvature, the Ryu-Takayanagi formula for single intervals holds exactly. Keeping this in

mind, let us summarize properties of entanglement in an arbitrary rectangular tiling of

perfect tensors:

SP = r, SQ = t, SR = r, SS = t,

SPQ = r + t, SQR = r + t, SRS = r + t, SPS = r + t,
(D.1)

where as a reminder, for tensors of bond dimension v, we measure their entropy in units

of log v. Thus, the tripartite information I3 is given by

I3 = −SPR. (D.2)

Note that the above statement holds for any perfect tensors and is not restricted to qutrit

perfect tensors. But the value of SPR is non-universal for networks of perfect tensors since

PR consists of two spatially disjoint intervals. Below, we will prove that

I3 = −2min(r, t), (D.3)

for a network of four-leg qutrit perfect tensors.

The qutrit tensor network discussed in section 5 can be described by the stabilizer

formalism [16], and analytical calculations of entanglement entropies are possible. Let us

recall a useful formula for entropy calculations for stabilizer states. Consider an n-qutrit

pure state |ψ〉 specified by a set of n independent Pauli stabilizer generators gj such that

gj |ψ〉 = |ψ〉 for j = 1, . . . , n with [gi, gj ] = 0. The stabilizer group S(stab) consists of all

stabilizers S(stab) = 〈{gj}∀j〉. Therefore we have g|ψ〉 = |ψ〉 for all g ∈ S(stab). We are

interested in entanglement entropy of |ψ〉 for some subset A of qutrits. A useful formula
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to compute SA is the following [63, 64]

SA = |A| − log3 |S(stab)
A |, (D.4)

where |A| is the number of qutrits in A and S(stab)
A is the restriction of S onto A (i.e. a

group of stabilizer operators which are supported exclusively on A). Note, log3 |S(stab)
A | can

be understood as the number of independent stabilizers supported on A.

The stabilizer generators for the qutrit tensor are given by

Z ⊗ Z ⊗ Z ⊗ I, Z ⊗ Z† ⊗ I ⊗ Z,

X ⊗X ⊗X ⊗ I, X ⊗X† ⊗ I ⊗X,
(D.5)

where X† = X2 and Z† = Z2. Graphically, stabilizer generators are given by

Z Z

Z Z

Z Z

†
I Z Z

Z Z

Z Z
†

†
X X

X X
†

†
I

†
X X

†
I

†
X X

†
X X

†
X X

†
I , (D.6)

where Z|j〉 = ωj |j〉 and X|j〉 = |j + 1〉 with ω = e
i2π
3 . Observe that stabilizer generators

commute with each other. Also observe that there is no two-body stabilizer generator.

This implies, from eq. (D.4), that entanglement entropies for any subsets of two qutrits are

two, and thus this stabilizer state is a four-leg perfect state.

We need to find the number of stabilizer generators which can be exclusively supported

on PR. Let us first consider a contraction of two perfect tensors (i.e. r = 2 and t = 1).

There are stabilizer generators supported only on upper and lower tensor legs

Z Z

Z Z

†
I

Z Z

Z Z
†

†
I †

I
†
I

†
X X

†
X XX X

†

†
X X

. (D.7)

So, SPR = |P |+ |R| − 2 = 2. Next, let us consider the case where t = 1 and r > 2. Since

X-type and Z-type stabilizers are separable, one can treat them separately. We want to

find all the stabilizer operators that are supported on PR. Here we consider an input Pauli

operator X(f) supported on P where f is a degree r − 1 polynomial over F3. That is, for

a polynomial

f = c0 + c1x+ c2x
2 + . . .+ cr−1x

r−1, cj ∈ F3, (D.8)

we define the Pauli-X operator as

X(f) = Xc0 ⊗Xc1 ⊗ . . .⊗Xcr−1 , (D.9)

where Xj acts on the j-th leg on P for j = 0, . . . , r − 1. Given an arbitrary degree r − 1

polynomial f0 over F3, one can write f0 as follows

f0 = (2 + x)g0 + h0, (D.10)
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where g0 is some degree r − 2 polynomial while h0 is some degree 0 polynomial (in other

words, a constant). Note that X(2 + x) is the Pauli X operator on P in (D.7), whose

“output” on R is given by X(1+x). Let us then look for a stabilizer operator whose action

on the upper leg is given by X(f0). When t = 1, the output Pauli operator is supported

exclusively on R if and only if h0 = 0. Namely, the output operator can be written as

X(f1) f1 = (1 + x)g0. (D.11)

Similar analysis holds for Z-type stabilizers. Therefore, there are in total 2r−2 independent

stabilizer generators supported on PR. Thus, SPR = r + r − (2r − 2) = 2. Finally, let us

consider the cases where t > 1. For this purpose, we think of decomposing fj recursively

as follows

fj = (2 + x)gj + hj , fj+1 = (1 + x)gj . (D.12)

The output has supports exclusively on R if and only if hj = 0 for j = 0, . . . , t − 1. This

implies that there are in total 2(r− t) stabilizer generators supported on AC for t ≤ r, and

there is no such stabilizer generator for t > r. Thus, one has I3 = −2min(r, t).

In fact, the aforementioned result applies to a larger class of perfect tensors. Notice

that stabilizer generators of the qutrit tensor can be written as tensor products of Pauli

Z or X operators only. Such a stabilizer state is often referred to as a CSS (Calderbank-

Shor-Steane) state, and a number of interesting quantum error-correcting codes belongs to

this class. Let us assume that four-leg perfect tensors are based on CSS stabilizer states.

Then, one is able to prove that I3 is always given by I3 = −2min(r, t) as long as the bond

dimension v is a prime number. We reached this conclusion by finding all the possible CSS-

type four-leg perfect tensors with prime bond dimensions. However, this conclusion does

not necessarily hold when bond dimension is not a prime number. We skip the derivation

as it is similar to the one for the qutrit perfect tensor.
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