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Abstract. Complexity of dynamical networks can arise not only from the complexity of the topological
structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of
coupled maps in time-varying complex networks both analytically and numerically. The temporal variation
is rather general and formalized as being driven by a metric dynamical system. Four network models are
discussed in detail in which the interconnections between vertices vary through time randomly. These
models are: 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with
random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4)
the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation
and randomness of the connection topology can enhance synchronizability in many cases; however, there
are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the
coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In
topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of
the time-varying graphs contains a spanning tree.

PACS. 05.45.Ra Coupled map lattices – 05.45.Xt Synchronization; coupled oscillators – 02.50.Ey
Stochastic processes

1 Introduction

Synchronization of coupled maps in networks is presently
an active research topic [1]. It represents a mathematical
framework that on the one hand can elucidate – desired or
undesired – synchronization phenomena in diverse appli-
cations. On the other hand, the synchronization paradigm
is formulated in such a manner that powerful mathemat-
ical techniques from dynamical systems and graph the-
ory can be utilized. A standard version of the network of
coupled maps, coming from the well-known coupled map
lattices (CML) [2], can be formalized as follows:

xi(t + 1) = f(xi(t))+
m∑

j=1

Lijf(xj(t)),

i = 1, . . . , m, (1)

where t ∈ Z
+ = {0, 1, 2, · · · , }, xi(t) is the state vari-

able of vertex i, f : R → R is a differentiable map, and
L = [Lij ]mi,j=1 ∈ R

m×m is the diffusion matrix, which is
determined by the topological structure of the network
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and satisfies Lij ≥ 0 for all i �= j and
∑m

j=1 Lij = 0
for all i = 1, . . . , m. Let x = [x1, x2, . . . , xm]� ∈ R

m,
F (x) = [f(x1), f(x2), . . . , f(xm)]�, and G = Im+L, where
Im denotes the identity matrix of dimension m. Then,
equation (1) can be rewritten in the matrix form:

x(t + 1) = GF (x(t)) (2)

where G = [Gij ]mi,j=1 ∈ R
m×m denotes the coupling and

satisfies Gij ≥ 0 for i �= j and
∑m

j=1 Gij = 1 for all
i = 1, . . . , m. Thus, if Gii ≥ 0 holds for all i = 1, . . . , m,
then G is a stochastic matrix.

This dynamical system formulation contains two as-
pects. One of them is the reaction dynamics at each vertex
of the network. The other is the coupling structure, that
is, whether and how strongly, the dynamics at one vertex
is directly influenced by the states of the other vertices.
This influence can be described by notions of graph the-
ory. Hence, the coupling matrix G corresponds to a graph
Γ = [V , E ], where V = {1, 2, · · · , m} denotes the vertex
set and E = {eij} denotes the edge set such that there
exists a directed edge from vertex j to vertex i if and only
if Gij > 0.
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Synchronous dynamics in complex networks have re-
cently attracted increasing attention [1,3–7]. Linear stabil-
ity analysis was used and transverse Lyapunov exponents
were introduced to analyze the influence of the topolog-
ical structure of networks [6]. Reference [7] has related
the ability to synchronize chaotic maps to the existence
of a spanning tree in the corresponding graph. However,
synchronization analysis has so far been mostly limited to
autonomous systems, where the interactions between the
state components are static. In [6], a generalized criterion
guaranteeing synchronization in the model (2) is proposed
as follows:

log |λ1| + μ < 0, (3)

where μ is the Lyapunov exponent of the uncoupled sys-
tem s(t + 1) = f(s(t)) and λ1 is the eigenvalue of the
coupling matrix G with the second largest modulus, not-
ing that the largest eigenvalue has a modulus of 1.

