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m Abstract The physical basis of chaosinthe solar system is now better understood:
In all cases investigated so far, chaotic orbits result from overlapping resonances.
Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances
account for its Kirkwood gaps and were used to predict and find evidence for very
narrow gaps in the outer belt. Further afield, about one new “short-period” comet is
discovered each year. They are believed to come from the “Kuiper Belt” (at 40 AU

or more) via chaotic orbits produced by mean-motion and secular resonances with
Neptune. Finally, the planetary system itself is not immune from chaos. In the inner
solar system, overlapping secular resonances have beenidentified as the possible source
of chaos. For example, Mercury, in¥gears, may suffer a close encounter with Venus

or plunge into the Sun. In the outer solar system, three-body resonances have been
identified as a source of chaos, but on an even longer time scalé tfrk® the age

of the solar system. On the human time scale, the planets do follow their orbits in a
stately procession, and we can predict their trajectories for hundreds of thousands of
years. That is because the mavericks, with shorter instability times, have long since
been ejected. The solar system is not stable; it is just old!

1. INTRODUCTION

All known cases of chaos in the solar system are caused by overlapping resonances.
Brian Marsden and | (ML), when we were students at Yale, had frequent discussions
with Dirk Brouwer about the significance of two resonances that overlapped. The
“small divisors” that occur in perturbation theory at single resonances can be
removed by a change of variables introduced by Pomcatiich results in a
resonance Hamiltonian similar to that of a pendulum. No such device was ever

*The US Government has the right to retain a nonexclusive, royalty-free license in and to
any copyright covering this paper.
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discovered for two overlapping resonances, and Brouwer sensed that there was
something special about that case. Because a single trajectory can be numerically
integrated through an overlapping resonance without apparent catasrophe, | argued
forcefully (and incorrectly) that the difficulty with overlapping resonances might
just be a defect in the perturbation theory. However, had we numerically integrated
a clone, initially differing infinitesimally from the original trajectory, the two
would have separated exponentially. In fact, that is the definition of a chaotic
orbit: exponential dependence on initial conditions.

In many cases we can estimate the Lyapunov Time (the e-folding time in the
above example) and even the Crossing Time (the time for a small body to develop
enough eccentricity to cross the orbit of the perturber). Both times depend on the
Stochasticity Parameter, which measures the extent of the resonance overlap.

There is evidence that, today, small bodies in the solar system (e.g., comets and
asteroids) behave chaotically. Meteorites are thought to be fragments of asteroid
collisions. The asteroid Vesta has a reflection spectrum that resembles that of many
meteorites. Every so often a meteorite hits the Earth, so we have evidence, within
the last hundred years, of chaotic behavior. We have also found meteorites that
originated on Mars. We believe they came from Mars because trapped bubbles of
gas coincide with samples of the Martian atmosphere.

Kirkwood (1867) noticed that the asteroid belt has “gaps” at resonances, i.e.,
at distances where the asteroidal periods are a rational fraction of Jupiter’s period.
There have been many attempts to explain these gaps on the basis of a single
resonance, but these attempts never produced gaps as devoid of bodies as the ob-
served ones. We now understand that bodies are removed from regions where
the overlap of two or more resonances induces chaos and large excursions in the
eccentricity. Wisdom (1982, 1983, 1985) first illustrated how chaos at the 3:1
resonance with Jupiter could result in sufficiently large eccentricity to allow an
encounter with Mars or the Earth. Subsequent work showed that even collisions
with Sun are a likely outcome (Ferraz-Mello & Klafke 1991, Farinella et al. 1994).
Chaotic dynamics in the asteroid belt will be reviewed in Section 3.

One to two “short period” comets (short means periods less than 200 years)
are discovered per year. Short period comets are confined to the ecliptic and are
believed to come from the Kuiper Belt, which is located about 40 AU from the
Sun, in neighborhood of Pluto. Their stability is also discussed in this review.

In contrast, long period comets are thought to come from the Oort Cloud at
20,000 AU. They are perturbed into the inner solar system by stellar encounters or
by the tidal field of the galaxy. These mechanisms differ from those determining
the dynamics of short period comets and are not reviewed here.

By now, the entire solar system exterior to Jupiter has been surveyed for stability.
Holman & Wisdom (1993) found that all the unpopulated regions of the solar
system are unstable, on time scales that, in general, are much less than the age
of the solar system. However, some comet orbits in the Kuiper Belt are just now
becoming perturbed into the inner solar system. The chaotic dynamics of comets
in the outer solar system is reviewed in Section 4.
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Itis not too alarming that small bodies behave chaotically. Comets and asteroids
have individual masses less than 1/1000 that of the Earth and, in total, make up
much less than an Earth’s mass. However, we depend on the regularity of the
planetary orbits. Could they be chaotic? The answer for the known planets is yes—
but on a long time scale. The planets have presumably followed their present orbits
for much of the lifetime of the solar system. But for how much longer? Are we in
danger of losing a planet soon? Computers are just now able to integrate the planets
for the life time of the solar system so we now have a preliminary exploration of
this important problem. Here too chaos is induced at resonances, but evidence
suggests that they are secular resonances that operate on long time scales.

Earlier, the stability of the solar system was studied by looking for terms in the
semimajor axis that grew with the time, secular terms, or as the time multiplied by
a periodic function of the time, mixed secular terms. Now we know that instability
comes from a chaotic growth of the eccentricity. The stability of the planets is
reviewed in Section 4.

For the reader who is intrigued, but new to this subject, we suggest a popular
book calledNewton’s Clock: Chaos in the Solar Systbynmathematician Ivars
Peterson (1993). We refer all readers to the earlier review by Duncan & Quinn
entitled “The Long-Term Dynamical Evolution of the Solar System,” which ap-
peared in the 1993 edition of this Annual Review. In addition, the proceedings of
the 1996 workshop on “Chaos in Gravitational N-Body Systems” have appeared
as a book and in Volume 64 @felestial Mechanics and Dynamical Astronomy

Hénon (1983) gives a lucid introduction to chaotic orbits and the “surface
of section” technique. Ott (1993) has written the standard text on chaos, which
covers avariety of physical problems. Sagdeev et al. (1988) review other interesting
applications of chaos including turbulence.

2. CHAOS AND CELESTIAL MECHANICS

The rigorous condition for a mechanical system to be stable for all time is that
there exists an “integral” (a conserved quantity) for each degree of freedom. The
Sun and one planet is just such a system (e.g., the Kepler Problem). Fortunately,
because the Sun is 1000 times more massive than Jupiter and the rest of the planets
add up to less than a Jupiter mass, treating the planets as independent two-body
problems is an excellent starting approximation. Using their “Keplerian” orbits,
one can calculate a first approximation to their forces on each other. Successive
iterations of that procedure, carried out with great sophistication, are the techniques
called celestial mechanics. The classic text on celestial mechanics was written by
Brouwer & Clemence (1961). S&olar System Dynamity Murray & Dermott
(1999) for a recent treatment.

Much of the history of celestial mechanics has involved the search for integrals
of motion. The search was doomed to fail; eventually Pomparsved thatthere was
no analytic integral for the problem of the Sun and two planets. However, there do
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existnonanalytic integrals. Their discovery culminated in the Kolmogorov-Arnold-
Moser (KAM) theorem, a fundamental result in the mathematics of chaos. The
theorem guarantees the existence of “invariant curves” (i.e., other integrals) as long
as the perturbations are not too large and the coupling is nottoo near any resonance.
Understanding the exact meaning of the woedrwas crucial, because resonances
(like the rational numbers) are dense. This theorem is discus§dtkifiransition

to Chaoshy Reichl (1992) and iRegular and Chaotic Dynamity Lichtenberg &
Lieberman (1992) (our recommended text). For the more mathematically minded,
there is also a set of lectures by Moser calfdble and Random Motions in
Dynamical Systemd973) andVathematical Methods of Classical Mechanigs
Arnold (1978).

Although the KAM theorem is of fundamental importance for the mathematical
structure of chaos, the strict conditions of the theorem are rarely satisfied in the
solar system. In what follows, we will be concerned with orbits that are not covered
by the KAM theorem.

All of the analytic work described in this review relies on perturbation theory,
exploiting the fact that the planetary masses are small compared with the mass of
the Sun. A brief outline of the approach follows.

The equation of motion of a planet orbiting a star accompanied by a second

planet is
d2r1
9 + G(Mg + |V|1) = V1R 2, (1)
where 1
r1-12
Rio=GMy| — — 2
12=G 2|:r1’2 3 :| 2

Here 1 is the distance between the Sun and planet 1rapes /(r1 — rp)?is the
distance between the planets. The quamjtywhich is the negative of the planetary
potential, is known as the disturbing function; it describes the disturbances of the
planet’s elliptical orbit produced by the other planet. The second term in the square
brackets arises from the noninertial nature of the coordinate system employed and
is known as the “indirect” term. It occurs because the traditional coordinate system
takes the position of the sun as the origin. It is not generally relevant to the chaotic
behavior of bodies in the solar system, so we ignore it henceforth.

The next step is to expand the disturbing function using the expressions for
andé; found by solving the Kepler problem. This rather daunting task has been
performed by a number of authors (Peirce 1849, Le Verrier 1855, Murray & Harper
1993). The general form is

gM
Ris = a22 Zd)J (a1, az)ellja\%lja\l IJs\ |JG|
]

x COg j1r1 + joho + jawy + jaw2 + 521 + je22] . 3)

In this expression thg are positive and negative integers. The angles in the argu-
ment of the cosine are the mean, apsidal, and nodal longitudes and are measured
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from the x-axis. If we rotate the coordinate system, the disturbing function, which

is proportional to a physical quantity (the force), cannot change. This implies that
> li = 0. We have kept only the lowest order terms in the sum; for a given

|ji| terms proportional t@'/iI* or larger powers will also appear. Each cosine
represents a resonance; the effects of these resonances constitute the subject o
this review.

We can use this expression to find the effect of one planet on another. Hamilton’s
formulation of mechanics offers the easiest way to proceed. Using action-angle
variables for the two body problem, the quantities— =, and —Q are appro-
priate angles. The corresponding actions are simple functioasepfaindi: L =
VGMa, G = /GMa[l— /(1 —e?)] ~ (1/2)é’L, andH = /GMa(1 — e2)(1—
cosi) = (1/2)i%L, where we have distinguished the gravitational consgaritpm
the momentumG. In these variables, the Kepler Hamiltoniarts= (GM)/2L2.
Because we are using action-angle variables, none of the angles appear. This tells
us immediately that the motion takes place on three-dimensional surfaces in phase
space, defined bl, G andH held constant. Topologically, this is a three-torus.
The surprising thing is thas andH do not appear in the Hamiltonian, so that
and are also constant. In a generic three degree of freedom Hamiltonian, one
would expect all three actions to appear explicitly, leading to three nonconstant
angles. The Kepler problem is degenerate, as is reflected in the fakt &mtG
do not appear ifi{. In this case the motion takes place on a one-torus, or circle, in
phase space.

To find the variation irg, for example, note that

dL _ 1Lida @
dt 2a; dt
SO
day a; oR
— =2—— 5
dt Ly oAy ©®)

The presence of planet 2 forces periodic variations in the semimajor axis of planet
1. For example, suppose we pick a term of the form

$2.-53.000(81, 3)€ COS[21 — 5z + 371]. (6)
The equation for; becomes

da aM ,
d—tl = —4(a1n1)a—i V2¢2,_5.3,0,0,0(al, az)ef Sln[2)»1 — 5k + 3w1] + 0(6)4.

()

Similar expressions can be derived for all the other orbital elements.

With these expressions, or similar ones provided by Lagrange, it appeared to
be a simple matter to integrate the equations of motion. However, early efforts to
do so revealed difficulties. The problem can be seen by integrating Equation (7).
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To first order inM, we find

a M n
au(t) — au(0) = ay— —2 !

