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Chaos in Spin-Wave Instabilities 

--Theory and Experiments--

Hitoshi YAMAZAKI and Michinobu MINO 

Department of Physics, Okayama University, Okayama 700 

(Received February 25, 1989) 

Parametric excitation of spin-waves with high microwave power causes spin-wave in­

stability where number of spin-waves grows exponentially with time beyond thermal level. 

Above the spin-wave instability threshold, auto-oscillations of magnon number which include 

cascade of period-doubling bifurcations, chaos, periodic window and period-halving have been 

experimentally observed. From experimental time-series data, return maps, fractal dimen­

sions, positive Lyapunov exponents, phase space portraits of strange attractors and two­

dimensional Poincar~ sections are obtained. A theoretical model of chaos due to nonlinear 

four-magnon interaction under parallel pumping is given. Numerical solutions display a rich 

variety of periodic and chaotic trajectories. A multi-fractal structure, singularity spectrum 

/(a), is numerically studied for two modes model which includes a microwave cavity mode. 
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§ 1. Introduction 

Ferromagnetic resonance (abbreviated to FMR) was discovered in 1946, that is 

shortly after the discovery of paramagnetic and nuclear magnetic resonance. Since 

then FMR is well known as a very important method to study ferromagnetic mate­

rials. Investigation of the uniform mode makes it possible to derive the g-factor and 
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Chaos in Spin- Wave Instabilities 401 

various anisotropy coefficients from experimental results of the resonance frequency 

or resonance field. FMR in a thin film is known as spin-wave resonance from which 

exchange constants are derived. Behavior of magnetic resonance absorption under 

high radiation field is important to study magnetic relaxation which includes the 

spin-spin and spin-lattice interactions. According to the Bloch-Bloembergen equa­

tion, which is originally derived for paramagnetic resonance, the transfer of energy 

from the spin system to the lattice is described by the spin-lattice relaxation time, T1. 

The spin-spin relaxation time Tz is estimated by linewidth. High-power behavior of 

resonance absorption is commonly applied to study these two relaxation times, T1 and 

Tz. Accordingly the saturation effect in the ferromagnetic resonance absorption has 

been measured by many researchers to study relaxation phenomena in ferromagnetic 

material. 

Damon1> and Bloembergen and Wang2> have performed FMR experiment at high 

microwave power levels and found two anomalous effects which could not be ex­

plained by the conventional theory of paramagnetic relaxation. These effects are as 

follows: (1) Saturation of the intensity of FMR line begins at a power level far below 

that for saturation of the longitudinal component of the magnetization. (2) A subsidi­

ary broad absorption appears at applied field lower than the main resonance line. 

The theoretical explanation to these two phenomena has been given by Suhl3> and is 

referred to as the Suhl instability or the spin-wave instability. His theory is the 

opening of a new field of nonlinear spin dynamics. These phenomena are explained 

as the nonlinear generation of k=t=O magnons by the uniform mode (k=O magnon). 

The subsidiary absorption results from the generation of a pair of magnons with the 

wave vectors k and - k from a uniform mode. .This is a three-magnon process and 

is referred to as the first-order Suhl instability. The saturation of the main resonance 

is due to the generation of a pair of magnons k and - k from a pair of k=O magnons. 

This four-magnon process is referred to as the second-order Suhl instability. Suhl 

represented these phenomena as follows: The power transfer becomes catastrophic 

above a certain threshold power levels. The spin-waves grow with time exponential­

ly to a large nonthermal value. This situation bears a certain resemblance to the 

turbulent state in fluid dynamics. Recently interest in chaotic phenomena is indeed 

growing in the field of nonlinear spin dynamics. 

Parallel pumping, which was initiated by SchlOmann, Green and Milano4> and 

Morgenthaler,5> is a more powerful technique than perpendicular one denoted above, 

because it is possible to generate spin-wave instability of individual spin-waves with 

definite wave vectors. In parallel-pumping experiment, as the name denotes, a 

microwave magnetic field is applied parallel to the static magnetic field. As the 

microwave magnetic field is increased beyond some critical value, the number of 

magnons in a very narrow region in wave number space grows exponentially, while 

the others stay almost at the thermal equilibrium level. These magnons have half the 

pumping frequency and equal and opposite wave vectors whose magnitude can be 

selected by varying the static magnetic field. The amplitude of these magnons is 

limited by a balance between the strength of the driving power and magnon damping. 

Since the grown magnons constitute standing waves, the dynamical transverse compo­

nent of the magnetizations is considered to be in an ordered state. By increasing the 
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402 H. Yamazaki and M. Mino 

driving power further, this nonequilibrium stationary state is occasionally broken by 

occurrence of oscillations of magnon amplitude. Nonperiodic auto-oscillations of 

magnon amplitudes under parametric excitation has been known since the early stage 

of these kinds of experiments.6H> Hartwick et al.6> have first observed auto­

oscillations under both parallel and perpendicular pumping in an yttrium iron garnet 

(YIG). Those were generally called relaxation oscillations. Zautkin and Star­

obinets8> have extensively studied the oscillations in YIG. They measured threshold 

microwave power for the oscillations and dependence of the oscillation frequencies on 

temperature and the magnetic field. They explained that the phenomena above the 

threshold for spin-wave instability were governed by nonlinear spin dynamics. 

