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A variety of investigators in recent years have proposed
models of psychological systems based on the concepts of
chaos, nonlinear dynamics, and self-organization. Unfor-
tunately, psychologists in general have little understanding
of these important ideas. These terms are defined, and
their relationships are discussed. The value of applying
these concepts to psychological systems is demonstrated
by exploring their utility in areas ranging from neurosci-
ence to clinical psychology. Some of the difficulties in using
nonlinear concepts and methodologies in empirical inves-
tigations are also discussed.

I n recent years, a new paradigm for understanding sys-
tems has been gaining the attention of psychologists
from a wide variety of specialty areas. This paradigm

has no single name but has been described in terms of
chaos, nonlinear dynamics (sometimes called nonlinear
dynamical systems theory), and self-organization. Al-
though these interrelated concepts have generated a great
deal of interest in physics, chemistry, and biology (e.g.,
Gleick, 1987; Kauffman, 1993; Stewart, 1989), the ma-
jority of psychologists know very little about them. The
purpose of this article is to define these concepts, clarify
the types of issues they are applicable to, and discuss their
significance for research and clinical practice.

Understanding Growth, Change, and
Development in Psychological Systems

The dynamic behavior of complex psychological systems
is often difficult to understand. Why, for instance, do
groups of neurons often synchronize their firing patterns
in a unique spatial manner (Freeman, 1991)? How can
a person have two or more separate and distinct person-
alities (Putnam, 1988)? Why do various belief systems
link up with one another to create family dysfunction
(Elkaim, 1990)? The answers to these and many more
questions about dynamic psychological systems can be
explored using the concepts of chaos, nonlinear dynamics,
and self-organization.

In neuroscience and psychophysiology, these con-
cepts have been used to investigate the way memories are
formed (Freeman, 1990, 1991; Kohonen, 1988), the way
attention affects the dynamics of human electroenceph-
alograms (EEGs; Basar, 1990a), the dynamic nature of
sleep (Roschke & Aldenhoff, 1992), and the way connec-
tionist models account for learning (Carpenter & Gross-
berg, 1987; Hanson & Olson, 1990). In experimental
psychology, nonlinear dynamics have been used to model
approach-avoidance conflicts (Abraham, Abraham, &

Shaw, 1990), coordination (Turvey, 1990), and condi-
tioning in animals (Hoyert, 1992). In clinical psychology,
the concept of self-organization and nonlinear systems
has been applied to models of family systems and marital
therapy (Elkaim, 1990; Gottman, 1993), psychotherapy
(Goudsmit, 1989; Reidbord & Redington, 1992), and the
role of cognitive development in psychopathology (Gui-
dano, 1991; Putnam, 1988). In addition, a number of
authors have applied these concepts to core issues in the
philosophy of science and systems theory. Their work has
been helpful in understanding the processes of growth,
change, and development among a broad range of bio-
logical and psychological systems (Jantsch, 1980; Levine
& Fitzgerald, 1992; Odum, 1988; Sabelli & Carlson-Sa-
belli, 1989; Vandervert, 1991; Waldrop, 1992).

The level of technical understanding required to un-
derstand chaos, nonlinear dynamics, and self-organization
from the perspective of mathematics or physics is generally
not necessary for psychologists. However, a certain degree
of familiarity with the mathematical and physical un-
derpinnings is helpful. One of the most basic ideas is the
concept of dynamics itself. Some of the principles in-
volved in dynamics are described in the next section.

Dynamics in Nonlinear Systems

At the most basic level, dynamics is the study of the way
in which systems change (Morrison, 1991). Dynamics
explores the effect of various forces on the behavior of
systems over time and the manner in which these systems
seek optimal stable states. Dynamics may be used to ex-
plore a variety of systems. Some of these systems are rel-
atively simple (e.g., a study of the forces acting on an
apple that cause it to fall to a stable rest on the ground),
whereas others are dauntingly complex (e.g., the forces
that act on the fertilized human egg that lead to the de-
velopment of a full-term infant).

From a mathematical perspective, dynamics can be
thought of as linear or nonlinear. The basic assumption
underlying linear dynamics is that the way a system
changes can be most effectively modeled with two or more
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equations whose solutions can be combined to obtain
another solution (Morrison, 1991; Stewart, 1989). Linear
equations work quite well for a number of problems in
the physical sciences. For instance, they are very useful
if one wants to predict the orbit of the planets or under-
stand the effects of wind resistance and gravity on the
trajectory of a missile. Because they are additive, they
also work well for a number of problems in psychology.
They are, for instance, the cornerstone of statistics. When
we perform an analysis of variance or enter data into a
multiple regression equation, we are using linear equa-
tions to describe the relationships among variables.