3
_— _ ap, a;
2 M 2n1—5n2+3zz71¢2’ 5,3,0,0,0(81, A2)€]

x COS[2.1 — 5)y + 3w1] 4+ O(e)*. (8)

The denominator®; — 5n, + 3w7, and similar denominators that arise when all
the terms in the disturbing function are considered, is the source of the difficulty.
Poincag (1993) pointed out that for integejsandj, (2 and 5 in our example) the
denominator becomes arbitrarily small. He went on to show that, in spite of the
fact that terms with largg; and j, tend to carry large powers of the eccentricities,
the sums used to define the hoped-for analytic solutions diverged.

The locations in phase space (essentially alongathris) where the denom-
inator vanishes are known as resonances. Pangaied that in the immediate
vicinity of a resonance the motion was very complicated. Later work, particularly
that of Chirikov (1979), showed that the complicated motion, dubbed chaos, occu-
pied a large fraction of the phase space near the resonance when two neighboring
resonances overlapped. This result is essentially an anti-KAM theorem, in that it
specifies where KAM tori are absent. It provides the underpinings of much of the
work reviewed in this article.

2.1. The Origin of Chaos: Overlapping
“Mean-Motion” Resonances

The chaos generated at overlapping resonances was first studied, in the astronom-
ical context, by Wisdom (1980), who calculated the width and extent of overlap of
adjacent first-order resonances in the circular restricted three-body problem and
found that they overlap to a distance giversiaya ~ 1.3u?", wherey is the mass
ratio of the planet to the central star. The resonance overlap criterion for chaos was
developed by Chirikov (1979). The width of the first-order resonances, for zero
eccentricity, in the restricted problem was also derived by Franklin et al. (1984),
from which we find that the 2:1 mean-motion resonance extends, in semimajor
axis (withagypiter = 1) from 0.621 to 0.639, the 3:2 from 0.749 to 0.778, the 4:3
from 0.808 to 0.843, the 5:4 from 0.841 to 0.883, and the 6:5 from 0.863 to 0.908.
The 4:3 overlaps with the 5:4, and all adjacent resonances closer to Jupiter over-
lap. The 4:3 resonance is at 0.825; the Wisdom formula predicts onset of chaos for
a> 0.82. This region where mean-motion resonances overlap is where the relation
between the Lyapunov timd;, and the time for a close encounter with the per-
turber, T, applies. This relation, found empirically by Lecar et al. (1992), predicts
thatT,, is proportional taT,-"5.

Murray & Holman (1997) have explained this relation in terms of the Stochasity
ParameterK = (Tt AA/8A)?, whereAA is the width of the resonance add
is the separation between the resonancea Hf = K — K., whereK; is the
critical value ¢-1, corresponding to the start of overlap), then they showed that
T~ AK 5 and T, ~ AK=2% 50T, ~ T;'6. This holds in the region of
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overlapping first-order resonances (fla&’ region). Orbits in this region show a
range of more than three orders of magnitud&.irHowever, outside that region,
they showed that the relation was in error by a factor of 10 at the 5:3 resonance
(a second-order resonance) and by a factor of 100 at the 7:4 resonance (a third-
order resonance). They also integrated 10 “clones” of Helga, an asteroid at the
12:7 resonance (a fifth-order resonance). Five of the clones had Lyapunov times
ranging from 6000 to 13,000 years. They encountered Jupiter in 1-4 Gyr£Gyr
10°years). In this case, the relation prediclgd~ 6 Myr (Myr = 1P years)—too
low by a factor of 1000. Murray & Holman (1997) showed that the mechanism
for chaos in these higher-order resonances was an overlap of the “subresonances”
and that diffusion between overlapping subresonances in the same mean-motion
resonance is slower than diffusion between overlapping mean-motion resonances.
It is worth noting that higher order resonances become very narrow for zero
eccentricity. For example, from Franklin et al. (1984), the width of first-order
resonances is proportional t&'2 for zero eccentricity. The corresponding width
of second-order resonances is proportionajtoand the width of third-order
resonances is proportionalid. Thus, second- and higher-order resonances are too
narrow to overlap each other at low eccentricity. However, higher-order resonances
can occur in the wings of first-order resonances.

3. DYNAMICS IN THE ASTEROID BELT

Understanding the distribution of the asteroids as a function of their semimajor
axes, and particularly where their mean-motions are commensurate with Jupiter’s,
provided dynamicists an intriguing puzzle for over 130 years—all the more so be-
cause these (Kirkwood) gaps occur at most mean-motion rafigs,, = p/g, but
a concentration of bodies at two others. Progress on this classic problem has been
striking over the past 20 years. In a broad sense, it has been solved: We can identify
the sources of orbital instability (or their absence) and the nature of their conse-
guences and also have a good idea of some of the time scales involved. Numerical
and analytic studies both have contributed extensively. Although several related
dynamical processes have been—and still are—working to produce gaps in the as-
teroid distribution, the most significant ones can all be linked to the solar system’s
present environment. Carving gaps may in some cases require upwards of a billion
years, but it can probably be done without requiring cosmogonic explanations, i.e.,
calling on processes that occured in the primordial or developing solar system.
The paper that ignited the modern era of work on the Kirkwood problem was
Jack Wisdom'’s (1982) first contribution to the study of the 3:1 mean-motion reso-
nance ab = 2.50 AU. His startling results showed that an orbit at this resonance
could remain quiescent, with a low eccentricity< 0.1, for more than 100,000
years but also show occasional surges lasting about 10,000 years that would lift
e to a maximum value of about 0.35. Such a value is just sufficient to allow a
crossing of Mars’ orbit, resulting in an eventual collision or a close encounter.
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Orbital computations as long as a million years were a rarity 20 years ago, and
Wisdom’s novel approach was to develop a mapping of the planar elliptic three-
body problem that relied on two efficient techniques. The first approximated the
short-period terms (i.e., ones characteristically arising during an orbital period)
by a series of delta functions. The second averaged the Hamiltonian, expanded to
second order in eccentricity, over the longer but still relatively short-term angular
variable that librates at the 3:1 resonance.

In two following papers, Wisdom (1983, 1985) first used direct numerical in-
tegrations to verify the presence of thg,x peaks of 0.35 and, by including a
third dimension, then showed thet., could rise toe = 0.6, a value that also
included Earth-crossing trajectories. At the same time, he calculated the extent of
the chaotic zone, showing that it closely matched the observed 3:1 gap width. The
excitement generated by these results echoed widely: A straightforward dynami-
cal process that could open a gap at one resonand®,if principle might be
generalized to account for other Kirkwood gaps, and as an added boncsyid
deliver asteroidal fragments into the inner solar system as meteorites, had at long
last been identified. Later work by Ferraz-Mello & Klafke (1991) and Farinella
et al. (1994) showed that the chaotic zone at low e is linked, even in the planar
elliptic three-body problem, to one with> 0.6 so thate — 1 can occur.

The panels of Figure 1 provide a quick insight into the chaotic behavior that
Wisdom discovered at 3:1. Figure plots the motion of both Jupiter's apsidal
line, @, and that of a low eccentricity bodg{ = 0.05] in the 3:1 resonance,
and Figure b shows that the eccentricity surges occur when the dwe are
approximately equal—in facty o > @ ; corresponds to the rise @ The equality
of two apsidal or nodal rates is referred to in solar system studies as an example of
secularresonance. Theirimportance at certain locations in the asteroid belthas long
been recognized (cf Brouwer & Clemence 1961), but only in the past decade has
their role within mean-motion resonances been appreciated. Perturbations arising
at mean-motion resonances will markedly effect the elements of bodies lying in
them—yielding a very broad range of apsidal and nodal rates that are functions of
e andi. The apsidal and nodal motion of the Jupiter-Saturn system is defined to
high precision by two apsidal and one nodal terms that have been lakeled
andvg by Williams (1969). Figure 4 shows that the apsidal motion of a body with
ap = 0.481 andey = 0.05, which librates in the 3:1 resonance, will intermittently
also resonate with the frequencywgfand possiblys as well.

Figure 1 (a) A case of (temporary) secular resonance within the 3:1 mean-motion
resonance. Dark solid line here and elsewhere marks the motion of Jupiter'ssapse,
showing the effect of the longer termg and shortewg variation. Crosses correspond

to a body withag = 0.481 fyyp = 1.0] andey = 0.05. ) Eccentricity,e, surges that
develop from the case of secular resonance showa)i®'é > 0.32 cause a crossing

of Mars’ orbit. Note that the conditiomr A > @r; corresponds to an increasedn
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The challenge to map the locations and limits of the secular resonances that lie
within the confines of many significant mean-motion resonances has been met on
theoretical grounds in papers by Moons & Morbidelli (1995 and its references).
Although this work concentrates on the planar case in which epbndvg are
present, it contains the important result that, in the higher order resonances, 3:1,
5:2,and 7:3, thes andvg secular resonances exist over a very wide and overlapping
range of a and e—to such an extent that a condition of widespread chaos is present
inside these three mean-motion resonances. Figure 2 is a sample of their work for
the 5:2 resonance.

The picture developed by Moons & Morbidelli (1995) provided one reason
that led Gladman et al. (1997) to study the fates of a large number of bodies
placed in various mean-motion resonances. In a real sense their paper represents
an elaboration and even a culmination of Wisdom'’s original suggestion that marked
eccentricity increases are responsible for the Kirkwood gaps. Some eccentricity
increases beyond the value of 0.35 found by Wisdom had already been noted, but
Gladman et al. provided accurate statistics by integrating more than 1000 bodies
sprinkled throughout 3:1, about 450 in 5:2, and 150 each in 7:3, 8:3, and 9:4.
Their study quantitatively describes the dynamical transfer process noted earlier
by Wisdom (1983)—namely that gravitational encounters even with the terrestrial
planets can provide sufficient energy changes to move bodies from regular to
chaotic zones and even from one resonance to another. We can now legitimately
claim that the development of a gap (see Figure 3) at 3:1 is inevitable, though
some details are complex and different time scales are followed. The next two
paragraphs provide an outline of the process.

First, for bodies once in 3:1 wite < 0.25, the effect of imbedded secular
resonances, principally, will drive e’s of any and all bodies toward unity, leading
most likely to solar impacts in times of a few million years. In the survey, this was
the fate of about 70% of the initial population. A quarter to a third of them directly
impacted the Sun, whereas the majority were gravitationally scattered by the Earth
or Venus before doing so. Most of the remaining 30% moved in unstable orbits
exterior to Saturn.

Second, the same fate awaits bodies of any eccentricity whose critical arguments
are either circulating or that have librations greater than about B6wever,
bodies withe > 0.3 and that show small librations have different outcomes. In
preparing for this review, we identified orbits of bodies witB & e < 0.6, whose
moderate librations, all<40°, qualified them as stable librating members of the
3:1 resonance. These orbits are regular; i.e., there is no sign of any exponential
growth in their angular orbital elements during integrations lasting as long‘as 10
years. Figures@-cis an example of one of them. Three (of three) remained in
regular orbits until the integrations were terminated after 2 billion years. However,
the eccentricities of all three of these “stable” orbits regularly climbed at least to
0.5, hence risking the gravitational encounters (or, less probably, actual collisions)
with Mars mentioned above. (Mars itself was not included in these integrations.)
Gladman et al. found that 5% of all bodies initially in 3:1 were “extracted by Mars,”
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Figure 2 Secular resonances within the 5:2 resonance, after Moons & Morbidelli (1995).
Two broad lines mark the limits (“separatrices”) of 5:2, and the central line periodic solutions
of the restricted three-body problem. Lower (upper) thin solid lines are the loci of ifvg)

secular terms and the dashed lines, their approximate limits. Central hatched region contains
nonchaotic orbits (see Figurel4e). Note that orbits withe < 0.2 have a vanishing chance

of escaping the effects of botls andve and hence are especially chaotic.

meaning that their orbits were first perturbed by Mars by a sufficient amount that

the final result after subsequent encounters was most likely a solar impact or
an orbit beyond Saturn. This seems the certain fate of the otherwise stable high
eccentricity bodies—"otherwise” meaning the case with only Jupiter and Saturn

present. Their result argues that this phase of the depopulation of 3:1 will require
longer times, 10—-100 Myr (with a tiny handful remaining after 100 Myr), but the
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Figure 3 Distribution of 58,000 asteroids with reliable orbits from the most current files of
the Minor Planet Center. Principal mean-motion resonances are indicated. The gap/boundary
neara = 2.08 AU results from the strong perturbationsemandi’s due to thevg andvyg

secular resonances.

eventual outcome is the same as that of their lower eccentricity neighbors. We can
conclude that 3:1 is a resonance that has been emptied of any asteroids initially
present by a natural, multi-stage dynamical process in which all planets, Venus
through Saturn, have contributed.