Zakharov, L'vov and Starobinets10>,u> have theoretically showed that spin-wave 

turbulence could occur by nonlinear magnon-magnon interactions. They have found 

nonperiodic oscillations of magnon amplitude under strong parametric excitation by 

numerically solving four-magnon interaction Hamiltonian which they called S theory. 

Further development of irregular oscillations was carried out by Nakamura and 

co-workers.12>'13> They examined numerically a nonlinear dynamical equation of 

parametrically excited magnon pairs (four-magnon process) which was introduced by 

Zakharov et aJ.lo>.u> Oscillations of limit cycle behavior change to show the sub­

harmonics of the fundamental frequency above a certain driving power. Following 

a cascade of period-doubling bifurcations, they found chaotic behavior of the driven 

ferromagnet. It is now well known that successive period-doubling bifurcations are 

typical routes to chaos.14> These theoretical studies have stimulated the exper­

imental search for chaotic dynamics in spin-wave instabilities. Similar phenomena 

in the perpendicular pumping case have been theoretically studied by Zhang and SuhJl5> 

and Rezende et al.16> Period-doubling bifurcations of magnon oscillations under 

parallel pumping in the antiferromagnet CuCh2HzO were observed by Yamazaki.l7) 

Jeffries and co-workers18H 3> studied intensively chaotic phenomena of magnons for 

high-power ferromagnetic resonance in YIG. Carroll et al.23> and Benner et al.24> have 

also studied chaos of the first-order Suhl instability in YIG. Rezende and co­

workers25>'26> observed period-doubling and chaos in parallel-pumped magnons in YIG. 

Characterization of chaos and strange attractors of parallel-pumped magnons in YIG 

and (CHsNHs)zCuC14 (abbreviated to MACC) has been studied by the present authors 

and co-workers.27H 1> Smirnov32> observed chaotic oscillations in antiferromagnetic 

CsMnFs. Waldner and co-workers33H 5> studied oscillations of irregular periods in 

antiferromagnetic crystals and developed a stroboscopic model by a classical torque 

equation. 

Unstable growth of spin-waves is possible under parametric excitation when 

spin-wave mode is weakly damped and comparatively isolated. Let us survey non­

equilibrium phase transitions in the driven magnon system. The number of magnons 

under parallel pumping is schematically shown in Fig. 1 as a function of driving 

microwave power. By increasing the driving power further beyond the instability 

threshold, the nonequilibrium stationary state is occasionally broken by the occur­

rence of oscillations of magnon amplitudes. The possible mechanism of the oscilla­

tions is as follows. The oscillations may occur by the existence of a nonlinear 

interaction between the driven magnon mode (we call it a k-magnon) and another 
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Fig. 1. Number of paraUeJ.pumped magnons is 

schematically shown as a function of driving 

microwave power. 

magnon mode (k'-magnon). When the 

k-magnon increases far beyond the ther­

mal equilibrium level, k'-magnons begin 

to increase by getting energy through 

the k-magnon mode. If the number of 

k'-magnons increases above some criti­

cal value, they exceed the thermal equi­

librium value. As a consequence of 

reaction, k'-magnons excite the k­

magnon, but the phase of this reaction 

field is retarded relative to the external 

driving field because of relaxation of the 

k'-magnons. This time-delayed feed­

back causes auto-oscillations of magnon 

number. The frequency of this oscillation is determined by magnon relaxation and 

is usually much smaller than the precession frequency. The regular oscillations 

become chaotic through cascade of period-doubling bifurcations. This phase transi­

tion scheme bears resemblance to that of other nonequilibrium dissipative systems; for 

example, Rayleigh-Benard convection.36J That is to say, the thermal equilibrium 

state, standing-waves, oscillations and chaos of magnon amplitudes correspond to 

thermal convection, convection rolls, oscillation of rolls and turbulence in the convec-

tion system, respectively. 

§ 2. Theory of spin-wave instability 

2.1. Parallel pumping 

Parallel-pumping experiment is performed in a way that the microwave magnetic 

field is applied parallel to the static magnetic field. Precession paths of spins are 

generally elliptical due to the magnetic dipolar and other anisotropies. Therefore 

the longitudinal component of the magnetization oscillates at twice the frequency of 

the transverse components. The oscillating longitudinal component of a standing 

wave, a pair of traveling-wave magnons with equal and opposite wave vectors, can 

interact with the uniform microwave magnetic field. Since the number of magnons 

which interact with the pumping field is very small with the thermal level, absorption 

intensity is normally very small. However as the pumping power is increased beyond 

a certain critical value, power absorbed by a sample comes to be measurable because 

of exponential growth of k and - k magnon pairs. 