The problem with linear equations is that they can-
not always describe what happens in natural systems. This
failure is especially noticeable when continuous changes
in certain control parameters lead to sudden jumps in
behavior. Although linear equations are helpful in de-
scribing the smooth flow patterns of a liquid within a
certain range of flow rates, for instance, nonlinear equa-
tions are necessary to describe these same patterns when
that range is exceeded and the sudden jump to turbulence
sets in (Gleick, 1987). This occurs in human psycho-
physiological systems as well. The speed of alternately
tapping one's index fingers (antiphase tapping), for in-
stance, can be adjusted in a linear manner within a certain
range of tapping speeds. However, when the high limit of
that range is exceeded, a sudden nonlinear jump to in-
phase finger tapping occurs (Kelso & Schoner, 1988).

To explore systemic change, nonlinear dynamics uses
nonlinear equations (Abraham et al., 1990; Morrison,
1991). Nonlinear equations are not additive; therefore,
they are often difficult to solve. Sometimes a single so-
lution can be obtained, but often the answer involves a
pattern of solutions. To find such an pattern, the data are
generally run through a system of equations so that the
results ultimately feed back into the system itself. If, for
instance, one takes the equation x

1
 = x + rx (1 —x) and

feeds the results back into the equation (so that what was
x

1
 for the first solution becomes x for the second), one

can explore the behavior of a classic nonlinear equation
(Tufillaro, Abbott, & Reilly, 1992). This process is called
iteration. When x is set at 0.5000, the values of r are
allowed to range between 1.5 and 3.0, and the results are
plotted on the y axis; the peculiar pattern characteristic
of bifurcations (the geometrical splitting of the solution)
to chaos emerges (see Figure 1). These splits occur quite
suddenly at certain values of r. Actually, the points in
Figure 1 represent the solutions after they have had time
to "settle down," in this case after 150 iterations for each
value of r. Readers who have trouble making sense of this
diagram might want to think of Figure 1 as a two-di-
mensional map of a time series. The only difference is
that just enough numbers are plotted to show the repet-
itive pattern for each value of r. For those who are inter-
ested in exploring this pattern on their own, an extremely
simple computer program in BASIC is available for
studying a similar equation (Stewart, 1989).

As I have noted, nonlinear systems tend to settle
down over time. This settling down, or convergence, tends

Figure 1
Bifurcation Diagram Arising From Iterations of the Equation
x' = x + rx (1 — x)

1.34 - ,

1.5 r
i

3.0

Note. This diagram illustrates the way in which solutions to a very simple nonlinear

equation can result in sudden jumps from one set of solutions to the next. Ultimately,

they can jump to very complex chaotic behavior.

to result in one of four typical patterns (Abraham et al.,
1990; Tufillaro et al., 1992). These patterns, when graphed
in diagrams that show periodic changes in behavior, are
called attractors. The trajectories of these attractors typ-
ically converge on a discrete point, a simple oscillating
cycle, a quasiperiodic cycle, or a chaotic cycle (see Figure
2). The attractors in Figure 2 are portrayed in two di-
mensions.

The chaotic attractor requires a special explanation.
The pattern in such an attractor is bounded, but after a
certain number of repetitions within the system, it be-
comes very irregular. This irregularity results in unpre-
dictability, despite the fact that it derives from a com-
pletely deterministic system. This unpredictability is as-
sociated with a property of chaotic systems known as
sensitive dependence on initial conditions. This means that
if two sets of initial conditions differ by any arbitrarily
small amount at the outset, their specific solutions will
diverge dramatically from one another over the long range.
In the case of the pattern in Figure 1, for instance, if x =
0.5000 had been replaced with x = 0.5001, the solutions
in the chaotic portion of the attractor would have been
completely different, whereas the general chaotic pattern
would be the same. Given that no measurement system
is without some error, it becomes clear that if a system
is chaotic, general patterns of future behavior may be
predictable but specific behaviors over the long range
will not.

It is possible to construct a chaotic attractor from a
set of equations, as I have demonstrated here, or it can
be reconstructed from a time series of observable repet-
itive behaviors. The latter solution is often the easiest way
to map out the attractor associated with a complex psy-
chophysiological system (e.g., Hoyert, 1992; Reidbord &
Redington, 1992; Roschke & Aldenhoff, 1992).

Chaotic behavior is more than just a mathematical
anomaly. It occurs in the real world as well. A wide range
of physical, chemical, and biological systems are now
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Figure 2
Types of Attractors Typically Found in Nonlinear Systems-.
(A) Point Attractor, (B) Cyclical or Oscillating Attractor, (C)
Quasi periodic Attractor, (D) Chaofic Attractor

A

C

B

D

known to exhibit deterministic chaos (Prigogine & Sten-
gers, 1984; Stewart, 1989). The presence of chaos suggests
that even if we are able to characterize all the variables
in a nonlinear system completely, general patterns of fu-
ture behaviors may be the best we can hope to predict.
In an insightful treatment of this problem as it relates to
behavior analysis, Hoyert (1992) explored the behavior
of a hypothetical system designed to predict within-in-
terval variability in a fixed-interval reinforcement sched-
ule. He demonstrated that chaotic behavior can arise even
when the variables in such a system are completely de-
termined. Hoyert went on to note that the interdepen-
dence of variables in a nonlinear system, along with sen-
sitivity to initial conditions, lead to the implication that
studying each factor in isolation may not lead to useful
knowledge about the behavior of the system as a whole.
This concept, long a tenet of general systems theory, has
now been unequivocally demonstrated in complex non-
linear systems.

