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Some algebraic sufficient criteria for synchronizing two horizontal platform systems cou-

pled by sinusoidal state error feedback control are derived by the Lyapunov stability the-

orem for linear time-varying system and Sylvester’s criterion. The state variables are re-

stricted in a subregion in order to obtain easily verified criteria. The validity of these

algebraic criteria is illustrated with some numerical examples. A new concept, synchro-

nization cost, is introduced based on a measure of the magnitude of the feedback control.

The minimal synchronization cost as well as optimal coupling strength is calculated nu-

merically. The results are meaningful in engineering application.
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1. Introduction

Horizontal platform devices are widely used in offshore engineering and earthquake en-

gineering. Mechanical model for a horizontal platform system with an accelerometer is

depicted in Figure 1.1. The platform can freely rotate about the horizontal axis, which

penetrates its mass center. When the platform deviates from horizon, the accelerometer

will give an output signal to the torque generator, which generates a torque to inverse the

rotation of the platform about rotational axis. The equation governing this system is

Aÿ +Dẏ + rg sin y− 3g

R
(B−C)cos y sin y = F cosωt, (1.1)

where y denotes the rotation of the platform relative to the earth, A, B, and C are respec-

tively the inertia moment of the platform for axis 1, 2, and 3, D is the damping coefficient,
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Figure 1.1. Mechanical model for a horizontal platform system with an accelerometer.
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Figure 1.2. Double-scroll attractor of the horizontal platform system.

r is the proportional constant of the accelerometer, g is the acceleration constant of grav-

ity, R is the radius of the earth, and F cosωt is harmonic torque. More details about this

model can be found in [1, 2]. Such horizontal platform systems can reduce the swing

of moving devices and keep the system close to horizontal position. They are used in

modelling offshore platforms and earthquake-proof devices. As shown in Figure 1.2, the

horizontal platform system has a double-scroll attractor when its parameter values are

A = 0.3, B = 0.5, C = 0.2, D = 0.4, r = 0.1155963, R = 6378000, g = 9.8, F = 3.4, and

ω = 1.8. It was numerically verified in [1] that two identical horizontal platform systems

coupled by a linear, sinusoidal, or exponential state error feedback control can achieve

chaos synchronization. Analytic criteria for chaos synchronization have the advantage

over numerical ones because they can reveal the relationship between the criteria and sys-

tem parameters, and then they are convenient for design and analysis of the coupling con-

troller [3–11]. Algebraic sufficient criteria for synchronizing the driving-response hori-

zontal platform systems via linear state error feedback control were obtained in [12].
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In this paper, some sufficient criteria for synchronizing the horizontal platform systems

coupled by sinusoidal state error feedback control are further derived by the Lyapunov

stability theory and the Sylvester’s criterion. In order to obtain easily verified algebraic

criteria, the state variables are restricted in a subregion, which is different from [12]. Fur-

thermore, a new concept of synchronization cost is introduced based on a measure of the

magnitude of the feedback control. The minimal synchronization cost, as well as optimal

coupling strength is calculated numerically. Minimal cost means the lowest energy input,

which is meaningful in engineering application.

2. Algebraic sufficient synchronization criteria

Let x1 = y, x2 = ẏ, and x = (x1,x2)T , and rewrite the governing equation in form of vector

ẋ =Mx+ f (x) +m(t) (2.1)

with

M =
(

0 1

0 −a

)

, f (x)=
(

0

−b sinx1 + ccosx1 sinx1

)

, m(t)=
(

0

hcosωt

)

,

a= D

A
> 0, b = rg

A
> 0, c = 3g

RA
(B−C), h= F

A
> 0.

(2.2)

A driving-response synchronization scheme for two identical platform systems cou-

pled by a sinusoidal state error feedback controller is constructed as follows:

driving system: ẋ =Mx+ f (x) +m(t), (2.3)

response system: ẏ =My + f (y) +m(t) +u(t), (2.4)

controller: u(t)=
(

k1 sin
(

x1− y1

)

,k2 sin
(

x2− y2

))T
, (2.5)

where y = (y1, y2)T , T means transpose, and k1 and k2 are constant coupling coefficients.

Defining an error variable e = x− y, or (e1,e2)= (x1− y1,x2− y2), we can obtain an error

dynamical system

ė =M(x− y)−u(t) + f (x)− f (y)=
(

M−K(t) +N(t)
)

e (2.6)

with

K(t)=
(

k1s1(t) 0

0 k2s2(t)

)

, s1(t)= sin
(

x1− y1

)

x1− y1
, s2(t)= sin

(

x2− y2

)

x2− y2
,

N(t)=
(

0 0

q(t) 0

)

, q(t)= −b
(

sinx1− sin y1

)

+ c(sinx1 cosx1− sin y1 cos y1

)

x1− y1
.