The Hamiltonian we consider consists of the exchange, the dipolar, the Zeeman 

terms, and is written as 

Hex= -2] "2, SzSm, 
(lm) 

(1) 

(2) 
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404 H. Yamazaki and M. Mino 

(3) 

(4) 

where the magnetic field Ho is directed along the z-axis. The following Hamiltonian 

is obtained by using magnon-creation and annihilation operators, 

3 2 2 2 0 

B _ S "' Xtm- Ytm- ZXtmYlm ikrzm 
k--- "'-' s e 

2 T•m*O Ytm 

Because of the dipolar interaction the ak is not the normal mode. 

transformed in terms of normal mode Ck as follows, 

The spin-wave energy is given by 

Ck=(Ak2-IBki2)112 
0 

(5) 

(6) 

(7) 

Hamiltonian is 

(8) 

(9) 

Parallel pumping by a microwave magnetic field Hrcos((J)pt) is given by the following 

perturbation Hamiltonian, 

Hr =- gJ.i.sHrcos((J)pt)~S/2 
l 

(10) 

where ft(J)k is the spin-wave energy, rft=gJ.l.s and Hr the amplitude of microwave 

magnetic field of the frequency (J)p. This term corresponds to the creation of k and 

- k magnon pairs. 

The growth rate of the particular magnon pair is 

dnk _ -~. 2H2 1Bkl2 ~c 2 ) 
(Jf-7Crq 1 (ft(J)k)2 nku (J)p- (J)k 0 

(11) 

If the final two-magnon state has the finite relaxation rate, which is conventionally 

written as r(LlHk), the delta function is to be replaced by 

(12) 

The decay rate of the pumped magnon is phenomenologically introduced as follows, 

(13) 
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Chaos in Spin- Wave Instabilities 405 

where L1Hk is the spin-wave linewidth. When the growth rate exceeds the decay rate, 

spin-wave instability occurs. A threshold is given by 

*' zHz 1Bki2 

Knr 1 (fiwk)Z (14) 

By microwave driving above the threshold, the particular magnon, which has the 

minimum threshold, grows with time exponentially to a large nonthermal value, while 

the others stay almost at the thermal equilibrium levels. 

2.2. Suhl instability 

Suhl3l has first developed the theory of spin-wave instability by perpendicular 

pumping and derived a threshold microwave magnetic field. The three- and four­

magnon processes give rise to the first- and second-order Suhl instability at high 

power levels. The dipolar Hamiltonian contains terms which are of third order in 

magnon creation and annihilation operators. 

The first step of the process is the excitation of the uniform mode (k=O mode) by 

the microwave magnetic field. In the next step, energy is fed from the k=O mode to 

the other mode by a splitting process. Some particular pair of spin-waves k and - k, 

which is most strongly coupled to the uniform mode, grows exponentially when the 

rate of energy fed into them via the k=O mode exceeds the rate at which they are able 

to lose energy. We consider the following Hamiltonian which represents the three­

magnon splitting process, 

(15) 

If no~nk~1, where nk is the number of the k-magnon, the growth rate of nk via the 

uniform-mode magnons is given by 

(16) 

When the energy conservation is satisfied in the splitting process, the total rate 

equation of the number of k and - k magnon pair is consequently given by 

(17) 

The first-order spin-wave instability occurs when the growth rate exceeds the decay 

rate, that is, dnk/dt ;;;;o. The second-order Suhl instability, which arises from the 

four-magnon scattering process, is derived with a similar procedure. 

§ 3. Theory of chaos in parallel-pumped magnons 

In this section chaotic characteristics of magnon system under parallel pumping 

will be theoretically described.20J,ZZJ,37l Numerical calculation of a nonlinear dynami­

cal equation of parametrically excited magnon pairs gives a cascade of period­

doubling bifurcations and chaotic oscillations. It is found to show rich structures of 

chaos and turbulence comparable to those in fluid dynamics. A multi-fractal struc-
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406 H. Yamazaki and M. Mino 

ture of Poincare sections will be examined by increasing a driving power. 

We consider a magnon system under parallel pumping with four-magnon interac­

tion which includes the effect of a microwave cavity mode. The Hamiltonian with n 
= 1 is given as follows, 

H=wpA+A+2:wkbk+bk+ 2 1 2:(g~bk+b~k+h.c.) 
k k 

+ (hP V exp(- iwPt )A++ h. c.)+ Rnt, (18) 

1+---r----------,-------····--

r 
damping 

gk 
nonlinear 
coupling 

rk 
damping 

THERMAL RESERVOIR 

Fig. 2. Schematic diagram of the 

Hamiltonian; Eqs. (18) and (19). 

Here we introduce slow variables, 

A=Aexp(- iwpt), 

bk = ckexp(- iwpt/2) . 