Self-Organization

Fundamentals of Self-Organizing Systems

For any discussion of chaos to be linked meaningfully to
psychological systems, it must be linked to the broader
concept known as self-organization (Abraham et al., 1990;
Kauffman, 1993; Prigogine & Stengers, 1984). Self-or-
ganization denotes a process by which a structure or pat-
tern emerges in an open system without specifications
from the outside environment. When a system of this
type receives a sufficient amount of energy, it may become
unstable. As a result of this instability, an originally uni-
form state can give rise to a variety of complicated tem-
poral, spatial, and behavioral patterns (Prigogine & Sten-
gers, 1984).

In this section, I focus primarily on self-organization
in a chemical system known as the Beluzhov-Zhabotinsky

(BZ) reaction. My goal is to help build an understanding
of the fundamental characteristics of such systems, char-
acteristics that are relevant to chemistry, biology, and
psychology (Schore, 1981). The BZ reaction, discovered
in Russia in the late 1950s, is often used to illustrate the
concept of self-organization (Gleick, 1987; Prigogine &
Stengers, 1984; Schore, 1981). Its behavior can be defined
in terms of a cyclical or sometimes even chaotic attractor
and can be modeled by a system of nonlinear differential
equations (Epstein, Kustin, De Kepper, & Orban, 1983).

In the BZ reaction, the system has the potential to
exist in two different states. Assuming that an iron catalyst
is used, one state appears red and the other blue (Winfree,
1974). If the reaction is allowed to run in a continuously
stirred beaker and the concentration of the reactants
crosses a critical threshold, it will oscillate between the
red state and the blue state at intervals of about 30 sec-
onds. It first appears red and then blue. Unlike a "typical"
chemical reaction, it does not move toward a static equi-
librium point in a linear manner. Instead, it cycles in an
obvious and dramatic fashion. The process of moving
from red to blue or vice versa is sudden and discontinuous
(see Figure 3A). This occurs because the chemical pro-
cesses that result in the red state coming into existence
become linked to the processes resulting in the blue state.
When this happens, the two states codetermine one an-
other in a cyclical, nonlinear fashion.

Figure 3
(A) Simplified Illustration of Oscillating States in the
Beluzhov-Zhabotinsky Reaction; (B) Propagation of Spiral
Waves in the Beluzhov-Zhabotinsky Reaction

BLUE

Note. Substances X and Y are used generically to refer to any two substances
that will support an oscillating chemical reaction. Note that when the solution is in
the red state, the concentrations of Substances X and Y change slowly within a
certain range. Beyond this range, however, the entire system switches suddenly
to the blue state. After this, the concentration- of reactants once again change
slowly, although now in the opposite direction, until they reach a certain point.
After this point, the whole system jumps suddenly into the red state. These linked
processes occur repeatedly in a cyclical fashion.

Bl -B4 illustrate spatiotemporal self-organization in a chemical system. Note
the entrainment of the slower wave by the faster wave in the lower right-hand
corner as the reaction progresses.

January 1994 • American Psychologist



When the BZ solution is constantly stirred, only
temporal oscillations will occur. However, if it is poured
into a petri dish and allowed to sit quietly, a whole new
type of organization emerges. Under these conditions, any
small perturbation in the system, such as a piece of dust
or a hot needle, will create a local region of instability.
This instability then triggers the formation of spiral or
circular waves that slowly propagate throughout the sys-
tem (see Figure 3B). Thus, the system develops not only
temporal self-organization but spatial self-organization
as well. The waves propagate with a diverse set of fre-
quencies, and a number of different waves can be created
simultaneously. If a faster wave meets a slower one, it will
overtake it, causing the slower one to disappear. This phe-
nomenon is called entrainment. It can be observed in
Figure 3B in the lower right-hand corner of the petri dish.
In the stirred solution, the role of diffusion is nullified by
constant stirring, so that only reaction-based temporal
oscillations can occur. In the still of the petri dish, however,
a linkage is established between reaction and diffusion,
leading to both temporal and spatial oscillations (Winfree,
1974).

In discussing this reaction, Schore (1981) asked,
"Where else do we find systems possessing a high degree
of naturally generated organization that are highly sen-
sitive to perturbations, switch rapidly from one state to
another, and operate spontaneously (in response to minor
fluctuations) as well as with external triggering?" (p. 454).
His answer was, "in living systems." Specifically, he com-
mented on how neural thresholds, states of consciousness,
and various biological oscillators exhibit this type of be-
havior. The remainder of this article expands on this idea
by focusing on the way in which these properties manifest
in animal and human behavior.