Many real-world applications from the social, natural,
and engineering disciplines include a temporal variation
of topology of the network. In communication networks,
for example, one must consider dynamical networks of
moving agents. In this case, some of the existing con-
nections can fail simply due to occurrence of an obsta-
cle between agents [8]. Also, some new connections may
be created when one agent enters the effective region of
other agents [9–11]. Furthermore, this temporal variation
of topology involves randomness. In [8–10], consensus in
multi-agent networks was considered where the state of
each vertex is updated according to the states of its con-
nected neighbors with switching connecting topologies.
The consensus protocol of multi-agent dynamical networks
can generally be formalized in discrete-time form as

xi(t + 1) =
m∑

j=1

Gij(t)xj(t), i = 1, . . . , m, (4)

where [Gij(t)]mi,j=1, t ∈ Z
+, are stochastic matrices. It

was proved in reference [11] that the connectivity of the
switching graphs plays a key role in the consensus dy-
namics of multi-agent networks with switching topologies.
Some papers from the recent literature [12] studied syn-
chronization of continuous-time dynamical networks with
time-varying topologies; however, the time-varying cou-
plings were specific, with either symmetry, node balance,
or fixed time average.

In this paper, we study the local complete synchro-
nization of networks of coupled maps with time-varying
couplings:

x(t + 1) = G(θ(t)ω)F (x(t)). (5)

Here, θ(t)· represents a metric dynamical system
{Ω,F , P, θ(t)}, where Ω is the state space, F is the σ-
algebra, P is the probability measure, and θ(t) is the semi-
flow satisfying θ(t+s) = θ(t)◦θ(s), where θ(0) is the identity
map, G(θ(t)ω) = [Gij(θ(t)ω)]mi,j=1 ∈ R

m×m denotes the
coupling matrix at time t and is measurable on (Ω,F),

and F (x) = [f(x1), · · · , f(xn)]� is a differentiable func-
tion.

Thus, equation (5) is a random dynamical system. For
more details on random dynamical systems, we refer to
the textbooks [16]. This form of time-varying coupling is
rather general and includes the deterministic case, where
G(·) can be regarded as a known function of time t, as
well as the stochastic case, where G(·) can be regarded as
being enforced by a stochastic process {ξt}t∈Z+ , namely,
G(ξt).

Accordingly, we denote time varying graphs by
{Γ (θ(t)ω)}t∈Z+ . Define Γ (θ(t)ω) = [V , E(θ(t)ω)], where
V = {1, 2, · · · , m} denotes the fixed vertex set and
E(θ(t)ω) = {eij(θ(t)ω)} denotes the edge set of the
graph at time t, i.e., edge eij(θ(t)ω) exists if and only if
Gij(θ(t)ω) > 0. So, the coupling matrix G(θ(t)ω) might be
a function of the coupling graph topology.

Local complete synchronization (synchronization for
short) is defined in the sense that the differences between
states of vertices of the coupled dynamical system (5) con-
verge to zero whenever the initial state of each vertex is
picked sufficiently near the attractor of the uncoupled sys-
tem and their differences are sufficiently small, i.e.,

lim
t→∞ ‖xi(t) − xj(t)‖ = 0, i, j = 1, . . . , m. (6)

For a more geometric definition, suppose that the uncou-
pled system s(t + 1) = f(s(t)) possesses an attractor (see
Ref. [17] for details), which we denote by A. Define

S =
{
[x1, x2, · · · , xm]� ∈ R

m : xi = xj , i, j = 1, . . . , m
}

which is an invariant subspace of equation (5). Let Am

denote the Cartesian product A × · · · × A (m times). We
define the synchronization manifold by the set A = S ∩
Am = {[x, · · · , x] : x ∈ A}. In this sense, synchronization
is equivalent to the stability of A.

The purpose of this paper is to study the synchroniza-
tion of the coupled map network (5) with time-varying
topology. Here, the topology is generally supposed to be
driven by a metric dynamical system and the coupled net-
work can be regarded as a random dynamical system.
We present sufficient conditions guaranteeing synchroniza-
tion. Furthermore, we show that the property that the
union of the time-varying graphs contains a spanning tree
is very important for the network’s ability to synchro-
nize chaotic maps. Additionally, we present several time-
varying network models and study the synchronization of
coupled maps on these dynamical networks. The topolog-
ical structures of these models vary in time and include
randomness. Generally, the collections of interconnections
in these networks can be regarded as Markov chains. Be-
sides illustrating the theoretical results, we also focus on
the variation of synchronizability of each model, which is
quantitatively measured with respect to several parame-
ters in the model. As we show, temporal variation and
randomness can enhance synchronization in some cases.
Further examples indicate that the communication be-
tween vertices in the dynamical networks might play an
important role in synchronizability.
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2 Theoretical analysis