The 5:2 resonance, although one order weaker than 3:1, behaves similarly but
with some interesting differences. As was the case at 3:1, values of the eccentricity
set three regimesa) Orbits of low e are severely chaotic owing to the influence
of vg. This remark applies to all bodies with>~ as., = 2.78 AU and alle <
0.2. Figures &—dpresents an exampld)(For 0.2 < e < 0.40, orbits are regular,
provided that their libration amplitudes are less thah Ahd (c) for all largere’s,
orbits at least occasionally lie in secular resonance and are very chaotiesvith
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reaching values-0.7. These remarks emphasize the resemblence to 3:1, but there

are two novel features for bodies in the second category.

First, theireranges generally do not include a close approach to Mars, and sec-

ond, as Figures&d show, in just one of many cases, the presence of secular reso-
nance does not always correspond to extreme chaos. Taken together, Figutes 5

are examples of the differing response of two bodies at the 5:2 mean-motion reso-
nance to secular resonances. When the amplitudeef = ; is large or when there

is coincidence of the periods of thgterm with thew 5 oscillations, then chaos is

severe and is measured by Lyapunov times-©#000 Jovian periods. By contrast,
when the oscillations afr, no longer match the frequencygfand/or their ampli-
tude is small the orbits remain regular. A tentative conclusion isthafar weaker

thanvg. Thanks to Moons & Morbidelli (1995), we have an accurate knowledge of

the locations of the secular resonances as well as the limits on the orbital elements
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Figure 4 A typical example of a regular orbigy,

8° degrees, lying with the 3:1 resonana®.ghows that it is unaffected by secular resonance;

(b) plots the separation in longitude with time for two bodies with the above elements that are
identical except for an initial longitude difference of fodegrees. This body’s essentially
zero slope implies a very long Lyapunov time and consequently an orbit that shows no sign of

being chaotic.€) shows that its eccentricity variations guarantee frequent crossing of Mars’

orbit, which requires onlg > 0.35.
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over which they operate. What we lack is an evaluation of their strength—say, a
measure of the chaos they can produce within a mean-motion resonance. Murray &
Holman (1997) have developed the means to calculate Lyapunov times when mean-
motion resonances overlap. A related formalism applying to the case when secular
and mean-motion resonances overlap would be very valuable.

In their study, Gladman et al. found that the loss of bodies from 5:2 closely
resembled the depletion at 3:1; i.e., all objects were removed within 200 Myr. Our
suggestion is otherwise: We expect a number of librating bodies evith0.40
to remain, unless a slow diffusion into the chaotic region has removed them all.
However, there may not be a real conflict. Gladman et al. were especially interested
in the role of the 5:2 in delivering members of three nearby asteroid families into
the inner solar system and hence chose initial velocity distributions accordingly.
Inclusion of librators in such a distribution is very unlikely. By contrast, their
survey at 3:1, though it also followed the evolution of members of three families,
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Figure 5 Examples of chaotic and regular behavior at the 5:2 mean-motion resonance. The
large amplitude oscillations @b a — @ ; in (a) lead to a chaotic orbit with a Lyapunov time,
given by the slope ink) of log Ty = 3.01 inP;. Its eccentricity regularly exceeds 0.5. The
smaller oscillations shown irt) corresponds to a far more regular orbit with Thg> 5.6.
Despite formally lying in thess secular resonance, such orbits show no signs of escape or
increase beyond 0.35 in integrations of a planar model extending to 2 billion years.
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Figure 5 (Continued

introduced 1000 randomly selected orbits as well. The files of the Minor Center list
some 30 possible candidates in the above eccentricity range at 5:2. Whether they
do librate with small amplitudes and avoid secular effects is at present unknown.

Moons & Morbidelli (1995) have also mapped the one (weaker) secular reso-
nance s, that lies within the 4:1 mean-motion resonance, but 4:1 itself is unim-
portant because its semimajor happens nearly to coincide with the locations of the
far strongeng andv,g secular resonances that, independently of any mean-motion
resonance, are now known to be the agents defining the inner edge of the asteroid
belt at 2.1 AU.

Both Moons & Morbidelli (1995) and Gladman et al. (1997) also examined the
7:3 mean-motion resonance. The former paper again shows thatgtaottvg are
centrally situated within 7:3 and cover large portions of it, bote as 0 and at e
as high as 0.65. In preparing for this review, we randomly introduced 120 bodies
into the resonance and found severe chdps<(2000P;) everywhere. Gladman
et al. (1997) found that depletion at 7:3 proceeds at a slower rate than at 5:2, with
nearly one half of its initial bodies surviving to their integration limit of 40 Myr.
Our results are roughly compatible with theirs but suggest a depletion rate that is
faster by a factor of at least two. In any event, as Figure 3 attests and both results
predict, 7:3 should be a genuine, fully developed gap, not just a region of reduced
population.
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The fifth-order resonances, 8:3 éa 2.71 AU) and 9:4 (a= 3.03 AU) were
not examined in the otherwise comprehensive studies of Moons & Morbidelli so
we have introduced about 50 bodies in each to have some idea where chaos is
most important. The results contain few surprises: At 8:3, orbits ggth: 0.19
are severely chaotic, witl’s < 2000P;. In the range A9 < e, < 0.35, they
are quite regular, having lIofy > 4.5 (Jovian periods). They become increasingly
chaotic at highee's, a fact that is of little importance because- 0.4 leads to a
Mars encounter. At 9:4, orbits are again very chaoticgfpk 0.2 and much less
so for 02 < e, < 0.32. Still, their averagd;’s are shorter by a factor of about
three than those at 8:3. Eccentricitie8.32 are again very chaotic, and those with
e > 0.45 will be Mars crossers. Gladman et al. (1997) found incomplete depletion
at both 8:3 and 9:4, with about one half of the original population surviving after
40 Myr in the former and three quarters after 120 Myr at the latter. All of these
estimates are qualitatively in accord with the distribution shown in Figure 3. [A
likely interaction between 9:4 and 11:5 (3.08 AU) probably accounts for the extra
width.] Longer surveys, with an eye to further quantifying diffusion rates into
chaotic areas, are an important future project.

3.1. Chaos in the Outer Belt

The 2:1 resonance at 3.28 AU divides the populous inner belt from the much
less dense outer portion (see Figure 3). Can it be that the entire outer belt is
systematically more chaotic than the inner belt? The answer is certainly yes, and
it has recently become possible to evaluate both its extent and severity throughout
all of the outer belt where Holman & Murray (1996) have, among other results,
shown that 22 of 25 outer belt minor planets have Lyapunov times shorter than
6000P;. However, it is also important to stress that there is more chaos in the inner
belt than what we have thus far mentioned. Independent studies by Murray et al.
(1998) and Nesvomn& Morbidelli (1998) point out that many three-body mean-
motion resonances (cf Aksnes 1988), involving the longitudes of Saturn as well
as Jupiter and the asteroid, are a major source of chaos. Ngs&dviorbidelli
(1998) trace the chaos in the orbits of about 250 of just the numbered minor planets
to three-body resonances, finding Lyapunov times that lie in the range of 1000 to
10,000P;. As the authors demonstrate, these resonances are vastly more dense in
the outer belt, where their effect can only be more destabilizing.

Holman & Murray (1996) and Murray & Holman (1997) have studied chaos
in the outer belt by examining orbital behavior at a number of high-order reso-
nances (e.g., 12:7) where they have calculated both Lyapunov and diffusion time
scales, analytically as well as numerically, and some escape times for comparison.
They associate chaos with the overlap between members of individual mean-
motion resonances. Consider the example of 12:7. In the planar case, it is com-
posed of six (sub)resonances, with various multiples of the two apsidal longitudes,

e.g.
ok =1203 — TAp — kKoop + (K — D)y, 9)
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fork = 0, 1,...5and where th's andw 's refer to mean and apsidal longitudes.
Two components, defined e.g., bgndk + 1, can overlap, and Holman & Murray
(1996), having obtained their locations and widths, showed that their overlap will
generate chaos. This approach to analyzing chaos within a given mean-motion
resonance is the mathematical equivalent of the one used by Moons & Morbidelli
(1995), who consider the overlap between a resonance define(kbyn Equa-

tion 9 and the secular one given by

Osecular= @A — @) = [0(K+ 1) — o (K)]. (10)

The latter is the approach taken by Wisdom in his analysis of the 3:1 resonance
(Wisdom 1985). In this approach itis sometimes assumed that there is an adequate
separation between the time scales associatedafith and o (seculaj) so that
the action associated with(k) is adiabatically preserved, except when the orbit
is near the separatrix. However, these time scales are not adequately separated for
most resonances in the asteroid belt.

Figure 6 plots some of Holman & Murray'’s results, indicating tl@gsteroids
in the outer belt have already been ejected from resonances of order less than 4
(with the exception of 11:7), thus demonstrating that less well-defined Kirkwood
gaps will also exist therebf escape times from fifth-order resonances correspond
roughly to the solar system’s age; ara) ¢bjects in sixth-order resonances are
ejected in times as long as 0'? years. We encounter again the problem dis-
cussed elsewhere in this review: Lyapunov times are measured in a few thousand
P, but at least some of the carefully evaluated escape times exceed the age of the
solar system. In view of these long times for ejection, it seems likely that other
processes have contributed to the removal of some resonant and many nonresonant
bodies from the extended outer belt. Holman & Murray (1996), Liou & Malhotra
(1997), and Nesvogn& Ferraz-Mello (1997) have directed attention to planetary
migration as a mechanism that will move various resonances into and through the
outer belt, a process that can have further dynamical consequences, as the latter
paper stresses, if there is also a change in the near 5:2 commensurability in the
mean motions of Jupiter and Saturn. Lecar & Franklin (1997) and Franklin &
Lecar (2000) have quantitatively studied the sweeping of secular resonances as-
sociated with the decay of the solar nebula through the asteroid belt. These papers
show that this one mechanism can accomplish three desired apdsmove an
overwhelming fraction of an initial population from the outer bd#), deplete the
inner belt from a likely early value by a factor of about 1000 so as to match present
observations, anct) generate a range of eccentricities that are characteristic of
the known minor planets. Their study also included gas drag on the asteroids.

3.2. Behavior at First-Order Mean-Motion Resonances

We turn, at last, to the behavior at two first-order resonances that Morbidelli &
Moons once called the “most mysterious ones,” beginning with a discussion of
the reason(s) for the pronounced gap at the 2:1 resonagee,0.630, and the
concentration of minor planets at the 3:2 resonamges= 0.763. Part but not
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Figure 6 Survival and escape times at resonances in the outer asteroid belt after
Murray & Holman (1997). Open and filled symbols correspond to predicted and nu-
merical estimates, arrows to lower limits.

all of this mystery has been dispelled as models have become more realistic. To
be more precise, unless models include Jupiter and Saturn in eccentric precessing
ellipses, they can not capture enough physics to account for the behavior at the first-
order mean-motion resonances. The importance of secular resonance in developing
chaos within such higher-order mean-motion resonances as 3:1 and 5:2 might lead
to the expectation that they should also be of prime importance here. However,
a detailed mapping (Morbidelli & Moons 1993) shows that the rolespfnd

ve for generating chaos in the heart of both the 2:1 and 3:2 resonances applies
only for orbits having eccentricities > 0.45 and 0.25, respectively. The reason

is clear enough: At lowe's, first-order resonances drive pericentric longitudes,
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@wa, much more rapidly than the motion of even the faster of the two principal
terms (i.e.,vg) that measurer;—by a factor of about 30 for orbits witk'’s
averaging about 0.15. We must look elsewhere for other resonances whose overlap
at orbits of low e with the 2:1 resonance itself is the source of the chaos shown in
Figure 7A.