The BZ reaction illustrates the general characteristics
of self-organization that apply to psychological systems
as surely as to chemical and biological systems. These
include the readiness to exhibit (a) multiple stable states
that can change suddenly from one to another when a
parameter value crosses a critical threshold, (b) cyclical
state changes, (c) the structural coupling of component
processes, (d) temporal, spatial, and behavioral organi-
zation, (e) localized instabilities that can lead one part of
the system to organize itself differently from another part
of the system, (f) the ability of one unit to cause other
units to oscillate at a harmonically related frequency (en-
trainment), and (g) behavior that can sometimes be mod-
eled by a system of nonlinear equations.

Although chemical systems are valuable as meta-
phors, most biological and psychological systems are
considerably more complex. Psychological systems lack
the precise temporal or spatial symmetry seen in physical
systems and instead involve complex neurological struc-
tures and behaviors. To understand these types of systems,
it is important to realize that some self-organizing prop-
erties can only be found in living things. One of the most
general of these properties involves the ability to develop
stable yet flexible structures that serve important biolog-
ical needs (Prigogine & Stengers, 1984). In the next sec-

tion, I discuss the work of an investigator who has begun
to explore such structures to understand the neural or-
ganization underlying perception, memory, and behavior.

Self-Organization and Memory

A variety of exciting approaches to exploring cognition
and memory are arising from the perspective of chaos
and self-organization. Some of the most fascinating studies
have emerged from the laboratory of Walter Freeman
(1990, 1991), one of the primary proponents of nonlinear
models in the study of brain function. Freeman, a neu-
rophysiologist at the University of California at Berkeley,
has extensively explored the manner in which odors are
remembered and represented in the olfactory system of
rats. Using EEG measurements, the results he has ob-
tained have given us new insight, not only into the mech-
anism of olfaction but into the general role of memory
and nonlinear systems in the brain.

Understanding how odors are represented is a chal-
lenging task. One of the first approaches taken was to
investigate the global EEG of the olfactory lobe itself.
When a rat inhales an odor, it sets off a burst of electrical
activity in the lobe. This burst is characterized by a wave-
form known as the carrier wave. The carrier wave is an
aspect of the EEG that reflects the integrative actions of
local pools of neurons in the brain. Its elicitation following
exposure to an odor is a very reliable finding. However,
the frequency and amplitude of the wave varies in an
unreliable (functionally random) manner both between
and within odorant exposures. Attempts at signal detec-
tion (e.g., signal averaging and detection of evoked po-
tentials) have proved incapable of delineating a reliable
differential response from one odor to the next when
temporal patterns alone are investigated.

Freeman, however, knew that the information re-
layed to the brain by odorant exposure occurred in the
form of a spatial pattern of pulse activity across neurons.
He suspected that odors might therefore be represented
on the lobe by some sort of spatial map. To explore this
idea, he took a unique approach. Instead of placing a
single electrode on the olfactory lobe, he placed an array
of 60 electrodes on a representative portion of the bulb.
The electrodes, arranged in a 6 X 10 array, allowed him
to obtain EEGs at a far higher level of spatial resolution
than he could previously obtain. When he did this, he
found that each odor was indeed distinguishable by the
spatial pattern of the amplitude of the wave (see Figure
4). In short, the message (e.g., "this is peppermint") was
not in the waveform at all; it was in the spatial pattern
of the amplitudes of the waveform. When animals learned
a response to an odor, each odor was shown to have a
specific spatial amplitude pattern. In the process of ex-
ploring this area, Freeman found clear-cut evidence of
biologically significant self-organization: stable spatio-
temporal structures in olfactory EEGs triggered by a small
perturbation (the odor).

If the spatial structure of odor representations had
been all that Freeman had found, it would have been an
important contribution in and of itself. The full signifi-
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Figure 4
Left Side-. 60 Electroencephalograms Recorded
Simultaneously From the Olfactory Cortex of a Rabbit as It
Recognizes a Scent; Right Side: Contour Plot
Corresponding to the Amplitudes

Note. The electrodes are arranged in a 6 X 10 rectangular array. The carrier
wave is nearly the same in each recording, except that the amplitude varies. The
shape of the wave, however, does not indicate the identity of the scent. Information
about identity is contained in the spatial pattern of the amplitudes. The differences
between amplitudes are represented in a manner analogous to the differences in
elevation on a topographic map. From "Spatial Properties of an EEG Event in the
Olfactory Bulb and Cortex" by W. Freeman, 1978, Eledroencepha/ography and
Clinical Neurophysio/ogy, 44, p. 589-590. Copyright 1978 by Elsevier Scientific
Publishers, Ireland Ltd. Reprinted by permission.

cance of his discovery, however, depended on more details
about the process of learning. He continued to investigate
this phenomenon and found a multitude of fascinating
qualities.