In this section, we present theoretical results on synchro-
nization of coupled map networks with time-varying cou-
plings. The mathematical results have been proven in de-
tail in our companion papers [14,15]. Our main tool to
investigate the synchronous motion of the coupled sys-
tem (5) is the Hajnal diameter, which was first intro-
duced in reference [13] to describe the compression rate
of a stochastic matrix and is defined as follows:

Definition 1. For a matrix G with row vectors
g1, · · · , gm and a vector norm ‖ · ‖ in R

m, the Hajnal di-
ameter of G is defined as

diam(G) = max
i,j

‖gi − gj‖. (7)

From this definition, synchronization of the coupled sys-
tem (5) can equivalently be stated as

lim
t→∞diam([x1(t), · · · , xm(t)]�) = 0. (8)

We can extend this concept to matrix sequences driven by
a dynamical system: G(ω) = {G(θ(t)ω)}t≥0 : Ω → 2R

m,m

for any ω ∈ Ω, where 2R
m,m

denotes the set composed of
all subsets of R

m,m. For a matrix sequence G, its Hajnal
diameter at initial data ω ∈ Ω is defined by

diam(G(ω)) = lim
t→∞

{
diam

[ t−1∏

k=0

G(θ(k)ω)
]} 1

t

, (9)

where
∏

denotes the left matrix product:
∏n

k=1 Ak =
An × An−1 × · · · × A1. One can see that diam(G(ω)) < 0
implies that the differences between rows of the infinite
matrix product

∏∞
t=0 G(θ(t)ω) converge to zero as t goes

to infinity.
Let s(t) be the synchronized state solution satisfying

s(t + 1) = f(s(t)) for all t ≥ 0. Let δx(t) = x(t) − s(t).
Linearizing the system (5) about s(t) gives

δx(t + 1) = f ′(s(t))G(θ(t)ω)δx(t). (10)

Note that

diam
[ t−1∏

k=0

G(θ(k)ω)f ′(f (k)(s0))
]

=

diam
[ t−1∏

k=0

G(θ(k)ω)
]∣∣∣∣

t−1∏

l=0

f ′(f (l)(s0))
∣∣∣∣. (11)

Then, the Hajnal diameter of the variational system (10)
equals diam(G(ω))eμ, where μ denotes the maximum Lya-
punov exponent of the attractor A of the uncoupled sys-
tem,

μ = max
s0∈A

lim
t→∞

1
t

t−1∑

k=0

log |f ′
(f (k)(s0))|. (12)

This leads to the following condition

diam(G(ω))eμ < 1, (13)

which guarantees that the variable vector x(t) can be syn-
chronized picking the initial data of θ(t)· as ω.

Similar to the case of static network topology, we can
extend the transverse Lyapunov exponent for the matrix
sequence G in direction v ∈ R

m as:

σ(G, ω, v) = lim
t→∞

1
t

log
∥∥∥∥

t−1∏

k=0

G(θ(k)ω)v
∥∥∥∥. (14)

Along the synchronization direction e0 = [1, 1, · · · , 1]�,
one has σ(G, ω, e0) = 0 since G(·) has a common row sum
of unity. Let 0 = σ0 ≥ σ1 ≥ σ2 ≥ · · · ≥ σm be the Lya-
punov exponents for the initial condition ω, counted with
multiplicities. We have σ1(ω) = log diam(G(ω)) according
to Lemma 2.7 in reference [14]. Then, the condition (13)
can be rewritten as

σ1 + μ < 0. (15)

If (15) is satisfied, then the coupled system (5) can syn-
chronize.

Remark 1. By Proposition 4.4 in reference [14], one can
see that the criterion (3) for static networks is a direct
consequence of the criterion (15).