The ones we are looking for involve commensurabilities between multiples
of the (resonant) libration and apsidal frequencies. The former are defined by
the regular oscillations of the appropriate critical angleimilar to Equation 9.
Strictly periodic solutions have = 0; real bodies at mean-motion resonances show
oscillations ino with well-defined periods and amplitudes that also correspond
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Figure 7 Locations of secondary resonances, defined by the ratio of apsidal to libration
periods, lying within the 2:1 mean-motion resonance for a semimajoragxis 0.630

(a; = 1.0). Vertical scale measures degree of chaos by plotting the LyapunovTifie,
Jovian orbital periods. As the eccentricities of Jupiter and Saturn are artificially reduced in
(b) and €), the influence of secondary resonances falls and orbits become more regular. Note
in the insert in &) that a few regular orbits do exist exactly at th23econdary resonance
even when the eccentricities of the two planets are not lowered. As indicated, they are also
found at 71, 11/1, and 121. Proper eccentricities of hypothetical bodies are about 0.03
larger than the plotted initial values. Libration amplitudes range fromi 2, = 0.25 to 60

atey = 0.02. All orbits plotted atog T; > 5 (usually 5.5) havd|’s too long to be safely
determined from unrenormalized integrations of at least 2007000



Annu. Rev. Astro. Astrophys. 2001.39:581-631. Downloaded from arjournals.annualreviews.org
by Embry-Riddle Aeronautical University - Daytona Beach on 04/21/08. For personal use only.

602 LECAR ET AL.

b) 6 —r—T11 7 (I | =TT I I (I T
5 Lok
L x * x
4'— x
’»—'l\ L x [ % R
\H/ I § X : ’ X
%) I~ £
o »
3_
#
- e(J), e(S) are
- 1/2 normal values
2
- 3/2 /1 3/1 4/1 5/1
: P(apse)/P(lib)
1_||||||||x|xr||l||||||||||||
0 05 1 .15 2 25
initial eccentricity
(C)5|1|n1|||[||||||||1|11||1|
:XXX AX XX X X X XX X X XX’X X X X X XX X X X X X X X
5 X x x
4_
g -
= L x
0 L
° L
3_.
- e(J), e(S) are
= 1/10 normal values
2
L 2/1 3/1
B P{apse/P(lib)
1_IIII|1II!|III1|lIIIIIIII|II
0 05 1 156 2 25

initial eccentricity

Figure 7 (Continued



Annu. Rev. Astro. Astrophys. 2001.39:581-631. Downloaded from arjournals.annualreviews.org
by Embry-Riddle Aeronautical University - Daytona Beach on 04/21/08. For personal use only.

CHAOS IN THE SOLAR SYSTEM 603

to regular variations in their orbital elements, especially semimajor axis and ec-
centricity. Periods ob increase withe, and at 2:1 and 3:2, typically lie in the
range of 15 to 7%;, whereP;, the orbital period of Jupiter, is 11.86 years. Apsidal
periods also depend on e, from close td”}for very small values, then increasing
rapidly. Therefore, a series of commensurabilities, starting near unity, which we
label PapsgPin in Figures 7 and 8 must occur.

Giffen (1973) first called attention to these commensurabilities, though their
link to chaos was not stressed. Henrard and colleagues (see Henrard & Lemaitre
1986, Lemaitre & Henrard 1990) first recognized their importance and began to
investigate them analytically, and Franklin (1994, 1996), numerically. Following
Henrard we shall refer to the small integer commensurabilitieB.gd/Pi, as
secondary resonances. We can explore their behavior and importance by consid-
ering the planar example shown in Figures-@ The figure shows that they are
indeed the source of chaos within the 2:1 resonance by presenting three cases in
which the two perturbers, Jupiter and Saturn, move in planar precessing orbits
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Figure 8 A sample of regular and chaotic orbits at the 3:2 mean-motion resonance.
In (&) Jupiter and Saturn move in a planar approximation to their present orbits, but in
(b) their eccentricities only have been increased by a factor of two so that their average val-
ues become 0.088 and 0.094. These higtsefthough only Jupiter’s is important) have the
effect of broadening and deepening thid 2econdary resonance, as is showrcjnlgut the
enhancement is far less than at the 2:1 mean-motion resonance.
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with (case a) their present eccentricies & 0.044 + 0.016;es = 0.047 +

0.035), then with one half (case b), and finally one tenth (case c) of these values.
This sequence helps verify the claim that secondary resonances are responsible
for chaos among (hypothetical) resonant asteroidal orbits of low eccentricity. (A
slash, e.g., B3, denotes a secondary resonance, while a colon, e.g., 3:2, denotes a
mean-motion resonance.) Figure shows that only the strongest secondary res-
onances are present and their widths are very narrow, but in Figusa&n e(J)

and e(S) have normal values, higher order secondary resonances/[&] d\a%e

also been excited and/or first-order ones have broadened so that extensive overlap
occurs.

A quick interpretation of Figure 7 might suggest that secondary resonances are
the source of chaos in the entire range; @ < 0.28. If this is truly the case, then
ones as high as 1% must still be contributing. Despite our present ignorance of
their strengths, this in itself seems curious, though sifge.is a rapidly rising
function of e(asteroid), whered%, is almost constant, it is also true that higher
order resonances crowd closer and closer together. The fact that exactly at some
weaker secondary resonances very regular orbits exist is also curious, though
helpful, as it speeds the process of locating them. A supplementary explanation
for chaos neae = 0.2 has been mentioned by Morbidelli & Moons (1993), who
found that thev1g Secular resonance is present in the limif as 0 and should
affect orbits withe = 0.21 +0.04/—0.02. However, the calculations leading to
Figure 7 are strictly limited to the planar approximation so that the origin of chaos
for eg < 0.15 is clearly the province of secondary resonances, but to what e they
extend is less clear.

Recently, Moons et al. (1998) broadened this topic by mapping the locations of
chaotic zones that arise from all secular and families of secondary resonances at
inclinations of 0, 10, 20, and 30[As Henrard (1990) noted, secondary resonances
are not confined to the case definedhby: ‘@ 5 but can include linear combinations
of @ 5 with the frequencies of planetary apsidal and nodal motion.] What s striking
is the connected nature of the chaotic zones, extending through much of the area
in thea, e plane for all fouri’s. Depending on the inclination, one to three islands
are present that contain quite regular orbits, havi@ge < 0.45, many of which
are not at risk because their perihelia avoid crossing Mars’ orbit. Moons et al. note
that one of them is populated by five recently discovered minor planets, but the
others are seemingly empty.

With the source of chaos identified, the question now turns to how the depletion
of a hypothetical early population of bodies at 2:1 might have proceeded. This
topic rests on less firm ground. Two independent sets of long-term integrations
argue that objects with Lyapunov times as short as several hundred Jovian periods
(a few thousand years) cannot permanently exist at 2:1. Franklin (1996) found
examples of escape for single representative bodies placed inth&/'2, and 51
secondary resonances, all after times close to 800 Myr. Objects in much higher
secondary resonances, consequently with Lyapunov times three orders longer,
remained after 4 Gyr. These integrations included only Jupiter and Saturn, which
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moved in planar precessing orbits. In five cases of escape, orbital eccentricities
rose to values that guaranteed a crossing of Mars’ orbit only a few million years
prior to escape, leading to the conclusion that drifting out of resonance, not an
eventual encounter with Mars, is responsible for depopulating the region. At the
same time, Morbidelli (1996) reached a somewhat different conclusion, though
one still compatible with the existence of a gap. His 3-dimensional integrations of
10 orbits with 0055 < e < 0.155 indicated that all became Mars crossers in times
between 10 and 100 Myr. (His integrations were terminated once this orbit crossing
was noted.) The same fate happened to most orbits with h&heahough four
remained for a full 1®years. Most objects remaining at that time showed strong
evidence that their proper eccentricities were diffusing toward higher values.

The more rapid crossing times found by Morbidelli may be the consequence of
adding the third dimension to the problem. In a parallel development, Henrard et al.
(1995) showed analytically that a strong (nodal) secular resonance overlaps several
secondary resonances. They suggested that it may be possible for a body initially
in a low e secondary resonance to diffuse or random walk with an increasing
libration amplitude so as to enter the extensive field of principally nodal secular
resonances that lie at much larggs andi’s. Their short integration times of
only 1 Myr failed to provide an example. At this point in our discussion, the
1998 paper of Moons et al. assumes special importance because it indicates that
the chaotic areas arising from various sources are not isolated islands, but are
connected. Bodies may therefore diffuse from low to high eccentricity and escape
with only small changes in semimajor axis, much as was found in the numerical
study just mentioned. How and when these three islands, located by Moons et al.
(1998) and containing very regular orbits, have lost bodies is, despite Morbidelli’s
long integrations, still an unsolved problem. We would argue for additional very
long-term studies to quantify the process of diffusion especially for orbits with
small-to-moderate librations in the< e < 0.45 range before placing all hope
in an explanation linked to planetary migration (see Nesyd&nFerraz-Mello
1997). Despite our present state of uncertainty, there is now a general conviction
that strictly dynamical effects linked to Jupiter and Saturn in their present orbits are
still the best bet to exhaust a primordial population of bodies at the 2:1 resonance
but that such processes needed more than a billion years to yield the current minor
planet distribution.

Figures &-c, the companion to Figuresa?c, present parallel results for the
3:2 mean-motion resonance, which is characterized not by a broad gap but by a
concentration of nearly 200 bodies (called the Hilda group) in reliable (i.e., ob-
served for two or more oppositions) librating orbits. The difference in the observed
appearance at the two resonances is clearly reflected in their dynamical behavior.
Although the strongest secondary resonand®gat/Pi, = 2/1 is easily identified
in Figure 8, itisless deep (less chaotic) and far narrower thanis the case at 2:1. Even
when the eccentricities of Jupiter and Saturn are doubled (cf. FiglyrgBwidth
is far less than its counterpart at 2:1. A notable feature of the Hildas is the absence
of bodies with proper eccentricities, < 0.10. Figure &shows that chaotic orbits
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dominate in the regiosy, >~ e, < 0.05 and that a mix of chaotic and regular ones
lie from g = 0.05 to the 21 secondary resonanceegt= 0.074, with regular
ones alone present at higheis, except exactly at other secondary resonances.

Nesvorty & Ferraz-Mello (1997) have compared the long-term behavior
throughout the 2:1 and 3:2 resonances. Their approach applies the frequency map
technique discussed by Laskar (1993) to determine the diffusion of (Fourier) fre-
guency components in a resonant body’s pericentric motion. The results show that
all orbits in the heart of the 3:2 with.05< e < 0.35 diffuse very slowly, with
percentage frequency shifts of about 10% in a billion years. At 2:1, the broad,
continuous region found at 3:2 is replaced by numerous smaller islands also hav-
ing slow diffusion, but they are surrounded by a sea of orbits where diffusion is
some 10 times faster. These plots are compatible with surveys providing Lyapunov
times, but they are quicker to obtain and hence more complete. By either criterion,
however, disruptive processes are one to two orders more severe and/or more ef-
fective over wider ranges of semimajor axis and eccentricity at 2:1. Efforts along
these lines imply that the population difference between these two resonances is
principally a matter of time scale: Wait long enough and the Hildas too will prob-
ably disappear, leaving behind a sort of undefined Kirkwood gap at 3:2. We have
integrated orbits of 10 hypothetical bodies wit@®< e, < 0.075 over the age of
the solar system and found no signs of escape, but these integrations were only
2-dimensional. Longer integrations in three dimensions are a useful topic to pur-
sue. However, it is hard to rest content with present and future population statistics
alone. We would like understanding at a still more fundamental level: Why is the
core of 3:2 not broken into islands the way 2:1 is, and the related question, why
are Henrard’s secondary resonances so much weaker there? Perhaps the latter is
good starting point for future work. Henrard’s studies have located many of them
as functions of eccentricity and inclination only within the 2:1 resonance, but their
relative and absolute strengths have yet to be calculated. Despite much progress,
we do not yet understand the ultimate reason for their curious behavior that is
strong enough to produce marked chaos at 2:1 overaaide < 0.25, but only in
narrow slices at 3:2.