91( 

model 

(19) 

where Wp the pumping frequency, Wk the 

magnon frequency, A+ and A the crea­

tion and annihilation operators of 

photons in the microwave cavity, bk + 

and bk the creation and annihilation 

operators of magnons, gk the nonlinear 

coupling parameters between photons 

and magnons, T and S the nonlinear 

coupling parameters due to the four­

magnon interaction. The model is sche­

matically shown in Fig. 2. The equa­

tions of motion with phenomenological 

damping terms are given as follows, 

(20) 

(21) 

(22) 

(23) 

If a cavity is very dissipative, A follows Ck adiabatically and can be eliminated. 

Therefore the equation of motion for spin-wave modes ck( = C-k) become as follows, 

(24) 

where rk, LI.Qk and Fare the damping constants for Ck, frequency shift wk-wp/2 and 

a driving field ( = hP V), respectively~ Q and E are given as - i/F and - i/ (2F), 

respectively with use of the damping constant r for the cavity mode. The coupling 

constant gk between the cavity mode and magnon mode Ck vanishes for the mode 
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Chaos in Spin- Wave Instabilities 407 

Fig. 3. Projection of a strange attractor on the 

ReCdmC, plane at F=Fc=l.92286. (Inset is a 

power spectrum.)37> 

Fig. 4. Projection of a strange attractor on the 

ReCdmC, plane at F=Fc=l.94. (Inset is a 

power spectrum.)37> 

propagating parallel to a static field. We now confine to the case of two modes 

system where gk1=!=0 and gkz=O. For simplicity we take F instead of FX107 in the 

following description. 

Numerical solutions of Eq. (24) obtained by Runge-Kutta methods display a rich 

variety of periodic and chaotic trajectories depending on the intensity of driving field. 

Ohta and Nakamura13' found a cascade of period-doubling bifurcations with scaling 

constant of o=4.675 which is in good agreement with the Feigenbaum universal 

constant, 4.6692.14' The period-doubling bifurcations accumulate at the critical point, 

F=Fc=l.92286. The strange attractor and power spectrum at F=Fc are shown in 

Fig. 3. With increasing F, the strange attractor gradually grows to a higher dimen­

sional one as shown in Fig. 4. 

Halsey et al.38' have developed a singularity spectrum /(a) to describe the global 

structure of an attractor. We proceed to calculate /(a) by using the Poincare section 

which is divided into very small blobs. A partition function is given as follows, 

(25) 

where the probability p;(l) is obtained by counting the number of points within the 

i-th blob with radius l and dividing by the total number of points in the Poincare 

section data set. The brackets represent an average over all the blobs. For small!, 

behavior of T(q, l) is expected as 

r(q,l)~ t'<q). (26) 

The !(a) spectrum is obtained from r(q) with the use of the Legendre transformation, 

a(q)=dr(q)fdq, 

f(q)=qa- r(q). 

(27) 

(28) 
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408 H. Yamazaki and M. Mino 

f 

Fig. 5. The /(a) spectrum at F=Fc.37l Broken 

line is a universal curve.38l 

Fig. 6. The /(a) spectrum at F=1.94.37l 

The curve /(a) at F=Fc is found to be in good agreement with the universal one due 

to a logistic model38J as shown in Fig. 5. Figure 6 shows the /(a) at F=l.94 which 

has a larger fractal dimension Do=l.07. 

§ 4. Experimental observation of chaos under parallel pumping 

4.1. Samples 

Experimental data shown below are obtained from an yttrium iron garnet 

(Y3Fes012; YIG) and methylammonia tetrachlorocuprate ((CH3NH3)2CuC14; MACC). 

YIG is a cubic insulating ferrimagnet with a Curie temperature of 559 K. The net 

magnetization is due to the resultant of two oppositely magnetized sublattices of Fe3+ 

ions. The Fe3+ ions have a (S=5/2, L=O) ground state, and consequently a weak 

interaction with the crystal lattice. MACC is a two-dimensional ferromagnet below 

Tc=8.9 K. The crystal structure is face-centered monoclinic which consists of. fer­

romagnetic layers (the c-plane) coupled by a very weak ferromagnetic interaction; the 

ratio of the interlayer exchange interaction to the intralayer one is 7.9 X 10-5• Cu2+ 

ions have a spin S=l/2 with isotropic g-value 2.167 within the c-plane. 

4.2. Experimental procedure 

Parallel-pumping experiments were made at a pumping frequency of 9 GHz band 

at liquid-helium temperatures. Both the static and microwave magnetic fields are 

applied along the spin-easy axis [111] for YIG and along the b-axis for MACC. The 

microwave apparatus is a standard reflection-type setup. Microwave signals 

reflected from the sample cavity of a TE101 mode are detected by a diode and recorded 

in a computer file as a function of time. 

4.3. Auto-oscillations and power sPectra 

Experiments were performed at a pumping frequency of 8.86 GHz at a tempera-
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TIME (m sec) 0.4 

Fig. 7. Observed oscillation signals at various 

microwave power in YIG.27l The threshold for 

spin-wave instability is taken as P=O dB. 

ture of 4.2 K. A disk-shaped YIG, 1.28 

mm in diameter and 0.40 mm thick is 

mounted on the bottom of the cavity. 