After making this initial discovery, Freeman asked
an interesting question. "What happens to the original
spatial pattern associated with the first odor when a second
odor is learned?" If the original representation is truly
stable (like the stimulus response connection it is asso-
ciated with), it should not be changed by new learning.
To illustrate this metaphorically, assume that one had
learned to associate peppermint with some behavior. After
the learning was completed, one's spatial EEG pattern
for peppermint was determined. Subsequently, one
learned to associate cinnamon with another behavior. Af-
ter this, one's pattern for cinnamon was assessed as well.
If one once again smelled peppermint and were tested
again, one might expect the pattern associated with pep-
permint to look the same as it did before. When Freeman
ran an analogous experiment with animals, however, he
found that just the opposite occurred. The pattern for
peppermint changed when it was tested again. He was
forced to conclude that the neural representation of an
odor is not fixed like a photograph. Instead, the structure
of old learnings reform in the context of more recent
learnings. This reorganization of the nervous system is
not consistent with the view that discrete categories of
experience are stored away in fixed physiological patterns
in the brain. It is also additional evidence of self-orga-
nization: spatiotemporal structures that have some degree
of stability but that can reconstruct themselves when de-
stabilized by new information.

Freeman (personal communication, July 8, 1993)
noted that it is important to be aware that the structures
he discovered reflect the meaning of the stimulus, not
merely its presence. The spatial structure of peppermint

associated with positive reinforcement, for instance, is
completely different from the structure associated with
punishment.

These findings throw light on what, historically, has
been one of the core problems in understanding memory:
its extraordinary flexibility as a function of changes in
mental state, emotional needs, more recent learnings, and
external cues. Bartlett (1932) was keenly aware of this
problem. He noted that "some widely held views [of
memory] have to be completely discarded, and none more
completely than that which treats recall as the reexcite-
ment in some way of fixed and changeless traces" (Bartlett,
1932, p. vi). Bartlett went on to note that

A new incoming impulse must become not merely a cue setting
up a series of reactions in a fixed temporal order, but a stimulus
which enables us to go directly to that portion of the organized
setting of past responses which is most relevant to the needs of
the moment. . .. There is one way in which an organism could
learn to do this. . . . It may be the only way. . . . An organism
has to somehow acquire the capacity to turn round upon its
own "schemata" and construct them afresh, (p. 206)

Freeman's work, along with that of others, is now allowing
us to confirm that this "reconstruction" of memory ac-
tually occurs at an objective physiological level.

Although the findings showing changes in spatial
patterns as new odors were learned were exciting, Free-
man (1990) also wondered about dynamic processes in
the more classical sense of the word. He was especially
interested in the rate at which neural information spread
from the sensory receptors to the bulb itself and the shape
of that spread. When he explored this, he discovered that
once an odor had been learned, its recognition could begin
anywhere among the sensory receptors on the bulb and
spread rapidly and coherently throughout the entire bul-
bar structure in the manner of a two-dimensional spread-
ing wave. He noted that this type of spreading response
was necessary to account for the bulb's ability to rapidly
create the same psychological meaning from a variety of
spatial points on the sensory receptors. As noted in the
last section, the property by which information necessary
for creating a spatiotemporal structure is "stored" in a
nascent form throughout the system and in which a per-
turbation can generate this structure through a wavelike
response is a hallmark of self-organization in chemical
and biological systems (Goldbeter & Segel, 1977; Prigo-
gine & Stengers, 1984; Winfree & Strogatz, 1984).

With every new finding adding further evidence that
he was dealing with a complex nonlinear system, Freeman
finally attempted to model the behavior of the bulb using
a system of nonlinear differential equations. He wanted
a model that allowed him to mimic many of the properties
he observed naturally in the bulb, including the ability
to suddenly "turn on" a state of odor recognition asso-
ciated with an appropriate activity pattern and the ability
to learn new information about an odor without losing
all information about previous odors. Freeman was able
to create such a model. Two examples of chaotic attractors
his equations formed are illustrated in the phase portraits
appearing in Figure 5.
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Despite the success of Freeman's approach in un-
derstanding the dynamics of the olfactory system, it has
its limitations. One limitation is that his model, although
it accounts quite well for a number of observed properties,
does not correspond with the actual EEG patterns in the
olfactory lobe. By comparison, the real patterns seem
impossibly complicated and noisy. This discontinuity be-
tween model and reality is a common problem in inves-
tigating natural nonlinear systems. Not only are inves-
tigators rarely able to completely characterize all the
variables that affect a complex system, but they must
isolate a system well enough to cut through what Mor-
rison (1991) called a "sea of noise" (p. 271). Achieving
the necessary degree of isolation is a difficult task, even
in very simple physical systems (e.g., see Gleick, 1987).
In neural systems, the problem is compounded by an
even greater degree of complexity and interconnectedness.
Freeman (1990) noted that many of the better known
tests for nonlinearity in mathematics, physics, and chem-
istry are inadequate in neuroscience because of this com-
plexity. The initial conditions of the brain shift irreversibly
every time something new is learned.

It is because of this irreversible process of growth
and pattern development in psychological systems that I
stress the characteristics and dynamics of self-organizing
systems rather than their mathematics. In Freeman's
work, these properties include sudden state changes, spa-
tiotemporal organization of odor representations, a
wavelike spread of information, and stable yet flexible
structures associated with learning. What is truly ex-
traordinary is that the processes by which the brain creates
memories can be similar in so many ways to the processes
driving an oscillating chemical system. It is the common
base of nonlinear dynamic processes that connect the
two systems.