(2.7)
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Our object is to select suitable coupling coefficients k1 and k2 such that x(t) and y(t)

satisfy

lim
t→+∞

∥

∥x(t)− y(t)
∥

∥= lim
t→+∞

∥

∥e(t)
∥

∥= 0, (2.8)

where ‖x(t)− y(t)‖ =
√

(x1− y1)2 + (x2− y2)2 denotes the Euclidean norm of vector. By

the theory of stability, chaos synchronization of systems (2.3) and (2.4) in the sense of

(2.8) is equivalent to asymptotic stability of the error system (2.6) at the origin e = 0.

Taking a quadratic Lyapunov function V(e)= eTPe with P a symmetric positive defi-

nite constant matrix, then the derivative of V(e) with respect to time along the trajectory

of system (2.6) is

V̇(e)= ėTPe+ eTPė= eT
[

P
(

M−K(t) +N(t)
)

+
(

M−K(t) +N(t)
)T
P
]

e. (2.9)

By the Lyapunov stability theorem for linear time-varying system (see [13, Theorem 4.1]),

a sufficient condition that the error system (2.6) is asymptotically stable at the origin is

that the following matrix

Q(t)= P
(

M−K(t) +N(t)
)

+
(

M−K(t) +N(t)
)T
P (2.10)

is negative definite, denoting it by

Q(t) < 0. (2.11)

For simplicity, we choose P = diag{p1, p2} with p1 > 0 and p2 > 0, then

Q(t)=
(

−2p1k1s1(t) p1 + p2q(t)

p1 + p2q(t) −2p2

(

k2s2(t) + a
)

)

. (2.12)

By the Sylvester’s criterion, Q(t) < 0 is equivalent to the following inequalities:

p1k1s1(t) > 0, 4p1p2k1s1(t)
(

k2s2(t) + a
)

>
(

p1 + p2q(t)
)2
. (2.13)

Note that s1(t) > 0 and s2(t) > 0 if (x1,x2) and (y1, y2) are limited in the region G= {|x1−
y1| < π,|x2− y2| < π}. So we conclude that under condition (2.13) the error system (2.6)

is locally asymptotically stable at the origin in the region G. In order to get an easily

verified algebraic condition, we further restrict the variables in the subregion G0 = {|x1−
y1| ≤ 3π/4,|x2− y2| ≤ 3π/4}, then we have 2

√
2/3π ≤ s1(t)≤ 1 and 2

√
2/3π ≤ s2(t)≤ 1.

Now, a simple algebraic sufficient criterion for synchronizing the systems (2.3) and (2.4)

can be obtained from (2.13) as

k1 > 0, k2 >
9π2

(

p1 + p2(b+ |c|)
)2

32p1p2k1
− a, (2.14)

in which the inequality |q(t)| < b+ |c| has been used as in [12].

The synchronization criterion obtained here only renders a sufficient but not necessary

condition. It is natural to expect that a sharp criterion can provide more choices of the
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Figure 2.1. Error between the driving-response horizontal platform systems (2.3)–(2.5) with the cou-

pling coefficients k1 = 5.6 and k2 = 6.2, solid curve for x1 − y1 and dashed curve for x2 − y2, initial

conditions (x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

coupling coefficients. To this end, we can minimize the lower bound of k2 in inequality

(2.14) by choosing p = diag{(b+ |c|)p2, p2} and obtain a sharper criterion

k1 > 0, k2 >
9π2(b+ |c|)

8k1
− a. (2.15)

Similarly, if the controller is chosen as u(t)= (k1 sin(x1− y1),0)T , the sufficient criteria

associated with inequalities (2.14) and (2.15) become, respectively,

k1 >
3π
(

p1 + p2(b+ |c|)
)2

8
√

2p1p2a
, (2.16)

k1 >
3π(b+ |c|)

2
√

2a
. (2.17)

The theoretical sufficient criteria are illustrated with the following examples. If we

choose p2 = 1 and p1 = (b+ |c|)p2 = 3.776615, it is easy to verify that the coupling coef-

ficients k1 = 5.6 and k2 = 6.2 satisfy inequalities (2.15). For this choice, the two coupled

horizontal platform systems (2.3) and (2.4) can be asymptotically synchronized. The pa-

rameter values are chosen such that the system is in a state of chaos: A = 0.3, B = 0.5,

C = 0.2, D = 0.4, r = 0.1155963, R = 6378000, g = 9.8, F = 3.4, and ω = 1.8. The re-

sult is shown in Figure 2.1 with initial values (x1(0),x2(0)) = (1,1) and (y1(0), y2(0)) =
(−1,−1), which are chosen arbitrarily in the region G0. In this paper, software Mathe-

matica is applied to implement relative calculations and plots.

For the controller u(t)= (k1 sin(x1− y1),0)T , inequality (2.17) should be k1 > 9.43706.