Both the microwave and the static mag­

netic fields are applied along the [111] 

direction which is perpendicular to the 

disk. The measurements were done in a 

field of 1935G where the minimum 

threshold, Pc=0.3 mW, occurs. In this 

field, magnons propagating perpendicu­

lar to the static field and having the 

wave number of k~O are excited. 

Figure 7 shows a part of real-time 

absorption signals at various power 

levels. The driving microwave power 

P is normalized by the threshold for 

spin-wave instability. By increasing 

the driving power, periodic, period-2 and 

aperiodic oscillations are observed. 

Figure 8 shows power spectra of the oscillations of Fig. 7. By increasing the driving 

power, a fundamental frequency lo increases significantly as shown in Fig. 9. As the 

power is increased to P=2.20 dB, a sharp subharmonic component appears at /o/2 

=24.4 kHz. This component becomes a broad band without showing a clear /o/4 

component. At P=3.22 and 3.60 dB the oscillations are aperiodic and thus the 
corresponding power spectra exhibit broad bands. By increasing the power further, 

the oscillations become periodic again and exhibit period-halving; reverse of period-

P:1-66 dB P:2.84 dB P:3-35dB 

> 

~ ~---~~~~~~-~ 
"0 

8 

IX 

~ 
0 
n. 

100 0 100 100 
FREQUENCY (kHz) FREQUENCY ( kHz) 

Fig. 8. Power spectra at various microwave power in YIG.27l 

P:4.08dB 
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80 

60 

"N 
:J: 

~ 
40 

.:;> • 

20 

0 
0 

• • 

• .... 
•• 

•• 

• • 

• 

2 3 4 5 & 

P/Pc (dB) 

Fig. 9. Power dependence of fundamental 

frequency in YIG. 

doubling, i.e., period-4, period-2 and period-1. 

The fundamental frequency and the peak-to­

peak amplitude keep to increase with 

increasing the power. Period-4, period-2 

and period-1 are observed at P=4.08, 4.32 

and 5.25 dB, respectively and have /o=70.3, 

72.0 and 80.6 kHz, respectively. 

4.4. Strange attractors 

In order to understand a dynamical sys­

tem, it is useful to know trajectories in the 

multidimensional phase space. An instanta­

neous state of the dynamical system is de­

scribed by a point which moves along a 

curve, a phase-space trajectory, as time 

varies. The observed data in the experi­

ment are single time series data of the num-

ber of parallel-pumped magnons. Those 

magnons interact with other specific magnon modes and this interaction causes 

auto-oscillations. Multidimensional trajectories are constructed by the time series 

data of several magnon modes. However, we have no way to separately measure the 

number of different magnon modes at this moment. The conventional method to 

generate multidimensional data from the original single time series data is a proce­

dure of time delay.39>'40> For example, three-dimensional time series data [ V(t), 

V(t+r), V(t+2r)] are generated by an application of a time delay r which can, in 

principle, be chosen arbitrarily. Practical criterion for the choice of time delay is 

proposed by Fraser and Swinney.40> 

Two-dimensional phase-space portraits for YIG are constructed as V(t) vs V(t 

+ r) by taking r=3.usec, which is about one-fifth of the fundamental period. The 

results are shown in Fig. 10. At P=l.66 dB, the oscillations are regular and the phase 

portrait for period-2 is shown at P=2.20 dB. The amplitude of the oscillations 

increases with increasing driving power. Phase portraits from P=2.73 dB to P=3.60 

dB show chaos. At P=4.08 dB, period-halving transition from chaos to period-4, to 

period-2 at P=4.32 dB, and to period-1 at P=5.25 dB occurs. The regular oscilla­

tions go to the chaotic state at much higher driving power after a periodic window. 

If the system is periodic the trajectory forms a closed orbit. A set of phase-space 

trajectories for all possible initial conditions in a chaotic system is called a strange 

attractor when two nearby trajectories exponentially part from one another with 

time. The exponential separation of trajectories causes stretching to form a sheet­

like attractor which contracts perpendicular to the direction of stretching. But since 

the attractor lies within a bounded region of phase space, the attractor must also 

exhibit folding. In order to examine the three-dimensional character of the strange 

attractor in parallel-pumped magnon systems, we have generated three-dimensional 

data from the original single time series data by a procedure of time delay. Figure 

11 is the view of the two-dimensional projection of a strange attractor on a V(t) vs 
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P:l-66 dB P:3-60 dB 

P:2-20 dB P:4-08 dB 

P: 2-73 dB P:4-32 dB 

P=3-22 dB P=S-25 dB 

Fig. 10. Phase-space portrait V(t) vs V(t+r) of 

YIG.31l 

A B 

c 

F E 

V(t) 