The recent literature on the Kirkwood problem is extensive. For those inter-
ested in more details, we recommend papers by Wisdom, Henrard and colleagues,
Morbidelli, Moons and colleagues, and Holman & Murray (1996) and a review by
the late Michele Moons (1997).

4. LONG-TERM STABILITY OF SMALL BODIES
IN THE OUTER SOLAR SYSTEM

Avastnumber of asteroids occupy the region between Mars and Jupiter, and an even
larger number of Kuiper belt objects exist near and beyond Neptune. Nevertheless,
these objects contribute very little to the total mass of the solar system. The main
asteroid belt and Trojan asteroids are estimated to contain a total @f —10?°
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grams and the Kuiper belt no more than an Earth mass of material. In comparison
to the mass of the planets themselves, this additional mass is almost negligible. In
this sense, the regions between the planets are remarkably empty. Is this scarcity of
material the result of particular processes of planet formation? That is, were those
processes so efficient that nearly all of the initial mass was either incorporated
into planets or swept away? Alternatively, are the gravitational perturbations of
the present planets sufficient to eject nearly all of the material initially between
the planets on time scales less than the age of the solar system?

Of course, these two ideas are not independent. The gravitational perturbations
from proto-planets constitute one of the main physical processes during planet
formation. The presence of proto-planets influences the orbital distribution of
planetesimals that may or may not be accreted. Given the broad range of rele-
vant physical processes and the computational challenge of including a sufficient
number of bodies, direct simulations of planet formation are still severely limited.

It is much more straightforward to evaluate the gravitational influence of the
present planetary system on smaller bodies. As we will see, the perturbations of
the present day planets are sufficient to eject nearly all material from between the
planets on time scales less than the age of the solar system. However, one cannot
conclude that no other important physical process contributed to the absense of
material between the planets. We will also see that there are regions in the solar
system in which the time scale for removal by gravitational perturbations alone
exceeds the age of the solar system. We will find dynamically long-lived regions
that are empty of material, long-lived regions in which the orbital distribution
appears excited by perturbations of bodies that are no longer present, and regions
with dynamical life times that straddle the age of the solar system. It is in these
regions that simulations of the long-term dynamics provide the richest evidence
of the conditions of planet formation. In the following sections we discuss recent
results on the long-term stability of small bodies in the regions between outer and
inner planets.

4.1. The Region Between Jupiter and Saturn

The abrupt decrease in the surface density of asteroids beyond the 2:1 mean-
motion (near 3.3 AU) revealed by the Palomar-Leiden Survey (van Houten et al.
1970) prompted Lecar & Franklin (1973) to study numerically the possibility that
there were initially asteroids beyond where they are presently found. In addition
to examining the long-term stability of small bodies in the outer asteroid belt, they
examined the stability of such objects between Jupiter and Saturn. Modeling Jupiter
and Saturn as moving on fixed elliptical orbits and considering the planar case,
they integrated 100 test particles started on orbits between 5.7 and 9.1 AU with
eccentricities between 0.0 and 0.1. After numerically integrating for 500 Jupiter
periods (-6000 years), only test particles near 6.8 and 7.5 AU remained. The others
escaped. Lecar & Franklin (1973) cautiously concluded that the Jupiter-Saturn
region would be depleted of asteroids in a few thousand years, with the possible
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exception of the two identified bands. Everhart (1973), in an independent study,
identified the same long-lived bands in integrations lasting 3000 Jupiter periods. He
then selected one test particle from each band and numerically integrated them until
their orbits behaved chaotically (7100 and 17,000 Jupiter periods, respectively).
Franklin etal. (1989) reexamined this problem, armed with faster computers that
would permit longer numerical integrations. Although again the planar problem
was considered, the effect of the mutual gravitation of the planets was modeled
according to the leading two terms of the secular theory (see Murray & Dermott
1999). The authors chose planet crossing orbits as their criterion for stopping a
test particle integration. That is, if the test particle crossed the orbit of Jupiter or
Saturn it was said to be ejected. Of the 135 test particle orbits integrated between
Jupiter and Saturn, none survived. The longest lived was ejected after 799,000
Jupiter periods (9.4 1P years). The authors concluded that low-eccentricity,
low-inclination orbits between Jupiter and Saturn were unlikely to survive longer
than 10 years. In addition to being the first to determine the full range of dynamical
lifetimes of test particles between Jupiter and Saturn, the authors found that all
orbits displayed a positive Lyapunov exponent (were chaotic) before ejection.
Soper etal. (1990) extended this work to find a correlation between the estimated
Lyapunov times and the ejection times of the test particles between Jupiter and Sat-
urn. In addition, they established that their results were not sensitively dependent
upon the numerical accuracy of the integrations. Even for dramatically degraded
accuracy, stable orbits in the circular restricted three-body problem remain stable.
Weibel et al. (1990) also reexamined the problem of stability between Jupiter
and Saturn. The principal improvements of their work over previous studies were
to integrate the actual orbits of Jupiter and Saturn and to integrate the full three-
dimensional problem. Studying a sample of 125 test particles with initially low-
eccentricity, low-inclination orbits, they found that nearly all were planet crossing
or ejected within 20,000 years, with a small number surviving more thayekds,
in agreement with other results. Weibel et al. (1990) also associated some of the
variation in dynamical lifetime with the locations of mean-motion resonance with
Jupiter or Saturn.

4.2. The Regions Between the Other Outer Planets

As in the case of the outer asteroid belt and the region between Jupiter and Saturn,
the question of whether there are regions in the outer planet region where small

bodies might be stable on time scales of #€ars has been raised numerous times

in the literature. This question has been investigated by several groups using a
variety of techniques.

Duncan et al. (1989) developed an algebraic mapping to approximate the motion
of a test particle orbiting between two planets. The mapping is composed of a part
that follows the motion between conjuctions with a planet and a part that includes
the impulsive gravitational influence at conjuction. Although the assumptions re-
quired to make its development tractable are severe, the mapping nevertheless
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recovered the size of the chaotic zone near a planet (Wisdom 1980) and the insta-
bility of test particles between Jupiter and Saturn. This mapping’s speed relative to
direct numerical integration permitted simulations lasting of ordéygars, well
beyond what could be completed at the time with available computers and conven-
tional algorithms. With their mapping, the authors identified bands of long-term
stability between Saturn and Uranus, Uranus and Neptune, and beyond Neptune.

Gladman & Duncan (1990) were the first to complete accurate, direct numerical
integrations of test particles in the Saturn-Uranus and Uranus-Neptune regions and
beyond Neptune, as well as in the outer asteroid belt and Jupiter-Saturn region.
Although their integrations were limited to 22.5 Myr by computational speed, they
followed the trajectories of roughly 1000 test particles. Their additional advance
was to include the perturbations of the four mutually interacting giant planets as
perturbers, integrating individual test particles until they entered the gravitational
sphere of influence of one of the planets. In addition to finding a clearing in
the outer asteroid belt associated with mean-motion resonances and short time-
scale dynamical erosion just beyond Neptune, they found that the majority of test
particles between the giant planets undergo close approaches with the planets in
10°— 10’ years. Whereas some test particles between each of the planets were
found to survive, the authors noted that they did not expect them to be stable over
the lifetime of the solar system.

Extending the work of Gladman & Duncan (1990), Holman & Wisdom (1993)
studied test particle stability in the invariable plane from 5 to 50 AU. Placing a total
of 3000 test particles in circular orbits in the invariable plane (500 test particles in
each of 6 initial longitudes), they integrated the particles for up to 800 Myr interior
to Neptune and 200 Myr exterior to Neptune. This was subsequently extended to
4.5 Gyr interior to Neptune and 1.0 Gyr exterior to Neptune by Holman (1995).
The roughly order of magnitude speed-up in numerical integrations gained by
the symplectic mapping method of Wisdom & Holman (1991) allowed the more
complete study. Duncan & Quinn (1993), who approximated the motions of the
outer planets by linear secular theory, reported similar results.

Figure 9 displays the dynamical lifetime as a function of initial semimajor
axis. The solid line marks the minimum survival time of the six test particles
initially in each semimajor axis bin. The encounter times of the test particles at
the other initial longitudes for each semimajor axis bin are plotted as points, with
surviving test particles plotted as open circles. A number of dynamical features
are immediately apparent. In each semimajor bin, there is a fairly broad range
of dynamical lifetimes, sometimes two orders of magnitude. As noted above,
between Jupiter and Saturn nearly all test particles are removed®sydi§ears.

Test particles between Saturn and Uranus are nearly all removed pgd®, and
those between Uranus and Neptune b$ykars. Other than test particles librating
about the triangular Lagrange points of one of the planets and test particles beyond
Neptune, only a single test particle survived.

As Holman (1997) demonstrated, even this one surviving test particle does not
represent a stable region between Uranus and Neptune. In the region 24-27 AU,
a small fraction (0.3 per cent) of a population of initially low eccentricity, low



Annu. Rev. Astro. Astrophys. 2001.39:581-631. Downloaded from arjournals.annualreviews.org
by Embry-Riddle Aeronautical University - Daytona Beach on 04/21/08. For personal use only.

CHAOS IN THE SOLAR SYSTEM 611

10 = ) ' ] -
8_ —

£ o6 .
> L i
™~ L 4
e | ]
g 4r —
2_ —
O_ —
_III|IIII|IIII|IIII|IIII|_

10 20 30 40 50
semimajor axis (AU)

Figure9 Dynamical lifetime throughout the outer solar system. At each semimajor axis bin,
six test particles were started at different initial longitudes. The solid curve marks the trace
of the minimum time survived as a function of semimajor axis. The points mark the survival
times of the other particles, indicating the spread in dynamical lifetime. For reference, the
semimajor axes of Jupiter, Saturn, Uranus, and Neptune are 5.2, 9.5, 19.2, and 30.1 AU,
respectively.

inclination orbits will survive 4.5 Gyr. This region is long-lived but not indefinitely
stable.

Recently, Grazier et al. (1999a,b) revisited the issue of test particle stability
in the Jupiter-Saturn, Saturn-Uranus, and Uranus-Neptune regions. They placed
roughly 100,000 test particles in the Jupiter-Saturn zone and 10,000 test particles
in each of the Saturn-Uranus and Uranus-Neptune zones. They employed a high-
order linear multistep integrator with round-off error minimization and a small time
step to accurately integrate their trajectories. Although their choice of initial orbital
distributions makes direct comparisons difficult, their results largely confirm earlier
ones and provide more detailed information of the time dependence of the removal
of material as a function of orbital distribution.