Through nonlinear dynamics and a growing under-
standing of self-organization, a whole new way of thinking
about brain function is beginning to emerge. Basar
(1990b) has edited an entire book of contributions in this
area. Edelman (1992) has devised an ambitious theory
using the concept of self-organization and evolution to
explain brain function and development. Milton, Longtin,
Beuter, Mackey, and Glass (1989) have reviewed the role
of nonlinear dynamics in clinical neurology. There is little
doubt that the growth and development of nonlinear dy-
namic models in neuroscience will continue into the
foreseeable future.

Self-Organization and Clinical Psychology

There is perhaps no other area in which chaos theory,
nonlinear dynamics, and self-organizing systems are so
intuitively appealing yet so analytically difficult as in
clinical psychology. With a few notable exceptions, their
application to clinical issues are metaphorical and qual-
itative in nature. This is due to the inherent complexity
of the clinical realm and the difficulty measuring behavior
with the reliability necessary for mathematical modeling
(Maturana & Varela, 1987). Individuals and family sys-
tems must be taken as they come, with all their complexity

Figure 5
Phase Portrait of Two Chaotic Attractors Modeled by
Nonlinear Differential Equations to Represent Odorant
Responses

Note. Observe the geometric similarities to the chaotic attractor in Figure 2D. From
"Simulation of Chaotic EEG Patterns With a Dynamic Model of the Olfactory
System" by W. Freeman, 1987, Biological Cybernetics, 56, p. 143. Copyright
1987 by Springer-Verlag. Reprinted by permission.

and unreliability. They cannot be manufactured in the
laboratory for the convenience of the investigator. There-
fore, they are fundamentally more difficult to quantita-
tively model than the systems described in the section on
self-organization in chemical systems. Many investigators
are working on the development of quantitative methods,
but their efforts are in the early stages at the present time
(e.g., Levine & Fitzgerald, 1992; Reidbord & Redington,
1992).

In the past, a number of prominent psychotherapists
and researchers speculated briefly about the role of chaos
and nonlinear systems in psychotherapy (e.g., Meehl,
1978; Minuchin & Fishman, 1981). Although they sus-
pected it might have some utility, they did not develop
their ideas to any significant degree. In recent years, the
number of interested model makers has increased dra-
matically. Various aspects of nonlinear dynamics have
been applied to Jungian therapy (Abraham et al., 1990;
Biitz, 1992;Eenwyk, 1991), psychoanalysis (Langs, 1992),
posttraumatic stress disorder (Glover, 1992), psychic de-
velopment and individual psychopathology (Guidano,
1991), family systems (Elkaim, 1990), the genesis and
treatment of multiple personality disorder (Putnam, 1988,
1989), schizophrenia (Schmid, 1991), and psychiatric
disorders in general (Sabelli & Carlson-Sabelli, 1989).
These models are notable for their general reference to
topics and features derived from nonlinear dynamics, but
otherwise are remarkably heterogeneous. In general, these
authors have used these concepts to model process,
change, and development in psychological systems. A
great deal of the impetus for this work originated in Eu-
rope, driven by the perspectives of Maturana and Varela
(1980) in neuroscience, and Prigogine (Prigogine & Sten-
gers, 1984) in nonequilibrium thermodynamics.

The concept of nonlinear transitions in mental states
is one of the most common themes among clinicians
writing about nonlinear dynamics. In keeping with Emde,
Gaensbaur, and Harmon (1976), a mental state is denned
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as "a constellation of certain patterns of physiological
variables and/or behaviors which seem to repeat them-
selves and appear to be relatively stable" (p. 29). This
general concept of mental states can be applied to a wide
range of problems in clinical and experimental work.

Wolff (1987) was one of the first to apply concepts
derived from nonlinear dynamics to the development of
mental states in infants. He explored a wide range of phe-
nomena, including waking, smiling, sleeping, and crying
behaviors. Wolff demonstrated how some states, such as
waking, are very unstable in newborn infants. As infants
mature, however, they develop longer and longer unin-
terrupted periods of wakefulness, indicating increased
stability. Wolff's concern with understanding the stability
of states and the change in stability with the passage of
time is very much in the tradition of nonlinear dynamics.

Building on the work of Wolff (1987), Putnam (1988,
1989) began to explore change in a very different domain:
state transitions in adults with multiple personality dis-
order. He proposed that children naturally develop various
mental states, each imbued with a different sense of self.
Normally, with the passage of time and the presence of
emotional support, these states are consolidated into a
more or less coherent self. However, when a child is se-
verely and repetitively traumatized, he or she may enter
these states defensively to avoid emotional or physical
pain. When this occurs over a long period, the sense of
self fails to consolidate. The various states become elab-
orated and develop a different set of memories, affective
qualities, and identities. They also become unstable and
discontinuous, predisposing the individual to sudden
jumps between one state and another. Recall from the
discussion of the BZ reaction that one part of a self-or-
ganizing system can organize itself separately from an-
other. In this case, memories and perceptions become
organized so differently in each state that communication
between one state and another is blocked. Unfortunately,
this communication is the very thing that is needed to
develop a coherent sense of self. Putnam (1989) described
how the process of developing coherence involves opening
channels of communication between states. This occurs
through discouraging pathological dissociation and en-
couraging the integration of dissociated states, memories,
and affects.