Fig. 11. Two-dimensional projection of the 

strange attractor of YIG at P=3.60 dB.27l·31 l 

V(t + r) plane. The vertical axis to the 

plane is the V(t+2r) axis. Figure 12 

presents the Poincare sections construct­

ed by the intersection of positively dir­

ected trajectories with the plane, which 

is normal to the page passing through 

the (A-J) of Fig. 11. As is clearly seen 

in this figure, the trajectories form a 

two-dimensional sheet. By examining 

the evolution of the trajectories in the 

Poincare sections at successive points 

along the strange attractor, the sequence 

of stretching (H-r-J-A-B) and fold­

ing (C-~E-F-~H) is evidently 

observed. Since an infinitely repeated 

stretching and folding process with the 

evolution of trajectories gives a fractal 

structure to the strange attractor, the 

fractal dimension is one of the character-
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Fig. 12. Poincare sections of the strange attractor 

on the plane normal to the paper passing 

through (A-J) lines of Fig. 11.'7l•31l 
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.. 
> 

I 

"V 
~ 

A 

~ 

V(t+>t:) 

Fig. 13. Two-dimensional projection of the 

strange attractor of MACc.••>.•n 

istic measures of chaos. 

Strange attractors of chaos of 

parallel-pumped magnons in another fer­

romagnet MACC are also investigated. 

By taking the time delay r = 1. 75 x lo-s 

sec, which is nearly one-eighth of the 

fundamental period, three-dimensional 

~ 
E 

·. . ; :i 

A 

B 
.:F 

G 

,_.;;.~ •'.:.sf • 

. ~~~ .... ~ .. ~-~· 

D 

,r~· . 
,;.,.. H 

~~"' ; 

-·· 

Fig. 14. Poincare sections of the strange attractor 

of the plane normal to the paper passing 

through (A-H) lines of Fig. 13."">·31> 

time series data, V(t), V(t + r), and V(t+2r) are generated from the time series data. 

Figure 13 is the best view of the two-dimensional projection of the strange attractor 

on the (101) plane, V(t+2r)- V(t+r) vs V(t+r). The third axis, which is normal 

to the page, is V(t+2r)+ V(t). Figure 14 pres~nts the Poincare sections constructed 

by the intersection of positively directed trajectories with the plane, which is normal 

to the page passing through lines A-H in Fig. 13. Figure 14(A) is the Poincare section 

which shows the most stretched sheet of trajectories although the trajectories are 

rather scattered compared with those of YIG. By examining the evolution of tra­

jectories in the Poincare sections at successive points along the strange attractor, the 

sequence of folding (B-+ C-+ ~E) and stretching (F-+ G-+ H-+ A) can be observed. 

4.5. Fractal dimension of strange attractors 

As mentioned in the preceding section, a strange attractor is not a simple sheet, 

but a sheet formed by infinitely repeated stretching and folding process by time 

evolution. One of the characteristic measures of a strange attractor is its fractal 

dimension, which allows one to distinguish between deterministic chaos and random 

noise. For example, the dimension of a fixed point in the phase space is zero and that 

of a limit cycle is one, while that of white noise is infinite. By the standard definition 

of dimension, for example the Hausdorff dimension,39> a strange attractor generally 

has a noninteger dimension. 

Grassberger and Procaccia41> have developed a simple procedure to derive a 
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fractal dimension from experimental data. Their procedure is as follows: Consider 

a set of N points, ( V;, i = 1, 2, · · ·, N), on an attractor embedded in a phase space of 

n dimensions. Since the phase space is n-dimensional, each point V; is composed of 

n-data, V(t), V(t+ r), ... , V(t+(n-1)r) with a fixed time increment between succes­

sive measurements. The spatial correlation of the attractor is defined by 

1 N 

C(r)= N2 ;~ 1 B(r-1 V;- Vji), (29) 

where 8(x)=O if x<O and 8(x)=lif x >0. The correlation· integral, C(r), counts the 

number of pairs whose distance IV;- Vii is smaller than a given r. Their idea is that 

C(r) grows for small r like a power law, 

(30) 

If all data points are on a line, C(r) is proportional to r. If these are on a surface, 

C(r) should be proportional to r 2• Therefore the dimension d of the attractor is 

given by the slope of lnC(r) versus lnr in a certain range of r. Since the dimension 

of experimental random noise is usually larger than that of the attractor, the slope of 

ln C( r) for noise .is large below a certain r which is determined by the strength of 

noise.42J 

Figure 15 shows the correlation integral C(r) as a function of r with logarithmic 

scale for the experimental data of YIG whose strange attractor is shown in Fig. 11. 

By using experimental time series data with time increment r=2 f.lSec, a set of N 

points in n-dimensional phase space is constructed as follows: 

V;= V(ir), V((i+1)r), ···, V((i+n-1)r), i=1, 2, ···, N. (31) 

Here n is the dimension of phase space wherein the attractor is embedded and is 

called the embedding dimension. To construct n-dimensional points we have used a 

time delay r which is the same as the time increment r of the time series data. Figure 

2.0 r- ·-·-·-·-·-·-·-/.--

0 
d 

( 
. 