We apply the above results to the case where the time-
varying coupling is induced by a homogeneous Markov
chain {σt}t∈Z+ defined on a finite state space with an
irreducible transition probability matrix. Also, a homo-
geneous Markov chain can be regarded as a dynami-
cal system (Ω,F , Pπ, θ(t)·) as described in Appendix. We
now consider a coupled map network with Markov jump
topologies:

xi(t + 1) =
m∑

j=1

Gij(σt)f(xj(t)), i = 1, . . . , m (16)

or in matrix form:

x(t + 1) = G(σt)F (x(t)). (17)

Results in reference [15] indicate that in this case,
log diam(G(ω)) = σ1(ω) exists and is a non-random num-
ber for almost every ω ∈ Ω. Hence for simplicity we can
write diam(G(ω)) as diam(G) and σ1(ω) as σ1. From (13),
one can obtain the criterion for synchronization of coupled
maps (17) as

log diam(G) + μ < 0. (18)

According to the equivalence, we can rewrite the condi-
tion (18) as the inequality (15). From the criteria (18)–
(15), the Hajnal diameter diam(G), or equivalently, σ1,
can be used to measure the synchronizability of a Markov
jump graph topology process. The question then arises
under what conditions this graph process can synchro-
nize some chaotic dynamics, i.e., when does it hold that
diam(G) < 1. The following result comes from The-
orem 4.2 in reference [14] and the theory of Markov
chains [21].



402 The European Physical Journal B

Theorem 1. Suppose that G(·) has all diagonal elements
positive and the transition probability matrix T is irre-
ducible. Then, diam(G) < 1 if and only if the graph union⋃

i∈N Γ (i) possesses a spanning tree.

For the detailed proof, we refer to reference [15]. This the-
orem shows that there exist cases when a Markov jump
graph process can synchronize a chaotic map (with μ > 0)
even though at each instant the network may be discon-
nected, as long as the union graph has a spanning tree.

3 Applications

In the following, we will study the synchronous dynamics
in four time-varying graph process models. In each model,
the number of vertices is constant in time but the inter-
connections between vertices vary, and the variation of
interactions can be regarded as a Markov chain. We ex-
pect, on the one hand, to illustrate the theoretical results
of the previous section, and on the other hand, to numer-
ically analyze the synchronizability as computed by the
largest nonzero Lyapunov exponent σ1, by observing the
variations of σ1 with respect to several parameters in the
models.

The map f is chosen here as the logistic map: f =
ax(1 − x). We take the parameter a = 3.90 throughout
this section (hence with the Lyapunov exponent μ ≈ 0.5).
Thus, we can focus on the influence of the time-varying
coupling on synchronous motions by fixing the parameter
of the coupled map, which fixes the Lyapunov exponent μ
of the uncoupled system. (Note that the theoretical results
presented above do not depend on this particular choice
of chaotic dynamics.)

We realize the coupled networks via two types of cou-
pling configurations. The first system is the coupled map
lattice via a time varying graph process:

xi(t + 1) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(xi(t)) +
ε

ki(t)

m∑

j=1

Aij(t)[f(xj(t) − f(xi(t)],

if ki(t) > 0,
f(xi(t)), if ki(t) = 0,

(19)

where i = 1, . . . , m, ε ≥ 0 is the coupling strength, A(t)
denotes the adjacency matrix of the graph at time t, and
ki(t) =

∑
j �=i Aij(t) denotes the (in-)degree of vertex i at

time t. Synchronization is measured by the time average
of the variance of the states over the network:

K =
〈

1
m − 1

m∑

i=1

[xi(t) − x̄(t)]2
〉

,

where x̄ = (1/m)
∑m

i=1 xi(t) and 〈·〉 denotes the time av-
erage. One can regard K as a function of the coupling
strength ε. Let [G(t)]ij = δij(1 − ε) + εk−1

i (t)[A(t)]ij if
ki(t) > 0 and [G(t)]ij = δij otherwise, where δij are

the elements of the identity matrix Im. Then, the second
largest Lyapunov exponent σ1 of the stochastic matrix
series {G(t)}t∈Z+ is also a function of ε. We also define
W = σ1 + μ, which is the largest Lyapunov exponent of
the system (19) in directions transverse to the synchro-
nization manifold.