State oscillations following trauma have been de-
scribed in areas other than identity. Horowitz (1986), for
instance, noted that the oscillation of intrusive memories
(e.g., nightmares and flashbacks) with the avoidance of
situations associated with the trauma (e.g., phobias and
withdrawal) is typical of the pathology following a trau-
matic event. He explained how an appreciation of the
oscillatory nature of these symptoms can help prevent
their misinterpretation and assist in treatment.

In a very different approach to exploring nonlinear
dynamics and mental states, Reidbord and Redington
(1992) looked at the relationship between the phase por-
traits of a patient's heart rate and their behavioral state
during psychotherapy. They reconstructed a variety of
chaotic attractors associated with the patient's mental

states from heart rate data (see Figure 6). Although the
utility of this approach to the solution of clinical problems
has yet to be determined, it is an important advance in
basic research. Roschke and Aldenhoff (1992) reported
an analogous investigation of the correspondence between
chaotic attractors reconstructed from EEGs and various
stages of sleep.

Difficulties With This Paradigm

Despite the many advantages of nonlinear dynamics and
self-organization in expanding the description and anal-
ysis of psychological systems, these concepts have nu-
merous problems in their application to both basic and
applied research. The problem of not knowing the factors
involved and separating the signal from the noise was
discussed in the section on memory, but a number of
other problems deserve discussion as well.

Confusion of Concepts and Techniques Among
Different Fields

Varela (1989) issued an important warning to those who
would compare neuroscience to family therapy in the
context of self-organization: "Circulation of concepts be-
tween diverse approaches is reciprocal, but we cannot
simply and directly export or import such notions.

Figure 6
Four Phase Plots Constructed From a Time Series of Heart

Rate Data

Note. All correspond with different clinical states observed during a single session
of psychotherapy. The three axes used to construct these plots are listed in the
lower left-hand corner. The darker portions of the plots show the paths that the
trajectories were most likely to settle into. For the sake of clarity, a varying number
of phase plots were superimposed on one another in Types a, c, and d. In Type
a trajectories, the patient's behavior tended to be avoidant and overcontrolled.
In Type b trajectories, the characteristic behavioral pattern had a narrative quality
but was somewhat less avoidant. In Type c trajectories, the patient's pattern
showed the highest level of affect. These trajectories were the most clinically
variable overall. In Type d trajectories, the patient was more likely to discuss the
focal topic in therapy and their conversation flowed more easily between topics
and emotions. From "Psychophysiological Processes During Insight Oriented Psy-
chotherapy" by S. Reidbord and D. Redington, 1992, The Journal of Nervous and
Mental Disease, 180, p. 652. Copyright 1992 by Williams & Wilkins. Reprinted
by permission.
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. . . stable patterns in natural systems . . . have a clear
resonance with the establishment of human institutions,
but the differences between them are profound" (p. 24).
The wisdom of this statement should be obvious. The
dynamics of a propagating wave are a poor model for
therapists wishing to understand dysfunctional family re-
lationships. On the other hand, therapists might be very
interested in the linkage of attributions, beliefs, and coping
skills that underlie and maintain a family's pathology. A
major problem in the psychological literature on chaos,
nonlinear dynamics, and self-organizing systems is that
this important distinction is often ignored.

One way that the distinction between fields is set
aside is when authors use rigorous terminology from
nonlinear dynamics to refer to psychological variables
that are multidimensional and difficult to quantify. Biitz
(1992), for instance, defined chaos as "overwhelming
anxiety," whereas Sabelli, Carlson-Sabelli, and Javaid
(1990) conceptualized creativity and destructiveness as
"chaotic attractors." These definitions, although clearly
metaphorical, bear little resemblance to the definition of
chaos in the physical sciences. Terms that refer to specific
and limited ideas in mathematics and physics should not
be confused with the broader characteristics of self-or-
ganizing psychological systems. Using these terms as
metaphors may be acceptable as a heuristic device, but
the two are not the same. Although useful at times, all
metaphors eventually break down or lose their validity
when more and more exacting parallels are drawn be-
tween them and reality (Chubb, 1990).

Another common and related source of confusion
involves taking a perfectly good hypotheses about a psy-
chological process and pitching it as if we could measure
that process precisely. Jung (1946/1969), for instance,
posited that the more one represses a particular feeling
or belief, the more likely it is to get converted to its op-
posite. The more an individual represses the belief "I am
worthless," for instance, the more likely he or she will be
to express it as "You are worthless." Jung's is a perfectly
reasonable hypothesis. However, to model such a process
with a phase diagram based on a system of differential
equations (e.g., Abraham et al., 1990) is to imply a level
of measurement precision we don't have in clinical psy-
chology. This type of analogy may create a sort of "halo
effect" that makes the targeted construct seem more easily
and accurately assessed than it really is.