1·0 • 

log r 5 10 

Fig. 15. Correlation integral lnC(r) in YIG as a n 

function of distance r with embedding dimen- Fig. 16. Correlation exponent d in YIG as a func-

sions of n=1 to 10!7>·31> tion of embedding dimension n.31l 
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-5 

logr 

Fig. 17. Correlation integrallnC(r) in MACC as a function of distance r with embedding dimensions 

of n=1 to 10.30> 

d 

3 

(!) ------e-----e---"l!l----i!i---.,-· d•2.3 

2 (!) 

(!) 

0 2 4 6 8 10 12 n 

Fig. 18. Correlation exponent d in MACC as a function of embedding dimension n."0> 

15 shows lnC(r) as a function of lnr for embedding dimensions from n=1 to 10. The 

correlation exponent d is estimated from the portion of the curves in the range 

-4<lnC(r)< -2, where the curves are almost straight and should give characteris­

tics of the fractal structure. The correlation exponents d obtained in this way are 

shown in Fig. 16 as a function of the embedding dimension n. With increasing n, 

d increases and becomes nearly constant, d = 2.0, which is the fractal dimension of the 

strange attractor in YIG. The error to the fractal dimension comes from slope 

variation within the scaling range of lnC(r). 

The same procedure has been applied to MACC whose correlation integral 

lnC(r) are shown in Fig. 17 as a function of lnr. As is seen in this figure, lnC(r) in 

the region below -5 has a larger slope which is especially noticeable for larger 

embedding dimensions. This may arise from experimental noise and fluctuations. 

The correlation exponent d determined in the range of -4<lnC(r)< -2 are shown 

in Fig. 18 as a function of the embedding dimension n. With increasing n, d increases 

and becomes nearly constant, d=2.3±0.2. This procedure has been applied to the 

analysis of the data obtained at other driving power P. The fractal dimension 

increases from d=l.6±0.4 up to d=3.4±0.3. 
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0-3 

0.2 

0-1 

10 20 ·30 40 
n 

Fig. 19. Values of ln[Cn(r)/Cn+J(r)] as a function of embedding dimension n in YIG."l) The 

extrapolated value to n=oo gives K. entropy as K.=0.03. 

The correlation integral, C(r), is useful to estimate the Kolmogorov entropy K 

which gives a degree of chaos. A regular trajectory has K=O, while random noise 

has K =oo. A deterministic chaotic system has a finite K which is equal to the sum 

of the positive Lyapunov exponents.39>'43>'44> A brief explanation of Lyapunov expo­

nents will be given later. 

A method to derive a K2 entropy from the correlation integral C(r) has been 

given by Grassberger and Procaccia45> as follows: 

K2=lim lim ln[ fn(()) J~K. 
r-o n-oo n+l r 

(32) 

Since K2 is a lower bound to the Kolmogorov entropy K, K2>0 provides a sufficient 

condition for chaos. 

In order to estimate the K2 entropy from the time series data of YIG, the quantity 

ln[Cn(r)/Cn+l(r)] was calculated up to the embedding dimension n=39. The results 

are shown in Fig. 19 as a function of n. The extrapolated value of K2 to n=oo is 0.03. 

This result indicates that the Kolmogorov entropy K is positive. The K2 entropy for 

MACC is also positive and is 0.06. 

4.6. Lyapunov exponents 

Another quantitative measure of a strange attractor is positive Lyapunov expo­

nents which characterize the average rate of exponential divergence of nearby trajec­

tories within the attractor. The magnitude of the positive exponents is a measure of 

the degree of chaos. Negative Lyapunov exponents characterize the average rate of 

exponential convergence of trajectories onto the attractor. The largest Lyapunov 

exponent, A, can be conventionally computed from a one-dimensional return map as 

follows: 46> 

A=_!_~ lnl/'( V;)l , 
ni=l 

(33) 
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Fig. 20. Return map of YIG.Z7>·•0 Fig. 21. Return map of MACe.••> 

where /'( V;) is the derivative of the map at V;. 

In order to construct a return map from the experimental time series data, the 

intensity of the (n+ 1)-th peak, Vn+I, is plotted as a function of n-th peak, Vn. As 

shown in Fig. 20, the data fall on a single-hump curve which is similar to other chaotic 

systems, for example the Belousov-Zhabotinskii reaction.47' This result indicates 

that the system is deterministic. The solid line shown in the figure is the eleventh 

order polynomial function obtained by the least squares method. By applying this 

function to Eq. (33) with n=5 x 104 iterations, the largest Lyapunov exponent is 

obtained as t\=0.34. A positive Lyapunov exponent indicates sensitive dependence 

on initial conditions and also measures the average loss of information after one 

iteration. Therefore, the magnitude of the positive exponent is a measure of the 

degree of chaos. 