4.3. The Inner Solar System

Although test particle stability in the outer solar system has been thoroughly stud-
ied by a number of groups, few corresponding studies of the inner solar system
have been conducted. Mikkola & Innanen (1995) numerically integrated a few
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Figure 10 The vertical axis shows the double logarithm of the final phase space separation
of initial nearby test particles. This is proportional to the estimated Lyapunov time. The
conversion to Lyapunov time is marked inside the left vertical axis. Figure from Mikkola &
Innanen (1995).
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hundred test particles in the inner planet region (0.3-4.0 AU) for times up to
3 Myr. They included all the planets as perturbers. In addition, they estimated the
Lyapunov times of each of the test particles by integrating the tangent equations
of the Wisdom-Holman mapping (see Mikkola & Innanen 1999). Figure 10 shows
these results. The test particle trajectories in the figure display a wide range of
Lyapunov times, 19— 10° years. As Mikkola & Innanen (1995) point out, the
longest Lyapunov times (least chaotic trajectories) are found in the vicinity of the
main asteroid belt. Outside of the main asteroid belt, most of the test particles
developed large enough eccentricity in the course of the integrations to become
planet crossing. Whereas not all planet-crossers were ejected in 3 Myr, the au-
thors suggested that longer integrations would clear many of the remaining such
objects. However, the authors did identify two narrow regions, one between Venus
and Earth and one just beyond Earth, where one might expect to find long-lived
asteroid orbits with low eccentricity and inclination.

Evans & Tabachnik (1999) integrated approximately 1000 test particles in the
region 0.09-2.0 AU for times up to 100 Myr. They, like Mikkola & Innanen (1995),
included the nine planets as perturbers. In addition, Evans & Tabachnik integrated
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Figure 11 Similar to Figure 9, this shows the survival time versus semimajor axis in the
inner planet region. Here the vertical axis is linear rather than logarithmic. The positions of
the terrestrial planets are marked for reference. Figure from Evans & Tabachnik (1999).

five test particles at different initial longitudes in each semimajor axis bin to test the
resulting range of dynamical lifetimes. Figure 11 shows the results of their study.
On time scales of 100 Myr, a large fraction of the objects were removed; however,
long-lived regions can be seen. Evans & Tabachnik (1999) fit logarithmic and
power-law decay profiles to populations, extrapolating the surviving population
to 5 Gyr. They found two regions that could possibly harbor dynamically long-
lived populations, 0.09-0.21 AU (interior to Mercury) and 1.08-1.28 AU (between
Earth and Mars). A few low-eccentricity and low-inclination asteroids in the latter
region can be found in current asteroid catalogs.

4.4. The Kuiper Belt

Arguing that the surface density of primordial material in the solar system should
not end abruptly beyond the outer planets, Edgeworth (1943, 1949) and Kuiper
(1951) independently suggested that a disk of material might be found beyond
Neptune. Edgeworth (1943, 1949), furthermore, proposed that such a disk might
serve as a reservoir of short-period comets. Decades later, numerical investigations
(Fernandez 1980, Duncan et al. 1988, Quinn et al. 1990) showed that the orbital
distribution of short-period comets is more consistent with an origin in a flattened,
extended disk than in an isotropic distribution such as the Oort cloud (Oort 1950).
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The discovery of the first Kuiper belt object by Jewitt & Luu in 1992 (Jewitt
& Luu 1993) and the subsequent discovery of nearly 400 such objects have trans-
formed the study of the trans-Neptunian region from a purely theoretical endeavor
to one that is observationally grounded. For a recent review of the physical and
observational aspects of the Kuiper belt, we direct the reader to the recent chapter
by Jewitt & Luu (2000).

The study of the long-term dynamics of the Kuiper belt is a rapidly maturing
field with a rich literature. We describe only research that pertains to the issue of
dynamical chaos. [For broader reviews of Kuiper belt dynamics see Morbidelli
(1998) and Malhotra et al. (2000). For a recent review of the formation and colli-
sional evolution of the Kuiper belt see Farinella et al. (2000)].

In the first numerical experiments to examine the importance of dynamical
chaos in the Kuiper belt, Torbett & Smoluchowski (1990), improving upon the
work of Torbett (1989), estimated the Lyapunov times of a large number of test
particles with orbits beyond Neptune. Their 10 Myr integrations included the four
giant planets moving on fixed ellipses as perturbers. They identified a large chaotic
zone that roughly coincides with test particle perihelia between 30 and 45 AU. The
Lyapunov times in this zone are less than 300,000 years. Torbett & Smoluchowski
also noted that a small fraction of the test particles in this chaotic zone exhibit
sizable diffusion throughout the zone. In addition, a fraction of the material in the
belt could be scattered to large semimajor axis and effectively stored, forming a
reservoir of comets.

Holman & Wisdom (1993) and Levison & Duncan (1993) directly demon-
strated the viability of the Kuiper belt as a reservoir of short-period comets. Their
numerical integrations showed a mixture of stable and unstable regions beyond
Neptune. Small bodies in low eccentricity, low inclination orbits in some regions
of the Kuiper belt can be delivered to Neptune-encounter orbits on time scales of
10’—10° years, with hints of instability on longer time scales (see Figure 9). Other
regions appear stable for longer thar?-y@ar time scales. This is an essential
point because an effective source of short-period comets must possess regions that
are unstable on time scales comparable to the age of the solar system. Dynamical
lifetimes significantly shorter than the age of the solar system would imply a now-
depleted reservoir; a significantly longer dynamical time scale would imply an
inadequate supply of short-period comets. Indeed, detailed calculation of the dy-
namical evolution of small bodies upon exiting the Kuiper belt or its extended com-
ponent demonstrate that it is the likely source of short-period comets (Levison &
Duncan 1997, Duncan & Levison 1997).

Duncan et al. (1995) improved upon this early work by mapping the dynam-
ical lifetimes in the Kuiper belt for a range of semimajor axes, eccentricities,
and inclinations. Figure 12 displays the principal results of this study. The long-
lived region can be described as those semimajor axes and eccentricities that
give perihelia greater than 35 AU, with the exception of an unstable band be-
tween 40 and 42 AU associated with the overlap of secular resonanceze{ine”
et al. 1991, Morbidelli et al. 1995). Although Figure 12 reveals a rich dynamical
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structure, the underlying dynamics or causes of chaos and instability in the Kuiper
belt were not explored in detail by Duncan et al. (1995).

Two complementary approaches have been used to investigate the dynamical
structure of the Kuiper belt. Morbidelli et al. (1995) applied tools developed for
the study of dynamics in the asteroid belt (Morbidelli & Moons 1993, Moons &
Morbidelli 1995) to the Kuiper belt. Their approach was to use the planar circular
restricted three-body problem, averaged for a particular resonance, to simplify the
problem to a single degree of freedom. From that model, the widths of a mean-
motion resonance, as a function of semimajor axis were computed. Morbidelli et al.
(1995) used similar models to examine the dynamics in secular resonances outside
of mean-motion resonances. They pointed out that the unstable region 40-42 AU
at low eccentricity and the large eccentricity excursions seen there by Holman &
Wisdom (1993) result from the interaction of theand thev,g secular resonances.
Likewise, in the region 35—-36 AU large-scale chaos results from the interaction
of thev; andvg secular resonances. The basic limitation of this approach, as the
authors noted, is that each resonance must be examined in isolation to reduce
the problem to a tractable single degree of freedom. Whereas these models can
accurately describe the overall dynamics, the chaos that results from overlapping
resonances is eliminated.

Malhotra (1996) used an alternative approach to map the boundaries of quasi-
periodic regions associated with mean-motion resonances in the Kuiper belt. Sur-
faces of section of the circular restricted three-body problem show a divided
phase space, with quasi-periodic regions interspersed with chaotic zones. Near
a given mean-motion resonance, the surfaces of section will show a stable is-
land corresponding to the stable range of libration amplitudes or semimajor axis
oscillation for a given eccentricity. Malhotra used the results from a series of sur-
faces of section to establish the stable boundaries of mean-motion resonances.
These boundaries are somewhat narrower than those computed by Morbidelli
et al. (1995) because the analytic models cannot account for the chaotic zones.
Although the approach of using surfaces of section of the circular restricted three-
body problem captures some the important effects of dynamical chaos at first-order
mean-motion resonances, it also has a fundamental limitation. The eccentricity of
Neptune’s orbit must be ignored and only the planar case considered in order to
reduce the problem to two degrees of freedom, from which a useful section can
be computed. Thus, secular resonances from Neptune or other planets cannot be
included. However, surfaces of section could be used to explore the dynamics in
the regions of overlapping secular resonances in the Kuiper belé(dmhovslsi
1990).

Aside from establishing the general framework of stability in the Kuiper belt,
the dynamical behavior in the 2:3 mean-motion resonance with Neptune has been
studied extensively by a number of groups. This particular resonance has attracted
agreat deal of attention because, in addition to Pluto, a sizable population of Kuiper
belt objects resides there. Whereas the orbit of Pluto and the resonances it occu-
pies have been long established and well studied (see Malhotra & Williams 1997),
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the range of orbital parameters of the known Plutinos motivated broader studies
of the 2:3 dynamics. Morbidelli (1997) examined the orbital diffusion through-
out the resonance, finding dynamical lifetimes ranging frofyk@rs to times in
excess of the age of the solar system. In addition, Morbidelli (1997) studied the
role played by theg andv;g secular resonance and the Kozai resonance within
the 2:3 mean-motion resonance libration region. Related work on the dynamics
in this resonance has been reported by Gallardo & Ferraz-Mello (1998) and Yu &
Tremaine (1999) The importance of dynamical scattering among different mem-
bers of the 2:3 resonance has also been recently examined by a number of groups
(Ip & Fernandez 1997, Yu & Tremaine 1999, Nesvpat al. 2000).

Although other Kuiper belt mean-motion resonances have not been studied with
as much detail as has the 2:3, the whole suite of resonances plays an important role
in determining the overall structure and extent of the belt. The discovery of the first
scattered disk object, 1996 TL66, along with the recognition that the population
of such objects must be substantial (Luu et al. 1997), confirmed the suggestion
of Torbett & Smoluchowski (1990) that scattered Kuiper belt objects could be
effectively stored at great heliocentric distances. Independent work by Duncan &
Levison (1997) at the time of this discovery immediately demonstrated by long-
term numerical integration the mechanism of this storage. As a Kuiper belt object
begins to undergo close approaches to Neptune, presumably after developing a
large eccentricity in an unstable but long-lived region of the belt, the object’s orbit
follows a modified random walk. Successive encounters with Neptune alter the
semimajor axis and eccentricity of the object’s orbit in a way that roughly preserves
perihelion distance (which is near Neptune). As a resonant value of the semimajor
axis is approached, the random walk is altered. In some cases, as Duncan &
Levison (1997) demonstrate, temporary resonant trapping occurs, sometimes with
areduction in eccentricity that raises the perihelion distance beyond the immediate
influence of Neptune. This effect was first discussed by Holman & Wisdom (1993).
These orbits, although trapped for very long times, will eventually develop large
enough eccentricities to begin encountering Neptune again. By this means, the
scattered disk serves as an effective reservoir. It is clear that all of the trajectories
that exhibit long-term capture in resonance are chaotic despite being long lived.
Although numerical integrations have demonstrated this, there is little analytic
work on the details of this capture. Such work would provide valuable insight into
how material in the extended Kuiper belt is distributed.

5. PLANETARY CHAOS

5.1. Numerical Integrations

By the 1980s, it was clear that most Hamiltonian systems exhibited both chaotic
and regular (on tori) motion. The chaotic motion is intimately tangled up with
regular motion on KAM tori. However, the prevailing feeling was that the solar
system was almost certain to lie on a KAM torus.
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This expectation seemed to be suported by early attempts at accurate long-term
integrations of the solar system, including those of Applegate et al. (1986), who
carried out integrations over 3 Myr, neglecting Mercury. The LONGSTOP project
integrated the outer solar system (Jupiter through Pluto) using a standard general
purpose integrator for a time of 9.3 Myr (Milani et al. 1986). In these and other
integrations, the planets did nothing untoward. Applegate et al. also carried out
200 Myr integrations of the outer planets. The motion appeared to be multiply
periodic, as expected of motion on KAM tori, although they noted the presence of
very long period variations in Pluto’s orbital elements.