The second system is the dynamical multi-agent sys-
tem with the logistic output function f given above. At
each vertex i, the state is the average of the values f(xi(t))
of all its neighbors and itself, i.e.,

xi(t + 1) =
1

ki(t) + 1

[ ∑

j∈Ni(t)

f(xj(t)) + f(xi(t))
]
,

i = 1, . . . , m, (20)

where Ni(t) denotes the neighborhood of vertex i in graph
Γ (t) and ki(t) is the degree of the vertex i at time t. So,
Gij(t) = 1/(ki(t) + 1) in the form (5) if vertex j is linked
to vertex i at time t; otherwise, Gij = 0. According to the
criterion (15), the quantity σ1 can be utilized to measure
synchronizability of the time varying graph process of the
coupled system (20). A smaller value of σ1 indicates better
synchronizability. The simulation time length is 1000 in all
cases.

3.1 I.i.d. random graphs

In the independent-identical-distribution (i.i.d.) random
graph, the edge for each pair of vertices can disappear or
appear randomly, independent of time and other pairs of
vertices and following an identical distribution. This is a
special case of the model introduced in reference [9]. As
a realization in the present paper, at each time t, Γ (t)
is a p-random graph following the famous Erdös-Renyi
model [22]: for every pair (i, j), we randomly put an edge
between them with probability p and the selection is sta-
tistically independent for different times t and other pairs
of vertices.

We realize the coupled map networks (19) and (20) in
this model. Figure 1a indicates that the parameter range
of the coupling strength ε for which synchronization occurs
coincides with the range where W (ε) < 0. This verifies the
criterion (15). From the criterion (3), the synchronizabil-
ity measure for static networks is log |λ1|, which has been
studied in e.g. reference [27]. From Figure 2a, we observe
the variation of σ1 with respect to p and compare it to the
logarithm of the second largest eigenvalue (in modulus) of
the coupling matrix of the static random graph in the cou-
pled model (20). One can see that the synchronizability of
i.i.d. random graphs increases with increasing probability
parameter p and is clearly better than a static random
graph of the same size and with the same wiring proba-
bility p. This implies that in a random network, temporal
variation and randomness can increase synchronizability.
Furthermore, as one would expect, synchronizability in-
creases with the wiring probability p.
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Fig. 1. Variation of K and W with respect to ε. Figures (a–d) are plotted for coupled logistic maps (19). (a) i.i.d. random
network with 200 vertices and p = 0.1; (b) networks with switching topologies between Γ3 and Γ4 with switching probability
p = 0.5; (c) random error model: beginning with a scale-free network introduced in [24] with 200 vertices and average degree
20, failure occurs with probability p = 0.01 and the recovery time T = 3; (d) meet-for-dinner model with N = 200 members
and subgroups of size n = 5 . In all cases, K is shown by solid lines (−) and W is shown by dotted lines (− · −).

3.2 Randomly switching topologies

Randomly switching topologies were introduced in refer-
ence [8]. That is, the graph topology at time t is randomly
picked from a given finite set of topologies that follows an
identical time-independent distribution. Here, we consider
two pairs of graphs, see {Γ1, Γ2} and {Γ3, Γ4} in Figure 3.
The random switch occurs between the two graphs of each
pair. The switching signal is driven by a Bernoulli random
variable v. For some constant p ∈ (0, 1), if v < p then the
first graph in each pair is chosen as the coupling topology;
otherwise, the second graph is chosen.

From Figure 1b, one can see that the parameter region
for which σ1 + μ < 0 equals to the region where K ≈ 0,
which verifies the criterion (15). From Figure 2b, one can
see that for the graph pair {Γ1, Γ2}, the synchronizability
of random switching measured by σ1 is worse than either
of the individual graphs (noting that the synchronizabil-
ity of each graph can be found at the endpoints p = 0
and p = 1). In contrast, for the graph pair {Γ3, Γ4}, the
synchronizability obtained by random switching is better
than those of the individual graphs. That is to say, there

exist instances where temporal variation of the network
topology can increase or decrease synchronizability.