Since the strange attractor of MACC has a more complicated structure than that 

of YIG, the map constructed from the (n + 1)-th peak of the experimental time series 

data as a function of the n-th peak does not come together on a simple curve. The 

best one, which is shown in Fig. 21 is constructed as follows; the (101) plane, [ V(t+2r) 

+ V( t) vs V( t + r)] of the three-dimensional phase space is taken as a Poincare 

section. The intersection of positively directed trajectories of the strange attractor 

with this plane is examined. A one-dimensional return map, Fig. 21, is constructed by 

plotting the value of the (n+ 1)-th point on the Poincare section as a function of the 

preceding value, Vn. Since these data are scattered, probably by experimental 

fluctuations, two cubic curves connected at the middle point are found by fitting the 

data by the least square method. By using this empirical map with n=5 x 104 itera­

tions, the largest Lyapunov exponent is obtained as t\=0.21, which is smaller than that 

of YIG. 
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§ 5. Experimental observation of chaos under perpendicular pumping 

Bryant, Jeffries and Nakamura20' studied auto-oscillations accompanied with the 

first-order perpendicular pumped instability in a YIG sphere, at frequency 9.2 GHz and 

at room temperature. They found rich behavior including single-mode excitation; 

low-frequency collective oscillations when two modes are excited; quasiperiodicity, 

locking, and chaos when three modes are excited; and abrupt hysteretic onset of 

wide-band chaos at the Suhl threshold. They have experimentally observed two 

kinds of route to chaos; cascade of period-doubling bifurcations and quasiperiodicity. 

Figure 22 shows the regions and boundaries of oscillations behavior. Their theo­

retical model is in principle identical to that employed in § 3. 

As the field Ho is slowly increased at constant pump {>Ower, a series of sharp dips, 

which is independent of time, is observed as shown in Fig. 23, with a spacing llHo 

=0.156 G. This can be understood as high-order spatial resonance modes within the 

sphere as first found by Jantz and Schneider.48' However, as Ho is increased to a field 

where simultaneous excitation of two modes is possible due to overlap, the signal 

shows a low frequency auto-oscillations by nonlinear mode-mode coupling. These 

periodic collective oscillations display successive period doubling and become chaos. 

As the magnetic field is further increased, second oscillations whose frequency, /z, is 

incommensurate with the first one, A start. The power spectra show peaks at the 

combination frequencies lnm = n/1 + m/z, with n, m integers. These quasiperiodic 

oscillations are attributed to the excitation of three spin-wave modes. 

Gibson and Jeffries18' observed low frequency auto-oscillations in perpendicular­

pumping second-order Suhl instability experiment is gallium-doped YIG at 1.3 GHz. 

These oscillations display period-doubling bifurcation route to chaos and periodic 

-·--.... 
100 

16- I 
50 l 

! 
ri.B10 ·i 

10 iii 

1000 
d c Magnetic tleld ( Q l 

Fig. 22. Regions and boundaries of the first-order 

Suhl instability and oscillations in YIG measur­

ed by Bryant et al!"l 

-One and two frequency 
collective oscillations 

l ..... ~ 1 
0 Suhl instability 
B threshold ., 
... 
Gl 
;!: 
0 
a. 

I 
5E 
~ 

Many modes-... 

&gauss 

DC Magnetic field, gauss 
1650.5 

Fig. 23. Microwave absorption in YIG as the 

magnetic field is increased through the Suhl 

threshold, showing sequence of single spatial 

spin-wave modes, spaced by L/Ho=0.157 G!"l 
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418 H. Yamazaki and M. Mino 

window as the driving field is increased above the threshold for the Suhl instability. 

Theoretical simulation of nonlinear four-magnon interaction Hamiltonian was perfor­

med by Rezende et al. 16> and Zhang and Suhl.15> 

§ 6. Concluding remarks 

Characteristics of chaos in spin-wave instabilities under intense microwave 

pumping are summarized in this review. A theoretical model of chaos due to a 

nonlinear four-magnon interaction under parallel pumping has been given. Numeri­

cal solutions display a rich variety of periodic and chaotic trajectories. A multi­

fractal structure, singularity spectrum !(a), is numerically studied for two modes 

model which includes a microwave cavity mode. Experimental results observed in 

two ferromagnets, YIG and MACC, show strange attractors with fractal structure 

which has been confirmed by an infinitely repeated stretching and folding process with 

the evolution of trajectories in the phase space. Several parameters, that is to say, 

fractal dimension, Lyapunov exponent and Kolmogorov entropy, which characterize 

the strange attractors have been derived from the experimental time-series data. 

Experimental observation on chaos under perpendicular pumping has also discussed. 

An interest in chaos in spin-wave instabilities is still growing. Theoretical 

investigations have been recently developed by Lim and Huber 49> and Gill and 

Zachary.50> Singularity spectra !(a) of the strange attractor in YIG are experimen­

tally obtained and compared with numerical simulations by the present authors and 

Nakamura.51> The singularity spectra are considered to be excellent characteriza­

tions of strange attractors. 
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