It was therefore a surprise when Sussman & Wisdom (1988) showed that the or-
bit of Pluto was chaotic. They used a special purpose-built computer called the Dig-
ital Orrery, running a twelfth-order Stormer integrator. This work featured the first
attempted measurement of the Lyapunov exponent of the planetary system. The
Lyapunov exponent is a standard tool in the arsenal of nonlinear dynamics, de-
signed specifically to see if a system is chaotic. If the separation grows expo-
nentially with time,d(t) ~ e/, the orbit is chaotic. Multiply periodic orbits
lead to much slower power law separation with tindét) ~ t*. Sussman &
Wisdom (1988) found that the orbit of Pluto was chaotic, with a Lyapunov time
of Ty ~ 20 Myr. Later, the LONGSTOP integrations were extended (Nobili et al.
1989). This paper did not examine Lyapunov times, but it suggested, based on the
appearence of the Fourier spectrum, that the orbits of the outer planets might be
chaotic.

At roughly the same time, Laskar (1989) performed numerical integrations of
a very different type of model. He solved a subset of Lagrange’s equations for
the orbital elements; Lagrange’s equations are similar to Equation (5). Laskar’s
model consisted of analytically averaged equations describing the motion of all
the planets except Pluto. In this model, he kept secular terms up to second order
in the planetary masses and to fifth order in eccentricities and inclinations (Laskar
1985). He also included the analytically averaged secular effects of all mean motion
terms up to the same order. This involves dropping any term exhibiting a sinusoidal
function whose argument contains a mean longitude. However, it does account for
the (secular) effects of terms proportional to the product of two such sinusoids. For
example, consider Equations (5), (3), and (8). Every term in the disturbing function
is proportional toM,. To lowest order in mass, the simple averaging procedure
employed consists of dropping every term in (3) that contains a mean longitude in
the argument of the cosine.

However, Laskar (1989) considered terms of second order in the masses. For
example, consider using Equation (7) in an extended development of (5). The
right-hand side of the latter will contain a term proportional to

a; My ny
laz M 2n; — 5n, + 3o
gM,
a

$2.-5.3.000(21, 3)€ COS[21 — Az + 3]

X =2 ¢2.-5.21.00(a1, Q)€€ SIN[2h1 — 5Ap + 2w + @3] (11)
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Using the trigometric identity coa(+ b) sin@ + ¢) = (1/2)sin(2a + b + c) +

(1/2) sinc — b), we see that this term will give rise to a factor sin(— @).
Because neithek; or A, appear, this secular term contributes to the averaged
Hamiltonian. Terms that are nearly resonant, i.e., terms in which the combination
pni — gqny are small, will produce relatively large (compared with the simple
estimateM2) contributions to the averaged Hamiltonian. Laskar’s (1989) model
contained some 150,000 secular and averaged terms.

Laskar (1989) found by numerical integration over 200 Myr that in his model
the entire solar system was chaotic, witlr 5 Myr. He stated without explanation
that “the chaotic behaviour of the Solar System comes mainly from the secular
resonances among the inner planets.”

In a later paper, Laskar (1990) showed that two combinations of secular angles
appeared to alternate between libration and rotation, implying that the orbit crossed
the separatrix of these resonances. Such behavior is associated with chaotic motion;
in certain cases it may be the origin of the chaos. However, the two resonances
Laskar identified involved the angles = ({ — @) — (29 — Q9) ando, =
2@ — @) — (2 — Q9). The anglew,) is associated with the fourth normal
mode of the planetary eccentricities, with a similar interpretation for the athier
In some instances (such as Jupiteg)~ @, but thew's are a combination of all
the normal modes. Similarly, the angl¥) is the angle associated with the fourth
normal mode of the planetary inclinations. Because the two resonances identified
by Laskar do not interact directly, they are unlikely to produce any substantial
chaos.

Because Laskar employed an averaged system of equations, it was important
to verify his results using an unaveraged system of equations. This was done by
Laskar etal. (1992). They examined the numerical solution of Quinnatailyr
integration of the entire solar system. Although this integation was not long enough
to detect the chaos, it did allow them to verify that the resonant argumerft2(

@) — (2§ — Q) alternately librated and rotated.

Two years later, Laskar (1994) identified a second secular resonance involving
Earth and Marsys = (@ — @) — (Q9 — 3). He noted that on some occasions
o, librated whero; rotated, and vice versa. This led him to suggest that the overlap
of these two resonances was responsible for the chaotic motion.

The next advance was the work of Sussman & Wisdom (1992). They employed
the Wisdom-Holman symplectic mapping to perform a 100 Myr integration of the
entire solar system, which they found to be chaotic Witz 5 Myr. This type
of integration accounts for all types of resonance, both secular and mean-motion.
They confirmed that the first two resonances identified by Laskar (1989) do exhibit
both libration and rotation, but the second Earth-Magsesonance never librated,
but only rotated, in their integrations. They were careful to point out that this did
not rule out the interpretation of Laskar that the two resonances involving Earth
and Mars overlap to cause the chaos.

They also found two other combinations of angles that, in their integrations,
both librate and rotate, namety, = 3(w) — @) — 2(Q] — Q) andos =
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(@? — @) + (22 — QJ). They found that four of the five angles (all but)
showed a transition from libration to rotation, or vice versa, at roughly the same
time. This strongly suggests to us that some, as yet unidentified, mechanism is
forcing the transitions seen in the integrations. This point is reinforced by the
observation that#; ando, do not strongly interact.

In addition to confirming Laskar's basic result that the entire solar system is
chaotic, Sussman & Wisdom found that the outer planets by themselves were
chaotic, withT; ~ 7 Myr. The Lyapunov times found in their giant planet integra-
tions seemed to depend on the step size, at first glance a rather disturbing finding.
However, a second set of integrations using a general purpose Stormer scheme
again showed that the system was chaotic, this time Witk 19 Myr.

As a check that some long-term integrations of a planetary system were not
chaotic, they carried out a 250 Myr integration of the outer planets without Uranus
and found no evidence of chaos.

These numerical experiments indicated that the solar system was chaotic, but
there was no indication in any of the integrations that any of the planets would
suffer either ejection from the solar system or collision with another body. In this
sense it appeared that the solar system was stable. This comforting interpretation
was bolstered by a 25 Gyr integration carried out by Laskar (1994). He found
that none of the planets (excluding Pluto, which was not integrated) suffered an
ejection or collision over that time. This suggested that the solar system was stable
for 10'° years or more.

Laskar's integration showed that the eccentricity of Mercury varied between
0.1 and 0.5, with an average value of about 0.2. He attributed the variations to a
diffusive process, driven by chaos. If we assume that this is the case, we can estimate
the diffusion coefficient, and hence the time to remove Mercury by collision with
the sun or with Venus, whem— 1. The diffusion coefficient is

D~ (G — Gg)%/T, (12)

whereG ~ €?/2 andT is the length of the integration, 25 Gyr. We estimate
the maximum excursion % usinge; = 0.2 ande = 0.5, corresponding to
Go = 2x 102 andG = 0.125. We make the assumption that the diffusion
coefficent is independent &f which is incorrect but adequate for our purposes.
We find D ~ 1.5 x 1072/ T. The time foreto diffuse to 1 is

Tesc™ 1/D = T/1.5 x 1072, (13)

or about 2x 10° Gyr, or 2 x 102 years. Laskar then repeated the integrations
several times, each time changing the eccentricity of Earth by about one part in
a billion. The integrations differed in detail, but no collisions or ejections were
seen.

One might question whether Mercury could actually diffuse to such a large
eccentricity; might there be some dynamical barrier preventing it from doing so?
In a series of numerical experiments, Laskar (1994) showed that there were indeed
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orbits in his averaged equations that were very close to those of the solar system,
and for which Mercury suffered a collision with the sun. In his words, he “decided to
guide Mercury to the exit.” He made four clones of the Earth’s averaged orbit, again
changing the eccentricity by different amounts of the order of a part in a billion.
He then integrated for 500 Myr. He retained the solution having the largest value
of efor Mercury, using it to produce four more clones with altered orbits for Earth.

Repeating this process 18 times, Laskar found a system in which the pseudo-
Mercury was ejected after a 6-Gyr integration. This is much shorter than our
estimate above, but this is to be expected because Laskar was actively searching
for the most unstable orbit. The significance of the experimentis not that it predicts
loss of Mercury on times comparable to the age of the solar system; the earlier
experiments had already shown that the time for this to occur was longer than
25 Gyr. Rather, the experiment showed that it was plausible that there were no
dynamical barriers to the loss of Mercury due to chaotic perturbations.

Murray & Holman (1999) carried out roughly 1000 long-term integrations
of the outer solar system using the Wisdom-Holman symplectic mapping. They
investigated the effect of altering the semimajor ajisof Uranus, tracing out
the variation ofT} as a function ofy . Using this technique, they located chaotic
regions associated with the 2:1 resonance between Uranus and Neptune, with
the 7:1 resonance between Jupiter and Uranus, and with three-body resonances
involving Jupiter, Saturn, and Uranus and Saturn, Uranus, and Neptune (see the
section on analytic results, below). The variatiomofvith ay is shown in Figures
13 and 14. The few hundred million year length of most of the runs limited their
ability to place lower limits onT, to about 100 Myr. More recently, we have
extended some runs to 1 Gyr; the results of two runs are shown in Figure 15. The
figure plots the phase space distance between two copies of the solar system, in
which one copy of Uranus is displaced relative to the other by about 1 mm. There
are two such calculations displayed, corresponding to two different fiducial values
of ay, 19.23 and 19.26. One is chaotic, the other is regular oiThsger than
about 0.5 Gyr. Note that an integration of less than 200 Myr would indicate that
both systems were regular.

Murray & Holman also showed that many planar four-planet models were
chaaotic, indicating that inclination resonances were not required to produce chaotic
motion in the outer planets. They demonstrated that a three-planet, nonplanar sys-
tem without Neptune was often chaotic. However, a three-planet system with no
Uranus or a three-planet planar problem with no Neptune was found to be com-
pletely regular, independent of the locations of the other planets (within moderate
limits). None of the orbits, even in strongly chaotic systems, showed any sign of
substantial changes & e, ori over the length of the integrations.

This result was extended by Ito & Tanikawa (2000) to the entire solar sys-
tem, over several4 Gyr integrations, using a Wisdom-Holman integrator. The
integrations confirm the finding that the solar system is chaotic. They also show
that the orbits of the planets do not change appreciably over the age of the solar
system; the full system of equations is not appreciably more unstable than Laskar’s
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Figure 13 The Lyapunov timeTl; of the system consisting of the four giant outer planets,
Jupiter, Saturn, Uranus, and Neptune. The semimajor axis of Uranus is varied around the best
estimate oy = 19.2189, keeping all other elements fixed. One can see the 2:1 resonance
with Neptune from 19 to 19.1, the 7:1 resonance with Jupiter at 19.18, and numerous three-
body resonances at 19.22, 19.26, 19.3, and 19.34.

averaged system. An estimate of the diffusion time, similar to that given above, but
using the results of Ito & Tanikawa (2000), predicts that Mercury will not suffer
any catastrophic encounters forr1@ even 16 Gyr. We appear to be safe for now.

5.2. Analytic Results

The numerical results described above suggest that the solar system is chaotic,
with a Lyapunov time of about 5 Myr. This result is surprising because the solar
system is observed to be more than 4 Gyr old. Not so surprising is the result that
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Figure 14 An enlarged version of Figure 13 around 19.22 showing individual mean-
motion resonances.

the integrations are stable, in the sense that no close encounters, defined by one
body entering the Hill sphere of another, are found. In fact, the results of Ito &
Tanikawa (2000) indicate that no planet has suffered even moderate changes in
semimajor axis, eccentricity, or inclination. Why does the solar system appear to
be so chaotic, and if it is, why is it so resistant to catastrophe?