Chaos synchronization for k1 = 9.5 is illustrated in Figure 2.2, where p1, p2, and other

parameter values are the same as above.
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Figure 2.2. Error between the driving-response horizontal platform systems (2.3)–(2.5) with the cou-

pling coefficients k1 = 9.5 and k2 = 0, solid curve for x1 − y1 and dashed curve for x2 − y2, initial

conditions (x1(0),x2(0))= (1, 1) and (y1(0), y2(0))= (−1,−1).
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Figure 3.1. Synchronization time of systems (2.3) and (2.4) with sinusoidal controller u(t)=
(k sin(x1− y1),k sin(x2− y2))T , synchronization error measure d < 0.001, L= 1000, initial conditions

(x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

3. Synchronization time and cost

Firstly, we numerically investigate the behavior of synchronization time Tsyn as a func-

tion of coupling strength k1 and/or k2. The synchronization time is defined as the initial

time when the error measure d =
√

(x1− y1)2 + (x2− y2)2 < ε is satisfied and maintains

in a long enough time interval [Tsyn,Tsyn + L], where ε is the precision of the synchro-

nization, and L is a sufficiently large positive constant. As shown in Figures 3.1 and 3.2,

the synchronization time Tsyn gradually decreases with the increase of coupling strength,

and approaches an asymptotic minimal value. This is a very interesting phenomenon,
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Figure 3.2. Synchronization time of systems (2.3) and (2.4) with sinusoidal controller u(t) =
(k sin(x1 − y1),0)T , synchronization error measure d < 0.001, L = 1000, initial conditions

(x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

since one might think that the synchronization could be led as fast as desired if coupling

strength is large enough. Figures 3.1 and 3.2 confirm that very large values of coupling

strength are not necessary to ensure the synchronization with approximately the min-

imum Tsyn. Such phenomenon also occurred in synchronization scheme of single-well

Duffing oscillators [14]. Generally, synchronizing two chaotic systems is not cost-free. In

order to evaluate what price must be paid to achieve synchronization, a new concept of

synchronization cost for scheme (2.3)–(2.5) is introduced as follows:

∫∞

0
k1

∣

∣sin
(

x1− y1

)
∣

∣dt+

∫∞

0
k2

∣

∣sin
(

x2− y2

)
∣

∣dt. (3.1)

The meaning of this definition refers to the cost to achieve a certain degree of synchro-

nization in the sense of (2.8). Note that the magnitude of |xi − yi| is very small once

synchronization is nearly achieved. So a good approximation of cost should be

∫ Tsyn

0
k1

∣

∣sin
(

x1− y1

)
∣

∣dt+

∫ Tsyn

0
k2

∣

∣sin
(

x2− y2

)
∣

∣dt, (3.2)

which will be adopted in the following simulations. Another definition of synchroniza-

tion cost adopted in [15] for linear control is

lim
τ→∞

1

τ

∫ τ

0
ki
∣

∣xi− yi
∣

∣dt, i= 1,2, (3.3)

which refers to the cost per unit time required to keep the synchronization going. The

meaning is different from ours.

From the viewpoint of preventing from a useless increase of coupling strength, that

is, from an unavailing waste of input energy, the calculation of minimal synchronization

cost, as well as optimal coupling strength, is of great practical interest. Synchronization
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Figure 3.3. Synchronization cost of systems (2.3) and (2.4) with sinusoidal controller u(t) =
(k sin(x1− y1),k sin(x2− y2))T , initial conditions (x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).
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Figure 3.4. Synchronization cost of systems (2.3) and (2.4) with sinusoidal controller u(t) =
(k sin(x1− y1),0)T , initial conditions (x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

cost versus coupling strength is simulated in Figures 3.3 and 3.4 with different controllers.

From these figures we can see that the synchronization cost decreases rapidly at first, then

reaches a minimal value and increases slowly with the increase of coupling strength at

last. The explanation of this phenomenon is in agreement with the simulations of syn-

chronization time shown in Figures 3.1 and 3.2. The critical coupling strength with the

minimal synchronization cost can be chosen as the optimal coupled strength in the sense

of consumed energy. The optimal coupling strength and minimal synchronization cost

are 5.6 and 3.03922 in Figure 3.3, 4.2 and 2.77078 in Figure 3.4, respectively. Although

double-variable-coupled configuration (x- and y-coupled) can lead to fast synchroniza-

tion, its minimal synchronization cost is larger than that of single-variable-coupled con-

figuration (x-coupled).
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4. Conclusions

Some algebraic sufficient criteria for synchronizing driving-response horizontal platform

systems coupled by sinusoidal state error feedback control are derived and their validity

is illustrated with some numerical examples. Numerical simulations show that the syn-

chronization time approaches an asymptotic minimal value with the increase of coupling

strength. The concept of synchronization cost is introduced and the minimal synchro-

nization cost as well as optimal coupling strength is calculated numerically. The minimal

synchronization cost refers to the lowest-energy input, which is of great practical interest.
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