3.3 Random errors

In this model, we consider a network with random errors.
If an error occurs at a vertex, then all connections of this
vertex disappear. This model is characterized by two kinds
of errors. One is called failure, which happens to vertices
following the uniform distribution; the other is called at-
tack, which happens to vertices following a selective dis-
tribution according to a certain statistical property of the
vertices. As shown in reference [23], for a class of complex
networks with inhomogeneous degree distribution (for ex-
ample, the Barabási-Albert (BA) model), the statistics
such as shortest-path diameter and clustering can have
good error tolerance if the errors occur as failure but they
are extremely vulnerable for attacks based on highest de-
grees. As shown in reference [25], the synchronizability of
a network measured by the eigenratio of the correspond-
ing Laplacian almost does not vary if a vertex is randomly
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Fig. 2. Synchronizability of different graph processes. Subfigures (a–d) are plotted for the variation of synchronizability σ1 with
respect to the parameters of the coupled network (20). (a) The variation of σ1 of an i.i.d. random network with respect to the
parameter p and log |λ1| where λ1 is the second largest eigenvalue of the coupling matrix of a static random graph with the
same p in the model (20). The network size is 1024. (b) The variation of σ1 of a randomly switching network with respect to
p, for the first group {Γ1, Γ2} and the second group {Γ3, Γ4} of Figure 3. (c) The variation of σ1 of malfunction-and-recovery
networks with respect to malfunction fraction p, with recovery time T = 5, for failure and attack on scale-free and random
networks. The initial scale-free network has size N = 1024 and average degree 20, and the random network has N = 1024 and
average degree 152. (d) The variation of σ1 of the meet-for-dinner model with respect to n, in a network of size N = 1024.

removed but dramatically varies by the selective removal
of one vertex. In the present paper, we realize attack ac-
cording to the connection degree of each vertex. Namely,
errors happen merely on vertices with highest degrees. In
addition, we add a recovery phase: every malfunctioned
vertex will recover, i.e., all its connections will appear,
after a fixed time period. We denote by p the fraction of
error vertices in the whole vertex set, i.e., there are �N×p
error vertices, where �· denotes the floor function and N
is the size of the whole network.

Comparing the regions of the coupling strength where
K ≈ 0 and W < 0 in Figure 1c, one can similarly see that
the inequality (15) can precisely predict synchronization.
Figure 2c indicates the variation of the synchronizabil-
ity with error occurrence. We use two network models,
namely the Barabási-Albert (BA) network introduced in
reference [24] as a scale-free network (which has a power-
law degree distribution P (k) ∼ k−γ , with γ = 3 indepen-
dent of the size of the network in case of sufficiently large

Fig. 3. Two groups of graphs {Γ1, Γ2} and {Γ3, Γ4}. Switch
occurs in either group randomly. Namely, at each time, with
probability p the graph topology is selected as Γ1 (respectively,
Γ3) and with probability 1 − p as Γ2 (resp., Γ4).

network sizes), and a random network with exponential
tails introduced in reference [22]. One can see that for



W.L. Lu et al.: Synchronization in time-varying networks 405

a random network with high degrees, owing to the homo-
geneity of the network, there is no substantial difference in
synchronizability whether the malfunctioned vertices are
selected randomly or in decreasing order of connection de-
gree. On the other hand, a drastically different behavior
is observed for the scale-free network. If the vertices with
higher degrees are attacked, the synchronizability is much
reduced compared to the case with random failure. Due
to the degree inhomogeneity of the BA networks, the ver-
tices with a high degree play a more important role in
synchronization than those with smaller degrees.

3.4 Meet for dinner

In the meet-for-dinner model introduced in [26], a group
of friends decide to meet for dinner at a particular restau-
rant but fail to specify a precise time. On the afternoon of
the dinner appointment, they need to find a solution to de-
cide on the meeting time. A centralized solution is to have
an advanced conference for the whole group; however, if
this option is unavailable, then a decentralized solution is
that one meets, one at a time, a subset in the subgroup
to collect the information of this subgroup about their ex-
pected meeting time, and update with this information
until obtaining consensus. Here, we set up the model as
follows. The whole group has N members. At each time in-
terval, the group is randomly divided into subgroups with
n members (if N �= 0 mod n, then we put the remaining
ones into the last subgroup) and each subgraph is a com-
plete graph. Furthermore, every division is stochastically
independent of each other.