The confusion of techniques appropriate at one level
of analysis to those appropriate at another can also be
seen when the wide variety of variables observed in the
real world are collapsed into a few simple dimensions.
Callahan and Sashin (1990), for instance, developed a
dynamic model based on the factors of feelings, thoughts,
and actions to predict What they call affect-response. Us-
ing an ordinal scale, they divided each dimension into
low, medium, and high and plotted them on a three-di-
mensional state plot. However, to describe feelings, ac-
tions, and thoughts only as low, medium, and high would,
for most therapists, reduce them beyond recognition.
When the qualitative features of these dimensions are ig-

nored, their meaning becomes too hard to discern. Al-
though all modelers must ignore some features of a com-
plex system, little is gained by ignoring them to the point
of making the model impractical.

Confusion Over How to Test Hypotheses

Testing hypotheses may seem problematic when the no-
tion of linear causality no longer applies and correlation
seems irrelevant. Although much work remains to be done
to develop good nonlinear methodologies (see Basar,
1990a; Levine & Fitzgerald, 1992), this realization need
not pose an insurmountable problem for investigators.
The primary thing to remember is that the fundamental
goal of modeling or analyzing a self-organizing system is
to understand a pattern of dynamic behavior. Hypotheses
must be built around such a pattern. Freeman (1990), for
instance, explored the hypotheses that the spatial pattern
of olfactory EEGs was related to specific odors. Reidbord
and Redington (1992) explored the hypotheses that dy-
namic flow patterns deriving from heart rate data were
related to mental states. In both cases, the unit of analysis
was a dynamic pattern of observed behavior. Testing hy-
potheses about the difference between mean values of
individual variables before identifying the dynamic pat-
tern of interest may obscure a focus on the patterns that
are naturally present in the system (Prigogine & Stengers,
1984).

In regard to data analysis, the following three ap-
proaches are worth considering:

1. If it is feasible to model a self-organizing system
with various nonlinear equations, then modelers should
by all means attempt such strategies. Nonlinear differ-
ential equations are especially useful in modeling neural
sytems (e.g., Carpenter & Grossberg, 1987; Freeman,
1990). In modeling social systems, a system dynamics
approach has often proved productive (Levine & Fitz-
gerald, 1992).

2. If it is possible to reconstruct a nonlinear attractor
from a time series, then modelers should try this as well.
This approach has proved helpful in behavior analysis
(Hoyert, 1992), and in studying psychophysiological sys-
tems (e.g., Reidbord & Redington, 1992; Roschke & Al-
denhoff, 1992). Taking this approach, however, is a func-
tion of one's ability to get reliable and meaningful data
out of an experiment in which stable, clearly delineated
cycles of behavior are apparent.

3. If it seems unlikely that mathematical techniques
that focus on the analysis of repetitive cycles alone will
prove helpful or practical (e.g., when exploring develop-
mental changes with maturity), the properties of self-or-
ganizing systems can be subsumed in one's model and
various aspects of the model tested using standard statis-
tical techniques. Wolff (1987), for instance, was able to
demonstrate increasing stability in the sleep-wake cycle
of infants using statistical methods alone. His focus, how-
ever, remained on dynamic phenomena.

The various methodologies, both linear and nonlin-
ear, are mutually compatible, not contradictory. They can
be used to study different aspects of a system, depending
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on which is most appropriate for addressing the specific
question at hand. The coherence of alpha waves in atten-
tional tasks, for instance, has been explored both with
linear correlation coefficients and nonlinear correlation
dimensions (Basar, 1990a). Similarly, the mechanism un-
derlying the wavelike spread of olfactory information has
been studied by fitting the sums of cosine waves (a linear
approach), whereas the pattern of olfactory EEGs has
been modeled by a system of nonlinear differential equa-
tions (Freeman, 1990).

In regard to research and design issues in general,
it is important to note that this paradigm, although new
and exciting, offers no cure for the profound difficulties
psychologists face in establishing reliability and validity
in all of their research. Instead, it provides a new way of
thinking about psychological systems. Ultimately, its
value to psychology will be a function of its ability to
solve problems and understand phenomena more effec-
tively than competing paradigms. As with all new para-
digms, investigators need the latitude to be speculative at
first. Following the generation of new ideas and models,
they must then subject their speculations to empirical
tests. When the problems, generic principles, and research
methodologies are all chosen carefully, however, the con-
cepts of chaos, nonlinear dynamics, and self-organizing
systems can allow investigators to explore a variety of
areas from new and promising angles, ones that many
may have never before considered.

Conclusion

In this article, I have presented some of the basics of chaos,
nonlinear dynamics, and self-organizing systems. I pro-
pose that these revolutionary ideas, which are beginning
to prove productive for investigators in the physical sci-
ences, deserve more attention among psychologists. By
applying them to specific fields of research, our under-
standing of complex systems may be broadened and new
ways found to view old problems. I hope that more in-
vestigators and clinicians will take them up and use them
to explore systems in their own areas of interest.
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