Recently, we found an analytic explanation of both results, short-term chaos
and long-term stability, in the setting of the outer solar system (Murray & Holman
1999). We start with the observation that chaos results from the interaction of at
least two resonances between motion in two or more different degrees of freedom.
We have to find the resonances. For example, consider the “great inequality,”
the near 5:2 resonance between Jupiter and Saturn. The orbital period of Jupiter
is 4332.588 days, whereas that of Saturn is 10,759.278 days, giving a ratio of
2.4833. The mutual perturbations of these planets produce large (relative to the
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Figure 15 The phase-space distance dift)] between two slightly (1 mm) displaced copies

of the four giant planets. Two integrations are shown, one &jth= 19.23 and one with
a=19.26. Both appear to follow power laws for the first 200 Myr, but one eventually shows
rapid separation and hence is chaotic. The other appears to be regular.

mass ratidM ;/My or Ms/Mg) variations ink when compared with the Keplerian
value. The variation amounts to about 21 and 49 arcminutes in the longitude of
Jupiter and Saturn, respectively, variations that were noted by astronomers in the
eighteenth century. Mathematically, the resonance is represented by the following
terms in the disturbing function:

GMs 25 ko di Pi
T Z ¢I(<,q,)p,r(a5/a3)eSeJIS|5
S k,q, p,r

x C092Ly — SAs+ ks + qwy + pRs+rQ2y]. (14)
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Recallthat2- 5+ k+ g+ p+r = Oandthatp + r must be even. Furthermore,
(2n; —5ns)/ny ~ —1.33x 1072; although this is small, it is much larger than the
ratio of any of the secular frequencies with; for examplezrs/n; ~ 2.6 x 1074,

The small magnitude of the secular frequencies implies that including the secular
frequencies will change the location (in semimajor axis) of the resonance only
slightly. On the other hand, the rather large distance from exact resonal@e (

is large compared with the width of the resonance, as we show below) shows that
the planets are not “in” resonance, i.e., none of the angles in the argument of the
cosine in Equation (14) librate.

The last statement can be generalized: The only planets in the solar system
involved in a two-body mean-motion resonance are Neptune and Pluto. These
two bodies are in a 3:2 mean-motion resonance, as well as a number of secular
resonances. The chaos seen in integrations of the giant planets, and in the solar
system excluding Pluto, is not due to the interaction of two-body mean-motion
resonances.

The fact that Jupiter and Saturn are not in resonance does not mean that the
resonant terms given by Equation (14) are negligible, however. They produce
substantial variations in the semimajor axis (given by Equation 8 and similar terms)
and in the longitudes of the two planets; it was the latter, which involves two powers
of (2n; — Bng)/ny ~ —1.33 x 1072 in the denominator, that is responsible for
the 21 arcminute discrepancy seen in the longitude of Jupiter by the eighteenth
century observers. These near-resonant terms also produce substantial variations
in the eccentricity and inclination of both planets.

For example, Saturn’s gravity forces variation®jrsine; given by

(2 5)

~ (2.5) p—1:q.r
sine; ~ Zgbk o Esedigig

2- 5ns/ ny) as €5

x Sin[2hy — BAs + ks + (p — L)y + 9y +rQs], (15)

whereus = Mg/M is the mass ratio of Saturn to the Sun. The largest variation
in ey, correspondingtkk = 2, p—1=q =r = 0 and¢, 100 ~ 9.6, has an
amplitude of about 3 x 10~*. Numerical integrations yield.3x 10~* (Murray &
Holman 1999). As shown in the following section, this variatiogjiplays a central
role in producing chaos among the outer planets.

5.2.1. THREE-BODY RESONANCES Although there are no two-body resonances be-
tween the giant planets, there are a number of resonances involving three bodies.
Three-body resonances involve the longitudes of three planets; the combinations
3L; —5is — 7Ay and 3s — 5Ay — 7in are two examples. There are no terms
containing such arguments in the disturbing function; they arise only at second
order in the planetary masses. Physically, they arise as follows.

Consider Jupiter, Saturn, and Uranus. In the first approximation all three follow
Keplerian orbits, s@, e, andi (as well asw and ) are constant for all three
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bodies. At the next level of approximation, Saturn perturbs the orbit of Jupiter, and
vice versa. This will, for example, cause tiny variationgjrandes, as calculated

in the previous section. The amplitude of the variation will be proportional to the
mass of the perturbing planet.

Now consider the potential experienced by Uranus. To lowest order, Uranus
moves on a Keplerian orbit, so to first order in the masses, it will see the potential
given by the disturbing function with the Keplerian valuesgfand so forth. At
second order in the masses, several types of correction arise. One type is due to the
fact that Uranus’ orbit is not Keplerian. For example, Jupiter will force changes in
ay, ey, and so forth, which have magnitude proportionaMg and period given
by pn; — gny, wherep andq are integers. The position vectny will inherit
oscillatory terms of this form. The potential experienced by Uranus, due to Saturn,
will in turn inherit terms proportional td/1;, with resonant arguments involving
A3. This will lead to terms of the fornM;Mscos[pAj — ris — (s + q)Ay]. We
refer to such terms as three-body resonances.

Three-body resonant terms arise in two other ways. We have already said that
Saturnwill produce variations in Jupiter’s orbital elements of the fidigoos| A ; —
maig]. The potential experienced by Uranus, assumed to be on a Keplerian orbit,
contains terms of the fornM ;e cos[pr; — giy + l@;]. However,e; is no
longer constang; (t) contains terms of the forris cos[pij; —r Ag]. Once again,
these will give rise to terms proportional kyMs containing resonant arguments
involving all three mean longitudes.

Similarly, Jupiter will produce variations in Saturn’s orbital elements, which
will in turn affect the potential experienced by Uranus and give rise to terms
proportional to the mass of both Jupiter and Saturn, and having resonant arguments
involving all three planetary mean longitudes.

Murray & Holman (1997) gave analytic estimates of the strength, or width, and
of the separation of such resonances. The width of a typical component resonance
is

o
- = 8\/(6 p)¢((57 })) p.0,0 £215003 HJHSeJ ege% A2 X 10_67 (16)

wherea = aj/as ~ 0.55 ande = |2—5(ns/n;)| (nsandn; being the respective
mean-motions of Saturn and Jupiter).

ThisyieldsAa ~ 8x 10~° AU. The libration period associated with a resonance
of this amplitude is

To= Tl%/147(6 Py t) p.0.09 Y 0y NJMSeJ “Peflei ~ 10years  (17)

whereTy is the orbital period of Uranus. This is essentially the Lyapunov time
(Holman & Murray 1996, Murray & Holman 1997).

Murray & Holman (1999) estimate the time for Uranus to suffer a close en-
counter with Saturn. An ejection or collision would then follow in short order. The
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estimate assumes that there are no dynamical barriers to the random wglk of
produced by the chaos. They find a time of ordef®y@ars, much longer than the
current age of the Universe.

Figures 13 and 14 show the location of various two- and three-body resonances
in the vicinity of Uranus. In Figure 14, one can see individual three-body mean-
motion resonances. The resonant argument of the resonance closest to the best
estimate of the orbit of Uranus is seen to alternate between libration and rotation
in Figure 16).

5.2.2. CHAOS IN THE INNER SOLAR SYSTEM The situation in the inner solar system
is currently unclear. There have been a number of candidate resonances suggested,

I~

——
SO

0=3N\,—HBA—TA,+3g.t+6g,t (Radians)

100
time (Million years)

— T

Figure 16 The resonant argument3— 5is— 7Ay + 3gst + 6gst. The libration period is
about 20 Myr. One can see transitions from libration to rotation and back, eventually followed
by a long period of rotation. The g's are the frequencies obendve secular resonances.
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but no analytic calculations have been done. This is clearly an opportunity for an
enterprising theorist.

Without a calculation in hand one cannot say what Lyapunov time one expects
from overlap of secular resonances, or how to predict the time required for a
planet’s (Mercury in this case) orbit to change drastically. We can use estimates
similar to that given in Equation (13), but they are on rather shaky ground because
we do not know if the variations of we see in the integrations are primarily
diffusive or if they are actually the result of quasiperiodic forcing of Mercury’s
orbit by, e.g., Venus and Earth. There is some evidence for the latter because
Laskar (1990, 1994), Laskar et al. (1992), Sussman & Wisdom (1992), and Ito &
Tanikawa (2000) find strong correlations between the motion of all three planets.
If the variations in the eccentricity of Mercury are primarily due to quasiperiodic
forcing, then Mercury’s lifetime could be much longer than our estimate.

From the numerical results of Laskar (1994) and Ito & Tanikawa (2000), we
gave a rough estimate of ¥§/ears for the lifetime of Mercury. Murray & Holman
(1999) found 188 years for the lifetime of Uranus. In units of orbital periods, these
lifetimes are 4x 103 and 105, a ratio of about 250, yet the Lyapunov times of
the two systems are within a factor of about two. Without an analytic theory for
the chaos in the inner solar system, it is difficult to assess the significance of this
discrepancy.

We have noted that the resonancgidentified by Laskar does not overlap
with any other secular resonance that has so far been identified. This suggests that
it is not the source of the chaotic motion seen in various integrations. Rather, it
appears that the transitions between libration and rotation are the result of chaotic
forcing by other planets. This may be checked by integrations of the solar system
excluding Mercury, in which Uranus is moved to a location outside the chaotic
three-body mean-motion resonances. If the resulting system is still chaotic, then
the resonance correspondingtodoes not play an essential role in producing the
chaos seen in the integrations.

6. SUMMARY AND SUGGESTIONS FOR FURTHER WORK

The solar system is unstable, although on times much longer than the Lyapunov
times. Our main task is to identify the resonances that overlap and induce chaos
and to predict the ejection time as a function of the Lyapunov time (which is
relatively easy to calculate). For example, in the region of overlapping first-order
mean-motion resonances the ejection time is proportional to the Lyapunov time
to the 1.75 power. A similar power law relation, with a different exponent, holds
for high-order mean-motion resonances, where the various subresonances overlap.
As yet, we have no such relation for secondary resonances, where the libration
frequency is a multiple of the apsidal motion. Surprisingly, the relation with the
exponent of 1.75 holds approximately throughout the solar system, although the
spread in ejection times for 90% of the trajectories is a factor of 10 on ei-
ther side of the prediction (see Figure 17). The exceptions occur at high-order
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Figure 17 The ejection timeT,, versus the Lyapunov tim&,, in units of the period of

the test particle. About 90% of the points fall within a factor of 10 of the relaffgny
T|1'75.

mean-motion resonances or at overlapping secular resonances. The “diffusion”
among the subresonances inside the same mean-motion resonance is much slower
than the diffusion between overlapping first-order mean-motion resonances. The
relevant model for chaos in the solar system is the overlap of two resonances;
in the Hamiltonian formulation, this resembles a pendulum driven at resonance.
This induces a random walk (diffusion) in the eccentricity that can result in a
close encounter with the perturber and a radical change in the orbit. We do
not believe that a web of resonances (the Arnold Web) is relevant for chaos in
the solar system, as interesting as that formulation is mathematically, and we
no longer believe that instability is caused by a secular drift in the semimajor
axes.
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Three-body resonances have been identified as the source of chaos for the outer
planets. Because these resonances are proportional to the product of the mass ratios
of the two planets to the Sun, the time scale is quite long, on the ordef tifries

the age of the solar system.

Theidentification of the overlapping secular resonancesin the inner solar system
(the terrestrial planets) is not firm, but an extrapolation of the numerical integration
indicates that Mercury will be in trouble in 3years (well after the Sun becomes

a red giant and engulfs Mercury).

The work we have reviewed here could be termed “weak chaos.” We picked
up the story after the violent encounters associated with the formation of the
Solar System were over. The trajectories we studied could be treated by the well-
developed methods of modern nonlinear dynamics and celestial mechanics. The
discovery of extra-solar planets draws our attention to the era of formation when
the planetary bodies were less well-behaved; when close encounters, collisions,
mergers, and ejections were the norm. That was the era of “strong chaos.” Explor-
ing this should provide the palette of stable configurations.

Visit the Annual Reviews home page at www.AnnualReviews.org
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