The region of the coupling strength for synchroniza-
tion coincides with the range where W < 0 in Figure 1d.
(The tiny region of apparent discrepancy near ε ≈ 0.45 is
an artifact of plotting the curves with finite data points.)
Interestingly, the meet-for-dinner model can synchronize
a chaotic map f despite the fact that the graph is discon-
nected at any time. For a static disconnected graph, there
exist several vertices whose dynamical information never
reaches the others; so, obviously, a chaotic map cannot
be synchronized by a disconnected graph. However, if the
graph topology is time-varying, despite the disconnected-
ness of the network at each time, the dynamical informa-
tion can reach others in a certain time period. Therefore,
in this sense, Theorem 1 implies that in some cases, tem-
poral variation of the network topology can enhance syn-
chronization. Figure 2d shows that the synchronizability
of the meet-for-dinner model increases with size n of the
subgroups.

4 Conclusions

In conclusion, we have presented an effective method
based on the extended Hajnal diameter for matrix se-
quences to study the synchronization in networks of cou-
pled maps with time varying topologies. As shown by
the sufficient criteria guaranteeing synchronization, the
Hajnal diameter of the coupling matrix sequence can be

utilized to measure network synchronizability. As shown in
Section 3, synchronizability varies with respect to several
parameters in time-varying network models. An intuitive
interpretation is that the time-cost of communication be-
tween vertices might play a key role for synchronization
of a dynamical network. The vertices in the i.i.d. ran-
dom graphs have a higher chance to access others than
in a static random graph. Attack to a network with a
power-law degree distribution is more likely to interrupt
the communication between vertices than random failures.
However, for a random network with high average degree,
attack and failure can cause almost equal damage in com-
munication between vertices. When the network size in-
creases, the indirect communication of two vertices can be
enhanced by the time-varying connection structure, which
can increase synchronizability. These phenomena imply
that in some cases time-variance and randomness can en-
hance synchronizability. However, as shown in Figure 2b,
it is also possible to have decreased synchronizability. This
issue deserves further investigation in the future.

Appendix: Homogeneous Markov chain
with finite state space

A homogeneous Markov chain with finite state space and
an irreducible probability transition matrix can be re-
garded as a metric dynamical system with invariant prob-
ability, {Ω,F , P, θ(t)·}. Its state space Ω = NZ

+
is com-

posed of all sequences: ω = {σt}t≥0; its Borel σ-algebra
F = BZ

+
, where B denotes all subsets of N , has a

basis of the form {σt1 ∈ B1, · · · , σtr ∈ Br} for some
t1 ≤ t2 ≤ · · · ≤ tr and Bl ∈ B for all l = 1, · · · , r; θ
denotes the shift map, θω = {σ(t)}t≥1; Pπ denotes the
probability measure induced by the unique invariant class
of the transition probability matrix π, which is given by

Pπ(σt1 ∈ B1, · · · , σtr ∈ Br) =
N∑

il=1:l, il /∈T

∑

itl
∈Bl:l=1,··· ,r

πi1ti1i2ti2i3 · · · titr−1 tr , (21)

where T = {t1, · · · , tr}, and invariant through θ(t)·. In-
duced by different initial distributions ξ, this system can
have different probability measures Pξ, but they all are not
invariant over θ(t). If the invariant probability π is ergodic
in the sense that each πk > 0, k = 1, ..., N then for any
initial distribution ξ, Pξ is absolutely continuous with Pπ ,
i.e., Pξ � Pπ, which implies that any characteristic in the
Pπ almost sure sense certainly holds in the almost sure
sense for any Pξ if π is ergodic, equivalently, the tran-
sition probability matrix T is irreducible. In this paper,
we only focus on the probability measure Pπ and simplify
Pπ-almost surely by “almost surely” unless denoted oth-
erwise. By the multiplicative ergodic theorem for random
dynamical systems [16], the multiplicative Lyapunov ex-
ponents for the infinite matrix sequence

∏∞
t=0 G(σt) exist

and are non-random almost surely.
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